Some prime ideals in the extensions of Noetherian rings

By
Junro Sato

Introduction

Let R and S be commutative rings with unity and let $f: R \rightarrow S$ be a homomorphism with $f(1)=1$. Mcquillan, in his paper [2], introduces the notions of S-prime and S-primary ideals. In fact, he proved that if f is a flat homomorphism, then every prime ideal of S is S-prime, and that if R is integrally closed integral domain, S is integral over R and no non-zero element of R is a divisor of zero in S, then every prime ideal of R is S-primary. The aim of this paper is to investigate more closely S-prime and S-primary ideals. Further, we introduce the notion of S-quasi-primary, and determine its structure. We are mainly interested in the case where R and S are Noetherian. If $f: R \rightarrow S$ is a homomorphism of rings and if I is an ideal of S, then $f^{-1}(I)$ is denoted by $I \cap R$.

In the first section, we consider S-prime ideals. In fact, we shall prove that \mathfrak{a} is S-prime if and only if \mathfrak{a} is a prime ideal of R and $\mathfrak{a} S \cap R=\mathfrak{a}$, provided that $\mathfrak{a} S \neq S$.

In the second section, we discuss S-primary ideals.
In the final section, we introduce and study S-quasi-primary ideals. The main result is that \mathfrak{a} is an S-quasi-primary if and only if $a S \cap R$ is an R-primary ideal of R such that $\sqrt{\mathfrak{a}}=\sqrt{\mathfrak{a} S \cap R}=p$, and that $\operatorname{Ass}_{R}(S / \mathfrak{a} S)=\{p\}$.

In this article R and S are assumed to be commutative rings and to have unity unless otherwise specified, and $f: R \rightarrow S$ is a homomorphism with $f(1)=1$, and that our general references for unexplained technical terms are [1] and [3].

§ 1. S-prime ideals

First, we recall the following definition.
Definition 1.1. Let $f: R \rightarrow S$ be a homomorphism and let q be an ideal of R. We say that q is S-prime if, $a \in R, \alpha \in S$ and $f(a) \alpha \in q S$, implies $a \in q$, or $\alpha \in q S$.

Remark 1.2. Let q be an ideal of R such that $q S=S$. Then q is S-prime.
Now, we show our key lemma.

Lemma 1.3. Let $f: R \rightarrow S$ be a homomorphism, and let \mathfrak{a} be an ideal of R such that $\mathfrak{a} S \neq S$. If \mathfrak{a} is S-prime, then $\mathfrak{a} S \cap R$ is a prime ideal of R.

Proof. Let $a, b \in R$ be such that $a b \in \mathfrak{a} S \cap R$ and $a \notin \mathfrak{a S} \cap R$. Then, since $f(a) b \in \mathfrak{a} S$ and $a \notin \mathfrak{a}$, we have $f(b) \in \mathfrak{a} S$ by definition. Thus $b \in \mathfrak{a} S \cap R$, and $\mathfrak{a} S \cap R$ is a prime ideal of R.
Q.E.D.

As a consequence:
Theorem 1.4. Let $f: R \rightarrow S$ be a homomorphism, and let \mathfrak{a} be an ideal of R such that $\mathfrak{a S} \neq S$. Assume that \mathfrak{a} is S-prime. Then $\mathfrak{a} S \cap R=\mathfrak{a}$. There \mathfrak{a} is a prime ideal of R.

Proof. First we shall show $\mathfrak{a} S \cap R=\mathfrak{a}$. One inclusion is obvious. For the converse inclusion, let $r \in \mathfrak{a} S \cap R$. Since $1 \in S, f(r)=f(r) \cdot 1 \in \mathfrak{a S}$. Since \mathfrak{a} is S-prime, we have $r \in \mathfrak{a}$ or $1 \in \mathfrak{a S}$. By our assumption $\mathfrak{a} S \neq S$, and we have $r \in \mathfrak{a}$, and hence $\mathfrak{a} S \cap R=\mathfrak{a}$, and \mathfrak{a} is prime by Lemma 1.3.
Q.E.D.

As another characterization of being S-prime, we have the following:
Proposition 1.5. Let $f: R \rightarrow S$ be a homomorphism, and let $p \in \operatorname{Spec}(R)$. Then p is S-prime if and only if $p S=S$ or $p S_{p} \cap S=p S$.

Proof. $\quad(\Rightarrow)$: Assume that $p S \neq S$. We have only to show that $p S_{P} \cap S=p S$. One inclusion is clear. For the converse inclusion, let $\alpha \in p S_{p} \cap S$. Then there exists an element $a \in R \backslash p$ such that $f(a) \alpha \in p S$. Since p is S-prime, we have $\alpha \in p S$.
(\Leftarrow) : We may assume that $p S \neq S$. Suppose that $f(a) \alpha \in p S$ with $a \in R$ and $\alpha \in S$. If $a \in R \backslash p$, then $\alpha \in p S_{p} \cap S=p S$, and hence p is S-prime.
Q.E.D.

By a localization, S-prime ideals behave nicely. In fact, the following proposition holds:

Proposition 1.6. Let $f: R \rightarrow S$ be a homomorphism, and let $p \subseteq q$ be in $\operatorname{Spec}(R)$. If p is S-prime, then $p R_{q}$ is S_{q}-prime.

Proof. Assume that $f_{q}(a) \alpha \in p S_{q}$ with $a \in R_{q}$ and $\alpha \in S_{q}$, where $f_{q}: R_{q} \rightarrow S_{q}$ is defined by $f_{q}(b / c)=f(b) / c$ for all $b \in R$ and $c \in R \backslash q$. Then there exists an element $x \in R \backslash q$ such that $x a \in R, f(x) \alpha \in S$ and $f(x a) f(x) \alpha \in p S$. Since p is S-prime, we have $x a \in p$ or $f(x) \alpha \in p S$, and hence $a \in p R_{q}$ or $\alpha \in p S_{q}$. Thus $p R_{q}$ is S_{q}-prime.
Q.E.D.

The following proposition is well applicable to the case of extensions of Notherian rings.

Proposition 1.7. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings, and let $p \in \operatorname{Spec}(R)$ be such that $p S \neq S$. Suppose that there exist only a finite number of prime ideals P_{1}, \ldots, P_{n} of S lying over p. If P_{1}, \ldots, P_{n} are only the prime divisors of $p S$, then p is S-prime.

Proof. Let $p S=Q_{1} \cap \cdots \cap Q_{n}, \sqrt{Q_{i}}=P_{i}(1 \leqq i \leqq n)$ be an irredundant primary decomposition of the ideal $p S$ of S. Suppose that $f(a) \alpha \in p S$ with $a \in R$ and $\alpha \in S$. If $a \notin p$, then $f(a) \notin P_{1}, \ldots, P_{n}$, and hence $\alpha \in Q_{1} \cap \cdots \cap Q_{n}=p S$. Thus p is S-prime.
Q.E.D.

In [2], the following proposition is proved:
Proposition 1.8 (cf. [2, Proposition 2]). Let $f: R \rightarrow S$ be a homomorphism and suppose that S is flat as an R-module. Then every prime ideal of R is S-prime.

As an application of this proposition, we have:
Proposition 1.9. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings. Suppose that f is flat and integral. Then, for any $p \in \operatorname{Spec}(R)$, $p S$ has no embedded prime divisors.

Proof. Let $p S=Q_{1} \cap \cdots \cap Q_{n} \cap T_{1} \cap \cdots \cap T_{m}$ be an irredundant primary decomposition with embedded primary components T_{1}, \ldots, T_{m}. Since, by assumption, f is integral, we see that $\sqrt{T_{1}} \cap \cdots \cap \sqrt{T_{m}} \cap R \supsetneqq p$. Hence there exist elements $a \in R$ and $\alpha \in S$ such that $a \in \sqrt{T_{1}} \cap \cdots \cap \sqrt{T_{m}} \cap(R \backslash p)$ and $\alpha \in\left(Q_{1} \cap \cdots \cap\right.$ $\left.Q_{n}\right) \backslash p S$. Thus $a^{k} \in T_{1} \cap \cdots \cap T_{m} \cap(R \backslash p)$ and $f\left(a^{k}\right) \alpha \in p S$ for some k. This implies that p is not S-prime. However, f is flat, and p is S-prime by Proposition 1.7. This is a contradiction.
Q.E.D.

In terms of the prime divisors of $p S$, we give the following criterion to be S-prime.

Theorem 1.10. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings, and let $p \in \operatorname{Spec}(R)$. Then p is S-prime if and only if either $p S=S$ or $p S \neq S$ and $P \cap R=p$ for any prime divisor P of the ideal $p S$.

Proof. $\quad(\Rightarrow)$: Assume that $p S \neq S$. Let $p S=Q_{1} \cap \cdots \cap Q_{n} \cap T_{1} \cap \cdots \cap T_{m}$ be an irredundant primary decomposition of the ideal $p S$ where $\sqrt{Q_{i}} \cap R=p(1 \leqq i \leqq$ $n)$ and $\sqrt{T_{j}} \cap R \supsetneqq p(1 \leqq j \leqq m)$. Then there exist elements $a \in R$ and $\alpha \in S$ such that $a \in T_{1} \cap \cdots \cap T_{m} \cap(R \backslash p), \alpha \in\left(Q_{1} \cap \cdots \cap Q_{n}\right) \backslash p S$ and $f(a) \alpha \in p S$, and $p S$ is not S-prime.
(\Leftrightarrow) : We may assume that $p S \neq S$. Then, by assumption, we have an irredundant primary decomposition $p S=Q_{1} \cap \cdots \cap Q_{n}$, and $\sqrt{Q_{i}} \cap R=p(1 \leqq i \leqq n)$. Suppose that $f(a) \alpha \in p S$ with $a \in R$ and $\alpha \in S$, then $f(a) \alpha \in Q_{1} \cap \cdots \cap Q_{n}$. If $a \notin p$, then $\alpha \in Q_{1} \cap \cdots \cap Q_{n}=p S$, and hence p is S-prime.
Q.E.D.

Combining this result with Proposition 1.8, we have the following well-known result.

Corollary 1.11 (cf. [1], (9.B), Theorem 12.). Let $f: R \rightarrow S$ be a flat homomorphism of Noetherian rings and $p \in \operatorname{Spec}(R)$ such that $p S \neq S$. Then, for all prime divisors P of the ideal $p S$ of S, we have $P \cap R=p$.

We shall show an example if a prime ideal p of R which is not S-prime even if S is integral over R.

Example 1.12. Let \mathbf{Q} be a rational number field and consider $R=$ $\mathbf{Q}\left[x^{2}, y^{2}\right] \subset A=\mathbf{Q}[x, y]$. Let $S=\{a \in A \mid a(1,1)=a(-1,1)=a(-1,-1)=$ $a(1,-1)\} \supset R$ and let $f: R \hookrightarrow S$ be the natural inclusion map. Note that f is an integral morphism. Put $m=(x-1, y-1) A \cap S=\left(x^{2}-1, y^{2}-1\right) A$. Then ht $(m)=2$. Let $c(A / S)$ is a conductor ideal of A over S. Then we can show that $\mathfrak{c}(A / S)=\left(x^{2}-1, y^{2}-1\right) A$. Indeed, $\mathfrak{c}(A / S) \supseteq\left(x^{2}-1, y^{2}-1\right) A$ is obvious. Take $a(x, y) \in$ Then we can write $a(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} x y+b(x, y), a_{i} \in \mathbf{Q}$ $(1 \leqq i \leqq n), b(x, y) \in\left(x^{2}-1, y^{2}-1\right) A$. Since $x a(x, y) \in S$, we can see easily that $a_{0}=a_{1}=a_{2}=a_{3}=0$. Thus $m=c(A / S)$. Therefore we see that depth $S_{m}=1$. (cf. [6], Proposition 1.9, Proposition 1.10 and Proposition 1.13) Let $x^{2} R=$ $p \in \operatorname{Spec}(R)$. Then it follows that m is a prime divisor of $p S=x^{2} S$ and $m \cap R=$ $\left(x^{2}-1, y^{2}-1\right) R(\neq p)$. Hence p is not S-prime by Theorem 1.5. Further, this example shows that p is not S-prime, though $p \in \operatorname{Spec}(R), p S \neq S$ and satisfies the condition $p S \cap R=p$.

The following is a corollary to Theorem 1.10.
Corollary 1.13. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings and let m be a maximal ideal of R. Then m is S-prime.

Proof. By Remark 1.2, we may assume that $m S \neq S$. Let $m S=Q_{1} \cap \cdots \cap Q_{n}$ be an irredundant primary decomposition of the ideal $m S$ of S, and let $p_{i}=\sqrt{Q_{i} \cap}$ $R(1 \leqq i \leqq n)$. Then, since $p_{i} \neq R$ and $p_{i} \subseteq m$, and we have $p_{i}=m$ for all i. Hence, by Theorem 1.10, m is S-prime.
Q.E.D.

In [4], we introduce the notion of a "surper-primitive element". Now, we study the relationship between S-prime ideals and surper-primitive elements. For a moment, we consider birational-extensions of Noetherian domains. For a an element $\alpha \in K$, we set $I_{\alpha}=\{a \in R \mid a \cdot \alpha \in R\} . \quad I_{\alpha}$ is an ideal of R and is called the denominator ideal of α in R.

Definition 1.14. Let R be a Noetherian domain with quotient field K. Then $\alpha \in K$ is called a super-primitive element over R if $I_{\alpha}+\alpha I_{\alpha} \nsubseteq p$ for for any $p \in D p_{1}(R)$.

When α is a surper-primitive element, we say that $R[\alpha]$ is a surper-primitive extension of R.

We have a characterization of flatness using surper-primitive extension and S-prime ideals of depth one. In fact, the following proposition holds:

Proposition 1.15. Let $\left\{\alpha_{i} \mid 1 \leqq i \leqq n\right\}$ be a set of super-primitive elements over a Noetherian domain R. Let $f: R \hookrightarrow S=R\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ be the natural inclusion map. Then the following conditions are equivalent.
(1) For any $p \in D p_{1}(R), p$ is S-prime.
(2) S is flat over R.
(3) $p S_{p} \cap S=p S$ for any $p \in \operatorname{Spec}(R)$.
(4) $\operatorname{Ass}_{R}(S / p S)=\{p\}$ or $p S=S$ for any $p \in \operatorname{Spec}(R)$.

Proof. (2) \Rightarrow (3): Since $R \rightarrow S \rightarrow S_{q}$ is flat, $p S_{p} \cap S=\left(p R_{p} \cap R\right) \otimes_{R} S=p \otimes_{R}$ $S=p S$, as desired. (3) \Rightarrow (4): Assume that $p S \neq S$. For any $q \in \operatorname{Ass}_{R}(S / p S)$, by definition, we have $q=(p S: \alpha)$ for some $\alpha \in S \backslash p S$, and hence $\alpha q S \subseteq p S$. Note that $p \subseteq q$. Now we assume that $p \varsubsetneqq q$, then $q R_{p}=R_{p}$, and $\alpha \in p S_{p} \cap S=p S$, a contradiction. Therefore $p=q$, as desired. (4) \Rightarrow (1): By Remark 1.2, we may assume that $p S \neq S$. Let $f(a) \alpha \in p S$ where $a \in R$ and $\alpha \in S \backslash p S$. We shall show that $a \in p$. Now $a \cdot \bar{\alpha}=\overline{0}$ in $S / p S$. Thus a is a zero divisor in $S / p S$. Since $\operatorname{Ass}_{R}(S / p S)=\{p\}$, this implies $a \in p$, as desired.
(1) \Rightarrow (2): If S is not flat over R, then we have $\left(I_{\alpha_{1}} \cap \cdots \cap I_{\alpha_{n}}\right) S \neq S$ by [5, Proposition 1]. Now, let $I_{\alpha_{1}} \cap \cdots \cap I_{\alpha_{n}}=q_{1} \cap \cdots \cap q_{m}, \sqrt{q_{i}}=p_{i}(1 \leqq i \leqq m)$ be an irredundant primary decomposition of the ideal $I_{\alpha_{1}} \cap \cdots \cap I_{\alpha_{n}}$ of R. Note that $p_{i} \in D p_{1}(R)$ by [6, Proposition, 1.10]. If $p_{i} S=S$ for all i, then $\left(I_{\alpha_{1}} \cap \cdots \cap I_{\alpha_{n}}\right) S=S$. Hence $p_{i} S \neq S$ for some i. Since $p_{i} \supseteq I_{\alpha_{j}}$ for some j, we have $p_{i} S \supseteq I_{\alpha_{j}}+\alpha_{j} I_{\alpha_{j}}$. Put $\mathfrak{a}_{j}=I_{\alpha_{j}}+\alpha_{j} I_{\alpha_{j}}$ for all j. Thus we get $p_{i} S \cap R \supseteq \mathfrak{a}_{j}$. Since p_{i} is S-prime, $p_{i}=$ $p_{i} S \cap R$ by Theorem 1.4. Thus $p_{i} \supseteq \mathfrak{a}_{j}$. But α_{i} is super-primitive, and $p_{i} \nsupseteq \mathfrak{a}_{j}$ by definition. This is a contradiction.
Q.E.D.

Corollary 1.16. Let R be a Noetherian normal domain with quotient field K, and let $\alpha_{1}, \ldots, \alpha_{n} \in K$. Then $S=R\left[\alpha_{1}, \ldots, \alpha_{n}\right]$ is flat over R if and only if every prime ideal $p \in \mathrm{Ht}_{1}(R)$ is S-prime.

Proof. Since R is normal, $\alpha_{i}(1 \leqq i \leqq n)$ is a super-primitive element over R by [4, 1.13 Theorem]. Hence the assertion follows easily from Proposition 1.15.
Q.E.D.

Summarizing the above results, we have the main theorem of this section.
Theorem 1.17. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings, and let \mathfrak{a} be an ideal of R. Then \mathfrak{a} is S-prime if and only if $\mathfrak{a} \in \operatorname{Spec}(R)$ and $\operatorname{Ass}_{R}(S / \mathfrak{a} S)=\{\mathfrak{a}\}$ or $\mathfrak{a} S=S$.

§ 2. S-primary ideals

In this section, we start with the following definition.
Definition 2.1. Let $f: R \rightarrow S$ be a homomorphism and let q be an ideal of R. We say that q is S-primary if, $f(a) \alpha \in q S$ with $a \in R, \alpha \in S$, implies $a \in q$, or $\alpha \in \sqrt{q S}$.

If q is S-primary and if $q S \neq S$, then we can show that q is a primary ideal of R. Hence the notion of "S-primary" is similar to the ordinary primary ideal of R.

Theorem 2.2. Let $f: R \rightarrow S$ be a homomorphism and let q be an ideal of R. If q is S-primary, then $q S \cap R=q$ and q is a primary ideal of R or $q S=S$.

Proof. Suppose that $q S \neq S$. We note that $q S \cap R=q$. Indeed $q S \cap R \supseteq q$ obviously. To see the other inclusion, let $r \in q S \cap R$. Since $f(r)=f(r) \cdot 1 \in q S$ and q is S-primary, we have $r \in q$ or $1 \in \sqrt{q S}$. Since $q S \neq S$, we get $r \in q$. Therefore $q S \cap R=q$. It remains only to show that q is a primary ideal of R. Assume that $a b \in q$ with $a \in R \backslash q$ and $b \in R$, then $a f(b) \in q S$. Since q is S-primary, it follows that $f(b) \in \sqrt{q S}$, and hence $b \in \sqrt{q S} \cap R=\sqrt{q S \cap R}=\sqrt{q}$. Thus q is a primary ideal of R.
Q.E.D.

Proposition 2.3. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings and let q be an ideal of R. Let $q S=Q_{1} \cap \cdots \cap Q_{n} \cap T_{1} \cap \cdots \cap T_{m}$ be an irredundant primary decomposition of the ideal $q S$ of S, where $T_{j}(1 \leqq j \leqq n)$ are the embedded primary components of the expression of $q S$. If $Q_{i} \cap R=q$ for all i, then q is S-primary.

Proof. Assume that $f(a) \alpha \in q S$ with $a \in R$ and $\alpha \in S \backslash \sqrt{q S}$. Then, since $\sqrt{q S}=\sqrt{Q_{1}} \cap \cdots \cap \sqrt{Q_{n}}$, we have $\alpha \notin \sqrt{Q_{i}}$ for some i, and $a \in Q_{i} \cap R=q$. It follows that q is S-primary.
Q.E.D.

If the ideal $q S$ have no embedded primary components, then the converse of proposition holds:

Proposition 2.4. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings, and let q be an ideal of R. Assume that the ideal $q S$ has no embedded primary component. $q S=Q_{1} \cap \cdots \cap Q_{n}$ be an irredundant primary decomposition of $q S$. If q is S-primary, then $Q_{i} \cap R=q$ for all i.

Proof. We may assume that $Q_{1} \cap \cdots \cap Q_{n}$ is the shortest primary decomposition. Suppose that $Q_{i} \cap R \supsetneqq q$ for some i. We may assume that $i=1$. Then there exists an element $a \in\left(Q_{1} \cap R\right) \backslash q$. Since $\sqrt{Q_{i}}(1 \leqq i \leqq n)$ are minimal prime divisors, there is an element $\alpha \in Q_{2} \cap \cdots \cap Q_{n}$ not contained in $\sqrt{Q_{1}}$. Since $\sqrt{q S}=\sqrt{Q_{1}} \cap \cdots \cap \sqrt{Q_{n}}, \quad \alpha \notin \sqrt{q S} . \quad$ Note that $f(a) \alpha \in Q_{1} \cap \cdots \cap Q_{n}=q S$. This contradicts that q is S-primary.
Q.E.D.

We end this section with the following result.
Proposition 2.5. Let $f: R \rightarrow S$ be a homomorphism and let q be an ideal of R. If q is S-primary, then $q: x$ is S-primary.

Proof. We may assume that $x \notin q$. Now, suppose that $a \in R, \alpha \in S, f(a) \cdot \alpha \in$ $(q: x) S$ and that $\alpha \notin \sqrt{(q: x) S}$. Then, since $\sqrt{q S} \subseteq \sqrt{(q: x) S}, \alpha \notin \sqrt{q S}$, and hence $f(a x) \alpha=f(a) \alpha f(x) \in q S$. Since q is S-primary, we have $a x \in q$, and $a \in q: x$. Therefore $q: x$ is S-primary.
Q.E.D.

§ 3. S-quasi-primary ideals

In this section, we introduce the notion of " S-quasi-primary" and investigate its several properties.

Definition 3.1. Let $f: R \rightarrow S$ be a homomorphism and let q be an ideal of R. We say that q is S-quasi-primary if, $f(a) \alpha \in q S$ with $a \in R, \alpha \in S$, implies $a \in \sqrt{q}$ or $\alpha \in q S$.

Remark 3.2. For a prime ideal q of R, we see that q is S-quasi-primary if and only if q is S-prime.

Let q be an ideal of R, and let $\tilde{q}=q S \cap R$. The following example shows that for an S-quasi-primary ideal q of R it does not holds $q=\tilde{q}$.

Example 3.3. With a field k and an indeterminate t, we consider $R=$ $k\left[t^{2}, t^{3}\right] \subset S=k[t], q=t^{2} R$ and let $f: R \rightarrow S$ be the natural inclusion map. Then it follows that q is S-quasi-primary. Indeed, suppose that $a(t) \in R, \alpha \in S, a(t) \alpha \in$ $q S=t^{2} k[t]$ and that $a(t) \notin \sqrt{q}=\left(t^{2}, t^{3}\right) R$. Then we have $a(0) \neq 0$, and hence $\alpha \in$ $t^{2} k[t]=q S$. Therefore q is S-quasi-primary. Further, we can see easily that $t^{3} \notin q$ and $t^{3}=t^{3} \cdot 1 \in\left(t^{2}, t^{3}\right) R=q S \cap R=\tilde{q}$. Hence we have $q \neq \tilde{q}$.

Next, for an S-quasi-primary ideal q of R, we consider relationship between q and \tilde{q}.

Proposition 3.4. Let $f: R \rightarrow S$ be a homomorphism.
For an ideal of R, we write $\tilde{q}=q S \cap R$. If q is S-quasi-primary and $q S \neq S$, then
(1) \tilde{q} is a primary ideal of R.
(2) $\sqrt{q}=\sqrt{\tilde{q}}$.

Proof. (1) Let $a b \in \tilde{q}$ where $a \in R$ and $b \notin \tilde{q}$. Note that $a f(b) \in q S$ and $f(b) \notin q S$. Since q is S-quasi-primary, we conclude $a \in \sqrt{q} \subseteq \sqrt{\tilde{q}}$. Thus \tilde{q} is a primary ideal of R.
(2) The inclusion $\sqrt{q} \subseteq \sqrt{\tilde{q}}$ is clear. If $x \in \sqrt{\tilde{q}}$, then $x^{n} \in \tilde{q}$ for some n. Since $f\left(x^{n}\right) \cdot 1 \in q S$ and q is S-quasi-primary, it follows that $x^{n} \in \sqrt{q}$ or $1 \in q S$. Since $q S \neq S$, we have $x^{n} \in \sqrt{q}$, and $x \in \sqrt{q}$. Therefore $\sqrt{q}=\sqrt{\tilde{q}}$, as desired.
Q.E.D.

Consequently, we see that if q is S-quasi-primary, then $\sqrt{q}=p$ is a prime ideal of R. Furthermore, for the ideals q and \tilde{q} of R, we have the following proposition.

Proposition 3.5. Let $f: R \rightarrow S$ be a homomorphism and let q be an ideal of R. Put $\tilde{q}=q S \cap R$. If q S-quasi-primary, then \tilde{q} is S-quasi-primary.

Proof. Suppose that $a \in R, \alpha \in S, f(a) \cdot \alpha \in \tilde{q} S$ and that $\alpha \notin \tilde{q} S$. Note that $q S \subseteq \tilde{q} S=(q S \cap R) S \subseteq q S$, and hence $q S=\tilde{q} S$. Thus we have $f(a) \cdot \alpha \in \tilde{q} S$ and $\alpha \notin q S$. Since q is S-quasi-primary, we see $a \in \sqrt{q}=\sqrt{\tilde{q}}$. Therefore \tilde{q} is S-quasiprimary.
Q.E.D.

Using Proposition 3.4, we have the following:
Theorem 3.6. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings, and let q be an ideal of R such that $q S \neq S$. Let $q S=Q_{1} \cap \cdots \cap Q_{n}, \sqrt{Q_{i}}=P_{i}(1 \leqq i \leqq n)$
be an irredundant primary decomposition of the ideal $q S . \quad$ Put $\tilde{q}=q S \cap R$. Then q is S-quasi-primary if and only if \tilde{q} is a primary ideal of $R, \sqrt{q}=\sqrt{\tilde{q}}=p$ and $P_{i} \cap R=p$ for all i.

Proof. $\quad(\Rightarrow)$: By Proposition $3.4 \tilde{q}$ is a primary ideal of R and $\sqrt{q}=\sqrt{\tilde{q}}=$ p. Suppose that $P_{i} \cap R \supsetneqq p$ for some i. We may assume that $i=1$. Thus there exists an element $a \in P_{1} \cap R \backslash p$. We may assume that $a \in Q_{1}$. Further, we can take an element $\alpha \in Q_{2} \cap \cdots \cap Q_{n}$ such that $\alpha \notin Q_{1}$. Then $f(a) \alpha \in Q_{1} \cap \cdots \cap Q_{n}=$ $q S$. Since $a \notin p=\sqrt{q}=\sqrt{\tilde{q}}$ and $\alpha \in q S$, we see that q is not S-quasi-primary.
(\Leftrightarrow) Assume that $f(a) \alpha \in q S, a \notin p=\sqrt{q}=\sqrt{\tilde{q}}$ and that $\alpha \in S$. Then $f(a) \notin$ P_{i} for all i. It follows that $\alpha \in Q_{1} \cap \cdots \cap Q_{n}=q S$. Therefore q is S-quasi-primary.
Q.E.D.

Now, we have the following structure theorem of the S-quasi-primary ideals, which is similar to Theorem 1.10 .

Theorem 3.7. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings, and let q be an ideal of R such that $q S \neq S$. Then q is S-quasi-primary if and only if $\tilde{q}=q S \cap R$ is a primary ideal of R such that $\sqrt{q}=\sqrt{\tilde{q}}=p \in \operatorname{Spec}(R)$, and $\operatorname{Ass}_{R}(S / q S)=\{p\}$.

Proof. (\Rightarrow) : We have only to prove that $\operatorname{Ass}_{R}(S / q S)=\{p\}$. Let $q S=$ $Q_{1} \cap \cdots \cap Q_{n} \sqrt{Q_{i}}=P_{i}(1 \leqq i \leqq n)$ be an irredundant primary decomposition of the ideal $q S$. Take $p^{\prime} \in \operatorname{Ass}_{R}(S / q S)$. Then, by definition of Ass, there exists an element $x \in S \backslash q S$ such that $p^{\prime}=(q S: x)$, and $x p^{\prime} S \subseteq q S$. Hence $f(x) p^{\prime} S \subseteq Q_{j}$ for all j. Since $x \notin Q_{i}$ for some $i, p^{\prime} S \subseteq P_{i}$, and $p^{\prime} \subseteq P_{i} \cap R=p$ by Theorem 3.6. On the other hand, since $q \subseteq p^{\prime}, p=\sqrt{q}=\sqrt{\tilde{q}} \subseteq p^{\prime}$. Therefore $p^{\prime}=p$, as desired.
(\Leftarrow) : By Theorem 3.6, we have only to show that $P_{i} \cap R=p$ for all i, and this is clear because $\{p\}=\operatorname{Ass}_{R}(S / q S)=\operatorname{Ass}_{S}(S / q S) \cap R$ by [1, (9.A), Proposition].
Q.E.D.

In the rest of this section, we discuss relationship among the S-prime, S-primary and S-quasi-primary ideals.

Proposition 3.8. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings, and let q be an ideal of R such that $q S \neq S$. If q is S-primary and $q S$ has no embedded prime divisor, then q is S-quasi-primary.

Proof. By Theorem 2.2, $q S \cap R=q$ and q is a primary ideal of R. Hence we have only to show that $\operatorname{Ass}_{R}(S / q S)=\{p\}$ by Theorem 3.7. Let $q S=Q_{1} \cap \cdots \cap$ Q_{n} be an irredundant primary decomposition of the ideal $q S$. Now, by assumption, since $q S$ has no embedded prime divisor, we have $Q_{i} \cap R=q$ for all i by Proposition 2.4. Thus $p=\sqrt{q}=\sqrt{Q_{i} \cap R}=\sqrt{Q_{i} \cap R}=P_{i} \cap R$. Therefore we conclude that $\{p\}=\operatorname{Ass}_{S}(S / q S) \cap R=\operatorname{Ass}_{R}(S / q S)$, as desired.
Q.E.D.

The following result asserts that S-quasi-primary ideals are closely related to S-prime ideals.

Proposition 3.9. Let $f: R \rightarrow S$ be a homomorphism and let q be an ideal of R. If q is S-quasi-primary, then $\sqrt{q}=p$ is S-prime.

Proof. Suppose that $a \in R, \alpha \in S, f(a) \cdot \alpha \in p S$ and that $\alpha \notin p S$. Then, since $q S \subseteq \sqrt{q} S=p S$, we have $\alpha \notin q S$. Since q is S-quasi-primary, we have $a \in \sqrt{q}=p$. Therefore p is S-prime.

Q.E.D.

Finally, we show an example of an S-primary ideal $q \in \operatorname{Spec}(R)$, which is not S-prime.

Example 3.10. Let $f: R \rightarrow S$ be a homomorphism and let $q \in \operatorname{Spec}(R)$. If the ideal $q S$ of S has an irredundant primary decomposition $q S=Q \cap T, \sqrt{Q} \varsubsetneqq$ $\sqrt{T}, Q \cap R=q$ and $\sqrt{T} \cap R \supsetneqq q$, then q is not S-prime, but S-primary. Indeed, suppose that $a \in R, \alpha \in S, a \cdot \alpha \in q S$ and that $\alpha \notin \sqrt{q S}=\sqrt{Q}$. Then we have $a \in Q \cap$ $R=q$, and q is S-primary. Also, suppose that q is S-prime, then $\operatorname{Ass}_{R}(S / q S)=$ $\{q\}$ by Theorem 1.17. However, since $\operatorname{Ass}_{R}(S / q S)=\{q, \sqrt{T} \cap R\}, q$ is not S prime. Also, note that since $q \in \operatorname{Spec}(R), q$ is not S-quasi-primary by Remark 3.2. Finally we construct an example satisfying these conditions. Let k be a field and let x, y are indeterminates. Let $R=k\left[x^{2}, y^{2}\right] \subset A=k[x, y]$, and let $S=\{a \in A \mid a(1,1)=a(-1,1)\}$. Put $m=(x-1, y-1) A \cap S=(x+1, y-1) A \cap S$, $P(x-1) A \cap S$ and $q=\left(x^{2}-1\right) R$. Then it is easily seen $q S=Q \cap T$ for a primary ideal Q belonging to P and a primary ideal T belonging to m of S. Further, since $(x-1) A \varsubsetneqq(x-1, y-1) A$ and $y^{2}-1 \in(x+1, y-1) A \cap R \backslash\left(x^{2}-1\right) R$, we see that $P \varsubsetneqq m$ and $m \cap R \supsetneqq q$. Also, $Q \cap R=\left(x^{2}-1\right) R=q$, as desired.

Department of Applied Mathematics
 Okayama University of Science

References

[1] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
[2] D. L. Mcguillan, On prime ideals in ring extensions, Arch. Math., 33 (1979), 121-126.
[3] M. Nagata, Local ring, Interscience Tracts No. 13, John Wiley., New York (1961).
[4] S. Oda, J. Sato and K. Yoshida, High degree anti-integral extensions of Noetherian domains, to appear.
[5] J. Sato, Denominator ideals and the extensions of Noetherian domains, to appear.
[6] K. Yoshida, On birational-integral extension of rings and prime ideals of depth one, Japan J. Math., 8 (1982).

