Some prime ideals in the extensions of Noetherian rings

By

Junro Sato

Introduction

Let R and S be commutative rings with unity and let $f: R \to S$ be a homomorphism with f(1) = 1. Mcquillan, in his paper [2], introduces the notions of S-prime and S-primary ideals. In fact, he proved that if f is a flat homomorphism, then every prime ideal of S is S-prime, and that if R is integrally closed integral domain, S is integral over R and no non-zero element of R is a divisor of zero in S, then every prime ideal of R is S-primary. The aim of this paper is to investigate more closely S-prime and S-primary ideals. Further, we introduce the notion of S-quasi-primary, and determine its structure. We are mainly interested in the case where R and S are Noetherian. If $f: R \to S$ is a homomorphism of rings and if I is an ideal of S, then $f^{-1}(I)$ is denoted by $I \cap R$.

In the first section, we consider S-prime ideals. In fact, we shall prove that a is S-prime if and only if a is a prime ideal of R and $aS \cap R = a$, provided that $aS \neq S$.

In the second section, we discuss S-primary ideals.

In the final section, we introduce and study S-quasi-primary ideals. The main result is that a is an S-quasi-primary if and only if $aS \cap R$ is an R-primary ideal of R such that $\sqrt{a} = \sqrt{aS \cap R} = p$, and that $Ass_R(S/aS) = \{p\}$.

In this article R and S are assumed to be commutative rings and to have unity unless otherwise specified, and $f: R \to S$ is a homomorphism with f(1) = 1, and that our general references for unexplained technical terms are [1] and [3].

§1. S-prime ideals

First, we recall the following definition.

Definition 1.1. Let $f: R \to S$ be a homomorphism and let q be an ideal of R. We say that q is S-prime if, $a \in R$, $\alpha \in S$ and $f(a)\alpha \in qS$, implies $a \in q$, or $\alpha \in qS$.

Remark 1.2. Let q be an ideal of R such that qS = S. Then q is S-prime.

Now, we show our key lemma.

Communicated by Prof. K. Ueno, August 5, 1991

Lemma 1.3. Let $f: R \to S$ be a homomorphism, and let α be an ideal of R such that $\alpha S \neq S$. If α is S-prime, then $\alpha S \cap R$ is a prime ideal of R.

Proof. Let $a, b \in R$ be such that $ab \in aS \cap R$ and $a \notin aS \cap R$. Then, since $f(a)b \in aS$ and $a \notin a$, we have $f(b) \in aS$ by definition. Thus $b \in aS \cap R$, and $aS \cap R$ is a prime ideal of R. Q.E.D.

As a consequence:

Theorem 1.4. Let $f: R \to S$ be a homomorphism, and let a be an ideal of R such that $aS \neq S$. Assume that a is S-prime. Then $aS \cap R = a$. There a is a prime ideal of R.

Proof. First we shall show $aS \cap R = a$. One inclusion is obvious. For the converse inclusion, let $r \in aS \cap R$. Since $1 \in S$, $f(r) = f(r) \cdot 1 \in aS$. Since a is S-prime, we have $r \in a$ or $1 \in aS$. By our assumption $aS \neq S$, and we have $r \in a$, and hence $aS \cap R = a$, and a is prime by Lemma 1.3. Q.E.D.

As another characterization of being S-prime, we have the following:

Proposition 1.5. Let $f: R \to S$ be a homomorphism, and let $p \in \text{Spec}(R)$. Then p is S-prime if and only if pS = S or $pS_p \cap S = pS$.

Proof. (\Rightarrow): Assume that $pS \neq S$. We have only to show that $pS_P \cap S = pS$. One inclusion is clear. For the converse inclusion, let $\alpha \in pS_P \cap S$. Then there exists an element $a \in R \setminus p$ such that $f(a)\alpha \in pS$. Since p is S-prime, we have $\alpha \in pS$.

(\Leftarrow): We may assume that $pS \neq S$. Suppose that $f(a)\alpha \in pS$ with $a \in R$ and $\alpha \in S$. If $a \in R \setminus p$, then $\alpha \in pS_P \cap S = pS$, and hence p is S-prime. Q.E.D.

By a localization, S-prime ideals behave nicely. In fact, the following proposition holds:

Proposition 1.6. Let $f: R \to S$ be a homomorphism, and let $p \subseteq q$ be in Spec (R). If p is S-prime, then pR_q is S_q -prime.

Proof. Assume that $f_q(a) \ \alpha \in pS_q$ with $a \in R_q$ and $\alpha \in S_q$, where $f_q: R_q \to S_q$ is defined by $f_q(b/c) = f(b)/c$ for all $b \in R$ and $c \in R \setminus q$. Then there exists an element $x \in R \setminus q$ such that $xa \in R$, $f(x)\alpha \in S$ and $f(xa)f(x)\alpha \in pS$. Since p is S-prime, we have $xa \in p$ or $f(x)\alpha \in pS$, and hence $a \in pR_q$ or $\alpha \in pS_q$. Thus pR_q is S_q -prime. Q.E.D.

The following proposition is well applicable to the case of extensions of Notherian rings.

Proposition 1.7. Let $f: R \to S$ be a homomorphism of Noetherian rings, and let $p \in \text{Spec}(R)$ be such that $pS \neq S$. Suppose that there exist only a finite number of prime ideals P_1, \ldots, P_n of S lying over p. If P_1, \ldots, P_n are only the prime divisors of pS, then p is S-prime.

196

Proof. Let $pS = Q_1 \cap \cdots \cap Q_n$, $\sqrt{Q_i} = P_i$ $(1 \le i \le n)$ be an irredundant primary decomposition of the ideal pS of S. Suppose that $f(a)\alpha \in pS$ with $a \in R$ and $\alpha \in S$. If $a \notin p$, then $f(a) \notin P_1, \ldots, P_n$, and hence $\alpha \in Q_1 \cap \cdots \cap Q_n = pS$. Thus p is S-prime. Q.E.D.

In [2], the following proposition is proved:

Proposition 1.8 (cf. [2, Proposition 2]). Let $f: R \to S$ be a homomorphism and suppose that S is flat as an R-module. Then every prime ideal of R is S-prime.

As an application of this proposition, we have:

Proposition 1.9. Let $f: R \to S$ be a homomorphism of Noetherian rings. Suppose that f is flat and integral. Then, for any $p \in \text{Spec}(R)$, pS has no embedded prime divisors.

Proof. Let $pS = Q_1 \cap \cdots \cap Q_n \cap T_1 \cap \cdots \cap T_m$ be an irredundant primary decomposition with embedded primary components T_1, \ldots, T_m . Since, by assumption, f is integral, we see that $\sqrt{T_1} \cap \cdots \cap \sqrt{T_m} \cap R \supseteq p$. Hence there exist elements $a \in R$ and $\alpha \in S$ such that $a \in \sqrt{T_1} \cap \cdots \cap \sqrt{T_m} \cap (R \setminus p)$ and $\alpha \in (Q_1 \cap \cdots \cap Q_n) \setminus pS$. Thus $a^k \in T_1 \cap \cdots \cap T_m \cap (R \setminus p)$ and $f(a^k) \alpha \in pS$ for some k. This implies that p is not S-prime. However, f is flat, and p is S-prime by Proposition 1.7. This is a contradiction. Q.E.D.

In terms of the prime divisors of pS, we give the following criterion to be S-prime.

Theorem 1.10. Let $f: R \to S$ be a homomorphism of Noetherian rings, and let $p \in \text{Spec}(R)$. Then p is S-prime if and only if either pS = S or $pS \neq S$ and $P \cap R = p$ for any prime divisor P of the ideal pS.

Proof. (\Rightarrow): Assume that $pS \neq S$. Let $pS = Q_1 \cap \cdots \cap Q_n \cap T_1 \cap \cdots \cap T_m$ be an irredundant primary decomposition of the ideal pS where $\sqrt{Q_i} \cap R = p$ $(1 \leq i \leq n)$ and $\sqrt{T_j} \cap R \supseteq p$ $(1 \leq j \leq m)$. Then there exist elements $a \in R$ and $\alpha \in S$ such that $a \in T_1 \cap \cdots \cap T_m \cap (R \setminus p)$, $\alpha \in (Q_1 \cap \cdots \cap Q_n) \setminus pS$ and $f(a)\alpha \in pS$, and pS is not S-prime.

(\Leftarrow): We may assume that $pS \neq S$. Then, by assumption, we have an irredundant primary decomposition $pS = Q_1 \cap \cdots \cap Q_n$, and $\sqrt{Q_i} \cap R = p$ ($1 \leq i \leq n$). Suppose that $f(a)\alpha \in pS$ with $a \in R$ and $\alpha \in S$, then $f(a)\alpha \in Q_1 \cap \cdots \cap Q_n$. If $a \notin p$, then $\alpha \in Q_1 \cap \cdots \cap Q_n = pS$, and hence p is S-prime. Q.E.D.

Combining this result with Proposition 1.8, we have the following well-known result.

Corollary 1.11 (cf. [1], (9.B), Theorem 12.). Let $f: R \to S$ be a flat homomorphism of Noetherian rings and $p \in \text{Spec}(R)$ such that $pS \neq S$. Then, for all prime divisors P of the ideal pS of S, we have $P \cap R = p$.

We shall show an example if a prime ideal p of R which is not S-prime even if S is integral over R.

Example 1.12. Let \mathbf{Q} be a rational number field and consider $R = \mathbf{Q}[x^2, y^2] \subset A = \mathbf{Q}[x, y]$. Let $S = \{a \in A | a(1, 1) = a(-1, 1) = a(-1, -1) = a(1, -1)\} \Rightarrow R$ and let $f: R \hookrightarrow S$ be the natural inclusion map. Note that f is an integral morphism. Put $m = (x - 1, y - 1)A \cap S = (x^2 - 1, y^2 - 1)A$. Then ht (m) = 2. Let c(A/S) is a conductor ideal of A over S. Then we can show that $c(A/S) = (x^2 - 1, y^2 - 1)A$. Indeed, $c(A/S) \supseteq (x^2 - 1, y^2 - 1)A$ is obvious. Take $a(x, y) \in$ Then we can write $a(x, y) = a_0 + a_1x + a_2y + a_3xy + b(x, y), a_i \in \mathbf{Q}$ $(1 \le i \le n), b(x, y) \in (x^2 - 1, y^2 - 1)A$. Since $xa(x, y) \in S$, we can see easily that $a_0 = a_1 = a_2 = a_3 = 0$. Thus m = c(A/S). Therefore we see that depth $S_m = 1$. (cf. [6], Proposition 1.9, Proposition 1.10 and Proposition 1.13) Let $x^2R = p \in$ Spec (R). Then it follows that m is a prime divisor of $pS = x^2S$ and $m \cap R = (x^2 - 1, y^2 - 1)R$ ($\neq p$). Hence p is not S-prime by Theorem 1.5. Further, this example shows that p is not S-prime, though $p \in$ Spec (R), $pS \neq S$ and satisfies the condition $pS \cap R = p$.

The following is a corollary to Theorem 1.10.

Corollary 1.13. Let $f: R \rightarrow S$ be a homomorphism of Noetherian rings and let m be a maximal ideal of R. Then m is S-prime.

Proof. By Remark 1.2, we may assume that $mS \neq S$. Let $mS = Q_1 \cap \cdots \cap Q_n$ be an irredundant primary decomposition of the ideal mS of S, and let $p_i = \sqrt{Q_i} \cap R$ $(1 \leq i \leq n)$. Then, since $p_i \neq R$ and $p_i \subseteq m$, and we have $p_i = m$ for all *i*. Hence, by Theorem 1.10, *m* is S-prime. Q.E.D.

In [4], we introduce the notion of a "surper-primitive element". Now, we study the relationship between S-prime ideals and surper-primitive elements. For a moment, we consider birational-extensions of Noetherian domains. For a an element $\alpha \in K$, we set $I_{\alpha} = \{a \in R | a \cdot \alpha \in R\}$. I_{α} is an ideal of R and is called the denominator ideal of α in R.

Definition 1.14. Let R be a Noetherian domain with quotient field K. Then $\alpha \in K$ is called a super-primitive element over R if $I_{\alpha} + \alpha I_{\alpha} \notin p$ for for any $p \in Dp_1(R)$.

When α is a surper-primitive element, we say that $R[\alpha]$ is a surper-primitive extension of R.

We have a characterization of flatness using surper-primitive extension and S-prime ideals of depth one. In fact, the following proposition holds:

Proposition 1.15. Let $\{\alpha_i | 1 \leq i \leq n\}$ be a set of super-primitive elements over a Noetherian domain R. Let $f: R \hookrightarrow S = R[\alpha_1, ..., \alpha_n]$ be the natural inclusion map. Then the following conditions are equivalent.

- (1) For any $p \in Dp_1(R)$, p is S-prime.
- (2) S is flat over R.
- (3) $pS_p \cap S = pS$ for any $p \in \text{Spec}(R)$.
- (4) $\operatorname{Ass}_{R}(S/pS) = \{p\}$ or pS = S for any $p \in \operatorname{Spec}(R)$.

198

Proof. $(2) \Rightarrow (3)$: Since $R \to S \to S_q$ is flat, $pS_p \cap S = (pR_p \cap R) \otimes_R S = p \otimes_R S = pS$, as desired. $(3) \Rightarrow (4)$: Assume that $pS \neq S$. For any $q \in \operatorname{Ass}_R(S/pS)$, by definition, we have $q = (pS : \alpha)$ for some $\alpha \in S \setminus pS$, and hence $\alpha qS \subseteq pS$. Note that $p \subseteq q$. Now we assume that $p \not\subseteq q$, then $qR_p = R_p$, and $\alpha \in pS_p \cap S = pS$, a contradiction. Therefore p = q, as desired. $(4) \Rightarrow (1)$: By Remark 1.2, we may assume that $pS \neq S$. Let $f(a)\alpha \in pS$ where $a \in R$ and $\alpha \in S \setminus pS$. We shall show that $a \in p$. Now $a \cdot \overline{\alpha} = \overline{0}$ in S/pS. Thus a is a zero divisor in S/pS. Since $\operatorname{Ass}_R(S/pS) = \{p\}$, this implies $a \in p$, as desired.

(1) \Rightarrow (2): If S is not flat over R, then we have $(I_{\alpha_1} \cap \cdots \cap I_{\alpha_n})S \neq S$ by [5, Proposition 1]. Now, let $I_{\alpha_1} \cap \cdots \cap I_{\alpha_n} = q_1 \cap \cdots \cap q_m$, $\sqrt{q_i} = p_i$ ($1 \leq i \leq m$) be an irredundant primary decomposition of the ideal $I_{\alpha_1} \cap \cdots \cap I_{\alpha_n}$ of R. Note that $p_i \in Dp_1(R)$ by [6, Proposition, 1.10]. If $p_i S = S$ for all *i*, then $(I_{\alpha_1} \cap \cdots \cap I_{\alpha_n})S = S$. Hence $p_i S \neq S$ for some *i*. Since $p_i \supseteq I_{\alpha_j}$ for some *j*, we have $p_i S \supseteq I_{\alpha_j} + \alpha_j I_{\alpha_j}$. Put $a_j = I_{\alpha_j} + \alpha_j I_{\alpha_j}$ for all *j*. Thus we get $p_i S \cap R \supseteq a_j$. Since p_i is S-prime, $p_i = p_i S \cap R$ by Theorem 1.4. Thus $p_i \supseteq a_j$. But α_i is super-primitive, and $p_i \not\supseteq a_j$ by definition. This is a contradiction. Q.E.D.

Corollary 1.16. Let R be a Noetherian normal domain with quotient field K, and let $\alpha_1, \ldots, \alpha_n \in K$. Then $S = R[\alpha_1, \ldots, \alpha_n]$ is flat over R if and only if every prime ideal $p \in Ht_1(R)$ is S-prime.

Proof. Since R is normal, α_i $(1 \le i \le n)$ is a super-primitive element over R by [4, 1.13 Theorem]. Hence the assertion follows easily from Proposition 1.15. Q.E.D.

Summarizing the above results, we have the main theorem of this section.

Theorem 1.17. Let $f: R \to S$ be a homomorphism of Noetherian rings, and let a be an ideal of R. Then a is S-prime if and only if $a \in \text{Spec}(R)$ and $\text{Ass}_R(S/aS) = \{a\}$ or aS = S.

§2. S-primary ideals

In this section, we start with the following definition.

Definition 2.1. Let $f: R \to S$ be a homomorphism and let q be an ideal of R. We say that q is S-primary if, $f(a)\alpha \in qS$ with $a \in R$, $\alpha \in S$, implies $a \in q$, or $\alpha \in \sqrt{qS}$.

If q is S-primary and if $qS \neq S$, then we can show that q is a primary ideal of R. Hence the notion of "S-primary" is similar to the ordinary primary ideal of R.

Theorem 2.2. Let $f: R \to S$ be a homomorphism and let q be an ideal of R. If q is S-primary, then $qS \cap R = q$ and q is a primary ideal of R or qS = S.

Proof. Suppose that $qS \neq S$. We note that $qS \cap R = q$. Indeed $qS \cap R \supseteq q$ obviously. To see the other inclusion, let $r \in qS \cap R$. Since $f(r) = f(r) \cdot 1 \in qS$ and q is S-primary, we have $r \in q$ or $1 \in \sqrt{qS}$. Since $qS \neq S$, we get $r \in q$. Therefore $qS \cap R = q$. It remains only to show that q is a primary ideal of R. Assume that $ab \in q$ with $a \in R \setminus q$ and $b \in R$, then $af(b) \in qS$. Since q is S-primary, it follows that $f(b) \in \sqrt{qS}$, and hence $b \in \sqrt{qS} \cap R = \sqrt{qS \cap R} = \sqrt{q}$. Thus q is a primary ideal of R. Q.E.D.

Proposition 2.3. Let $f: R \to S$ be a homomorphism of Noetherian rings and let q be an ideal of R. Let $qS = Q_1 \cap \cdots \cap Q_n \cap T_1 \cap \cdots \cap T_m$ be an irredundant primary decomposition of the ideal qS of S, where T_j $(1 \le j \le n)$ are the embedded primary components of the expression of qS. If $Q_i \cap R = q$ for all i, then q is S-primary.

Proof. Assume that $f(a)\alpha \in qS$ with $a \in R$ and $\alpha \in S \setminus \sqrt{qS}$. Then, since $\sqrt{qS} = \sqrt{Q_1} \cap \cdots \cap \sqrt{Q_n}$, we have $\alpha \notin \sqrt{Q_i}$ for some *i*, and $a \in Q_i \cap R = q$. It follows that *q* is S-primary. Q.E.D.

If the ideal qS have no embedded primary components, then the converse of proposition holds:

Proposition 2.4. Let $f: R \to S$ be a homomorphism of Noetherian rings, and let q be an ideal of R. Assume that the ideal qS has no embedded primary component. $qS = Q_1 \cap \cdots \cap Q_n$ be an irredundant primary decomposition of qS. If q is S-primary, then $Q_i \cap R = q$ for all i.

Proof. We may assume that $Q_1 \cap \cdots \cap Q_n$ is the shortest primary decomposition. Suppose that $Q_i \cap R \supseteq q$ for some *i*. We may assume that i = 1. Then there exists an element $a \in (Q_1 \cap R) \setminus q$. Since $\sqrt{Q_i}$ $(1 \le i \le n)$ are minimal prime divisors, there is an element $\alpha \in Q_2 \cap \cdots \cap Q_n$ not contained in $\sqrt{Q_1}$. Since $\sqrt{qS} = \sqrt{Q_1} \cap \cdots \cap \sqrt{Q_n}$, $\alpha \notin \sqrt{qS}$. Note that $f(a)\alpha \in Q_1 \cap \cdots \cap Q_n = qS$. This contradicts that q is S-primary. Q.E.D.

We end this section with the following result.

Proposition 2.5. Let $f: R \to S$ be a homomorphism and let q be an ideal of R. If q is S-primary, then q: x is S-primary.

Proof. We may assume that $x \notin q$. Now, suppose that $a \in R$, $\alpha \in S$, $f(a) \cdot \alpha \in (q:x)S$ and that $\alpha \notin \sqrt{(q:x)S}$. Then, since $\sqrt{qS} \subseteq \sqrt{(q:x)S}$, $\alpha \notin \sqrt{qS}$, and hence $f(ax)\alpha = f(a)\alpha$ $f(x) \in qS$. Since q is S-primary, we have $ax \in q$, and $a \in q:x$. Therefore q:x is S-primary. Q.E.D.

§3. S-quasi-primary ideals

In this section, we introduce the notion of "S-quasi-primary" and investigate its several properties.

Definition 3.1. Let $f: R \to S$ be a homomorphism and let q be an ideal of R. We say that q is S-quasi-primary if, $f(a)\alpha \in qS$ with $a \in R$, $\alpha \in S$, implies $a \in \sqrt{q}$ or $\alpha \in qS$.

Remark 3.2. For a prime ideal q of R, we see that q is S-quasi-primary if and only if q is S-prime.

Let q be an ideal of R, and let $\tilde{q} = qS \cap R$. The following example shows that for an S-quasi-primary ideal q of R it does not holds $q = \tilde{q}$.

Example 3.3. With a field k and an indeterminate t, we consider $R = k[t^2, t^3] \subset S = k[t], q = t^2 R$ and let $f: R \to S$ be the natural inclusion map. Then it follows that q is S-quasi-primary. Indeed, suppose that $a(t) \in R$, $\alpha \in S$, $a(t)\alpha \in qS = t^2 k[t]$ and that $a(t) \notin \sqrt{q} = (t^2, t^3)R$. Then we have $a(0) \neq 0$, and hence $\alpha \in t^2 k[t] = qS$. Therefore q is S-quasi-primary. Further, we can see easily that $t^3 \notin q$ and $t^3 = t^3 \cdot 1 \in (t^2, t^3)R = qS \cap R = \tilde{q}$. Hence we have $q \neq \tilde{q}$.

Next, for an S-quasi-primary ideal q of R, we consider relationship between q and \tilde{q} .

Proposition 3.4. Let $f: R \to S$ be a homomorphism.

For an ideal of R, we write $\tilde{q} = qS \cap R$. If q is S-quasi-primary and $qS \neq S$, then

(1) \tilde{q} is a primary ideal of R.

(2) $\sqrt{q} = \sqrt{\tilde{q}}$.

Proof. (1) Let $ab \in \tilde{q}$ where $a \in R$ and $b \notin \tilde{q}$. Note that $af(b) \in qS$ and $f(b) \notin qS$. Since q is S-quasi-primary, we conclude $a \in \sqrt{q} \subseteq \sqrt{\tilde{q}}$. Thus \tilde{q} is a primary ideal of R.

(2) The inclusion $\sqrt{q} \subseteq \sqrt{\tilde{q}}$ is clear. If $x \in \sqrt{\tilde{q}}$, then $x^n \in \tilde{q}$ for some *n*. Since $f(x^n) \cdot 1 \in qS$ and *q* is S-quasi-primary, it follows that $x^n \in \sqrt{q}$ or $1 \in qS$. Since $qS \neq S$, we have $x^n \in \sqrt{q}$, and $x \in \sqrt{q}$. Therefore $\sqrt{q} = \sqrt{\tilde{q}}$, as desired. Q.E.D.

Consequently, we see that if q is S-quasi-primary, then $\sqrt{q} = p$ is a prime ideal of R. Furthermore, for the ideals q and \tilde{q} of R, we have the following proposition.

Proposition 3.5. Let $f: R \to S$ be a homomorphism and let q be an ideal of R. Put $\tilde{q} = qS \cap R$. If q S-quasi-primary, then \tilde{q} is S-quasi-primary.

Proof. Suppose that $a \in R$, $\alpha \in S$, $f(a) \cdot \alpha \in \tilde{q}S$ and that $\alpha \notin \tilde{q}S$. Note that $qS \subseteq \tilde{q}S = (qS \cap R)S \subseteq qS$, and hence $qS = \tilde{q}S$. Thus we have $f(a) \cdot \alpha \in \tilde{q}S$ and $\alpha \notin qS$. Since q is S-quasi-primary, we see $a \in \sqrt{q} = \sqrt{\tilde{q}}$. Therefore \tilde{q} is S-quasi-primary. Q.E.D.

Using Proposition 3.4, we have the following:

Theorem 3.6. Let $f: R \to S$ be a homomorphism of Noetherian rings, and let q be an ideal of R such that $qS \neq S$. Let $qS = Q_1 \cap \cdots \cap Q_n$, $\sqrt{Q_i} = P_i$ $(1 \le i \le n)$

be an irredundant primary decomposition of the ideal qS. Put $\tilde{q} = qS \cap R$. Then q is S-quasi-primary if and only if \tilde{q} is a primary ideal of R, $\sqrt{q} = \sqrt{\tilde{q}} = p$ and $P_i \cap R = p$ for all i.

Proof. (\Rightarrow): By Proposition 3.4 \tilde{q} is a primary ideal of R and $\sqrt{q} = \sqrt{\tilde{q}} = p$. Suppose that $P_i \cap R \supseteq p$ for some *i*. We may assume that i = 1. Thus there exists an element $a \in P_1 \cap R \setminus p$. We may assume that $a \in Q_1$. Further, we can take an element $\alpha \in Q_2 \cap \cdots \cap Q_n$ such that $\alpha \notin Q_1$. Then $f(a)\alpha \in Q_1 \cap \cdots \cap Q_n = qS$. Since $a \notin p = \sqrt{q} = \sqrt{\tilde{q}}$ and $\alpha \in qS$, we see that q is not S-quasi-primary.

(\Leftarrow) Assume that $f(a)\alpha \in qS$, $a \notin p = \sqrt{q} = \sqrt{\tilde{q}}$ and that $\alpha \in S$. Then $f(a) \notin P_i$ for all *i*. It follows that $\alpha \in Q_1 \cap \cdots \cap Q_n = qS$. Therefore *q* is S-quasi-primary. Q.E.D.

Now, we have the following structure theorem of the S-quasi-primary ideals, which is similar to Theorem 1.10.

Theorem 3.7. Let $f: R \to S$ be a homomorphism of Noetherian rings, and let q be an ideal of R such that $qS \neq S$. Then q is S-quasi-primary if and only if $\tilde{q} = qS \cap R$ is a primary ideal of R such that $\sqrt{q} = \sqrt{\tilde{q}} = p \in \text{Spec}(R)$, and $\text{Ass}_R(S/qS) = \{p\}$.

Proof. (\Rightarrow): We have only to prove that $\operatorname{Ass}_R(S/qS) = \{p\}$. Let $qS = Q_1 \cap \cdots \cap Q_n \sqrt{Q_i} = P_i$ $(1 \le i \le n)$ be an irredundant primary decomposition of the ideal qS. Take $p' \in \operatorname{Ass}_R(S/qS)$. Then, by definition of Ass, there exists an element $x \in S \setminus qS$ such that p' = (qS : x), and $xp'S \subseteq qS$. Hence $f(x)p'S \subseteq Q_j$ for all j. Since $x \notin Q_i$ for some $i, p'S \subseteq P_i$, and $p' \subseteq P_i \cap R = p$ by Theorem 3.6. On the other hand, since $q \subseteq p'$, $p = \sqrt{q} = \sqrt{\tilde{q}} \subseteq p'$. Therefore p' = p, as desired.

(\Leftarrow): By Theorem 3.6, we have only to show that $P_i \cap R = p$ for all *i*, and this is clear because $\{p\} = \operatorname{Ass}_R(S/qS) = \operatorname{Ass}_S(S/qS) \cap R$ by [1, (9.A), Proposition]. Q.E.D.

In the rest of this section, we discuss relationship among the S-prime, S-primary and S-quasi-primary ideals.

Proposition 3.8. Let $f: R \to S$ be a homomorphism of Noetherian rings, and let q be an ideal of R such that $qS \neq S$. If q is S-primary and qS has no embedded prime divisor, then q is S-quasi-primary.

Proof. By Theorem 2.2, $qS \cap R = q$ and q is a primary ideal of R. Hence we have only to show that $\operatorname{Ass}_R(S/qS) = \{p\}$ by Theorem 3.7. Let $qS = Q_1 \cap \cdots \cap Q_n$ be an irredundant primary decomposition of the ideal qS. Now, by assumption, since qS has no embedded prime divisor, we have $Q_i \cap R = q$ for all iby Proposition 2.4. Thus $p = \sqrt{q} = \sqrt{Q_i \cap R} = \sqrt{Q_i} \cap R = P_i \cap R$. Therefore we conclude that $\{p\} = \operatorname{Ass}_S(S/qS) \cap R = \operatorname{Ass}_R(S/qS)$, as desired. Q.E.D.

The following result asserts that S-quasi-primary ideals are closely related to S-prime ideals.

Proposition 3.9. Let $f: R \to S$ be a homomorphism and let q be an ideal of R. If q is S-quasi-primary, then $\sqrt{q} = p$ is S-prime.

Proof. Suppose that $a \in R$, $\alpha \in S$, $f(a) \cdot \alpha \in pS$ and that $\alpha \notin pS$. Then, since $qS \subseteq \sqrt{qS} = pS$, we have $\alpha \notin qS$. Since q is S-quasi-primary, we have $a \in \sqrt{q} = p$. Therefore p is S-prime. Q.E.D.

Finally, we show an example of an S-primary ideal $q \in \text{Spec}(R)$, which is not S-prime.

Example 3.10. Let $f: R \to S$ be a homomorphism and let $q \in \text{Spec}(R)$. If the ideal qS of S has an irredundant primary decomposition $qS = Q \cap T$, $\sqrt{Q} \cong \sqrt{T}$, $Q \cap R = q$ and $\sqrt{T} \cap R \cong q$, then q is not S-prime, but S-primary. Indeed, suppose that $a \in R$, $\alpha \in S$, $a \cdot \alpha \in qS$ and that $\alpha \notin \sqrt{qS} = \sqrt{Q}$. Then we have $a \in Q \cap R = q$, and q is S-primary. Also, suppose that q is S-prime, then $\text{Ass}_R(S/qS) = \{q\}$ by Theorem 1.17. However, since $\text{Ass}_R(S/qS) = \{q, \sqrt{T} \cap R\}$, q is not Sprime. Also, note that since $q \in \text{Spec}(R)$, q is not S-quasi-primary by Remark 3.2. Finally we construct an example satisfying these conditions. Let k be a field and let x, y are indeterminates. Let $R = k[x^2, y^2] \subset A = k[x, y]$, and let $S = \{a \in A \mid a(1, 1) = a(-1, 1)\}$. Put $m = (x - 1, y - 1)A \cap S = (x + 1, y - 1)A \cap S$, $P(x - 1)A \cap S$ and $q = (x^2 - 1)R$. Then it is easily seen $qS = Q \cap T$ for a primary ideal Q belonging to P and a primary ideal T belonging to m of S. Further, since $(x - 1)A \cong (x - 1, y - 1)A$ and $y^2 - 1 \in (x + 1, y - 1)A \cap R \setminus (x^2 - 1)R$, we see that $P \cong m$ and $m \cap R \cong q$. Also, $Q \cap R = (x^2 - 1)R = q$, as desired.

> DEPARTMENT OF APPLIED MATHEMATICS OKAYAMA UNIVERSITY OF SCIENCE

References

- [1] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
- [2] D. L. Mcguillan, On prime ideals in ring extensions, Arch. Math., 33 (1979), 121-126.
- [3] M. Nagata, Local ring, Interscience Tracts No. 13, John Wiley., New York (1961).
- [4] S. Oda, J. Sato and K. Yoshida, High degree anti-integral extensions of Noetherian domains, to appear.
- [5] J. Sato, Denominator ideals and the extensions of Noetherian domains, to appear.
- [6] K. Yoshida, On birational-integral extension of rings and prime ideals of depth one, Japan J. Math., 8 (1982).