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Some prime ideals in the extensions of Noetherian rings
By

Junro SATO

Introduction

Let R and S be commutative rings with unity and let f: R — S be a homo-
morphism with f(1) = 1. Mcquillan, in his paper [2], introduces the notions of
S-prime and S-primary ideals. In fact, he proved that if f is a flat homomor-
phism, then every prime ideal of S is S-prime, and that if R is integrally closed
integral domain, S is integral over R and no non-zero element of R is a divisor
of zero in S, then every prime ideal of R is S-primary. The aim of this paper
is to investigate more closely S-prime and S-primary ideals. Further, we intro-
duce the notion of S-quasi-primary, and determine its structure. We are mainly
interested in the case where R and S are Noetherian. If f:R—> S is a homo-
morphism of rings and if I is an ideal of S, then f~!(I) is denoted by INR.

In the first section, we consider S-prime ideals. In fact, we shall prove that
a is S-prime if and only if a is a prime ideal of R and aSNR = a, provided
that aS # S.

In the second section, we discuss S-primary ideals.

In the final section, we introduce and study S-quasi-primary ideals. The
main result is that a is an S-quasi-primary if and only if aSN R is an R-primary
ideal of R such that f =./aSNR = p, and that Assg(S/aS) = {p}.

In this article R and S are assumed to be commutative rings and to have
unity unless otherwise specified, and f: R — S is a homomorphism with f(1) =1,
and that our general references for unexplained technical terms are [1] and [3].

§1. S-prime ideals

First, we recall the following definition.

Definition 1.1. Let f: R » S be a homomorphism and let g be an ideal of
R. We say that g is S-prime if, ae R, o« €S and f(a)a € qS, implies aegq, or
a € gsS.

Remark 1.2, Let g be an ideal of R such that gS = S. Then g is S-prime.

Now, we show our key lemma.
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Lemma 1.3. Let f: R — S be a homomorphism, and let a be an ideal of R
such that aS # 8. If a is S-prime, then aSNR is a prime ideal of R.

Proof. Let a, be R be such that abe aSNR and a ¢ aSNR. Then, since
f(a)b € aS and a ¢ a, we have f(b) € aS by definition. Thus be aSNR, and aSNR
is a prime ideal of R. Q.E.D.

As a consequence:

Theorem 1.4. Let f: R— S be a homomorphism, and let a be an ideal of R
such that aS # S. Assume that a is S-prime. Then aSNR =a. There a is a
prime ideal of R.

Proof. First we shall show aSNR =a. One inclusion is obvious. For
the converse inclusion, let re aSNR. Since 1 €8, f(r) = f(r)-1€aS. Since a is
S-prime, we have rea or 1 €aS. By our assumption aS # S, and we have r e q,
and hence aSNR = q, and a is prime by Lemma 1.3. Q.E.D.

As another characterization of being S-prime, we have the following:

Proposition 1.5. Let f: R — S be a homomorphism, and let p € Spec (R). Then
p is S-prime if and only if pS=S or pS,NS = pS.

Proof. (=). Assume that pS # S. We have only to show that pS; NS = pS.
One inclusion is clear. For the converse inclusion, let a € pSpNS. Then there
exists an element a € R\p such that f(a)a € pS. Since p is S-prime, we have « € pS.

(=) We may assume that pS # S. Suppose that f(a)ax € pS with ae R and
aeS. If ae R\p, then ae pSpNS = pS, and hence p is S-prime. Q.ED.

By a localization, S-prime ideals behave nicely. In fact, the following propo-
sition holds:

Proposition 1.6. Let f:R—S be a homomorphism, and let p<q be in
Spec (R). If p is S-prime, then pR, is S,-prime.

Proof. Assume that fy(a) a€pS, with ae R, and a € S,, where f:R, - S,
is defined by f,(b/c) = f(b)/c for all be R and ce R\g. Then there exists an
element x e R\q such that xae R, f(x)aeS and f(xa)f(x)a€pS. Since p is
S-prime, we have xaep or f(x)a € pS, and hence ae pR, or aepS,. Thus pR,
is S,-prime. Q.E.D.

The following proposition is well applicable to the case of extensions of
Notherian rings.

Proposition 1.7. Let f: R —> S be a homomorphism of Noetherian rings, and
let p e Spec (R) be such that pS # S. Suppose that there exist only a finite number
of prime ideals Py, ..., P, of S lying over p. If Py, ..., P, are only the prime
divisors of pS, then p is S-prime.
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Proof. Let pS=Q,N---NQ,, \/@ =P, (1 £i<n) be an irredundant pri-
mary decomposition of the ideal pS of S. Suppose that f(a)a € pS with ae R
and aeS. If a¢p, then f(a)¢ Py, ..., P,, and hence ae Q, N---NQ, = pS. Thus
p is S-prime. Q.ED.

In [2], the following proposition is proved:

Proposition 1.8 (cf. [2, Proposition 2]). Let f:R—S be a homomorphism
and suppose that S is flat as an R-module. Then every prime ideal of R is S-prime.

As an application of this proposition, we have:

Proposition 1.9. Let f: R —» S be a homomorphism of Noetherian rings. Sup-
pose that f is flat and integral. Then, for any p € Spec (R), pS has no embedded
prime divisors.

Proof. Let pS=Q,N---NQ,NT,N---NT, be an irredundant primary de-
composition with embedded primary components T;, ..., T,,. Since, by assump-
tion, f is integral, we see that \/’ITI ﬂ“'ﬂ\/TmﬂR 2 p. Hence there exist ele-
ments a€ R and a€ S such that ae\/iﬂmﬂ\/f,,ﬂ(R\p) and ae(Q,N---N
Q\pS. Thus a*e T, N---NT,,N(R\p) and f(a*)a € pS for some k. This implies
that p is not S-prime. However, f is flat, and p is S-prime by Proposition
1.7. This is a contradiction. Q.E.D.

In terms of the prime divisors of pS, we give the following criterion to be
S-prime.

Theorem 1.10. Let f: R — S be a homomorphism of Noetherian rings, and
let peSpec(R). Then p is S-prime if and only if either pS=S or pS # S and
PN R =p for any prime divisor P of the ideal pS.

Proof. (=) Assume that pS#S. Let pS=Q,N---NQ,NT,N---NT,, be
an irredundant primary decomposition of the ideal pS where \/Q;NR=p (1 i<
n) and \/?jﬂR 2p (1 £j<m). Then there exist elements ae R and a € § such
that ae T, N---NT,,N(R\p), a€(Q,N---NQ,)\pS and f(a)a € pS, and pS is not
S-prime.

(«=): We may assume that pS # S. Then, by assumption, we have an ir-
redundant primary decomposition pS =Q,;N---NQ,, and \/@ﬂ R=p(1=iZn).
Suppose that f(a)o € pS with ae R and a« € S, then f(a)ae Q,N---NQ,. If a¢p,
then a € Q,N---NQ, = pS, and hence p is S-prime. Q.E.D.

Combining this result with Proposition 1.8, we have the following well-known
result.

Corollary 1.11 (cf. [1], (9.B), Theorem 12.). Let f: R— S be a flat homomor-
phism of Noetherian rings and p € Spec (R) such that pS # S. Then, for all prime
divisors P of the ideal pS of S, we have PNR = p.

We shall show an example if a prime ideal p of R which is not S-prime
even if S is integral over R.
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Example 1.12. Let Q be a rational number field and consider R =
Q[x%y*] =« 4 = Q[x,y]. LetS = {aeAla(l,1) = a(—1,1) = a(—1, —-1) =
a(l, —1)} oR and let f: R <> S be the natural inclusion map. Note that f
is an integral morphism. Put m=(x — 1,y — 1)ANS = (x> — 1, y> — 1)A. Then
ht (m) = 2. Let ¢(4/S) is a conductor ideal of A over S. Then we can show
that ¢(4/S) = (x? — 1, y* — 1)A. 1Indeed, c(4/S)=2(x*—1,y*> —1)4 is obvious.
Take a(x, y) € Then we can write a(x, y) = aq + a;x + a,y + a;xy + b(x, y), a,€ Q
(1<i<mn), b(x,y)e(x*>—1,y> — 1)A. Since xa(x, y)e S, we can see easily that
ay=a, =a, =a3=0. Thus m = ¢(A4/S). Therefore we see that depth S, = 1.
(cf. [6], Proposition 1.9, Proposition 1.10 and Proposition 1.13) Let x?R =
p € Spec (R). Then it follows that m is a prime divisor of pS = x2S and mNR =
(x2 —1,y> — 1)R (#p). Hence p is not S-prime by Theorem 1.5. Further, this
example shows that p is not S-prime, though p e Spec(R), pS # S and satisfies
the condition pSNR = p.

The following is a corollary to Theorem 1.10.

Corollary 1.13. Let f: R— S be a homomorphism of Noetherian rings and
let m be a maximal ideal of R. Then m is S-prime.

Proof. By Remark 1.2, we may assume that mS# S. Let mS=0Q,N---NQ,

be an irredundant primary decomposition of the ideal mS of S, and let p;, = ./Q;N
R (1 £i<n). Then, since p;# R and p; = m, and we have p,=m for all i
Hence, by Theorem 1.10, m is S-prime. Q.E.D.

In [4], we introduce the notion of a “surper-primitive element”. Now, we
study the relationship between S-prime ideals and surper-primitive elements. For
a moment, we consider birational-extensions of Noetherian domains. For a an
element o € K, we set I, ={aeR|a-aeR}. I, is an ideal of R and is called the
denominator ideal of « in R.

Definition 1.14. Let R be a Noetherian domain with quotient field K. Then
a€ K is called a super-primitive element over R if I, + al, & p for for any
p € Dp,(R).

When « is a surper-primitive element, we say that R[a] is a surper-primitive
extension of R.

We have a characterization of flatness using surper-primitive extension and
S-prime ideals of depth one. In fact, the following proposition holds:

Proposition 1.15. Let {o;|1 <i < n} be a set of super-primitive elements over
a Noetherian domain R. Let f:R < S = R[a,,...,a,] be the natural inclusion
map. Then the following conditions are equivalent.

(1) For any peDp,(R), p is S-prime.

(2) S is flat over R.

(3) pS,NS = pS for any p e Spec (R).

(4) Assg (S/pS) = {p} or pS =S for any p e Spec (R).
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Proof. (2)=(3): Since R—» S-S, is flat, pS,NS = (pR,NR) R S = p ®x
S = pS, as desired. (3)=(4): Assume that pS # S. For any q € Assg (S/pS), by
definition, we have q = (pS:a) for some o€ S\pS, and hence agS = pS. Note
that p< gq. Now we assume that p & g, then qR, = R, and a € pS,NS =pS, a
contradiction. Therefore p = g, as desired. (4)=(1): By Remark 1.2, we may
assume that pS # S. Let f(a)a € pS where ae R and o € S\pS. We shall show
that aep. Now a-@=0 in S/pS. Thus a is a zero divisor in S/pS. Since
Assg (S/pS) = {p}, this implies a € p, as desired.
(1)=(2): If S is not flat over R, then we have (I,, ﬂ-“ﬂIa")S # S by [5, Proposi-
tion 1]. Now, let I, N---NI, =q,N-"Nq,, /g; = p; (1 £i < m) be an irredun-
dant primary decomposition of the ideal I, N---NI, of R. Note that p, e Dp,(R)
by [6, Proposition, 1.10]. If p;,S =S for all i, then (I,,N---N1, )S =S. Hence
p;S # S for some i. Since p; 21, for some j, we have p,S=21, +o;l,. Put
aj=1I, + a;l,, for all j. Thus we get p,SNR =a;. Since p; is S-prime, p; =
piSNR by Theorem 1.4. Thus p; 2 q;. But «; is super-primitive, and p; 2 a; by
definition. This is a contradiction. Q.E.D.

Corollary 1.16. Let R be a Noetherian normal domain with quotient field K,
and let o, ..., a,€ K. Then S =R[a,,...,a,] is flat over R if and only if every
prime ideal p € Ht, (R) is S-prime.

Proof. Since R is normal, o; (1 £i=<n) is a super-primitive element over
R by [4, 1.13 Theorem]. Hence the assertion follows easily from Proposition
1.15. Q.ED.

Summarizing the above results, we have the main theorem of this section.

Theorem 1.17. Let f: R— S be a homomorphism of Noetherian rings, and
let a be an ideal of R. Then a is S-prime if and only if ae Spec(R) and
Assg (S/aS) = {a} or aS =S.

§2. S-primary ideals

In this section, we start with the following definition.

Definition 2.1. Let f: R— S be a homomorphism and let g be an ideal of
R. We say that q is S-primary if, f(a)a € ¢S with ae R, a € S, implies a € g, or
€./4S.

If g is S-primary and if ¢S # S, then we can show that g is a primary ideal
of R. Hence the notion of “S-primary” is similar to the ordinary primary ideal
of R.

Theorem 2.2. Let f:R—S be a homomorphism and let q be an ideal of
R. If q is S-primary, then SN R = q and q is a primary ideal of R or qS = S.
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Proof. Suppose that ¢S # S. We note that gSNR =g. Indeed gSNR 2¢
obviously. To see the other inclusion, let r e gSNR. Since f(r) = f(r)-1€4qS
and ¢ is S-primary, we have reqor l € \/:15 Since gS # S, we get r€ q. There-
fore gSNR = q. It remains only to show that g is a primary ideal of R. Assume
that abe q with ae R\q and be R, then af(b)egS. Since g is S-primary, it

follows that f(b) e ./qS, and hence be ./gSNR =./qSNR = \/c} Thus q is a
primary ideal of R. Q.E.D.

Proposition 2.3. Let f: R —> S be a homomorphism of Noetherian rings and
let q be an ideal of R. Let ¢S=Q,N---NQ,NT,N---NT, be an irredundant
primary decomposition of the ideal qS of S, where T; (1 < j < n) are the embedded
primary components of the expression of qS. If Q;NR =gq for all i, then q is
S-primary.

Proof. Assume that f(a)a€qS with ae R and ae S\./qS. Then, since

vaS=/0:N---N/Q, we have a¢./Q; for some i, and ae Q;NR =¢q. It
follows that g is S-primary. Q.E.D.

If the ideal ¢S have no embedded primary components, then the converse
of proposition holds:

Proposition 24. Let f: R — S be a homomorphism of Noetherian rings, and
let q be an ideal of R. Assume that the ideal qS has no embedded primary
component. qS = Q,N---NQ, be an irredundant primary decomposition of qS. If
q is S-primary, then Q;N R =q for all i.

Proof. We may assume that @, N---NQ, is the shortest primary decomposi-
tion. Suppose that Q;NR 2 g for some i. We may assume that i =1. Then
there exists an element a € (Q, N R)\q. Since \/@ (1 £i < n) are minimal prime
divisors, there is an element ae Q,N---NQ, not contained in \/Q_l . Since

JeS=J/0,N--N/Q,, ad¢./qS. Note that f(a)aeQ,N---NQ,=4qS. This
contradicts that g is S-primary. Q.E.D.

We end this section with the following result.

Proposition 2.5. Let f: R— S be a homomorphism and let q be an ideal of
R. If q is S-primary, then q: x is S-primary.

Proof. We may assume that x ¢ g. Now, suppose that ae R, € S, f(a)-a €

(g:x)S and that o ¢ ./(g:x)S. Then, since \/qS = ./(q: x)S, a ¢ \/qS, and hence
flax)a = f(a)a f(x)€qS. Since g is S-primary, we have axegq, and aeq:x.
Therefore q:x is S-primary. Q.E.D.

§3. S-quasi-primary ideals

In this section, we introduce the notion of “S-quasi-primary” and investigate
its several properties.
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Definition 3.1. Let f: R — S be a homomorphism and let g be an ideal of
R. We say that g is S-quasi-primary if, f(a)a € qS with ae R, a€ S, implies
ae./q or aeqs.

Remark 3.2. For a prime ideal g of R, we see that g is S-quasi-primary
if and only if g is S-prime.

Let g be an ideal of R, and let § =gSNR. The following example shows
that for an S-quasi-primary ideal g of R it does not holds g = g.

Example 3.3. With a field k and an indeterminate t, we consider R =
k[t?,t3] = S = k[t], 9 = t>R and let f: R — S be the natural inclusion map. Then
it follows that g is S-quasi-primary. Indeed, suppose that a(t)e R, a € S, a(t)a €
qS = t?k[t] and that a(t) ¢ \/a = (t2,t>)R. Then we have a(0) # 0, and hence « €
t2k[t] = gS. Therefore q is S-quasi-primary. Further, we can see easily that
t*¢qgand > =1>-1e(t?, ’)R=qSNR =3. Hence we have q # §.

Next, for an S-quasi-primary jdeal ¢ of R, we consider relationship between
q and 4.

Proposition 3.4. Let f: R — S be a homomorphism.

For an ideal of R, we write § =qSNR. If q is S-quasi-primary and qS # S,
then

(1) g is a primary ideal of R.

@ JVa=a

Proof. (1) Let abe§ where ae R and b¢ 4. Note that af(b)egS and
f(b) ¢ qS. Since q is S-quasi-primary, we conclude a¢€ \/5 c \/5 Thus § is a
primary ideal of R.

(2) The inclusion \/E c \/5 is clear. If xe\/: , then x"e§ for some n.
Since f(x"):-1€ ¢qS and q is S-quasi-primary, it follows that x"e\/a or 1 egS.
Since qS # S, we have x" € f ,and xe€ \/(_1 Therefore \/a = f , as desired.

Q.E.D.

Consequently, we see that if g is S-quasi-primary, then \/:1 =p is a prime
ideal of R. Furthermore, for the ideals ¢ and § of R, we have the following
proposition.

Proposition 3.5. Let f: R — S be a homomorphism and let q be an ideal of

R. Put §=qSNR. If q S-quasi-primary, then § is S-quasi-primary.

Proof. Suppose that ae R, a €S, f(a)-a €3S and that a ¢ 4S. Note that
gS = 3S =(gSNR)S = ¢S, and hence ¢S =3S. Thus we have f(a)-a€gS and
o ¢ qS. Since g is S-quasi-primary, we see a € \/q = \/5 Therefore § is S-quasi-
primary. Q.E.D.

Using Proposition 3.4, we have the following:

Theorem 3.6. Let f: R — S be a homomorphism of Noetherian rings, and let
q be an ideal of R such that gS #S. Let qgS=Q,N---NQ,, JO;=P, (1 Zi<n)
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be an irredundant primary decomposition of the ideal qS. Put §=qSNR. Then

q is S-quasi-primary if and only if § is a primary ideal of R, \/:1 = \/5 =p and
P.NR =p for all i

Proof. (=) By Proposition 3.4 § is a primary ideal of R and \/(} = \[” =

p. Suppose that PN R 2 p for some i. We may assume that i = 1. Thus there

exists an element ae P,NR\p. We may assume that ae Q,. Further, we can
take an element a € Q,N---NQ, such that « ¢ Q,. Then f(a)xeQ,N---NQ, =
gS. Since a¢p = \/c} = \/zf and o € gqS, we see that g is not S-quasi-primary.

(<) Assume that f(a)xegS, a¢p = \/‘—1 = \/:7 and that « € S. Then f(a) ¢

P, for all i. It follows that xe @, N---NQ, = ¢S. Therefore q is S-quasi-primary.

Q.ED.

Now, we have the following structure theorem of the S-quasi-primary ideals,
which is similar to Theorem 1.10.

Theorem 3.7. Let f: R — S be a homomorphism of Noetherian rings, and let
q be an ideal of R such that qS #S. Then q is S-quasi-primary if and only if
G=4qSNR is a primary ideal of R such that \/a=\/27=peSpec (R), and
Assg (S/gS) = {p}.

Proof. (=) We have only to prove that Assg(S/gS)= {p}. Let ¢S =
o.N---NQ, \/@ =P, (1 £i<n) be an irredundant primary decomposition of
the ideal gS. Take p’ € Assg (S/gS). Then, by definition of Ass, there exists an
element x € S\¢S such that p’ =(gqS:x), and xp'S = gqS. Hence f(x)p'S < Q; for
all j. Since x ¢ Q; for some i, p'S < P, and p' = P,NR = p by Theorem 3.6. On
the other hand, since g = p/, p = \/c; = \/5 c p’. Therefore p’ = p, as desired.

(<) By Theorem 3.6, we have only to show that P,AR = p for all i, and
this is clear because {p} = Assg (S/9S) = Assg (S/gS)N R by [1, (9.A), Proposition].

Q.E.D.

In the rest of this section, we discuss relationship among the S-prime,
S-primary and S-quasi-primary ideals.

Proposition 3.8. Let f: R — S be a homomorphism of Noetherian rings, and
let q be an ideal of R such that qS #S. If q is S-primary and qS has no
embedded prime divisor, then q is S-quasi-primary.

Proof. By Theorem 2.2, gSNR =g and q is a primary ideal of R. Hence
we have only to show that Assg (S/gS) = {p} by Theorem 3.7. Let¢S=Q,N---N
Q, be an irredundant primary decomposition of the ideal gS. Now, by assump-
tion, since gS has no embedded prime divisor, we have Q;NR=gq for all i

by Proposition 2.4. Thus p = \/— =./0;NR=./Q;,NR = P,NR. Therefore we
conclude that {p} = Assg(S/gS)N R = Assg (S/gS), as desired. Q.E.D.

The following result asserts that S-quasi-primary ideals are closely related
to S-prime ideals.
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Proposition 3.9. Let f: R— S be a homomorphism and let q be an ideal of
R. If q is S-quasi-primary, then f = p is S-prime.

Proof. Suppose that ae R, a €S, f(a)-a € pS and that o ¢ pS. Then, since
gS < \/68 = pS, we have a ¢ gS. Since q is S-quasi-primary, we have a € \/c; = p.
Therefore p is S-prime. Q.E.D.

Finally, we show an example of an S-primary ideal g € Spec (R), which is
not S-prime.

Example 3.10. Let f: R — S be a homomorphism and let g € Spec (R). If
the ideal ¢S of S has an irredundant primary decomposition ¢S =QNT, \/é <
ﬁ ONR =g and ﬁ NR 2 g, then g is not S-prime, but S-primary. Indeed,
suppose that ae R, a € S,a-« € ¢S and that oz¢\/:1§ = \/é Then we have ae QN
R =g, and q is S-primary. Also, suppose that g is S-prime, then Assg (S/gS) =
{q} by Theorem 1.17. However, since Assg (S/4S) = {q, ﬁﬂ R}, q is not S-
prime. Also, note that since g € Spec (R), g is not S-quasi-primary by Remark
3.2. Finally we construct an example satisfying these conditions. Let k be a
field and let x, y are indeterminates. Let R = k[x?% y*] < 4 = k[x, y], and let
S={aeAla(l,)=a(—-1,1)}. Putm=(x—-1,y—1DANS=(x+1,y—1ANS,
P(x — 1)ANS and g = (x2 — 1)R. Then it is easily seen ¢S = QN T for a primary
ideal Q belonging to P and a primary ideal T belonging to m of S. Further,
since (x—1DAE(x—1,y—1A and y* —le(x+ 1,y — 1)ANR\(x> — )R, we
see that PEm and mNR 2q. Also, QNR = (x> — 1)R = g, as desired.
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