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Some prime ideals in the extensions of Noetherian rings
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Junro SATO

Introduction

Let R  and S  be commutative rings with unity and let f : R  S  be a homo-
morphism with f(1 ) =  1 .  Mcquillan, in  his paper [2], introduces the notions of
S-prime and S-primary id e a ls . In fact, he proved that if f  is  a flat homomor-
phism, then every prime ideal of S  is S-prime, and that if R  is integrally closed
integral domain, S  is integral over R  and no non-zero element of R  is a  divisor
of zero in S , then every prime ideal of R  is S -prim ary. The aim  of this paper
is to investigate more closely S-prime and S-primary ideals. F urther, w e  in tro -
duce the notion of S-quasi-primary, and determine its s truc tu re . W e are mainly
interested in  the  case where R  and  S  a re  N oetherian . If f : R  S  is  a homo-
morphism of rings and if I  is  a n  ideal of S , then r i (I) is denoted by inR.

In the first section, we consider S-prime ideals. In fact, we shall prove that
a  is S-prime if  a n d  only i f  a  is  a  p rim e  ideal o f  R  and aS 1- 1 R  = a ,  provided
that aS  0 S.

In the second section, we discuss S-primary ideals.
In  the final section, we introduce a n d  study S-quasi-primary ideals. The

main result is that a  is an S-quasi-primary if and only if aS n R  is an R-primary
ideal of R  such that . \ ./a  =  ,/a S  n R  = p, and  that Ass R  (S/aS) {p}.

In  this article R  and  S  are  assum ed to be commutative rings and to  have
unity unless otherwise specified, and f :R --+S  is a homomorphism with f(1) = 1,
and that our general references for unexplained technical terms are [1] and [3].

§1. S-prime ideals

First, we recall the following definition.

Definition 1.1. Let f : R  S  be  a homomorphism and let q  be  an  ideal of
R .  W e say  tha t q  is S-prim e if, a e R , a E S  and f(a )x  e qS , implies a e q, or

e qS.

Remark 1.2. Let q be an ideal of R such that qS = S. Then q is S-prime.

Now, we show our key lemma.
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Lem m a 1.3. L et f: R S  be a  homomorphism, and le t a  be an  ideal o f  R
such that aS 0 S. I f  a  is S-prime, then aS (.1 R is a prim e ideal o f  R.

P roo f. L et a, b e R be  such  tha t ab e aS n R  and  a It aS n R .  Then, since
f(a)b e aS and a  a, we have f(b) e aS by definition. Thus b e aS n R, and aS n R
is  a prim e ideal of R. Q.E.D.

A s a  consequence:

Theorem 1.4. L et f: R --+ S be a  homomorphism, and let a  be an  ideal o f  R
such that aS 0 S. A ssu m e  that a  is S-prime. Then aS nR = a. There a  is a
prime ideal o f  R.

P roo f. F irs t w e  sh a ll show  aS fl R  = a. O n e  in c lu s io n  is  o b v io u s . For
the converse inclusion, let r e aS n R .  Since 1 e S, f(r) =  f(r) • 1 E a S .  Since a  is
S-prime, we have r e a  o r  1 e aS . By our assumption a S  S ,  and we have r e a,
and  hence aS  R  =  a , a n d  a  is  prime by Lem m a 1.3. Q.E.D.

A s another characterization of being S-prime, we have the following:

Proposition 1.5. Let f: R be a homomorphism, and let p e Spec (R). Then
p  is S-prime if  and  only if  pS = S or pSp n s = pS.

P r o o f .  ( • ) :  Assume that pS 0 S. We have only to show that pSp n S = pS.
One inclusion is  clear. For the converse  inclusion, le t a e pS, n S. T h e n  th e re
exists an element a e R\p such that f(a)a e p S . Since p is S-prime, we have a e pS.

We may assume that pS 0 S. Suppose that f(a)a E pS with a E R  and
a e S. I f  a e R\p, then a e psp n s = pS, and hence p is  S-prime. Q.E.D.

By a  localization, S-prime ideals behave nicely. In fact, the following propo-
sition holds:

Proposition 1.6. L e t f: R  S  be a  homomorphism, an d  le t  p g  be in
Spec (R). I f  p is S-prime, then pR q is Sq -prime.

P roo f. Assume tha t f q (a) a e pS, w ith a e Rq a n d  a  e Sq ,  where f q : Rq S q

is defined by f q (b/c) = f(b)/c fo r a ll  b E R  a n d  c e R\g. Then there exists an
element x e R\q su c h  th a t  xa E R, f(x)a e  S  a n d  f(xa)f(x)a e pS. Since p  is
S-prime, we have xa e p or f(x)a e pS, and hence a e pRq  o r  a  E A . Thus pRq

is  Sq -prime. Q.E.D.

T he  following proposition is  w ell applicable t o  the case of extensions of
Notherian rings.

Proposition 1.7. L et f: R S  be a  homomorphism o f  Noetherian rings, and
let p e Spec (R) be such that pS 0 S. S uppose  that there exist only a finite number
of  prim e ideals P1 , . . . , P,, o f  S lying over p. I f  P1 , P„ are  only the prime
divisors o f  pS, then p is S-prime.
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P ro o f . L et pS = Q, CI • • • fl Q„, .\/Q i =  P  (1 i n )  b e  a n  irredundant pri-
mary decomposition o f the  ideal pS o f S . S uppose  tha t f(a)a e pS w ith a e R
and a e S. I f  a 0 p, then f(a) . . . , Pn , and hence a e Qi  n • • • n  Q„ = pS. Thus
p is  S-prime. Q.E.D.

In  [2 ], the  following proposition is proved:

Proposition 1.8 (cf. [2 , Proposition 2 ] ) .  L et f: R  S  b e  a  homomorphism
and suppose that S is f lat as an R-module. Then every prime ideal of  R is S-prime.

As an application of this proposition, we have:

Proposition 1.9. Let f: R  S  be a homomorphism of  Noetherian rin g s . Sup-
pose that f  is f lat and  integral. Then, for any  p e Spec (R), pS has no embedded
prime divisors.

P ro o f . L et pS = Q 1 n • • • n 1 2 , ,n  T, n • • • n  Tm  b e  a n  irredundant primary de-
composition with embedded primary components T1 , ..., Tm . Since, by assump-
tion, f  is integral, w e see that .\/T1 f l •  •  • n  .\ /Tm  n  R  p. Hence there exist ele-
ments a e R and a  e S  such  tha t a e n • • •  fl \ /T„, n (R\p) and a  e (Q 1 n • • • n

Q„)\pS. Thus a' e T, n • • • n  Tm  n  (R\p) and f(a k )a e pS for some k. This implies
th a t p  is  n o t  S-prime. However, f  i s  f la t, and  p  i s  S-prime b y  Proposition
1.7. This is  a contradiction. Q.E.D.

In  terms of the prim e divisors of pS, we give the following criterion to be
S-prime.

Theorem 1.10. L et f: R  S  be  a  homomorphism o f  Noetherian rings, and
let p e Spec (R). Then p  is  S-prime i f  and only  i f  either pS = S o r p S  S  and

R = p f o r any  prime divisor P  of  the  ideal pS.

Proof. Assume th a t  pS 0 S. L et pS = Q 1 F l • •  •  n  Q„  n T1 n • • • n  Tm  b e
an irredundant primary decomposition of the ideal pS where \ /12, n  R = p (1 i
n) and ,,f i ;  n  R  p  ( 1  j  m ) .  Then there exist elements a e R and a e S  such
th a t a e T, n • • • n  T„, n  (R\p), a e (Q, n • • • n  Q„)\pS and  f(a)a e pS, a n d  pS is not
S-prime.

W e m ay assume tha t pS 0 S. Then, by assumption, we have an  ir-
redundant primary decomposition pS = Q, n • • • n  Q,„ and ‘ /Q, n  R =- p (1 i  n ) .
Suppose that f(a ) a e pS with a e R and a e S, then f(a)a e Q, n • • • n  Q „ . If a 0 p,
then a e Q, n • • •  n  Q„ = pS, and  hence p is  S-prime. Q.E.D.

Combining this result with Proposition 1.8, we have the following well-known
result.

Corollary 1.11 (cf. [1], (9.B), Theorem 12.). Let f: R  S  be a f lat homomor-
phism of  Noetherian rings and p e Spec (R) such that pS 0 S. T h e n , f o r all prime
divisors P  o f  the  ideal pS o f  S, w e have p n  R = p.

W e shall show  an  example if  a  p rim e  ideal p  o f R  w hich  is no t S-prime
even if S  is integral over R.
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E xam ple 1.12. L e t  Q  b e  a  ra tiona l num ber f ie ld  a n d  consider R  =
Q[x 2 , .Y2 ] A  = Q[x, y]. L e t  S  =  {a e A la(1, 1) = a( —  1, 1) = a( - 1, —1) =
a(1, —1)}  D R  a n d  le t  f : R S  b e  th e  natural inc lusion  m ap . N ote  th a t  f
is an integral m orphism . Put m = (x — 1, y  — 1)A (1 S = (x 2  — 1, y 2  — 1 )A . Then
ht (m ) =  2 . Let c(A/S) is  a  conductor ideal o f A  over S. Then w e can show
that c(A/S) = (x 2 — 1, y 2  — 1 )A . Indeed, c(A/S) D  ( x 2 1 5  y 2  1)A  is obvious.
Take a(x, y) e Then we can write a(x, y) = a o  + a 1 x  + a 2 y  + a 3 xy + b(x, y), a i e Q
(1 n), b(x, y) e (x 2 — 1, y 2  — 1 )A . Since xa(x, y) e S , we can see easily that

=  a, = a 2  = a 3  = 0. T h u s  m  =  c(A /S ). Therefore we see that depth S m  = 1.
(c f . [6 ], P roposition 1.9, P roposition 1.10 and Proposition 1.13) L et x 2 R  =
p e Spec (R ) . Then it follows that m is a prime divisor of pS  = x 2 S and m n R  =
(x 2  — 1, y 2  — 1)R (O p ) .  Hence p  is  not S-prime by Theorem 1.5. Further, this
example shows tha t p  is not S-prim e, though p e Spec (R), pS  S  and  satisfies
the condition pS n R = p.

The following is a  corollary to Theorem 1.10.

Corollary 1.13. L et f : R  S  be  a hom om orphism  of  Noetherian rings and
let m  be a m ax im al ideal o f  R . T hen m  is S -prim e.

Pro o f . By Remark 1.2, we may assume that mS 0 S. Let mS = Q, n • • • n Q„
be an irredundant primary decomposition of the ideal mS of S, and let pi = n
R (1 n). Then, since pi R  a n d  p i m ,  a n d  w e  have pi = m  fo r  a l l  i.
Hence, by Theorem 1.10, m is S-prime. Q.E.D.

In  [4 ], we introduce the notion of a "surper-primitive elem ent". Now, we
study the relationship between S-prime ideals and surper-primitive elem ents. For
a moment, we consider birational-extensions of Noetherian dom ains. F or a  an
element an K , we set / OE =  { ae Rla • ae R} . IOE i s  a n  ideal of R  and is called the
denominator ideal o f  a  in  R.

Definition 1.14. Let R  be a Noetherian domain with quotient field K .  Then
a e  K  is  ca lled  a super-primitive elem ent over R  i f  / OE +  otl„ p  fo r  fo r  any
p E Dp i (R).

When a  is a surper-primitive element, we say that R [a] is a surper-primitive
extension of R.

W e have a characterization of flatness using surper-primitive extension and
S-prime ideals of depth one . In  fac t, th e  following proposition holds:

Proposition 1.15. Let { a i ll i n }  be a set of  super-prim itive elements over
a N oetherian dom ain  R . L et f : R S  = R [a l , a„] b e  the natural inclusion
m ap . Then the following conditions are equivalent.

(1) For any p n Dp i  (R), p is S-prime.
(2) S  is f lat ov er R .
(3) pSp  n s = pS  for any p E Spec (R).
(4) Ass, (S/pS) = { p}  o r  pS  = S  for any p e Spec (R).
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P roo f. (2) ( 3 ) :  S i n c e  R -+ S -+ Sq  i s  fla t, pS i, (-1 S = (pR p r R) OR S  =  p OR

S = pS, as desired. (3) ( 4 ) :  Assume that pS 0 S. For any q E ASSR (S/pS), by
definition, we have q = (pS : a) fo r  some a E SVS, a n d  hence aqS g pS. Note
that p q .  Now we assume tha t p q ,  then qR p  = R p ,  and  a e pS p  n s = pS, a
contradiction. Therefore p = q, a s  desired. (4) (1 ): B y  R em ark  1 .2 , w e  m ay
assume tha t pS 0 S. Let f(a)a e pS where a e R  and a e  S V S . W e shall show
th a t a e p. N ow  a•c7 = Ô  in  S/pS. T hus a  i s  a  z e ro  divisor in  S/pS. Since
Ass, (S/pS) = Ipl, this implies a e p, as desired.
(1) (2): If S is not flat over R, then we have

 ( I Œ i (I • • • (1 /„„)S S by [5, Proposi-
t io n  1 ] . Now, let / OE , n • • • n /  = q i  n • • • n \ 4, = p i (1 i m )  be an irredun-
dant primary decomposition of the ideal i •  •  •  fl I R .  Note that p i E Dp i  (R)
by  [6 , Proposition, 1.10]. If pi S = S for a ll i, then (I •  •  •  n r„)s =  S. Hence
pi S  S  fo r som e i. Since pi I .  fo r some j ,  w e have pi S I .  + Put
ai  =  I cci +  a I 2  f o r  a ll j. T hus w e ge t pi S fl R ai . S in c e  pi is  S -prim e, pi =
pi S n R by Theorem  1.4. Thus pi .Q ai . But a i i s  super-primitive, and pi a ;  by
definition. This is  a contradiction. Q.E.D.

Corollary 1.16. L et R  be a  Noetherian normal domain with quotient f ield K,
and let ai, • • • , a,, e  K .  Then S = R[a i , ..., a n ] is flat over R if and only if  every
prime ideal p e Ht 1 (R) is S-prime.

P roo f. Since R  is  normal, a i (1 i n )  is  a super-primitive element over
R  by [4 , 1 .13 Theorem ]. H ence the assertion follows easily from Proposition
1.15. Q.E.D.

Summarizing the  above results, we have the m ain theorem of this section.

Theorem 1.17. L et f: R —■ S be a  homomorphism o f  Noetherian rings, and
le t  a  be a n  ideal o f  R . T h en  a  is S-prime if an d  only i f  a e Spec (R ) and
Ass, (S/aS) = {a} o r aS = S.

§2. S-primary ideals

In  this section, w e start w ith the  following definition.

Definition 2.1. Let f: R  S  be  a homomorphism and let q be  a n  ideal of
R .  We  say that q is S-primary if, f(a)a e qS with a e R, a e S, implies a e q, or
a e

If q is S-primary and if q S  S ,  then we can show that q is a  primary ideal
of R .  Hence the notion of "S-primary" is sim ilar to the ordinary primary ideal
of R.

Theorem 2.2. L et f: R S  be a  homomorphism an d  le t q  be an  ideal of
R .  If  q is S-primary, then qS fl R = q and q is a primary ideal of  R or qS = S.
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P ro o f . Suppose that qS 0 S. We note that qS (1R = q. Indeed qS (1 R q
obviously . T o  see  th e  o ther inclusion, let r  e qS (1R. Since f(r) = f(r)• 1  E  qS
and q is S-primary, we have r e q or 1 e .\/ q S . Since q S  S , we get r e q. There-
fore qS n  R  =  q . It remains only to show that q is a  primary ideal of R .  Assume
th a t  ab e q  w ith  a e  R\q a n d  b e R , then af(b) E  qS. S in c e  q  i s  S-primary, it
follows that f(b) e \ /qS, and  hence b e ,/qS n  R  =  q S  fl R  =  f q .  Thus q is  a
primary ideal of R. Q.E.D.

Proposition 2.3. L et f: R  be a  homomorphism o f  Noetherian rings and
le t q  b e  an  ideal o f  R .  L e t qS = Q, n • • • n  Q„ n  T, n • • • n  Tm  b e  an  irredundant
primary decomposition of  the ideal qS of  S, where 7  ( 1 j  n) are the embedded
primary components of  the ex pression of  q S . If  Q .  n R  =  q f o r all i, then q  is
S-primary.

Proof .  Assume that f(a )a e qS with  a e  R  a n d  a e S\.‘ / qS . T hen , since
\ /qS = .‘ /Q , n • • • n  ,/Q„, w e have a 0 \./Qi f o r  som e i, a n d  a E Q. n  R  =  q . It
follows that q is  S-primary. Q.E.D.

If the  ideal qS have no  embedded primary components, then the converse
of proposition holds:

Proposition 2.4. L et f: R  S  be a  homomorphism o f  Noetherian rings, and
le t  q  b e  an  ideal o f  R .  A ssume th at th e  ideal qS h as  n o  embedded primary
com ponent. qS = Q, n • • • n  Q, be an irredundant primary decomposition of  q S . If
q is  S-primary, then Q . (1 R = q f o r all i.

Pro o f . We may assume that 12 1 n • • • n  Q„ is the shortest primary decomposi-
tion. Suppose th a t Q . n R  q for some i. W e m ay assume th a t i = 1. Then
there exists an  element a e (Q, n  R )\q. Since Q, (1 i  n )  are minimal prime
divisors, there i s  an  e le m e n t a E 422 n•••  fl Q„ not con ta ined  i n  .1Q

1
. Since

qS = .‘ /Q, n • • • n  \ / 1 2 „ ,  a 0 .\/ qS . N o te  th a t  f(a)a E 12 1 n • • • fl Q,, = qS. This
contradicts that q is  S-primary. Q.E.D.

W e end this section with the following result.

Proposition 2.5. L et f: R S  be a  homomorphism and let q  be an  ideal of
R .  I f  q is S-primary, then q: x  is  S-primary.

Pro o f . We may assume  that x  q. Now, suppose that a e R, a e S, f(a) • a e
(q : x)S and that a 0 :  x ) S .  Then, since .\./ qS c  \/(q : x)S, oc 0 .\ /qS, and hence
f(ax)oc = f(a)a f(x) e qS. Since q  i s  S-primary, w e have ax e q , a n d  a e q : x.
Therefore q : x  is  S-primary. Q.E.D.

§ 3 .  S- quasi- primary ideals

In  this section, we introduce the notion of "S-quasi-primary" and investigate
its several properties.
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Definition 3.1. Let f : R  S  be a  homomorphism and  le t q  be  an  ideal of
R .  W e  sa y  th a t q  i s  S-quasi-primary if, f (a)x  e q S  w ith  a e  R , a e S, implies
a e .,./4 o r  a e qS.

Remark 3.2. F or a  p rim e  ideal q  o f R , w e see  that q  i s  S-quasi-primary
if and only if q  is  S-prime.

Let q  be  a n  ideal o f R , and  le t 4 = qS  (1R . The following example shows
that fo r an  S-quasi-primary ideal q  of R  it does not holds q =

Example 3.3. W ith  a  f ie ld  k  a n d  a n  indeterminate t, w e consider R  =
k[t 2 , t 3 ] S  = k [t ],  q  = OR and let f :  R  S be the natural inclusion m ap. Then
it follows that q  is  S-quasi-primary. Indeed, suppose tha t a(t) E R , a e S, a(t)c& E
qS = t 2 lc[t] and that a(t) ,/4 (t2 , t 3 )R .  Then we have a(0) 0 ,  and hence a e
t2 k [t] = q S . Therefore g  i s  S-quasi-primary. Further, w e can see easily that
t3 q  and  t3 = t 3 • 1 e (t2 , t 3 )R = qS n R  = -4. Hence we have q 4.

Next, fo r an  S-quasi-primary ideal q  of R , we consider relationship between
q  a n d  -4.

Proposition 3 .4 .  L et f : R  S  be a homomorphism.
For an ideal o f  R , we write -4 = qS n R .  I f  q  is S-quasi-primary an d  q S  S ,

then
(1) -4 is  a  prim ary  ideal o f  R.
(2) . \ ./4 =

Pro o f . (1) L e t ab e -4  where a e  R  a n d  b -4. N o te  th a t  af(b) e qS  and
f ( b )  q S .  Since q  is  S-quasi-primary, we conclude a e ‘ /4  g  .,174. Thus 4 is  a
primary ideal of R.

(2) The inclusion q 1 4  is  clear. I f  X E f 4 ,  then  x" e -4 fo r  some n.
Since f  (x")• 1 e qS  a n d  g  is  S-quasi-primary, it follows that xn e .\ / 4  o r  1 e qS.
Since q S  S ,  we have xn e \ /q , and  X E .\ 4  Therefore \ ./q  =  \ A ,  as  desired.

Q.E.D.

Consequently, we see that if q  is  S-quasi-primary, then .\ ./4  =  p  is  a prime
ideal o f R .  Furthermore, fo r the  ideals q  a n d  4 o f R , w e have the  following
proposition.

Proposition 3.5. Let f: R —■ S be a homomorphism and let q be an  ideal of
R .  Put 4 = qS fl R. If q S-quasi-primary, then 4 is S-quasi-primary.

Pro o f . Suppose th a t a e R , a e S , f (a) • a E -4S a n d  th a t a 0 -4S . N ote  that
qS  g 4S = (qS n R ) S  q S ,  a n d  hence qS  = S . T h u s  w e  have f(a)- cx e .4 S  and
a 0  q S . Since g is S-quasi-primary, we see a e =  Therefore 4 is S-quasi-
prima ry. Q.E.D.

Using Proposition 3.4, w e have the following:

Theorem 3.6. Let f: R —■ S be a homomorphism of Noetherian rings, and let
q  be an ideal o f R  such that qS 0 S. L e t q S  =  Q , n • • • n Q„, NA21 = Pi (1 i  n )
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be an irredundant primary decomposition of  the ideal qS . Put '4 = qS rl R. T h e n
q is S-quasi-primary if  and only  if  g-  i s  a  primary ideal of  R , =  , . / 74 = p and
Pi r  R  p  for all i.

Proof. By Proposition 3.4 4 is a  primary ideal of R  a n d  /4  =  =
p. Suppose that Pi FI R p  for some i. We may assume that i = 1. Thus there
exists a n  element a e P, n R \ p .  W e m ay assume th a t a e Q1 . Further, we can
take a n  element a E Q2 n • • • n Q„ such that a 0 Q 1 . Then f (a)a e Q, n • • • n Q„ =
q S .  Since a 0 p = =  1 4  and a e qS , w e see that q  is not S-quasi-primary.

( ) Assume that f (a)a e qS , a 0 p = ,/4 = and that a e S. Then f (a)
Pi for all i. It follows that a e Q, n • • • rl Q „ = qS . Therefore q is S-quasi-primary.

Q.E.D.

Now, we have the following structure theorem of the S-quasi-primary ideals,
which is similar to Theorem 1.10.

Theorem 3.7. L et f : R  S  be a homomorphism of Noetherian rings, and let
q  be  an  ideal o f  R  such that qS  0 S. Then q is S -quasi-prim ary  if  and  only  if
4 = qS n R  i s  a  prim ary  ideal o f  R  su c h  th at .14 = 4 = p e Spec (R ), and
AssR  (S/qS) = {p}.

Pro o f . ( . ) :  W e  h av e  o n ly  to  p ro v e  th a t A ss , (S/qS) =  { p } . L e t  qS =
Q1 n " • n Q. Qi= P (1 i  n )  b e  an irredundant primary decomposition of
the ideal q S .  Take p' e A ss R  (S /qS ). Then, by definition of Ass, there exists an
element x e S \qS  such that p' = (qS : x), and xp'S  g q S .  Hence f (x )p'S  g Q i for
all j. S in c e  x  Qi fo r some i, p'S  g Pi , and p' g_ pi nR = p  by Theorem  3.6. On
the  other hand, since q p ',  p  =  14 = g  p'. Therefore p' = p, as desired.

By Theorem 3.6, we have only  to  show tha t Pi n R  = p  for a ll i, and
this is clear because {p} = Ass R  (S/qS) = Ass, (S/qS)n R by [1, (9.A), Proposition].

Q.E.D.

I n  t h e  re s t  o f  th is  section, w e discuss relationship am ong the S-prime,
S-primary and S-quasi-primary ideals.

Proposition 3.8. L e t  f :  R  S  be a homomorphism  of  Noetherian rings, and
le t  q  b e  an  ideal o f  R  su c h  th at q S  0  S . I f  q  is S -prim ary  an d  q S  h as  no
embedded prime divisor, then q is S-quasi-primary.

Pro o f . By Theorem 2.2, qS FIR = q and q  is  a  primary ideal of R .  Hence
we have only to show that Ass R  (S/qS) = {p} by Theorem 3.7. Let qS = Q, n • •• n

Q,, be an irredundant primary decomposition of the ideal q S .  Now, by assump-
tion, since q S  h a s  n o  embedded prime d iv iso r , w e  have Q .  fl R  = q  fo r  a l l  i
by Proposition 2.4. Thus p = „74 = N /Q, n R  = N/Q i n R = P, n R .  Therefore we
conclude that { p}  = Ass, (S/qS)n R = A ss R  (S/qS), a s  desired. Q . E . D .

T he following result asserts that S-quasi-primary ideals a re  closely related
to S-prime ideals.
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Proposition 3.9. L et f: R S  be a  homomorphism and le t q  be an  ideal of
R .  I f  q  is  S-quasi-primary, then .,./q = p is  S-prime.

P ro o f . Suppose th a t a e R, E S, f(a) • a E pS and tha t a  p S . Then, since
qS g „AS = pS, we h ave  a  q S . Since q is S-quasi-primary, we have a e = p.
Therefore p is  S-prime. Q.E.D.

Finally, we show an example of an S-primary ideal q e Spec (R ), which is
no t S-prime.

Example 3 .1 0 . Let f :  R b e  a  homomorphism and let q e Spec (R). If
the ideal qS of S has an irredundant primary decomposition qS = QC1T, Q

T , Q n R = q  and ‘ /Tfl R  q ,  then q is  n o t S-prime, but S-primary. Indeed,
suppose that aeR ,aeS ,a - aeqS and that 010.\ /qS= a. Then we have aeQ n
R = q, and q is S-primary. Also, suppose tha t q is  S-prime, then AssR  (S/qS) =
{q } by Theorem  1.17. However, since AssR  (S/qS) = {q, \ / n R}, q is  n o t  S-
prim e. A lso, note that since q e Spec (R ), q is  n o t S-quasi-primary by Remark
3.2. Finally we construct an example satisfying these conditions. Let k b e  a
field and let x , y are indeterminates. Let R = k[x 2 , y2 ]  c  A  = k[x, y ], and let
S = {a e Ala(1, 1) = a( - 1, 1)1. Put m = (x — 1, y — 1)A n s = (x + 1, y — 1)A n s,
P(x — 1)A n S and q = (x 2 — 1 )R . Then it is easily seen qS = Q n T for a primary
ideal Q belonging to P  and a primary ideal T  belonging to in o f  S . Further,
since (x — 1)A (x —  1, y — 1)A and y2 —  e (x + 1, y — 1)A n Rvx2 — 1)R, we
see that P 5 m and m n R  q .  Also, Q n R = (x2  — 1)R = q, as desired.
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