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Free complexes defining maximal quasi-Buchsbaum
graded modules over polynomial rings

By

Mutsumi AMASAKI

Introduction

In the study of homogeneous ideals defining two codimensional locally
Cohen-Macaulay subschemes of a projective space, any knowledge of maximal
generalized Cohen-Macaulay graded modules over a polynomial ring R (ie.
graded modules M of the same Krull dimension as that of the ground ring R
such that [ (H.,(M)) < oo for all i <dim(R), m denoting the irrelevent max-
imal ideal of R) is very useful in two respects. First, for a homogeneous ideal
a of height two in a polynomial ring R = k[x,,..., x,] having the property
Ix(H! (R/a)) < oo for i <r — 2, there is an exact sequence

0-N5SM->a-0

with a maximal generalized Cohen-Macaulay graded R-module M and a graded
free R-module N such that H';}(M) =0, so that once the structure of M, such
as its syzygies, is fully understood, the problem can be reduced to the analysis
of the linear mapping t. Second, denoting by t, the minimum of all ¢ such
that a, # 0, let M’ be the module over R = k[x,,..., x,] defined by the exact
sequence

to—1

0-M - @ R(-))
1=0

(1,x},..., x

‘o-)R/u—>0,

where the linear forms Xx;,...,x, are chosen sufficiently generally. Then
Hi.(M')~ H;!(R/a) for each i<r—1 as an R’-module, so M’ is a maximal
generalized Cohen-Macaulay R’-module satisfying e, .(M') = to,, which bears a lot
of information on the generators of a. In fact, applying Goto’s structure theorem
for maximal Buchsbaum modules over regular local rings (see [G2, (3.1)]. [EG,
Theorem 3.2]) to the above M, M’', we could give a complete classification of
homogeneous prime ideals that define arithmetically Buchsbaum subvarieties of
codimension two in projective spaces (see [Al, §7]).

Keeping that in mind, we will investigate the structure of maximal quasi-
Buchsbaum graded modules over polynomial rings (i.e. graded modules M over
R with mH! (M) = 0 for all i < dim(R)), especially in a simple case where (M) :=
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#{i|H. (M) # 0, i <dim(R)} <2 as the first step. Our main results, described
in section four, are obtained in the following manner. Given a finitely generated
graded module M having no free direct summand over a noetherian graded
k-algebra R and its minimal free resolution

oy
oo Ly L\ > Lg->M-0,

let L. denote the minimal complex such that H;(L.) =~ Ext§ (M, R) for 0 <i <
b := dim(R) — depth, (M), which is obtained by connecting the dual of L', and
the complex L’ giving a minimal free resolution of the kernel of the dual of
df (see (4.2)). Then L, is the minimal part of the mapping cone of a certain
system of successive chain maps (see (1.6)), which forms the basis of our approach.
When R is a polynomial ring and M is a maximal quasi-Buchsbaum graded
R-module with (M) < 2, only one chain map is involved, and besides, it can be
handled by the linear algebra over k (see (2.1), (2.5)). Thanks to C. M. Ringel’s
theorem (see (3.3)) and an explicit formula for the chain maps from a direct sum
of Koszul complexes to another provided in (2.6), we thus get detailed results
for the case (M) < 2, along with some observations in the case (M) = 3. Note
that the same method applies also to generalized Cohen-Macaulay R-modules
satisfying (M) = 1, m?H! (M) = 0 for i < dim(R).

One may naturally feel inclined to give a necessary and sufficient condition
for those successive chain maps mentioned above to correspond to a maximal
Buchsbaum module, in order to generalize Goto’s structure theorem. It is possi-
ble indeed at least over Gorenstein rings, which will be discussed in a forthcoming
paper.

The idea of making use of mapping cones and its first applications (2.5),
(4.6), (4.10) were reported for the most part at the conference held in Kyoto in
autumn, 1990 (see [A2]). After that meeting, a joint work [CHP] was sent to
me, which contains another treatment of maximal quasi-Buchsbaum modules over
regular local rings. Also, Y. Yoshino argued about the same subject, laying
stress on equivalence of categories, mainly over Gorenstein local rings in [Y]. He
pointed out, among other things, that Schenzel’s characterization of Buchsbaum
modules in terms of dualizing complexes (see [SV, Chapter II, Theorem 4.1]) is
false, unless the ground ring is regular. I am grateful to him for stimulating
discussions and for providing me with some elementary knowledge of representa-
tions of quivers, especially Ringel’s results.

§1. Mapping cones

Throughout this paper R denotes either a local noetherian ring with maximal
ideal m and residue field k = R/m, or a graded ring @,., R, with m = P, R,
which is generated over a field k = R, by a finite number of homogeneous
elements as a k-algebra. In the second case, R-modules are always assumed to
be graded and Homg(M, N) = @,.,Homg(M, N), for all pairs of R-modules
M, N, where Homg(M, N), denotes the additive group consisting of homomor-
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phisms of degree t. Moreover when we consider a homomorphism f: M — N,
it is assumed that f € Homg(M, N),, unless otherwise specified. Let L, =(L;);.2
be a complex of R-modules with differentials 8: L; > L;,_, (i€ Z). We say that
L. is minimal (resp. split exact) when Im(d}) = mL;_; (resp. Hy(L.)=0, L,
Im(3}) ® Ker(dF)) for all ie Z. Let L*", and for an integer n, let L[ —n],, L[ >n],
denote the complexes obtained by setting L* = Homg(L;, R), 0;. = (854,)*: L* —>
L**! (dual map), L[—n); = L;_,, o™ = d}, and

Li(i=n) a_ JoF (i>n)
L[Zn]i={0(i<n)’ a"L[Z]"{O(iSn)

respectively. We set
a(L.) = sup{i|[H(L.) # 0}, B(L.) = inf{i| H'(L*") # 0},

where a(L.) = —oo (resp. B(L.) = o) if and only if L. (resp. L**) is exact. The
mapping cone of a chain map u,:L,— L', will be denoted by con(u.).. Recall
that
g con(u.) _ _6# Hi
con(p.); = Liy; @ L;, 0; = [ 0 aiL]

for all ieZ. Further, we denote the set of chain maps u. as above by
Homg(L., L"), the set of sequences v,=(v;));., Wwith v;e Homg(L;, L;) by
hompg(L., L’,) and the set of chain automorphisms (resp. chain endomorphisms)
of L, by Autg(L.) (resp. Endg(L.)). There is a natural identification of the sets
homg(L., L'.) and homg(L[ —n]., L'[ —n].) obtained by shifting subscripts from
i to i + n, under which the element of homg(L[—n]., L'[ —n].) corresponding to
v.€ homg(L,, L) will be denoted by v[—n].. Let €(R), €»(R), €=(R), €x(R),
%o(R), €xm(R), €»o(R) be sets of complexes defined by

%(R) = {L.leach L; is a finitely generated free R-module} ,
€m(R) = {L.€ €(R)|L. is minimal} ,
%z(R) = {L.e€ €(R)|Im(}) = mL,_; for all i <0,a(L.) < B(L.)},
%y(R) = {L.€ ¥(R)|Im(dF) = mL,_, for all i <0},
%(R) = {L.c €(R)|L; =0 for all i<0,H(L)=0 for all i>0},
Cxn(R) = €=(R)NE»(R), Eneo(R) = €o(R)NE#(R) .

The %#4(R) is nothing but the set of the minimal free resolutions of finitely
generated R-modules. Under this identification we will denote the element of
“mo(R) which gives the minimal free resolution of a finitely generated R-module
E by res(E)..

(1.1) Lemma. For each complex L, € €=(R) (resp. €y(R)), there are a minimal
P, € €zn(R) (resp. €»(R)) and a split exact Q.€ %,(R) such that L,~ P, @ Q..
Moreover these P,, Q, are determined uniquely by this condition up to isomorphism.
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Proof. For each ieZ, let L; be a free direct summand of L; such that
rankg(L) = Ig(0F(L;) + mL;_;/mL;_;) = lg(Im(3}) + mL;_,/mL;_,)

and put L}, = 0F(L}). Observe that 9| s Li— L{_; is an isomorphism. The
relation 6%(L{) = 0 implies that (L; + mL;/mL;)N (L, + mL;/mL;) = 0 in the vector
space L;/mL; = L, ® R/m, therefore

L=Li@LeL

with a suitable free R-submodule L{" of L;. Let us replace L with another free
submodule P, c L; for each i, constructing P, in the following manner. First,
put P,=L{ for i<0. Since Li®L; =0, P,=L! =L, for i <0, we have

rankg(P;) = rankg(L{"),

P+ Li=L7"+L;,
(L.1.Q)

Li=P@®L®L;,

0H(P) = mP_,
for i <0. Suppose there are P satisfying (1.1.i) (i <) for some [ > 0. Then the
equality 65(0%,(L}4;)) =0 and (1.1.1), (1.1.1 — 1) imply

051(Li) € P+ LY = P+ 054, (Liyy),

so that modifying free bases of L}};, we obtain a free submodule P, which
satisfies (1.1./ + 1). Thus we get a minimal complex P, € ¥(R) (37 = d}|p) and
a split exact complex Q, € €,(R) (62 = a,.L|Q.,, Q;=L;®L)such that L,=P, @ Q..
It is clear that P,e €z»(R) if L.€ €=(R). Let P, € €»(R), Q'. € ¥,(R) be another
pair of minimal and split exact complexes satisfying L, =~ P, ® Q'. and let n,: L, —
P’, be the natural projection. Then ¢, :=n.|p: P, > P', is a chain map such that

@; ® R/m: P,® R/m — H,(L.® R/m)> P, ® R/m

is an isomorphism for all i € Z, since both P, and P’, are minimal and free. Hence
P~ P,, in particular rankg(P) = rankg(P/) and rankg(Q;) = rankg(Q;) for all
ieZ. As a result, ;=0 for i<0 and Q, = Q.

(1.2) Definition. With the notation of (1.1), we put min(L,), = P., se(L.). = Q..

(1.3) Lemma. Let L,, L', € €3%(R) satisfy Ig(L; ® R/m) = Ix(L; ® R/m) for all
ieZ. Then L,= L', if and only if min(L.), = min(L',)..

Proof. Almost the same as the last part of the proof of (1.1).
In the argument below, let a and b denote nonnegative integers with a < b.

(1.4) Lemma. Given complexes L, € €y(R), G. € €,(R) satisfying a(L.)<a and
a chain map u.:L,— G[—a—1]., we have Hjcon(u.).)= H(L.) for i< a,
H,(con(p.).) = Hy(G.) and Hi(con(u.).) =0 for i > a. In particular a(con(p.).) < a,
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with equality if and only if Hy(G.) #0. Moreover if b < B(L.) and b — a < B(G.),
then H(con(u.)*")=0 for i <b, ie. b < B(con(u.).), con(u.). € €z(R).

Proof. Easily verified by the long exact sequences arising from the short
exact sequence

(1.4.1) 0—- G[—a].—-con(u.).» L, -0
and its dual.

For a complex L, € %¥(R) and an integer n, we define a complex o,(L.). by

oF (i< n)
_JLii<n) onll) — ) P (i _
Gn(L-)i - {IJ,'_,, (l > n) ’ ai - € (l - n) )
o, (i>n)

where P, = res(Im(d})). and ef is the map P, — Py/Im(d7) = Im(6f) = L,_,. Note
that g,(L.). € €#(R) if L, € €»(R) and that a(c,(L.).) < «(L.) with equality if and
only if a(L.) <n.

(1.5) Proposition. Let L, € €z»(R), G, € Emo(R), and suppose a(L.)<a<
b < B(L.), G, =res(H,(L.))., Extix(H,(L.),R)=0 for all i (0<i<b—a). Then
0,(L.). € €zm(R), a(a,(L.).)<a<b<p(a,(L.).) and there is a chain map u.: o,(L.). >
G[—a — 1], such that L, = min(con(u.).)..

Proof. Put G.=res(H,(L.))., P, =res(Im(8L)).. Since
(15.1) 0 Hy(L)— L,/Im(@%,) %5 Im(@%) —» 0

is exact, there is a chain map u'.: P.— G[—1]. such that E:= L,/Im(3%,) =
Coker(d5°"®)). Moreover (L[>a])[a]. = min(con(y’.).). since both (L[>a])[a].
and min(con(y’,).). give minimal free resolutions of E. Let u.:0,(L.).—
G[—a — 1], be the chain map obtained by setting u; = u;_, for i > a, y; =0 for
i <a. Then con(u.); = con(u'.);—, for i >a, con(u.); = L; for i <a, 3™ coin-
cides with the composite map con(u.), = G,@® P, - E —»Im(0f) = L,_, and
Im(9f"*)) = mL,_,, therefore L, = min(con(u.).).. Clearly a(o,(L.).) <a<b,
while b < B(ag,(L.).) follows from the long exact sequences arising from the dual
of (1.4.1) with L, replaced by a,(L.)., since f(L.) = B(con(u.).) and b — a < B(G.)
by hypothesis.

(1.6) Corollary. For a complex L, € €x»(R), suppose Ext‘}z(Hj(L,), R) =0 for
all i, jO<i<b—j0<j<a), a(L.)<a<b<P(L) Put GY, =res(H(L.)).€
Emo(R) for each j (0<j<a). Then ay(L.),€ €z»(R), a(oy(L.).)<0<b<
B(oo(L.).) and there are inductively defined chain maps p®.: ao(L.). » GO[—1].,
w9 con(pli™), - GY[—j — 1]. (1<j<a) such that L. = min(con(y*?,).).. More-
over ao(L.). =0 if Li=0 for all i <0, and Ho,(L).) =0, H(go(L.)*")=0 for
all ieZ if R is Gorenstein and H,(L,)=0 for all i <0.
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Proof. The case a = 0 follows from (1.5). Suppose that a > 0 and that our
assertion is true for a — 1. Put L', =o0,(L.).. By (1.5) there is a chain map
u: L. = G9[—a—1]. such that L,=min(con(u.).)., a(L’)<a—1, b<B(L").
Since H(L') = H/(L.), Exti(H(L'), R) = Exti(H,(L.), R) = 0 for all i, j (0<i<b—j,
0 < j < a— 1) by hypothesis and (1.4), there are chain maps u©®: go(L".). » G?,,
w9 con(p ), » GY[—j—1]. (1 € j < a — 1) such that L', =min(con(u“1),).,
b < B(ay(L'.).) by the induction hypothesis. Let u@.:con(u“™), - G[—a —1].
be the chain map extending p, by p.| . conue-ny).=0. Then con(u®,).=con(u.).®
se(con(u“~1).)., so that L, = min(con(u.).). = min(con(u®,).).. Since ao(L".). =
oo(L.)., the inequality a(gy(L.).) <0 <b < B(go(L.).) follows. It is clear that
oo(L.). =0 if L, € €#mo(R). When R is Gorenstein, its injective dimention is finite,
therefore B(oo(L.).) = o if a(oy(L.).) = —oo, which implies the last part.

(1.7) Remark. As is seen by the proofs, the existence of the chain maps
., B9, (0 < j <a) with the property L. = min(con(y.).)., L.= min(con(u®,).).
stated in (1.5), (1.6) is a consequence of the hypothesis a(L,) < a only and other
conditions such as the inequality «(L.) < f(L.) appearing in the definition of
%2(R) have nothing to do with it.

(1.8) Lemma. Let L., L', € €(R), G., G'. € €my(R) be complexes with a >
max(o(L.), a(L".)) and let pu.L,->G[—a—1].,, p'..L',—» G'[—a—1]. be chain
maps.

(1) If min(con(u.).). =~ min(con(y'.).)., then L,~ L', and G, = G'..

(2) We have con(u, @ u'.). = con(u.). ® con(u'.). for the chain map u,. @ u'.:
L®L.-G[—a—-1].®G[—a—1]..

Proof. (1) Since L;= min(con(y.).); for all i<a, Im(0f"*™) = Im(3)),
(L[>a])[a]. = res(Im(8%)). and the same holds for L', one finds that the hypo-
thesis min(con(y.).). = min(con(y'.).), implies L, =~ L’,. To prove G, G, it is
enough to observe that G, (resp. G'.) gives a minimal free resolution of
H,(min(con(u.).).) (resp. H,(min(con(x'.).).)) by (1.4).

(2) Obvious.

(1.9) Proposition. Given chain maps p,, p'.: L.»G[—a—1]. with L, € €»(R),
G.€ %,(R), a> a(L.), a necessary and sufficient condition for min(con(u.).). =
min(con(y'.).). is that there are chain automorphisms ¢, € Autg(L.), . € Autg(G.)
such that p'.@p.~ Y[ —a — 1].u. (chain homotopic).

Proof. 1f there are chain automorphisms ¢. and ¢, satisfying the condition,
we have

(1.9.1) WP — Wigo i =08 ,v; + v, 0F  for all ieZ
with suitable v,e Homg(L;, G;_,) (i€ Z). The maps

. l//i—a Vi .
li.—[o <Pi] (ieZ)
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therefore give a chain isomorphism 4,:con(u,).—con(u'.).. Hence min(con(u.).).=
min(con(y'.).).. Conversely, suppose min(con(u.).). = min(con(y'.).).. Then there
is a chain isomorphism A.:con(yu.).— con(u'.). by (1.3). Put 9, =0°"®, ¢’ =
s, M = Coker(d,4,), M’ = Coker(;4,), E = Ho(G.), N = Im(9;), n" = Aoyl
and let : M - M’ (resp. 6: M - N, §': M’ - N) denote the isomorphism (resp.
homomorphisms) induced by 4, (resp. d,, 9,). We have a commutative diagram

— G, ®L,, SERGLLIEN GO@LGL NcL,, — -

(1.9.2) laﬁ. ]Aa lz,_l

e 6, ®L, — G ®L, —= Nc L,y — -

Since H,(L.) = 0 for all i > a by hypothesis, one finds Ker(d) =~ E =~ Ker(d'), more-
over nVd = &'n by (1.9.2). There exists therefore an automorphism n*: E — E
which makes the diagram

0 » E > M > N 0
(19.3) l"‘ y’ j""
0 S E sy M —2X 5 N 0

commutative. Now observe that G,, L[ >a]. give free resolutions of E, N respec-
tively and that M (resp. M’) is the module defined by the element of Extg(N, E)
represented by &%u,., (resp. eu,,,), where ¢%: G, — E is the natural surjection.
Let ., ¢’. be chain automorphisms of G., L[>a]. compatible with % »n"
respectively and let ¢, be the chain automorphism of L, defined by ¢; = ¢|_,
(i>a), ¢; = AZ"® (i < a). The diagram (1.9.3) implies that nZe%u,,, = ¢SYopa4y
and e%u,.,0; = e%u., @4, represent the same element of Exti(N, E), in other
words there are v, e Homg(L;, G;_,) (i =a, a + 1) such that

’ _ AG L
Mo+1Pa+1 — Woltar1 = 01 Vasr + VaOaty -

Since L, e #(R), this can be completed to the form (1.9.1), therefore u'.¢. ~
Y[—a — 1].u. as desired.

Given complexes L., L', € 4(R), a chain map u.: L, — L', and homomorphisms
@.ehomg(L,, L.,), y.ehomg(L',, L"), v.ehomg(L., L'[1].), we define 8(y., ., v.).€
homg(con(p.)., con(u.).) by

Vier Vi

6., 0. v.)i=[ o o

] for all ieZ.

Also, we put “v, = ((— 1)'v;);c z € homg(L., L'[1].).

(1.10) Lemma. Let L., L., u, be as above and put L', = con(u.)..
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(1) For ¢., ¢'.€ Autg(L.), Y., ', € Autg(L'.), v. € homg(L., L'[1].) satisfying
the condition @, ~ ¢',, Y. ~y'., 0., ., v.). € Autg(L".), there is a homomorphism
v, e homg(L., L'[1].) such that O(y'., ¢'.,v'.). is a chain automorphism which is
chain homotopic to 6(y., ¢., v.)..

(2) Let ¢.e Autg(L.), Y. € Autg(L'.), v., v'.e homg(L,, L'[1].) and suppose
0., @.,v.). € Autg(L".). Then 6., @.,v'.). € Autg(L")) if and only if ~v,— v,
is a chain map. Moreover, when this is the case, O(y., @.,v.). ~ 0(y., ., v'.). if
v, — v, ~0.

Proof. (1) By hypothesis there are {,e homg(L., L[1].), {’. € homg(L'., L'[1].)
such that
¢l — @i =0+ G0k, W — =05 G + {08
for all ie Z. Put
Vi=v+ i G =G (ieZ).

Then we have
O(w/” (pr., v/.)i o 9(¢., 0., v-)i — aﬂfi‘(“" I:_Ci+1 0] + [_Cx 0 jla;:on(u.)
1

for all i by direct computations.
(2) Clear by definition.

The following lemrha follows from the proof of (1.9).

(1.11) Lemma. Given L, € €y(R) with a > a(L.), G, € %,(R) and a chain map
u:L,—»G[—a—1],, put L', =con(u.).. For each A, e Autg(L".), there are @.€
Autg(L.), Y. € Autg(G.), v, € homg(L., G[ —a].) such that 0(y[—a — 1]., @.,v.). is
a chain automorphism of L', which is chain homotopic to A..

(1.12) Lemma. Let L.€ €y(R), L'.€ ¢(R), P. = min(L,). and let p., p'.: L. -
L'. be chain maps. Then p,~ y', if and only if p.|p >~ p'.|p.

Proof. Put Q. =se(L,).. Since every chain map from a split exact complex
to an arbitrary complex is chain homotopic to zero, we have u.|o ~0, u'.|o, =~ 0.
Hence the conclusion.

§2. Complexes whose homology modules are vector spaces

From now on K. denotes the complex giving the minimal free resolution
of the residue field k = R/m, ie. K, =res(k).. Let p be a nonnegative integer
and G.= K. In the graded case, let p, (neZ) be nonnegative integers such
that p, = 0 for all but a finite number of n and put G, = @, K.(n)*". Note that
G. =~ K.®g G,, where G, = R in the first case and G, = ), R(n)*" in the second.

(2.1) Lemma. Let L, be a complex in €y(R) and c an integer.
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(1) For chain maps pu., p'..L.—> G[—c]., the following conditions are
equivalent.

(i) po=p,
(i) pelay-r1(mey = Bel@y-s(me., (modm),
(i) il iahy-rmey = Hil@y-1me,,y (mod m) for all ieZ.

(2) For a chain map p.:L,— G[—c]., we have p.0%, =0 (mod m). Con-
versely, given a linear map h e Homg(L,, G,) satisfying ho%, =0 (mod m), there
is a chain map pu.:L,— G[—c]. such that p. = h.

(3) For every g € Autg(G,), we have idy ® g € Autg(G.). Moreover for each
A. € Autg(G.), there is an automorphism g € Autg(Gy) such that A, ~idy ® g.

Proof. (1) Since u, ~ ', if and only if

w—p=08% _.vi+v_,0F forall ieZ
with v, e homg(L,, G[—c + 1].),

the implications (i)=>(iii)=>(ii) are clear. Suppose (ii) holds and put P,=min(L,)..
Then Im(y,|p,— p.lp) = mGy=Im(3f), so there is a map v,€ Homg(P,, G,) fulfilling
Help, — pelp, = 07 v.. This can be completed to a chain homotopy u.|p — u'.lp, =~
0, therefore u, ~ u', by (1.12).

(2 It is clear that u.0%; =0 u..; =0 (mod m). Conversely, let he
Hompg(L,, G,) satisfy hd%, =0 (mod m). Since Im(hdL,) = mG, = Im(3f), there
is a linear map u,.,, € Homg(L,,,, G,) satisfying 0% u,., = hd%,. Hence the exis-
tence of u, as stated.

(3) The first part is obvious. The second follows from (1).

(2.2) Remark. By (2) of (2.1), we can associate with each h e Homg(L,, Gg)
satisfying hd%, = 0 (mod m) complexes con(u.)., min(con(u.).)., taking a chain
map u.:L,— G[—c]. such that u.=h. The property (1) of (2.1) implies that
they are determined uniquely by h up to isomorphism.

(2.3) Lemma. Assume R is graded. For a complex L, € €»(R) and an inte-
ger ¢, suppose that L.~ @, L™, with L™, € €»(R) (ne Z), L™, =0 for all but
a finite number of n and that each L is isomorphic to the direct sum of a finite
number (possibly may be zero) of copies of R(n). Then for every chain map
pi L. > G[—c]., we have p,~ @, n".pu.| m, where n™.: G[ —c]. > K[—c].(n)
denotes the natural projection for all neZ.

Proof. Put v*", =", | w. We see v" =0 (mod m) for n # n’, therefore
B~ @, v™" by (1) of (2.1).

Let g be a nonnegative integer and F, = K% In the graded case let g,
(me Z) be nonnegative integers that are zero for all but a finite number of m
and set F,= ), K.m. As in the case of G., we have F,=K,®z F, with
Fy=R%or F, = @m R(m)™. Fix a positive integer a and denote by {v,,..., v,}
a free basis of K,,,;, where we assume that each v, is a homogeneous element
of K,,, in the graded case.
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(2.4) Definition. A minimal complex L, e ¥(R) is called decomposable if
there are minimal complexes L',, L", € €»(R) different from zero such that L, =~
L'.®L".. When L, is not decomposable, we call it indecomposable.

(2.5) Proposition. Given chain maps u., u'.: F.->G[—a—1],, put h=p,,,, h'=
Pav1 and let hy, hi (1 < 1<) be the elements of Hompg(Fy, Go) (Homg(Fy, Go)aegwy
in the graded case) such that h=3_ v} ®h, h’' =i v} ®h|.

(1) We have min(con(u.).). = min(con(u'.).). if and only if there are ge
Autg(Gy), f € Autg(F,) such that

(2.5.1) gh,f =h, (modm) forall l (1<I<ys).
(2) Suppose R is graded and that deg(v))=d for all | (1 <1<s). Then

min(con(y.).). = @ min(con(u(m, m — d).).).,

where u(m,n). denotes the composite map K.m)m<F.5G[—a—1].->
K[—a — 1].(n)’» for each pair (m, n)e Z2.

(3) Suppose R is a local ring. The minimal complex min(con(u.).). is decom-
posable if and only if there are g € Autg(G,), f € Autg(F,), integers p¥, ¢ (j =1,
2,0<pP <p, 0<qP <q, (pY, q¥) #(0,0), (p, q)) such that

PO 4 p® = p gV 4 g@ =g,

WY 0

0 h‘z’] (mod m)
1

(2.5.2) ghf = [

with  h{ € Homg(R*"", R*") foralll(1 <1<5s),

where the linear maps are identified with matrices.

(4) Suppose R is graded, deg(v)=d for all | (1<I<s), F,.=K.(d)? and G,=K ".
Then the above (3) holds, with “= (mod m)”, Autgz(G,), Autg(F,) and Homg(R’, R")
being replaced by “=", GL(p,k), GL(q,k) and Hom,(k', k") respectively.

Proof. Put P, = min(con(y.).).,, P'. = min(con(y',).)..

(1) By (1.9), we have P, =~ P’ if and only if there are chain automorphisms
@. € Autg(F.), Y. € Autg(G,) satisfying u'., ~ Y[ —a — 1].u.. On the other hand,
for such o., . there are f € Autg(F,), g € Autg(G,) with the property ¢, ~ idy ®
f L ¢, ~idg ® g by (3) of (2.1). Therefore P, = P, if and only if p'.(idx ® f ') ~
(idg(—u-1). ® g)p. for some f € Autg(F,), g € Autg(G,). Moreover this condition is
equivalent to

(2.5.3) Basilidg,., ® fH= (idg, ® gla+y (mod m),

by (1) of (2.1). Since gy (idy,,, ®f7) = icivF @hf™! (idg,® Gars =
(idg ® g)Har1 = Y3=1 VF @ ghy, one sees that (2.5.1) and (2.5.3) are the same.

(2) Since K,,;(m)" =~ R(m — d)*™, our assertion is an immediate con-
sequence of (2.3) and (2) of (1.8).



Free complexes 153

(3) Suppose P.~ LY, @ L®, with minimal complexes LY, (j =1,2). Then
each LY, satisfies L) = 0 for all i <0, H(LY,) = 0 for i # 0, a and mH,(LY,) =0
for i =0, a, since P, has the same property. There are therefore chain maps
p: K2 5 K[—a— 1177 (j=1,2) for suitable nonnegative integers p', ¢\
such that LY, = min(con(y'?,).). by (1.6), (1.7). Thus

(2.5.4) P. =~ min(con(p", @ u®.).).

by (2) of (1.8). We see p’ +p® =p, ¢V +4g?P=4q by (1) of (1.8), so that
the “only if” part of our assertion follows from (1). Conversely, if (2.5.2) holds,
there are chain maps u, (j =1, 2) as above defined by the condition u{); =
i o @b by (2) of (2.1), for which we have (2.54) by (1). This together
with (2) of (1.8) shows the “if” part.

(4) As stated at the beginning of section one, all homomorphisms are homo-
geneous of degree zero in the case R is graded.

When R is a regular local ring (resp. a polynomial ring over k), the complex
K. is the Koszul complex of R with respect to a regular system of parameters
(resp. indeterminates over k), so the chain map u, can be expressed by an explicit
formula.

(2.6) Lemma. Assume R is a regular local ring of dimension r with m =
(Xy,...,x,) or a polynomial ring k[x,,...,x,] with deg(x;)=1 (1<j<r). Let
{uy,...,u,} be a free basis of K, such that of(u)=x; (1<j<r), I,=
{(Gpooos 1< jy << ji<r} for 0<I<r and uy=u; A Au; for I =
(jis---» 1) € T}, where Ty ={X}, ug =1. Given an R-linear map h="7y ;. uf ®
h; e Homg(F., G,) with 1 < ¢ <r, h; e Homg(F,, Gy) (Homg(Fy, G,), in the case
R = k[x,,..., x,]), we set

w=0 fori<c,
pe=h,

I
Peri= 3 Y, sgn(J’l\J)u;“®u,®h,\, for I>1.

Iel g Jelh
JeI
Then u.: F,— G[—c]. is a chain map satisfying u, = h.

Proof. Note that 0f =0X®idp, 0f=0X¥®ids, 0f1"7 =205, Clearly
08, =0 = p;_,0f for i <c. Suppose | >0. First

I
(allil ® idco)#c+1+1 = Z Z sgn (J I\J) uf ® (al’il(u.l)) ® hl\l .

Te Tl Je iy
JclI
On the other hand,

#c+l(ac’-(+l+l ® idro)

_ > o, :
= #Hl(lejﬁcf,ﬂ sgn i uf ® (xjup;) ® idp,
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I VAR
F o (,-, 1\j> b (J, NG, J)) 47 ® byr) ® b

Te iy JeI\j

1
P z\ En ((,-, ), NG, J)

ITe vy JeINj

1 J
* . .
,; ,ezr,ﬂ % 0 <J, 1\J> “e (Sg“ (,-, J\j)“""“”) ® i
Jecl

>u}" ® (x;uy) @ hyva

Y, sen >“’f ® (05, () ® hyyy

1
2 (J nJ
Ie lvisy Je T4y ’
JcI

therefore 08"y, = y;_,0F for i > c also.

For the rest of this section we confine ourselves to the case R is graded. We
will denote the set {t|H;(L.), # 0} by T(L.) (i€ Z) for each L,e %(R). Given
integers iy,...,0, ty,..., 4 with i; <---<i, > 1, let Cf;,’jj_‘,'f,' denote the set of
minimal complexes L, € €»(R) satisfying the condition

Hi(L.)-——O fOfi;"-’il,...,il,
mH(L,)=0 fori=1i,,...,1i,
T,(L.) = {t;} forallj(l1<j<]).

(2.7) Corollary. Assume that R is a polynomial ring k[x,,...,x,] with
deg(x))=1(1<j<r,r>2) and that 0 <a<r—1. Let L .€ €#(R) be an in-
decomposable minimal complex different from zero satisfying L;=0 for i <0,
H(L)=0 for i#0, a, mH(L.)=0 for i=0, a. Then L,eC®,, L, =~ R(m —7r)
for some meZ or L.eC% _ 01, L,Rm—r— 1)('50)" for some mel,
p=>1

Proof. 1f H,(L.) =0 (resp. Hy(L.) = 0), the complex L, coincides with K (m)
(resp. K[—a].(m — a — 1)) for some m € Z, since L, is indecomposable by hypothe-
sis. Hence our assertion in that simple case. Suppose that neither of Hgy(L.)
and H,(L,) is zero. By (1.6) and (2) of (2.5), there are integers m, p, q (p > 1,
g>1) and a chain map u.:K.m)?—> K[—a—1].(m —a — 1)’ such that L, =~
min(con(y.).)., therefore L.e C%2 _,.+.+;. Let hye Homg(R(m)?, R(m—a—1)?),,,
Hom, (k% k?) (I e I,,,) be the linear maps determined by the condition u,,, =
Yier, uf ® h;. Then

(1,....n
He = .Ie;_,,_l Sgn(.],(l, ,r)\.] (ul AN ur)* ®u.l®h(1 ..... \J

by (2.6). Since {hy,  ,slJ el _ooi} = {h|l €T, }, the indecomposability of L,
implies that rank,(u, ® k) = g by (4) of (2.5). In other words,

rank, (67" ® k|K,.(m)‘?) =4q,
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so that se(con(p.).), = R(m —r)%, L, =~ min(con(p.).), =~ K[—a],(m —a— 1P =
R(m —r — 1)('50)" as desired.

(28) Lemma. Let R be as in (2.6), F, be as above and L.e€ €»(R). For
each linear map h: F, - L,, there exists a chain map u.: F.— L, such that u, = h.
In particular, there is a chain automorphism A, € Autg(F,@® L.) such that

ide, 0
A _[ h idLr:I '

Proof. Passing to the duals, set F; = F*~ L:=L*" for ie Z and let F'.,
L. be the complexes in €»(R) whose differentials are induced naturally from
those of F., L, respectively. Since F’, has the same structure as G., there is a
chain map p'.: L', » F', such that uy =h* by (2) of (2.1). It is enough to put
w=uk;:F;> L, for all ieZ.

(2.9) Proposition. Let R be as in (2.7) with r>3 and a be an integer
satisfying 0 <a <r—1. For every L,e €mR) having the property L,=0 for
i<0, H(L)=0 for i#0, a, r—1, mH(L)=0 for i=0, a, r — 1, there are
L™ eC% ., L™, e Coer it it —mirs1 (m€Z), which are zero for all but a
finite number of m, such that

L= (@um)s(@u).

Proof. By (1.5), there is a chain map p.: 0, ,(L.),— G[—r]. for suitable p,
(n € Z) such that L, = min(con(u.).).. Since a,_((L.); =0 for i <0, H,(s,_,(L.).) =
0 for i #0, a, mH(o,_,(L.).) =0 for i =0, a, it follows from (2.7) that

0,-y(L.). = ((—B P""".) ® <@ P”‘"",)

for some minimal complexes P, e C2,, P"™, e C% _, . .i1(meZ), which are
zero for all but a finite number of m, satisfying P/™ ~ R(m — r)'m, P'™ =~
Rm—r— 1)(r:a)';- (U, I, >0). Put PM = P @ P+ and let 7™, be the
projection as in (2.3) with ¢=r (neZ). We have pu, ~@,v™, with v, :=
7™, u.|pw, by that lemma, so that

(29.1) L. = & min(con(v™,).). .

Fix n and let P, = P®,, P', = P'"*) P = P"®"**D 'y =™ p=p,. Obviously
there is an automorphism g € Autgz(R(n)”) = GL(p, k) such that

I o]
VvV o=
gv, P, h”_

with a surjective h” € Homg(P/, R(n)*") for some p” (1 < p” <p). Write

h']
gvrl?;. = I:hm
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with h' € Homg(P,, R(n)*), h" € Homg(P, Rm)y*') (p'=p—p’) and let he
Homg(P,, P') be a linear map such that h” + h"h=0. Then (2.8) guarantees
the existence of a chain automorphism A, € Autgz(P,) such that 4, = [li{ - ; dO ],

P,
for which we have gv,A, = W @h":P.®P' > R(n®” ®R(ny*". Let v.:P, >
K[—=r].(n)", v'.: P". - K[ —r].(n)’" be the chain maps satisfying v, = h', v/ = h".
Since (idg;_,;. ® g)v.A. = V. @ V", by (1) of (2.1), one finds that

(29.2) min(con(v*",).). = min(con(v.).). = min(con(v'.).). ® min(con(v".).).

by (1.9) and moreover that
(29.3) {min(con(v’.),). € Cg'(:.:lr),—(nﬂ)w s
b : " 0,a,r—
min(con(v".).). € C-(‘:l:-r-!l-l).-(n+r+l)+a+l,—(n+r+1)+r+l .

This holds for all ne Z. Our assertion therefore follows from (2.9.1)-(2.9.3).

The above (2.7) and (2.9) are special results. Unlike the cases treated there,
in general it cannot be expected that every indecomposable minimal complex
L.e €»(R) satisfying L;=0 (i<0), H(L)=0 (i #i;,...,i), mH(L.)=0 (i=
i,..., ;) is contained in C,il"’jj,',’,",’ for suitable t,,...,t,, even though R is a poly-

nomial ring (see (2.12) below). The following proposition gives a general formula-
tion. For a set TcZ and an integer n, let T+n denote the set {t+n|teT}.

(2.10) Proposition. Assume that R is graded and that K; is the direct sum
of a finite number of copies of R(—i) for every i >0, namely, the residue field
k has a linear free resolution over R. Let L,e €»m(R) be a minimal complex
satisfying a:=a(L,)< oo, L;=0 for i<0, and mH(L,)=0 for 0<i<a. If
there are subsets T\ = T(L.) (j=1,2,0 <i < a) such that

(2.10.1) TOUT® =T(L), TONT®=g  foralli,

gﬁ“+w—i+mnﬁ”=z, (TO+ (@ —i+ )YNTY = &

2.10.2
( ) for all pairsi,i’ with0 <i<i' <a,

then L, =~ LY, @ L®, with minimal complexes L', e €%(R) (j = 1, 2) fulfilling

(2.10.3) T(LY)=TY (j=1,20<i<a).

Moreover

(2.10.4) LY >~@ R(—t—i' + i)t (j=1,2)
i=0 teTY

for all i' > a, where 1\2, are suitable nonnegative integers.

Proof. In the case a =0, one has L, >~ G, with suitable p, (ne€ Z), which
is nothing but our assertion. Suppose a >0 and that our assertion is true for
smaller values of a. Let u.:0,(L.).,— G[—a — 1], be the chain map satisfying
L. = min(conp.).). (see (1.5), (1.7)). Observe first that G, = GV, ® G?, with
(2.10.5) GV, = @ K.np,

-neTY
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since Hy(G.) = H,(L.) by (1.4) and TVUT? = T,(L.), T"NT* = & by (2.10.1).
Besides, since a(g,(L.).) < a, T(g,(L.).) = T(L.) for 0 <i<a by (14), there are
PY e €m(R) (j = 1,2) with

(2.10.6) T,(PY,) = TV (j=1,20<i<a)
such that a,(L.). =~ PV, @ P®, by the induction hypothesis. Here we may assume
a—-1
(J) ~ PR . TH', - . _
(2.10.7) P} =i<=—DOteGT9‘,-” R(—t — i + i) (j=1,2i>a—-1)

for suitable [, > 0. Denote the projection from G[—a — 1], to G¥[—a — 1].
by @), for each j=1, 2. The conditions (2.10.2), (2.10.5), (2.10.7) imply that
@), fosy|pn =0 (mod m) for j # j', therefore L, = L"), @ L®, with

(2.10.8) LY, = min(con(@?,p.|pn).). (j=1,2)

by (1) of (2.1), (2) of (1.8). The properties (2.10.3) and (2.10.4) follow from
(2.10.5)—(2.10.8) immediately.

(2.11) Lemma. Suppose R is graded and let pu.:F.,— G[—c], be a chain
map such that u; is a matrix with entries in k for every i€ Z, where F,, G,
are the minimal complexes defined before and ¢ an integer. Given nonsingular
matrices f € Autg(F,), g € Autg(G,) with entries in k and a homomorphism v, €
homg(F,, G[ —c + 1].), the map 6(y[—c]., @., v.). with ¢. =idg. ® f, Y. =idx, ® g
is a chain automorphism of L.:= con(u.). if and only if p.o.= You, and ~v, €
Homg(F,, G[—c¢ + 1].).

Proof. Note first that the four conditions O(Y [ —c]., ¢., 0).€ Autg(L.), u.@.=
V[—cl.u., po.~yY[—cl.u. and p.@, = You, are equivalent by hypothesis and
(1) of (2.1). Moreover, u.@. ~y[—cl.u. if OW[—cl., @., v.).€ Autg(L.). Our
assertion therefore follows from (2) of (1.10).

(2.12) Example. Assume R=k[x,,...,x,] with r > 4, deg(x;)=1 (1<j<r).

Let h e Homg(K,, Ko(—2)), be an R-linear map and ('.: K, > K[—2].(—2) the

chain map defined by the formula in (2.6) with ¢ =2, {; = h. Let further d be

a positive integer, F, = @¢_, K.m), {.=0. @ @®(..F.->F[-2].(-2), L.=
%K_J

d times

con({',)., L, =con({,). = (—B‘,‘Fl L'.(m). Take another chain map u.: L, » G[—3].

with G, = @4, K.(m — 4) which satisfies, for reasons of degree,
- o 0
0 0
wm o0
H3lLym = 0w for each m (1 <m <d),
0 0
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where the upper m—1 and the lower d—m rows are zero, w™e
Homg(K[—1]3(m — 2), Ko(m — 4)), w™{, =0 (mod m) (see (2) of (2.1)), w'™ e
Homgz(K;(m), Ky(m — 3)) and

Ly(m) = K[ —1]5(m — 2) @ K4(m) = R(m — 4)2) @ R(m — 3)(3) .
Put P, = min(con(u.).).. We have

To(P)={t|—d<t< —1}, Ti(P)={tl2—d<t<1},

L(P)={t13—d<t<3} and Hi(P)=0 for i#0, 1, 2.

(1) Hh=(u Aup)*®1 and w=(u; A u)*@ 1, w™=(u; A uy A u)*® 1
for all m (1 <m <d), then P, is indecomposable.
(2) If r=4 and h is generic, then

d

P~ ( P P‘"".) ® K[-2].(d - 3), 0#P™, eC%h2 s mia-
m=1

Proof. Let us prove (2) first. Write h=), ;< ;ca(; A u;)* ® h;; with h;; e k.

Then, with respect to the bases uy A Uz A ty, —U; A Uz A Uy, Uy Ay Ally, —U; A

u, A uy of Ky and uy, u,, uz, uy, of K[—2];3(—2), the expression of {; is the
alternating matrix

0 _h34 h24 _h23
h34 0 _h14 h13
_h24 h14 0 _h12

h23 _h13 h12 0

by (2.6). For a generic h, the map (3 is therefore an isomorphism, so min(L',),
must be the direct sum of some copies of R(—4). Our assertion follows from
this and (2.3).

Next we prove (1). Suppose P, is decomposable, say
P.~Q" @ Q?,, 0 # QY. e €m(R) (i=12).
Since min(L.). = a,(P.). = ,(Q™".). ® 0,(Q*.). by (1) of (1.8), it is not hard to
verify using (1.9) that
(@Y. = @ minl.).m (j=12).

—me To(QU).)

Here we may assume without any loss of generality that d’':= —inf(Ty(Q"),))
satisfies 1 <d'<d, on account of the conditions QY #0 (j=1,2) and
dim,(Hy(L.),) <1 for all te Z. Put
GP.= @ Km-4
—(m=4)E T2
and let
pie @ L(m)-GU[-3],

—me To(QU),)
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be a chain map satisfying min(con(y'?,).). = @Y, (j = 1,2). Further, let ™ ,:
G[—3].—»K.(m—4) be the projection. By the construction of P,, dim,(H,(P.),)<1
for all teZ, so T,@V)NT,Q?) = & T,@EV)UT,Q?) = T,(P.) and
GV[-3].® G?P[-3].~ G[—3].. In addition, —(d'—3)e T,(P.). It follows
therefore that

n O @ Uy =0 I —(d =3 e T,Q™),

n I @ i)y =0 i —(@ = 3) ¢ T,Q).
To apply (1.9) to the present case, we have to know the structures of Autg(L.),
Autg(G.).

CrLamm 1. For each A, e Autg(L,), there are f,ek (1 <m<d) different
from zero, chain maps vW:K,(—-1)-»K[-1].0-2) (2<l<d) and v.€
hompg(F., F[—1].(—=2)) such that A, ~6(¢[—2]., ., v.). with

(2.12.1)

fi 0
@.=idg. ® . € Autg(F.),
0 Ja
0 0o o0 0
v, 0 0 - 0
(2.12.2) vo=f 0 v 0 . 0
o Y o

Proof of Claim 1. By (1.10), (1.11), (2.1) and (2.11) there are maps
oM, = idg. ® fV e Autg(F)), 0@, = idg. ® f® € Autg(F.(—2)) = Autg(F.), v.€
homg(F., F[—1].(—2) satisfying 1.~ 0(e®[-2]., o™, v.)., (08" = e,
“v', e Homg(F., F[—1].(—2)), where

o0
[ = e € Autg(F,)
0 fd(j)

with 0# fek (j=1,21<m<d). One sees {fM=f2¢0 for all m
(1 < m < d), therefore £V = f? (1 < m < d), namely, ¢, and @@, coincide with
one and the same chain map, which we will denote by ¢.. On the other
hand, for reasons of degree, there are chain maps v, 2<I/<d) and v.€
homg(F,, F[—1].(—2)) defined by (2.12.2) such that ~v', ~ ~v, by (1) of (2.1). It
follows from (2) of (1.10) that 6(¢[—2]., ¢.,v.). is a chain automorphism which
is chain homotopic to A..

CLaM 2. For each A’ € Autg(G.), there are g,ek (1 <Il<d+ 1) different
from zero satisfying

g1 0
A, =~ Q.= idx. ®
0 9d+1
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Now let us return to the proof of (1) of (2.12). Let ¢., v. be as in Claim
1 and ¢, be as in Claim 2. Then

(2.123) 7§ Do [—313030(0[—21., @. V)3l Ly@+1) = G er S W™, 0)
(2.12.4)

V' [—3]5u30(0[—2]., 0., v.)3lLyay = (0, G o1 (fw' @ — WD)y
When h=(u, A u,)* @ L,w™=(u; Au)*®@ 1, w™=(u; Aus Aug)*® 1 (1<m<d),
we find

E' = ({3) 7' (mK[-2]5(-2)
=<<—Bm-u,>®< @ R'u,>cK3
Ier Ie I\TI

with I'={(1, 2, j)|3 <j < r} by (2.6), so that w*)y§"*V |, .. =0 (mod m) again
by (2.6) applied to v¥'*V . Therefore

(2.12.5) Gare1(faw' ) — W(d'H)V(:f,H))'E'(d') #0 (mod m).

Moreover

(2.12.6) gd’+1ﬁi’+1w(d,+1)|l([—1]3(d’—1) #0 (mod m).

Since (03)71(ML,) = =1 (05) 1 mLy)(m), (95) " (mLy)(m) = K[—1]3(m —2) @

E'(m) = L5(m), the relations (2.12.1), (2.12.3)—(2.12.6) lead to a contradiction by
(1) of 2.1), if @' [—3].u.0(e[-2]., ., v.).~uP @ u?,. Thus P, cannot be
decomposable by (1.9).

§3. Classification of matrices

In order to characterize indecomposable minimal complexes L, € @»(R)
having the property L, =0 (i <0), H(L.)=0 (i #0,a), mH{(L.)=0 (i=0, a), it
is important to analyze the condition stated in (3) of (2.5). In his paper [R],
C. M. Ringel dealt with this problem many years ago in a more general setting
(see [Ka, pp. 82, 83] also). Here, for the convenience of the reader, we will
explain a part of his results necessary for our study.

Let k be a field of arbitrary characteristic, Z, the set of nonnegative integers
and s a positive integer. For each pair (p, q) € ZZ, let mat(p, gq) denote the set
of p x g-matrices with entries in k and mat(p, g, s) the product of s copies of
mat(p, q) equipped with the natural Zariski topology, where we understand that
mat(p, q) consists of the single element representing the unique k-linear map from
0 to k? or k? to 0 in the case p=0 or ¢g=0. Two elements h = (h); <,
h' = (h]); <15 Of mat(p, g, s) are, by definition, equivalent if there are nonsingular
matrices g € GL(p, k), f € GL(q, k) such that gh,f = h; for all I, in which case we
denote h ~ h’. It is clear that “~” is an equivalence relation. Put Mat(p, g, s) =
mat(p, q,s)/~ and for each he mat(p,gq,s), let (h) e Mat(p, q,s) denote the
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equivalence class represented by h. We say that (h) is decomposable and denote
h) =<(h>@h"Y if there are h' = (k)< semat(p’,q’,s), h' =M)i<<€
mat(p — p’, q — q', s) for some (p',q')eZ3 with 0<p ' <p, 0<q <gq, (p,q')#
hi 0

(0, 0), (p, q) satisfying h ~ <[ 0’ h:l) . When <{h) is not decomposable, we

1 1<i<s

call it indecomposable. Let {y,},», denote the sequence of integers defined by
the condition y, =0, y; = 1, Y42 = SYis1 — % (t = 0) and put

Ay = {2+ 201> Ver + 200 2€ 25, 2>0,y + 222}

for t>0 and 4 =|J,504,. Observe that (.3, Yi+1) = Fr+1> ¥ X Arsy = A,y for

all t > 0, where
s 1 4|0 =1
=l o]t F T s |

(3.1) Remark (cf. [R], [Ka, p. 82]). Put p(p, q) = p*> + q> — spg. We have
{(p, 9) €Z3|p(p, 9)=0} = {(0,0)} for s >3 and ={(p, p)lp € Z,} for s =2. Using
the fact that p((p, q)x) = p(p, q) for all (p, q) € Z?, one can prove

{(p. @) € Z&|p(p, q) > 0} = {(p. 9)|(p, 9) or (q, p) € 4}
U {(yr+1s v:)'t 2 0} U {(yv V:+1)|t 2 0}

for s > 2.
With each h = (h,,..., h,) € mat(p, g, s), regarding h as a p x sq-matrix, we
can associate an element of mat(sq — rank(h), g, s), say h= (le, e, fls), such that

~

the columns of the transposed matrix of h form a free basis of Ker(h). If
k=@, ....,h)~h and h' = (h,,..., h)) is an element of mat(sq — rank(h’), g, 5)
associated with A’ in the same way as above, then rank(h’) = rank(h) and b~ h.
This assignment therefore gives rise to a mapping ¥: ()., 22 Mat(p, g, s) -
Up.re 22 Mat(p, g, s) (cf. [DIR, pp. 15, 16], [Ka, p. 82]). In general, ¥Y*(<h)) =
<h) for all hemat(p,q,s) satisfying rank(h) = p. Note that {(h) € Mat(p, g, s)
is decomposable if rank(h) < p, (p,q) # (1,0) and moreover that, in the case
rank(h) = p, <h) is decomposable if and only if so is ¥(<h)). We define
0,((hy, .-y b)) = ((hy, ... 'h)), O5(K(hy, ..., b)) =(hy, ..., by, —hy)).

(3.2) Lemma. Assume s >2. For each t >0, let w, = (®,1,...,w,,) be an
element of mat(y,.,, 7, s) such that

— 0 . ~ ~
. Wp-1,2
6 wt—‘l,3 0
wl.l: ly, (1 SISS_ 1)~ wl.sz w 5
0 t—1,5—-1
: wl—l.s
\- 0 i L O l}’t-}’:~|_
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where w,, =0emat(1,0) for all | (1 <I1<s), the first (I — 1)y, rows of w,; are
zero for 1 <1<s—1 and the matrices w,, (t >0) are defined inductively on
t. Put Q,=<{w,>eMat(y,41,%,). Then Q, is indecomposable for every t > 0.

Proof. Put w, =(—w,,, 0, 1,0, 3,..., 0,4 ) for t >1. Since rank(w;) =
Yiv1, P(w,)) = 04(2,_;) and O,({w,;>) = L,, the indecomposability of €,_;, im-
plies that of Q, for t > 1. Besides, it is clear that Q, and 2, are indecomposable.
Hence our assertion.

(3.3) Theorem (cf. [R, Theorem 3], [Ka, Theorem 4], [Kr], [Di]). Let s,
p, q be integers with s >2, p>q >0 and Q, (t > 0) be as in the above lemma.

(1) For each t = 0, the set Mat(y,,,, 7,, S) contains exactly one indecomposable
element, namely, Q,.

(2) If (p,q) € A, then {h) is decomposable for all h e mat(p, q, s).

(3) For each pair (p, q) = (V042 + 2Vie1> Yorr +2%) with y >0, 2> 0, s > 2,
t >0, the set {hemat(p,q,s)|<h)=Q,,,%®Q®} is a nonempty Zariski open
subset of mat(p, g, s).

(4) Suppose s=2. We have y, =t for t > 0. If {h) is indecomposable for
some h e mat(p, q, 2), then (p,q) ¢ A, that is, p=gq, q + 1.
Case 1. Whe p = q, the pair

L0 .. 0 w 1 0 0

0 1 . 0 w 1 :

) (') s 0 € mat(p, p, 2)
. . "- 1

0 - 0 1

0 -« o 0 w

represents an indecomposable class for every we k. If k is algebraically closed,
each indecomposable element of Mat(p, p, 2) have a representative of this form.
Case 2. When p=q+ 1, the Q,_, is the only indecomposable element of the set
Mat(p,p — 1, 2).

(5) For each positive integer p, the set {he mat(p, p, 2)I[<h)y = {(1, 1))®?} is
a nonempty Zariski open subset of mat(p, p,2) if k is algebraically closed.

(6) Suppose s = 3. If (h) is indecomposable for some h e mat(p,q, s), then
(p,q) ¢ A. Conversely, if (p,q)¢ A and #k = oo, there exists a nonempty Zariski
open subset U,, < mat(p, q,s) such that {h) is indecomposable for all he U,,.
Moreover, #{<h>lhe U, } = co when p(p,q) <0 (see (3.1)).

§4. Maximal quasi-Buchsbaum graded modules
Throughout this section r denotes dim(R).

(4.1) Definition. For a complex L, e €=(R) and an integer b with a(L.) <
b < B(L.), we denote the R-module Coker((6f)*: L**~! — L**) by md(L., b).

(4.2) Lemma. (1) Let L, be a minimal complex in €x»(R) and b an integer
satisfying a(L.) < b < B(L.). Then, the R-module md(L., b) has no free direct sum-
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mand, and besides, it has a minimal free resolution
-1 @h* po1 (BD*
e XL ¥ S [T ¥ 5 md(L., b) - 0.

(2) For each R-module M without any free direct summand, there is a minimal
complex L.€ €x»(R) and an integer b as in (1) such that M =~ md(L.,b). More-
over, we may choose b to be r — depth, (M).

(3) Suppose R is Gorenstein and let L., be a minimal complex in €zm(R)
which satisfies H(L.)=0 for all i<0 and Hy(L.)#0. Then B(L.)<r and
depth,(md(L., b)) =r — b for each b (a(L.) < b < B(L.)). Moreover, the Krull di-
mension of md(L.,b) is r if Ix(H(L.)) < oo for all i (0<i<b), except in the
case b=r, H(L,)=0 for i #0, Izx(md(L.,r)) < co.

Proof. (1) For each L, e %=(R) and b > a(L.), the R-module md(L., b) have
a free direct summand if and only if there is an automorphism # e Autg(L*")
such that the matrix representing 11(6,,’:)* contains a row whose components are
all zero. This being true if and only if Im(@,{;l) ¢ mL, since Ker(@,,’:) = Im(a,,’:H),
the minimality of L. implies that md(L., b) has no free direct summand. The
last assertion is obvious.

(2) Put b=r—depth, (M), L', =res(M),, L’ = res(Ker((0{)*)). and let ¢
denote the composite map Lj — Coker(d-") = Ker((0X)*) = L'*°. We define a
complex L. by

. (On)* (i <D)
LTt (i< b) L .
Li-{'{—b—l (i>b)’ t=<¢e (i=b+1
oF,_, (i>b+1)

Then it is clear by definition that Im(d%*) = mL;_, for i #b + 1, a(L.) < b < (L.),
M =~ md(L.,b). On the other hand, as remarked in the proof of (1), Im(6%,) =
mL, since M has no free direct summand. Hence L. € €z»(R).

(3) Since Ext%k ¥ (md(L., b), R) = H,(L.) for i < b < B(L.) and since the injec-
tive dimension of R is r, the first assertion follows immediately by local dual-
ity. The proof of the second half is left to the readers.

We need the following easy but fundamental lemma.

(4.3) Lemma. (1) For minimal complexes L., L', € €x»(R) and integers b,
b" with a(L.))<b < B(L.), a(L')) < b’ < B(L.), we have md(L,,b) = md(L',,b’) if
and only if L[b]. = L'[b']..

(2) Let L., b be as above. Then md(L., b) is decomposable if and only if
so is L,.

(4.4) Remark. The correspondence between modules and complexes as
above can further be developed. Restricting the consideration to modules of
finite projective dimension, Y. Yoshino established an equivalence theorem for a
stable category of R-modules and a subcategory of the derived category of com-
plexes of R-modules (see [Y, §1]).
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In the argument below, we assume that R is Gorenstein or is a poly-
nomial ring exclusively so that we can make use of the local duality in its sim-
plest form. Given a maximal quasi-Buchsbaum R-module M of finite projective
dimension having no free direct summand and a minimal complex L, € €z»(R)
such that M = md(L., b) with b =r — depth,(M), we have L;,=0 for i<O,
H! (M) =~ Homg(H,_,.;(L.), H,(R)) for 0 <i<r and mH;(L.)=0 for i <b. The
results concerning L. obtained in section two yield a number of consequences
on the module M. When R is graded, for integers i,,...,i, t;,...,t with
0<iy<--<ip<r, 121, let Df:jjjj:fj denote the set of graded R-modules M
satisfying the condition

H (M)=0 for i#iy,...,i,r,
mH{(M)=0  for i=i,...,i,
ToM)c {t;} forallj(l<j<l),

where TL(M) = {t|H. (M), # 0} for each i >0. Note that dim(M)=r or 0 for
all MeD;:::}' . We first state three results corresponding to (2.10), (2.7) and

(2.9) in this order, omitting their proofs. For convenience sake, the residue field
k will also be called maximal quasi-Buchsbaum from now on.

(4.5) Theorem. Assume that R is a Gorenstein graded ring and that K; is
the direct sum of a finite number of copies of R(—i) for all i>0. Let M be
a maximal quasi-Buchsbaum graded R-module of finite projective dimension which
has no free direct summand. If there are subsets TV = Ti\(M) (j=1,2,0<i<r)
such that

TOYT® = TiM), TONTP =g forall i0<i<r),
(T 4 =i+ DNTV =g, (TD 4 — i+ DYNT = &

for all pairs i, i’ with 0<i<i <r,

then M=~ MY @® M® with maximal quasi-Buchsbaum graded R-modules M')
(j=1,2) of finite projective dimension satisfying T.(MY)= TV for all i, j
(j=1,20<i<n)

Put (M) = #{i|H.(M) #0,i < r} for each R-module M.

(4.6) Corollary. Let M be as in (4.5) and assume that R = k[x,, ..., x,] with
deg(x;))=1 (1<j<rr>1). If M is indecomposable and (M) <2, then M =
Coker(8X.,)(— m)e D% for some meZ (see[G2]) or M e D&% | for some a,
meZ with 0 <a <r —d, where d = depth,(M).

(4.7) Proposition. Let R be as in (4.6) with r > 3 and M be as in (45). If
M is indecomposable and {i|H. (M) # 0,i<r}=1{0,a,r— 1} with O<a<r—1,
then M e D3%" ., .,y for some meZ.
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(4.8) Remark. The above results (4.6) and (4.7) imply that, if R=
k[x;,...,x,] with r=1, 2, 3, an indecomposable maximal quasi-Buchsbaum
graded R-module having no free direct summand is contained in one of D,
Dyin-2 Dyn-ss Dum2s Dpinam-a (meZ). As is seen by (2.12), however, the
sets D) (1<1<r—1,0<i;<--<iy<r, ty,....,t;e Z) do not cover all

indecomposable maximal quasi-Buchsbaum graded R-modules with no free direct
summand, in the case r > 4.

More results can be deduced by the use of (2.5) and (3.3) when M is a
maximal quasi-Buchsbaum R-module of finite projective dimension and (M) < 2.
Given such an M, one sees easily that M is free if (M)=0 and that M is
isomorphic to the direct sum of some copies of Coker((6X)*) (Coker((05)*)(m)
(me Z) in the graded case) and of a free R-module if (M) =1, so we confine
ourselves to the case (M) =2. Also, we only deal with the case R is a poly-
nomial ring for the sake of simplicity, leaving a general formulation to the
interested readers (cf. [Y, §6]).

(49) Lemma. Let R be as in (4.7), iy, iy, a, t be integers with 0 <i, <
p<r,a=i,—ip<r—1,t>0and F.=K.(a+ 1 +r), G, =K, (r)" (resp. F, =
K.a+ 1+, G, = K.(r)"") be complexes, where {y,},5, denotes the sequence

defined in the previous section with respect to s = . Attaching subscripts

r
+1
to the elements of I, so that {I,|1 <1< s} =1TI,,,, we define a chain map p.: F, >
GL—a — 11, by s = Yiy 4 @ 0y, (resp. ey = Yioy uf, ® ‘) (see (22), (32)).
Denote the R-module md(min(con(u.).).,r —iy) by Ag i, (resp. B, i,n). Then
Ag, i (resp. By, ;, ) is the only indecomposable maximal quasi-Buchsbaum graded
R-quule in Diyi2o satisfying Ix(Hy(Ag, i) = Y IR(HE(Ag,i,0)) = a1 (resp.
IR(H(Bg, i) = Yer1 lR(Hivzl(B(il,iz.r))) =)

Proof. Notice that s > 3. Use (2.5), (3.2) and (4.3).

(4.10) Theorem. Assume R = k[x,,...,x,] with deg(x;) =1 (1<j<r), r > 2.
Let M be a maximal quasi-Buchsbaum graded R-module which has no free direct
summand such that M e Diyo, q:=Ig(HX(M))>0, p:=Ix(H2(M))>0 with

0<i,<i,<r, a=i,—1i,. Put S=<a:—l>’ F.=K(a+1+r), G =K.|[().

Let further {y,};50, 4, (t =0) and A be as in the preceding section if a <r — 1.

(1) There is a chain map pu.:F,— G[—a — 1], determined by the condition
Uapr = Z,erm uf ® hy for some h = (hy);. r,. € mat(p, q,s), h; € mat(p, q) such that
M = md(min(con(u.).)., r — i;).

(2) Suppose a <r — 1, (p, @) = (Y41, ) (resp. (g, p) = (Y41, %)) for some t > 1.
Then either M is decomposable or M = A ;.. (resp. M = B ;. ). Moreover the
latter case occurs as long as h is generic.

(3) Suppose that a <r — 1 and that (p, q) (resp. (q, p)) coincides with (yy,+, +
ZYps1> YY1 + 2%) € A, for some t = 0. Then M is decomposable. Moreover M =
A ipa+® @ A, 0,08 (resp. M = By ;101\ @ By, 1,0®7) as long as h is generic.
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(4) Suppose that a <r — 1 and that neither (p,q) nor (q,p) lies in A. If
#k = o0 and h is generic, then M is indecomposable.

(5) Suppose a=r—1, ie iy =0,i,=r—1. Then M is indecomposable if
and only if p=q=1 and h ~ (1) e mat(1, 1, 1).

Proof. (1) Note that depth, (M) =i,, Ext}i (M, R), = H.(M)_,_, for te Z,
i=i,, i, and Exty {(M,R) =0 for i #1i,, i, . Use (2) of (4.2), (1.6) and (2.1).

(2) Use (4.3), (4.9) and (3) of (3.3).

(3) Use (4.3), (49), (2.5), (2) of (3.3) and (3) of (3.3).

(4) Use (4.3), (2.5) and (6) of (3.3).

(5) Observe that s =1, namely, mat(p, g, s) = mat(p, q). In this case the
classification is trivial.

(4.11) Proposition. Let R, i,, i,, a be as in the above theorem and assume
a<r—1, #k = 0. For each pair of positive integers p, q satisfying p(p, q) <0,
there exist an infinite set X, , and indecomposable maximal quasi-Buchsbaum graded
R-modules MY (je X, ,) having no free direct summand such that MY e Diyiz,,
IrR(HA(MYD) = q, I(H2(MD)) =p for all jeX,, and MY £ MY for j+#j'.

Proof. Use (2.2), (2.5), (4.3) and (6) of (3.3).

(4.12) Remark. (1) The elements of D;iiz,_; are obtained from those of
Diy2, by shift of grading, so that (4.6), (4.10) and (4.11), together with (2.6),
describe fairly well the structure of a maximal quasi-Buchsbaum graded R-module
M with (M) <2, when R is a polynomial ring.

(2) M. Cipu, J. Herzog and D. Popescu dealt with the same problem by
an approach different from ours in [CHP, §2].

Finally, we state some partial results on the multiplicities and the numbers
of minimal generators of the modules treated in the above theorem.

(4.13) Lemma. Let the notation be as in (4.10). Then

- -1
em(M)=<’ 1>q+<.’ )p—rankk(u,_.-lH@k),

ip—1 i — 1

[(M/mM) = (;)q + (' )p — ranky(f,;,+1 ® k) — ranky (g, ® k).
1

iz

" >=0for neZs,.

where we understand < |

Proof. Put L, =con(u.)., P.=min(L.)., Q. =se(L.).,, b=r —i;. One sees

1

easily N := md(L., b) = md(P., b) ® md(Q., b), M = md(P., b), em(N)=<'r _ 11>q+

(7 _ 11>,,, lR(N/mN)=<ir)q + <ir>1’ — rank,(3y ® k). Besides, N':= md(Q., b) is
12 - 1

2
a free R-module with Ix(N’/mN’)=rank, (6%, ® k) and rank, (0} ® k)= rank,(y; ® k)
for all ie Z. Hence follow the desired formulae.
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(4.14) Lemma. Let c, p, q, r (1<c<r) be positive integers, R = k[x,, ..., x,]
a polynomial ring and F, = K.(c + r)%, G, = K,(r)*. Given h = (hy);. r, € mat(p, g, 5)

with s = (2), let p.: F. = G[ —c]. be the chain map as in (2.6), where Homg(F,, G,)

and mat(p, q, s) are identified. Assume h is generic. Then

(1) rank,(u ® k) = inf(p, (Z) q),
2) rank, (g, ® k) = inf((Z ) P, q),

(3) rank,(u.4, ® k) = <c :_ l>q and p.,, is injective if 1 <l<r—c—1 and

r—1
p= c q,

(4) rank,(p.4, ®k) = <?>p and p.., is surjective if 1<l<r—c—1 and

<c+l>
q= D.
c

Proof. The assertions (1) and (2) are trivial.

(3) Suppose r>2. Let R =k[xy,....%x,_;1, I ={(jy, ..., DIl < jy < <
p<r—1}0<l<r—1),h =(h).r K. the Koszul complex of R" with respect
to Xy, ..., Xy, F.=K'(c+1)9 G.=K\.(r) and p'.:F,— G'[—c]. the chain
map defined as in (2.6) such that p, = h'. By definition,

Hewr = BS54+ pGy + &) with

1
() = sn( >u*®u Y INE
He+ lezl:“”,.l;l" g J,I\J I J N
Jel
a,n
u = 15%,_1 2. sgn <(J ), I\J ultn @ Uy @ hpys s

Je I}
JcI

Ir
M= YL e ( (I\J) ))“ﬁ”’®“’®h"\""'

lel}, ,Jel,
.Icl

When regarded as matrices, the above linear maps satisfy ul}) = p/, u?) =
—1 —1)-(-1 —-1)—1

(—1)¥u.4—;. In addition, p > (r c >q = ((r ) c ( ))q > <(r c) )q,

therefore, with the help of (1) and (2), we find by induction on r that p,, is
r

injecti k k)= .

injective and rank,(y.+; ® k) (c + l)q

(4) Similar to (3).
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For positive integers ¢, r with 1 <c¢ <r, we define

£ for I<0orl>r—c,
r—1 c+1
p=> c gorq > e )P for1<li<r—c—1.

{(p.q) € Z3p(p, q) > 0} = {(p,q) e Zip= (s — 1)gorg = (s — )p} = S,

Sc,l,r =

{(p, qQeZ}

One sees

for every I, where p(p, q) is the polynomial as in (3.1) with s = <Z)

(4.15) Proposition. Let R, M and iy, i,, p, q be as in (4.10). Then

IR Ry Ny
(2,20 6

< Io(M/mM) — (ii)q - (i’;)p <0.

In the first inequality, the equality on the left can actually be attained if (p,q) €
Si,—i,+1.r-i.r> and in the second, if (P,q) € Si,—i,+10-i50 NV Siy—iy+1.0-i3-1,-  The equal-
ity on the right can always be attained in both inequalities.

Proof. Putc=i,—i;+1 and let h, u, be as in (4.10). Since rank,(y.+; ® k)<
inf((?) D, <c :_ l> q>, with equality if (p,q) € S,,,, 0 <I<r —c by (4.14) as long

as h is generic, the formulae in (4.13) imply our assertion.

(4.16) Remark. (1) By (2) of (4.10), (4.13) and (4.14), one can deduce formulas
for the multiplicies and the numbers of minimal generators of the modules defined
in (4.9), since (i, Ys1)s Gew1s %) € Siy—iy 41,0130 O Siy—i, 41,0-1,-1, fOr £ >0 by (3.1).

(2) The Betti numbers of the modules treated in (4.10) can also be expressed
by a formula similar to the second one described in (4.13) (see (1) of (4.1)).

(3) Examples show that the inequalities in (4.15) are not sharp in general,
if (p, q) lies in the outside of the ranges mentioned there. Consider, for instance,
the case r=35,i;,=2, i, =4 p=gq=1

(4) The formulae in (4.13)-(4.15) also hold when R is a regular local ring
of dimension r and M is a maximal quasi-Buchsbaum R-module with (M) = 2.

§5. Remark on the case where three local cohomology modules are nonzero
vector spaces

We end by giving a formulation of the classification problem of maximal
quasi-Buchsbaum modules M with :(M) = 3 over a regular local ring R of dimen-
sion r > 3 which contains its residue field k, in terms of the linear algebra over k.
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Let R, r be as above, p,, p,, P3, a, a’ be positive integers with a<a’ <7,
G.=KP, G.=Kr™ G". = KpP be complexes and u";: G, - G'[—a — 1]., p'¥.:
con(u"), » G'[—a' — 1]. (j = 1, 2) be chain maps. Put F', = con(u?,),, LY, =
con(p'), (j=1,2). Suppose LV, = L®,. Then, there is a chain isomorphism
A F® 5 FY by (1.8), so con(u'®,A4), = LM, = L»,. 1t follows therefore from
(1.9) that

(5‘1) ll’“).ll’.ln. ~ l/lu[_a/ _ 1].#/(2).

for some chain automorphisms A", € Autg(F®,), ", € Autg(G".), where

can g (Y [—al. o
(5.2) A, == [ 0 '/’}

with suitable /', € Autg(G'.), V. € Autg(G.), v. € homg(G., G'[ —a]l.) by (1.11) or by
the proof of (1.9). Besides, the formula in (2.6), together with (2.1) and (1) of
(1.10), allows us to assume that y;, ¥, ¥/ (i€ Z), u’ (j=1,2,ie Z), u¥), (j=1,
2) are all matrices with entries in k. In particular, as in (2.11), the fact that A,
is a chain map implies

(5.3) O =y [—a— 1142,

y'[—al.

0 Y.
of (1.10). Again, we may assume that v; (i € Z) are matrices with components
in k by (26). Put f=vyo, f =5 £ =5 9= Verr. ¢ = pdhi G, j=1,2)
WD = @)y, hD = i g kD = uilG,.. The conditions (5.1), (5.2) and
(5.3) imply by (1) of (2.1) that

in other words [ ] is also a chain map, and hence so is “v, by (2)

(5.4.1) W idg,, ® f) = f'h®,

(54.2) hiVidg, ., ® ) =f"h?,

(5.4.3) (h{Vg + hiV(idg,.,, ® )lkergey = 15> Iker@ -
Moreover

(5.5) gy =0 for j=1,2

by (2) of (2.1). Conversely, the existence of fe GL(p,k), f'e GL(p',k), f"€ GL(p", k)
and g =v,,, with “v,e Homg(G., G'[—a].) satisfying (5.4.1)-(5.4.3) implies
L“). ~ L(Z).'

Thus the classification of maximal quasi-Buchsbaum R-modules M with the
property [g(Hii(M)) = p, > 0, Ig(H2(M)) = p, > 0, Ix(H3(M)) = p; > 0, H},(M) =
0 (i #1iy,1i,, i3, r) for some i, i,, i with 0 <i, <i, <iy <r has been reduced
to the classification of the elements (h, hy, hy) of

mat(p,, py, S21) X mat(ps, p,, S3;) X mat(ps, p;, $31)
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which satisfy the condition corresponding to (5.5), under the equivalence relation

(hD, D, ROy~ (K, @, h{?) indicated by (5.4.1)—(5.4.3), where s, =<_ t’ N 1),
=l
532= . ’.. ’S31= . r ,a=i2_il,a/=i3_i1.
iy —i,+ 1 iy—i, +1
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