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Charge transfer model and (2-cluster) --* (2-cluster)
three-body scattering

By

Hiroshi T. tro

§ 1. Introduction

We consider a three-body system consisting of two heavy particles (particles
1 , 2 ) w ith  the masses M „  M 2  and a light particle (particle 3) w ith m . We
set ,tt = (M,, M 2 )  and write it »  1  C a  co) for M 1 , M 2 »  1  (M 1 , M2 -■ CO). Let

e RN  ( j  = 1, 2, 3), N  2 , be  the position of particle j ,  and let Vi k  b e  the pair
potential between particle j  and particle k. Then the three-body Hamiltonian is

!I" = — (2Mi r i zIr i  — +  V in L 2 (R 3 N )
i=1

V =  V(r, 9 r 2 , r3 ) — V2 3 (r3r 2 ) +  V, 3 (r3 — r 1 ) + V12(r2 r1) •

W e assume the following throughout this paper:

(V ) V i i (x) (1 i < j  3 )  is a  smooth real-valued function on R N , and  there exists
co > N  + (3/2) such that

102;vii (x)I cy (1 + I x I ) e°

f o r all multi-indices y.

Our main results are Theorems 1.1 and 1.3, which will be stated at the end
of this section. For the proof of Theorem 1.1, we assume further

(V)' V i i (x) (1 i < j 3 )  satisfies (V ) with

E0 > [(N — 1)/2] + N  + (3/2) . ( [  ]  is  Gauss' symbol.)

As usual, we remove the kinetic energy of the center of mass from f lu  to
get an operator W  i n  L 2( R 2N,.) A 2-cluster decomposition of the set {1, 2, 3}
is  a partition of {1, 2, 3} into two nonempty subsets, and in particular we use
only the following 2-cluster decompositions:

(1.2) a, := 11, (2, 3)1 , a 2 := {2, (1, 3)}

and we define A := {a, , a 2 1.
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For each a e A, the Jacobi coordinates {x a , ya }  are defined by

Xa : =  r3 -  r,  , y a := r,
M2 r2 + mr 3 for a = a,

M2 + rn
(1.3)

M i r, + mr 3
Xa := r3 — /*I  , ya :=  r2 for a = a, .

M1 + m

Let ma =  m : and na =  k  (a e A) be  the reduced masses defined by

1 1 1 1
(1.4) — =

M
—  +  -

1 =
+

M

 for a = { j, (i, 3)} .
mai  m na i 

1

 + m

Then W  is expressed as follows:

(1.5)
1 1

H" =  
2ma2 n a  

A

Y" 
+  V in  L 2( R 2N)

{xa c }  and {xa,, Ya,} are related as follows:

maxa ,  -   a 2 +  y a , , y a = "2 x a , + y a ,na ,

mam a maxa , =   m l xa ,  -  YaY a 2  = Xa
I

Ya
na , m 1

Under assumption (V), lilt is self-adjoint in Ye := L2(R2N) with domain D(H")
= H z ( R 2N,) the Sobolev space o f o r d e r  2 .  For a {i, (j, 3)} e  A  the 2-body
Schrödinger operator h : is defined by

(1.7)h  := - (2 m a )- 1  I x .  + 1/; 3 (x a ) ,

which is self-adjoint in L2 (K )  with domain DO D= H z ( R N,
) Since ma -0 m as

p -> co, h',̀,  converges to  a self-adjoint operator

(1.8)h  : =  -(2m) - 1 41  +  1'.,3 (xa )

in the norm  resolvent sense as p ->  ce. F u r th e rm o re  w e  note th a t  -z z l x  +
Vp (xa ), z e C\ {0}, is an analytic family of type (A) ([K], VII.2, [R-S] IV, XIi.2).
Let k (a) b e  the num ber o f negative eigenvalues (counting multiplicity) of h .
Under assumption (V), it is known that k(a) is finite ([R-S] IV, X III.3). We set

CH := {a = (a, k); a e A ,1 k  k ( a ) , k e N }  ,

where N := {1, 2, and write D(a) = a for "channel" a = (a, k) e CH. For a -
(a, k) e CH we denote by 2,7 (< 0) the k-th negative eigenvalue of Ifa° and by gif
the eigenfunction of IC  with eigenvalue .1„" s u c h  t h a t  A l  (a e CH, D(a) = a) is
an orthonormal system for each a E A . I f  p » 1, we can find negative eigenvalues

of if ) and associated normalized eigenfunctions q (11 ( a ) 0: = ). )  for every
a e CH such that (i) X -> Af as p -> ce, (ii) - >  O f in L2 (RN )  as p -> oo and (iii)
IC  (a e CH, D(a) = a) is an orthonormal system for each a e A .  (See [K], 11.1, 4.)

(1.6)
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For e a c h  »  1  and each a e CH, D(a) = a, we define the channel embedding
/3: e B(L 2 (RyN  ), Y e) and the channel Hamiltonian 7::` by

(1.9) (P:f )(x., ya) = 0:(x.)f(ya),
1 := — (2 n.) -1 A  + ) . ,

respectively. Here we denote by B(X, Y) the space of all bounded linear opera-
tors from  a Banach space X  to  a Banach space Y.

Under assumption (V), the channel wave operators

(1.10) WŒ", := s — lim
i t T :

t -0  ±oo

exist in B(L2 (RyN) ,  Ye) (see [R -S ] III, Theorem X I.35 ). For a, /3 e CH, the scatter-
ing operator for scattering a —> fi is defined by

(1,11) = Way  L 2
 (

R
D( )

L 2
 (

R
D ) .

Here A * denotes the adjoint of the operator A.
For each a E CH we give the spectral representation of Tr. W e define maps

.4(2), A  > A :, from . 9 ( R N )  (the Schwartz space of rapidly decreasing functions)
t o  E  L 2( s N-1 )  ( s N-1 is  the unit sphere in RN ), by

(1.12) (z:(A)f)(to = (2 7 0 -N2n y2 t 2 n a t 2 _ A N asi-2)/4.

x (2.„(A- A : ) )1 / 2 ° .Y "f (Y.)dYa a = Ma)

where w e SN - i . I t  is  k n o w n  th a t 4 ( 2 )  can be extended to bounded opera-
to rs  from  L!(12 r)  t o  E  for s > 1/2, where L(W ,1) := 1,2 (R; <Y>2 s dY), <Y> :=
(1 + y1 2 )112 (c f. [G -M ], Proposition 2.1). We define a m ap z: from L ( R )  to
L2 ((.14, co); E ) by

(1.13) (Z : f )(2,*) = (40 f )(*) , for A > A: .
Then z: can be extend to a unitary operator from  L 2 (R ),) to  L2 ((4 ,  co); E) and
gives the spectral representation o f TOE° , tha t is,

(1.14) (D c : f  )1A, *) = AVV/1.)f)(*) for a.e. A > A.,

for f  e  D (T I). W e can see that Z M ŒZ: *  is decomposable by a family of opera-
to rs {SitA } ([A -J-S], 15-3):

(1.15) (DI,VŒZ:* h) (A.) = S Œ(A)h(A) in E for a.e. A. e (4%, oo)\ ,

for h e L2 ((»f}„, cc); E), where A'13„ := max (A:„ AO and AA = {the thresholds of H"} U
o-

p (H")(o-
p (H") denotes the set of all eigenvalues of H a) . We will show that SIL (A.)

i s  a  B(E)-valued norm  continuous function in  (4„, co)\ (B (E ) =  B (E , E)).
Furthermore, in Sect. 2  we will show that

(1.16) TA(A) := — Sf l ,
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h a s  a n  in te g ra l k e rn e l T A , w , o l), w h ic h  is  c o n tin u o u s  f o r  (A, w, w')e
(() iL, 0 9 )\ AA) x  sN- i x  s N - 1 .  Here 61k =  1  (resp . 0 ) if  a  = fi (resp . a  0  /3 ). In
particular, the total scattering cross section for scattering a , 6  a t relative energy
A and relative initial direction co (see [A-J-S], p. 627).

(1.17) o-A,(A; w):= (27r)N - 1 (2n„(,,) (2 — 2PG:fl(i -N )/2  Tv_ I 
T/ra(a) CO)12

is finite for a ll A e (4„ co)\ /1 1` and co e SN - 1 .
We next consider the following time-dependent Schrödinger equation for the

charge transfer or im pact parameter model:

iOt tfr(t) =  N o l (t)0(t) in L 2 (RN),

(1.18) = [—(2m) - %  + V23 (x) + I/1 3 (x — — ow 9

e RN  \ {0} , e 17:= e RN ; = 0} .

(See [Y ], [H a ] , [G ] , [W ] .)  T h e  equation describes th e  m o tio n  o f  th e  light
particle (particle 3) under the influence of interaction potential Vi 3  a n d  V23 due
to two heavy particles 1 and 2; particle 2 is assum ed to stay at the origin and
particle 1 is assumed to move classically on  the  stra igh t line  t  +

Under assumption (V), (1.18) has a  unique propagator

(1.19) U(t, s) = q; t, s), s , t e R ,

such that

(U - i )  U(t, s) is a  unitary operator on L 2 (RN ) and jointly strongly continuous in
s  a n d  t.

(U-ii) U(t, r)U(r, s) = U(t, s) for r, s, t e R.

(U - iii)  If f e H 2 (RN ), th en  U(t, s)f e H 2 (RN )  for s, t e R, a n d  U(t, s)f (which is
strongly differentiable in  s and  t, respectively) satisfies

/4 U(t, s)f = h 4,(t)U (t, s)f, , s)f = — U(t, s)h (s)f

(see e.g. [R-S]I, Theorem X.71).
T he  purpose o f  th is  p a p e r  is  to  re la te  the  scattering theory fo r equation

(1.18) to that fo r the  three-body system (1.5). W e restrict ourselves to the (2-
cluster) (2-cluster) scattering such that the initial and final channels belong to
CH.

For a  e  C H  we define a  function tpf(x, t) = ri; x, t) by

tfrf(x , t) := e- '-'0„(x) for D(a) = a ,
(1.20)

1/í (x, t) := e i m4 ' - 1 ( ( m/2 ) 1 4 1 2 ± 2 f ) te(x —  t —  ri) for D(a) = a 2 .

It is  e a sy  to  see  th a t e (x , t) satisfies

iat tg ( t )  =  i tfr (t) for D(a) =  a, .
(1.21)

iOt tfrf(t) = [—(2m) - 1 , 613, + V1 3 (x — t — n)]tlif(t) for D(a) = a 2 .
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Furthermore the  strong limits

(1.22) = n) := s — fim n; 0, t)ig ( t)
±oo

exist in  L2 (RN ) for each a e CH and

(1.23) g2k) = (5 .13

holds for a, /3 e  C H  ([Y ], p .  155), where (•, • ) denotes th e  inner product in
L 2(R N,.) L et a , fl e C H  be, for example, such that D(a) = a i ,  D(JJ) a2 . Then
the  quantity ROŒ ,Q;)1 2 i s  the transition probability that particle 3  forming a
bound state o f with particle 2  in  the  remote past will be captured by particle
1 (moving along the  orbit c t +  ri) in  OIT in the far future.

N ow  w e state the m ain re su lts . F o r  e R \ 101 and ri e H4 ,  we define

(1.24) S 7 (, 17) := e- 1 f 1 '- 1 / 1 2 ( - t - q ) d t (Q ;( , IA q »  •

Theorem 1.1. L et a, )3 e CH , and assum e (V )'. Then for f  e C(S N - 1 ), the
continuous functions on S N - 1 , and v o  > 0, w e have

(1.25) lim (S13
4„((1/2)nD ( Œ ) 0  + f)(w) = SA(v o w, 0)f(w)

A -.
t)— lo

uniformly on S "  _ i
.

Since (142)11, (E )1  for 2  > 0  and C(S N - 1 )  is  dense in E, w e have

Corollary 1.2. Let a, 13 e CH, and assume (V )' and f ix  vo  > O. Then

(1.26) s — lim (S01 /2)np o o v2  + 4)f)(*) = SA (v o *, 0)f(*)
A -.

in  E
v — v o

f or any  f  e E.

Theorem 1.3. L et a, 13 e CH  and assume (V ) and f ix  vo  > O. Then

(1.27) lim o4c,((1/2)nD(co v2 + 2:; or) = 1V„(v0or, rl) — (513,( 12 dri
001 7 .

1, - .1)

uniformly for w e S N - 1 ,  where dri is  the Lebesgue measure on H o,.

Scattering theory for the  charge transfer m odel has first been studied by
Yajima [ Y ] .  H e  has proved asymptotic completeness for equation (1.18). His
idea  is to  reduce th e  scattering theory fo r the  time-dependent Hamiltonian to
tha t fo r  a  time-independent Hamiltonian following Howland [H o ] an d  then to
use the stationary method for three-body problem (cf. [G -M ]). Hagedorn [Ha]
has obtained sim ilar results by a  time-dependent approach. Recently W aller
[W ] and G raf [G ] have extended Yajima's results by using geometric methods
of Enss [E].

Now we explain the  organization of this p a p e r . In  th e  preliminary Sect. 2
we shall give the exact form of the scattering matrix (Theorem 2.3) for scattering
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Œ —> fl, though Theorem 2.3 w ill be proved in  Sect. 8. W e shall need certain
uniform estimates fo r  a  family of self-adjoint operators which can be obtained
by extending multiple commuator methods of Jensen, Mourre and Perry [J - M - 13 ]
(see  a lso  [J ]), tha t had  been  o rig ina ted  from  Mourre's w o rk  [M ] (see also
[P-S-S), [F-H ], [T], [A-B-G ], [Yaf]). These resolvent estimates will be given
in Sect. 3 by an abstract setting. In Sect. 4 we shall give a  stationary expression
for (0 Œ

- ( ,  ;/), II»  Our main theorem will be proved in Sect. 5. Lemma 5.4
contains essential estimates in  ou r p roo f. The proof of this lemma will be given
in Sect. 6 by using the abstract commutator estimates in Sect. 3. Certain lemmas
of Sect. 5 will be proved in Sect. 7.

§ 2. Preliminaries

F o r k, s e R the  weighted Sobolev space H ( R d )  is defined by

(2.1) H(Rd):= ff 6  Yjil d ); IlfIlk,,:= II<Os(1 — 012f11 < +Go}
where 99' denotes the tempered distributions, A  the d-dimensional Laplacian and

:= (1 + 1 2 )112, e Rd . N o te  th a t  Ilf Ilk,s is  equ iva len t to  II(1 — A)k / 2 <0 sf
a n d  E <OsaUll if k N U 101, where 17)1 = y  + • • • + Td, := D Y

4 : •  •  •  D )
4' dd D ki :—

—i(a/a i ) fo r  multi-indices y = (y,, yd ). W e  w r i t e  Hk

M'Sk
(R d )  := H(R d ) and

O W )  := Hs
() (Rd ). Note that the Fourier transform on 9 9 ' ( R " )  maps H (R d) onto

H(R d ) boundedly for a ll k, s e R.

Lem m a 2.1. Let a e CH  (a = D(a)), and assum e (V). Then (A:, e Y(R N )
and g, —> " in  99(RN )  a s  ti —  cc.

Proof . L et a = li,( j, 3)1. By ( — L1 + 1)e, = (2ma (2',̀, — Vi 3 ) +  1)g, w e have
for any k e N

(2.2)

Similarly we have for any  k e N

(2.3) = [( — A + 1 ) - 1 (2 m(2 «  V .i3 ) +  O r e

Since for any eeNU {0 } a n d  f  e  ( (RN )

s — lim ( —  + 1)- 1 (2ma().: — VP) +  1 ) f  (—A + 1)- 1 (2m (a«  — 17,3) +

in  Il l + 2 (RN ), we see that

(2.4) (74  Of strongly in H(RN)

as p o o  for any k e N . T h e  following estimates are easily verified:

(2.5) sup { [( — A +  1)- 1 (2 m.(4 — Vj3) 1)]"11 B 2  2o.,,rtsk)
g » 1

+ A + 1) - 1 (2m(4 — 11
. 0 ) + 1 )t1B(1.1,111k)} < 00

= [(—A + 1 ) - 1  (2 ma(A: V j 3) i ) ] kOlc: •
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for any k E N  and s O. H ere  su p  { • • } := s u p  { • • • } for some large
mi,m2>mo

We claim that for each k e N  and s 0:

(2.6) sup {110f II 2k ,s 11 Of 11 2k,s} < C i° •
it»1

Indeed, (2.6) for k = 0  follows from [Ag], p. 52, and (2.6) for k 1 from (2.2),
(2.3) and (2.5). Thus by the Schwarz inequality, (2.4) and (2.6), we obtain

11<x>s( —  A + 1 )k (Of — (C)I12 5  ( — A  +  1 )k (0: )I < x > 2 5 ( _ 4  +  1 )"(46: — Of) II

5 110« - II 2k,0 ( On 2k, 2s 4 - Mg  2k, 2s) — 4  0

as pt —> co. Since k and s are arbitrary, this and (2.6) imply the desired results.

The following limiting absorption principle is important for a representation
of spa (2).

Lemma 2.2 ([M ], [P - S- S ] ) .  Assume (V) and f ix  p i»   1 . L et J be any com-
pact interval in R\A" and f ix  s > 1/2. Then the norm limits

(2.7) (.1-P  —  A + i0) -
1 := lim (HP —  A + is)- 1

40

exist in B(L!
( R 2 N ) ,  L 2 s ( R 2 N ) )

functions (II" — 2 + i0) - 1  are  Holder continuous in 2  e J.

Remark. Resolvent estimates fo r  three-body Schrödinger operators have
been studied by M ourre [M ] for more general class of potentials including long
range potentials, and  Mourre's results have been extended by Perry, Sigal and
Simon [P-S-S] (see also [F-H]) to  many-body Schrödinger operators. Recently
these results have been developed by Tamura [T ]  and  Amrein, Berthier and
Georgescu [A-B-G].

F o r  a = (j, 3)} e A , w e define th e  intercluster potential / a b y  I  :=
-  1/i 3 (r3 — ri ). For a e CH (D(Œ) = a), 13: *  is given by

(2.8) (11* f)(ya ) = f 0:(x a )f(x a , ya )dxa( s e e  (1.9)) .

Thus, by Lemma 2.1, /3:  and P r can be regarded as operators in

B(012;:. ), /4(11". ) O R ) )  , B(L2_s (Ri„v. ) 0 /4(Rlyva ), O K ) )  ,

respectively, for any s, t e R. Thus, by (V), we can see that

P r / a P: e B(L2_s (K ), L (R y
N

b )),

(2.9) LP: e B(L2_s (Ry
N

. ), L2
s 0 _s ( [ 1 2 N ) )

Pr l b e B(L!„ 0 (R2 N ), O K ) )

71

Mo.

uniformly for 2  e J, and B(42 (R2 N ), L (R2 N ))-valued
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for any a , /3 e CH (a = D(a), b = D(fi) )  and s  w ith 1/2 < s e 0/2. Furthermore,
we note that Z :(A )* e B (E, L (R ) ,N)) , s  > 1/2 (see (1.12)). Now we give an expres-
sion of S'IL(A) for each /1 » 1.

Theorem 2 .3 . L et a, fl e CH, and assume (V). Then

(2.10) Sr32().) = c5p , + 27rilil(A )Pr [—  Ip o o  + I D (/3 ) (HIL —A —  i0)-14(0]P:Z:(A )*

f or a.e. A e (A73OE, oo)\ AIL. Furthermore, the R.H.S. of  (2.10) is a B(E)-valued norm
continuous function of  A e (4„, co)\A ".

Remark. g OE(2) is well defined for all A e (4„, oo)\ /1° by (2.10).

P roo f. W e only prove the second half of the statm ent. The formula (2.10)
will be shown in Sect. 8. L e t 1/2 < s E0 /2. Then, it follows from (2.9) and
Lemma 2.2 that

(2.11) P r  [—  + l b (IP —  A — i0) - 1 l a ]P: e  B (L (R y
N

. ), L ( R d )

(a = D(a), b = D( f i)). Furthermore 4"(2), y e CH, is  a  B(L(RN ), E)-valued norm
continuous function i n  A (cf. [G -M ], Proposition (2.1)), which together with
(2.11) and  Lemma 2.2 implies the second half of the theorem.

Proposition 2.4. L et a, 13 e CH, and assume (V). Then 74(A) (see (1.16)) has
an integral kernel WA, co, co') given by

(2.12) Tflt(A, co,) i (2
1
0-N+I(n a n o 1/2(4 n a n b (A  _  4 ) ( A

A 01/2,0  -yb)L 2( R 2N )

X  ( [  — + l b (Hu. —  2 — ligei(27.„(A-Appi2.,y„

i(2nb(2.-- (a = D(a), b = D(fi)) .

Furthermore, TL(A, co, co') is continuous in (A, co, ol) e ((2 „, co )\A ”) x S N - 1  x
and so T (A ) e B(C(S N  - 1 )) and is also a Hilbert-Schmidt operator on

Proof. Fix a real s with N/2 < s co /2. Since the map le  D  - +  exp •  * )  e
L S(R N ) is strongly continuous, the continuity of T (2 , co, co') in  (A, co, co') follows
in  th e  same way a s  Theorem 2.3. T o  finish the proof, we have on ly  to  show
th a t  TA(2) is  a n  integral operator with kernel V OE(A, co, ol). L et y = a, [1. For
each hy e C(S N

(2.13) (Z*(2)hy)(y) = (2n) -
 N/2ny2(2 n (2 Ao

) "
-2)/4

fXe i(2n,(2.-.19)1120-, Yhy (a 0d 0 ) ( c  =  D ( y ) )  ,

which follows from (1.12). Therefore we have

(Tpt(A)hOE, k J ) = P` (A co O h  (01)hf i (co)dco'dco ,
f sN-L f s"  f la

where Tx,(2, co, o i) i s  th e  R.H.S. o f  (2.12). Since C(SN - 1 )  i s  dense  in  E , this
implies that 74(2) is an integral operator with kernel 'Tflt(2, co, co'). This completes
the  proof.
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§ 3 .  Abstract resolvent estimates

T his sec tion  is devoted to extending t h e  abstract results developed in
[J-M-P].

Let H  be a self-adjoint operator in  a  H ilbert space H  whose inner product
and norm will be denoted by (f , g) and I f  11. Then we define the scale of spaces
H+2 and H_2 associated to the self-adjoint operator H  a s  follows. H+2 is the
domain D(H) with the  graph norm f 2 = 11(H i) f ll and  H_2 is the dual of
H+2 obtained via  the inner product in  H.

Let H, A  be self-adjoint operators in H, / a compact interval in R, and d e N.

Assumption 3.1.
(H -i) D(A)C1D(H) is  a  core f o r H.
(H -ii) e i"  leaves D(H) invariant, and for each f  e D(H)

sup IlHe i"f11 < co .
101, 1

(H -iii) L et H m  = H . T h e re  are self-adjoint operators ill" ) ,  . . . ,
isfying the following:

D(iill (h)D D(H) (j = 1 , ..., d) ,

the form  i[ii - 1 H (i - 1 ) , A ], defined on D(H) fl D(A ) is bounded from below and clos-
able, and the self-adjoint operator associated with its closure is ij11 (i) (j = 1, d).

(([B , C]u, v):= (Cu, B*v) — (Bu, C*v).)

(H - iv )  The form [11 41) , A ] defined on D(A) rl D(H) extends to a bounded opera-
tor f rom  H+2 t o  H -2 , w hich is denoted by  [ 1 1 ( d ) ,

(H -v ) T here ex ist Co >  0  and qf  e  C (R ) supported i n  a  sufficiently small
neighborhood o f  I and satisfy ing 0 1, 1 o n  I, such that

(3.1) 0(1-1)iN(1)0(1-1) C0 0(1-1)2 .

L et W be a  bounded operator o n  H, and  A  a self-adjoint operator in  H.

Assumption 3 .2 .  L et W m  = W .  There are bounded operators W " ), W(d)
on H  satisfying the following properties:

The form  [W il - 1 ) , A ], defined on D(A ), ex tends to the bounded operator W u )

(j -= 1, d).

Theorem 3 .3 .  L et H , A  be self-adjoint operators in H, I  a com pact interval
in R, and d e N . Furthermore, if  d  2 , let W 1 ,  . . . ,  W d _ ,  be bounded operators
o n  H .  A ssume assumptions 3.1 and  3.2 w ith W = W 1, • • • Wd-1 • F ix  a  real
s > d — 1/2, and set

14. = {z e C; Re z e 1,0<  + Im z < .

Define

id H (d ) sat-

D(z) = <A >'R(z)W I R(z) Wd-i R(z)<A Y s for d 2,

D(z) = <A Y sR(z)<A Y s for d = 1



1
(3.2) 01 = 6i (s, — 

sd
1 + s — d + 1/2
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for z E C \ R, where R(z) = (H — z)', <A > = (1 + A 2 )'12 . T hen there ex ists a con-
stant K, such that:

(i) sup 11D(z)11 K.
z e l i

(ii) 11D(z) — Klz — z'I' 1 f o r z, E 1, w here

(iii) For A  e I the norm limits

D(.1 + i0):= lim D(1+ iS)

ex ist in  B(H), and D(1+ i0) are  Holder continuous with exponent 0, in  A E I  in
the operator norm.

Moreover, if  H, A , ( W,. ....1 'V ,  if  d  2) depend on a parameter y such that
0, C o can be taken independently o f  y, and that

II 1 1 ( i ) R(011 = 1, d) II R(i) [ IP ) ,
(3.3)

(11147 ( i) (j = 0 , d; k = 1, , d — 1) if d 2)

remain bounded in  y , then K can be taken independently o f  v.

Theorem 3.3 gives an extension of Theorem 2.2 of [J-M -P], in which all
WI, are the identity operator. Note that assumption 3.1 implies the non-existence
of the point spectrum of H  in  I  ([M]).

Furthermore under assumption 3.1 the absence of the singular continuous
spectrum in  /  can be proved ([M], [P-S-S]).

We prove Theorem 3.3 by the commutator method of [J-M -P]. The fol-
lowing Lemma 3.4 plays an important role in  our proof.

F or small c l >  0  the  operator

d E .
(3.4) Qd(e) = E -H (')

J=1 j!

is H-bounded with H-bound < 1, since each Hu )  is H-bounded by (H-iii) and the
closed graph theorem. Thus the operator H  + Q d (c) is  a  closed operator with
D(H + Q a (e)) = D(H), and furthermore the resolvents of this operator have the
following properties.

Lemma 3.4 ([J-M-P], Lemma 3.1). L e t H , A  be self-adjoint operators in
H, I a compact interval in R .  Assume assumption 3.1. Then there exists a positive
constant e , such that f o r 0 < ±e < C I , z e l ± ,  the following results hold:
(i) There exists a  bounded inverse G (e) of  H  + z.
(ii) The following estimates hold f o r Gz(e):

(3.5) IIG2(8)11 5 c• 161 -
1

 ,
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(3.6) II(11 + OG.(011 5 C• , Gz(8)(1/ + 011 5 C . I8 1- 1

+ i)G.(e)<A>- 1  II C • el - 1 1 2

<A r G .( 6)11-1 + C • l

(iii) The form  [A, Gz (e)], defined on D(A ), extends to a  bounded operator on H,
which is denoted by [A, Gz (e)]0 . Furthermore G 2 (e) maps D(A ) into D(A)n D(H).
(iv) For each z e 1+  (resp.

G(e) e C140, e i ); B(H)) (resp. C 1 (( -8 1 , 0); B(H)) , and

p c!

(3.8) —
d  

G(e) [Gz(E), + Gz (e)[11(d) , A] o Gz (s) .de d!

Moreover, i f  H , A  depend o n  a parameter y  such that qS, Co  can be taken
independently of  y , and that

(3.9) 111/(i)R(i)11 = 1 , d) IIR(0[11(d), A]0R(i)ll

remain bounded in y , then C  can be taken independently o f  v.

See [J-M-P] fo r  th e  proof o f  th e  first half o f  th e  le m m a . T he  last half
can be shown by carefully checking the  estimates carried o u t  in  [J-M-P] (see
also [M], [P-S-S]).

Moreover we need the  following elementary lemma.

Lemma 3.5. Fix  an  integer k  0 and let fk (e) = llog el f or k  = 0, fk(s) =
for k  e N .  Assume that a B(H)-valued C1 -function X (E), E e (0, el ) (e l > 0), satisfies
the following inequalities:

(3.7)

(3.10) d
le X ( e ) (IIX(E)II'• f k (e) ±  1)

   

(3.11) X(6)11 C2

where p, q, r, C 1 , C 2 are constants satisfying 0 p, q < 1, r 0, C1 > 0, C2 > 0.
Then the following estimates hold:

(3.12) IIX(e)II 5 C • e' lw h e n  k 2,

(3.13) IIX(e) II 5 C• Il o g  El when k = 1

(3.14) IIX(e)II 5 C when k  = 0 ,

w here C = C(C i , C2, el, p , q, r) > 0. Furthermore, when k  = 0, th e  norm limit
X(0) := lim  X (e) exists in  B(H)

e 4, 0

Pro o f . Putting (3.11) in  (3 10), we have

(3.15) d
de X  ( 8 ) C  • (E —  P r— qf k (e) + 1) .
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We first consider for k 1. By integrating with respect to  e , we have (3.12),
(3.13) when pr + q k .  When pr + q > k , we get 11X(E)11 C- Cri, where r 1 =
pr + q — 1. (N o te  that r —  r 1 = (1 — p)r + (1 — q) > 1 — q > 0.) P u tt in g  th is
into (3.10), we have the inequality replaced r  by r 1 in  (3 .1 5 ) . If  pri  +  q  k ,
we obtain (3.12), (3.13). If p r, +  q  > k , we get 11X(E)11 C • e- r2, where r2 =
pri  + q  — 1. Continuing this process, we can find some r„ (= + q — 1) with
pr„ + q k ,  p i  + q  > k , since rj  — 1 — q > 0. Thus w e obtain (3.12),
(3.13). When k  = 0, (3.14) is obtained similarly and the existence of X(0) follows
from the integrability of the R.H.S. of (3.10).

Proof  o f  Theorem 3.3. W e  have only to prove this theorem  fo r d 2
because the theorem for d = 1 has been proved in  [P -S -S ]. Moreover we give
only the proof for z e 4.

(i) For multi-indices of nonnegative integers a = (al , . . .  a 1 B9 d - 1 , ) =  ( B 11 • • •

# d - 1 )  we write la I = gi + ' • • + a d - 1 ,  and a  /3  if and  only if ai  ) 6 ) for all j. Let
I  a  family of a ll multi-indices )6  with a f i ,  f i  =  c x l  +  1 .  Namely /3 E FOE

implies that ai  =  )6;  — 1 for some j  and )6, = a i fo r  i j .  We set

P; (e) := A >-  G z (e) `) G z (e) Wjœ  2 ) G z (e) . . . W t ' G ( )G z (e) <A>-

for z >  0, a = (a l , ccd _i ) with
By Lemma 3.4 (iv), we have for la

(3.16) —

d  

Foe(e) = <A>" (—
d  

G (e)) W Gz (e) . . . Wja_d 1-  1 ) Gz (e)<A >'de ds

+ • • • + <A>-  s> G ( )  Wiœ  1 ) Gz(E) • • • I'VPI°1- 1 )  (—e
d  G z (e)) <A >"

= <A Y s I[G z (E), A]0Wi l l ) Gz (e) Wd(!̀ 1-1)Gz(e)

+ • • + Gz(E)Wi l l ) G.(E) • • • Wd(! di- 1 ) [Gz(e), A]o} <A>'

s
d

—
d !  

t<A Y  s  Gz(E) [H ( d ) , A]oGz(E)Wi œ i ) G.(c) • • • W71- Gz (e)<A >'

+ • • • + <AY s Gz(E)Wiœ ' ) G.(E) • • • Wi a r i ) G.(E)

x [I-1( d ) , A] o Gz (s)<AY s}

= /1 ( ) +  1 2(0

First w e estim ate  / 2 (). S in c e  s >  1  a n d  (H + 0 - 1 [11( d ) , A] 0 (H + HP')
(j = 1, ..., d — 1) are bounded, by assumption 3.1 (iv) and assumption 3.2, we have

(3.17) 1112(011 C • Ed  • E- 1 1 2  •

by Lemma 3.4 (ii).
Next we estimate I 1 (e). N oting that Gz (s) m aps D(A ) into D(A ) and WIŒ, )

maps D(A ) into D(A ), as follows from assumption 3.2 and Lemma 3.4 (iii), we

e --  d + 1  e 2 <  c



C(1111(8)111-
( 1 1 s ) e ( - d 1 - ( 1 1 2 ) ) 1 s LT '  it F IZ3(8)11 + 1)fi—

d  

P(E)
de

(3.19)
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have, by elementary computation,

ii(g) = [F(e), A ] — E F (s ) ,
P e

Since ii<A>5F:(8 )11, IIF:(8 )<A>s il C • 8- ' 0 /2 ) by Lemma 3.4 (ii) and

II FAEXA > M II F;(011 1 - (1 1 s ) 11F;(6)<A>s 111/s

il<A>F(E)11 1111()111 - ( "11<A>sF:()11 1/s
by interpolation, we have

il[F(E), ilFAE)<A>li + II<A>FAE)11

C 11F(6)11
1 - W O  c ( - d + ( 1 1 2 » l s

Thus we get

(3.18) 11/11011 C  IIF:(6)111-(11s)E(-d-1-(112))15 + L 11F(E)11) •
e

Therefore F (e ) satisfies

for all multi-indices a w ith a d — 1.
Furthermore, it follows from Lemma 3.4 (ii) that

(3.20) IlFZ(8)11 Ccd+ 1

for all multi-indices y  with tyl d.
Let kid = d — 1. Then we have by (3.19) and (3.20)

—
d  

FŒ(E)
de

Applying Lemma 3.5 to

(3.21)

Next let 'al = d — 2.

d  Œ

le f ;  ( 6 )

• c(11F:(8)11
1-(11s)8(-d+(112))1s

▪ 

cd+1 ± 1)

this, we have

11F;(8)11 5 CE-

d + 2

Then IM = d 1 for / 3 E  I . Thus we obtain by (3.19)

• F(0111 -(11s)c
(-d+(112))1s • 6-d+2 + 1)

Applying Lemma 3.5, we have

IIF:(011 5 Cca + 3

Continuing, we have for ai = 0

< C (1 1 F ;(
8

)11
1 - ( i b o E( -d + (1 1 2 ) )/ s

 + ilog ci + 1).—
d  

P(E)dE z(3.22)
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Thus we have the following estimate, by Lemma 3.5,

(3.23) sup 11F.(011K  <  co
z e . 1 , 0 < E < 1

where F(e) := FAO fo r la I = O.
Since lim  Qd(e)R(z)11 =  0  fo r  each  z E  C \ B, 1 +  Qd(e)R(z) h a s  a  bounded

inverse, and so

G(E) = R(z)(1 + Q d (e)R(z))'

holds for each z e  C \R  when E > 0  is small. Therefore we get

lim Gz (2) = R(z)
4 0

for each z E  C  R , and  so  w e have by (3.23)

sup 11D(z)11 K

(ii) F o r simplicity we write n = (d — 1/2)/s. By (3.22), (3.23) we obtain

Integrating this we have

(3.24) IF(8) — F(0)I  < El—n

O n  th e  o ther hand  Gz (E) is differentiable in  z e fo r  each e > 0  by Lemma
3.4. W e have the following estimate by Lemma 3.4 (ii):

d
lz F z (E ) II<AYsGz(0 2 w i •  G(e)<A >I

  

+ • • • + II<AYsGz(E)wi w d -1  Gz(E)2 <A

<  c • c d  ,

which implies

(3.25) — F(e) 11 C • e- d lz —

for z , z ' e 1 ,  E > O. L et E  =  IZ  —  Z16 2 ,  6 2  =  ( 1 — n ) ' ô , (see (3.2) for t5 ,). T h e n
by (3.24), (3.25) we have

— F. , (0 )11 F(0) F(e)11 +IF(e) — F(E)11 +IF(e) — F2(CI)11

C • lz —

Thus we have proved (ii). ( i i i )  follows from (ii).
The proof of the  last half can be obtained if one  takes into consideration

the last pa rt o f Lemma 3.4 and the  proof carried ou t above.

d
d

—  F

z

( e ) 0E— + 1).
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§ 4 .  The quantity (f2T, (4, q), t  ( 4 ,  II))

W e  f ix  e RN  \ {0} and rj E 114 and assume (V) throughout this section. We
define an  operator in  L2 (RN 4 )  (RN '  = Rx

N  x  Re):

1
(4.1) K : =  - -

2 m  
1 x — ia, + V2 3(x) + V13(x — t  — 1 1) + 1712( —  —  q) •

1
Since - - . A x — ia, is  a self-adjoint operator with domain D o := tu e L2

( R N + 1 ) ;

2m1_  A x u  _  ia t u  e  L 2(R N+1 )1 and has a core ..99(RN ' ) ,  K a self-adjoint opera-
2m

tor with domain D o a n d  with core ..99(RN ' )  by (V).

Lemma 4.1. Let J be a compact interval and s>  1/2. Then the norm limits

(4.2) — A ± i0) - 1  := lim (K 4 „ — ) ± is) - 1

40

ex ist in B(L2 (RN ) 0  L(R ), L 2 (RN ) 1 - ( R ) )  uniformly for A e J.

P roo f. We shall apply Theorem 3.3. We set H = L2 (RN ' ) ,  d = 1, H =
A  t x , a n d  I = J. Then assum ption 3.1, (H -i) is satisfied because 9' (RN  + 1 )
is a  common core for H  a n d  A . (H-ii) is obvious. Since i[H, A] = 1, (H-iii) —
(H-v) fo llow . The conclusion follows from Theorem 3.3.

It is easy to verify that

(4.3)U 1  ( t ,  s ) : = n; t, , (t, s e R)

is  the unique propagator of the following equation:

(4.4) tap (t) ch 4,„(t) + v12(— t  — 17)10(t) ,

where n; t, s) and h4 ,„(t) have been defined in (1.19), (1.18), respectively. We
identify L 2 (RN ) with L2 (121; L2 (R„N )) and introduce a  family of unitary operators

(t e R) on L2

(4.5) (C/(T)f )(x, t) = (U i (t, t — r)f(* , t — T))(x)

f o r  f  e  L 2
(RNA-1).

This family is a  strongly continuous unitary group on L2 (RN ' ) ,  and C/(T)f
is strongly differentiable in r  for each f e  g (R N + 1 )  and

d
U(T)f1,-0 = —

t i t

Thus we have L7(t) = and so
OD

(4.6) — ie) - 1  =  i e- "Cl(t)clor for e > 0
0

(cf. [Ho] and [Y ] for the above discussion).

(R N ) :
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F o r a E A we define Wa (x, t) = ri; x, t) by

Wajx, t):= V13(x — tt — ti) + 1712( —  —
(4.7)

14/.21x, : =  1723(x) + V1 2 ( —t — ri)

Lemma 4.2. Let a, )6 E CH with a = D(a), b = D(f3), and assume (V). Then

(4.8) e--11.° v 1 2 ( - 4 " ) d t (g2;(,

= —i(147.0f, 0;9°)L2(RN+1, + —  iorw atg, w ofr1/.2 ( R, ±1)

where t1/7 = t) (y = a, /3; see (1.20)) and W, = l4/(x, t) (c e A).

Remark. By (V) and  Lemma 2.1, it is easy to see that W p o l i/J7 E L2
s (RN + 1 )

for some s > 1/2. Therefore the second term in the R.H.S. of (4.8) is well-defined
by Lemma 4.1.

Pro o f . By V1 2 ( —t — n) e L1 (R ) and (4.3), we have

(4.9)Q := e - `11 - ri) (see (1.22))

=  s —  fim U 1(0, t)07(*, t) in L 2 (1e)
t-

and ( 2 „  Q -L0 ) = 5 ,  (see (1.23)). Thus the L.H.S. of (4.8) equals (.W  —  Qt„,
Q t 13). Since for y e CH, IPT(*, t) e H2 (12') for each t e R , U1 (0, t)K (* , t) is contin-
uously differentiable with respect to  t in L 2 (RN )  and  satisfies

(4.10) at Ui(0 , t)07(*, o = co, ow,(Y)K(*, .
Therefore we obtain

(4.11) 1‘4,. Qi,p) = — liM (U1(0, t)e ( * ,  - Q t)

= — firn (U1(0, Otiff( * ,  t), Qtfi)Cit
dt

CO

= (U1(0, t) Wa (*, (*, t), f l )dt
-  CO

Here we note th a t the  integral converges absolutely because the  following esti-
mates follow from (V) and  Lemma 2.1:

(4.12) II WD(y)(*, r)07(*, r)42 ( RN)c o n s t •  (1  + y e CH .

By using (4.10) for y = cc, we have in  the same way as (4.11)

(4.13) (U,(0, t) Wa (*, t)e ( * ,  t), 5-2t 0 ) = (U,(0, 014/a (*, t)tlf:'(*, t), U1 (0, t)tliif(*, t))

+ lim (U 1 (0, 014/.(*, ()(1I«(*, t), [U 1 (0, -0(14(*, — U1(0, t)0 (* ,

= (Wa (*, t)1 f (* , t), tl °(*,
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— i f  (vi a 014/J*, Ote(*, t), u1(0, s)14/,(*, s) 0(*, s))ds

= (14/.(*, t), (11(*, t))

— i
 j

t ) Wa(*; O ( * ,  t); W b (*, s) 114(*, s))ds (by (U-ii)) ,

where the integral converges absolutely by (4.12) for y  = /3. Thus by (4.11) and
(4.13) we obtain

— Qi,a; 0 -1', ) = — i(Wate; 0/3° )1.2(RA --i)

— dt j ( U i (s, () Wa(*, Ote(*, Wb(*, snds

The double integral absolutely converges, since the  inner integral is 0(1t1 2 1)
by (4.12), and  this is calculated as

d s j( U i (s, t) Wa (*, t)tfrf(*; t); Wb(*, s)0(*, s))dt

= d s  jo
e° (U i (s, s — t) Wa (*, s — n (*, s — t), Wb (*, s))dt

= f( Ci(t) Wa illf ,  Wb0;° )L2(R, .., ) dt (see (4.5))

= lim e - Et(C1(t) Wa (PT, W 0 ) 0 R , , i)
do o

= — — i0 r 1 Wate, WhIPPL2(RN , 1) ,

where we have used (4.6) a n d  Lemma 4.1  in  th e  last s te p . T h is  completes the
proof.

§ 5 .  Proofs of the main theorems

In  this section we will prove Theorems 1.1, a n d  1.3. T o  d o  so we prepare
some lemmas and  p ropositions. Throughout this section, w e  assume (V) and

»  1 , and fix v , >  0  and a 2-body initial channel a e CH  with D(a) = a  and a
2-body final channel /3 e C H  with D(/3) = b,

5.1. The purpose o f this subsection is to rewrite 74(0/2)n a v2 + /itf; a), co')
in  a  form convenient for later purposes. W e first note that w hen it

(5.1) ma; mb m ; na, n„ oo ; na /n b — > 1; A"Y Y

for y = a, 13. Thus for any v > 0, there exists a unique y ' =  v'(v, /.4) > 0 such that

1 1
(5.2) -

2  

n
a

v2 + =  
2

- n o ' 2 +  ,

2 
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since it » 1. C learly y'  v o a s  it —> co, y vo . Throughout this section we as-
sume lv — v o l «  1  in addition t o  u » 1. Therefore, using the cordinates (x a , y a ),
we have for A = (1/2)na v2 +

(5.3)

Tita (A; co, = Ci(Y , It) e in u v 'Y 'd .v a  fk (x.)

A  + 10)- 1 4]0(xb( . , Y a)dx.X  (E—L + L(HP —
(see (2.12) for 74(A; co, co') and (1.6) for x b = xb(x., KA Yb = Y b(X a, Y a)), where

(5.4) C,(v, kt) =  i(27r)- 1̂'( v y '
) ( N

- 2 ) / 2 ( n a n a N  
-  1 ) 12

For each co e S N
- 1 , y  and p. we define a self-adjoint operator H"(co, v) in L 2 ( R 2 N )

by

1(5.5) H(a), y) := e - t ".°"*Y . H " — —
2  

n y 2  e in “v " "

= /1 4i lK 0  •  1 7'),

with domain D(H"(w, v)) = H2(R2N,,j  and  denote the resolvent of H"(co, y) by

(5.6) R"(co, v; z) = (H"(co, y) — z) -
1 .

By Lemma 2.2 and (5.5) we have the norm limits

R"(co, y; A  + 10) := lim R"(co, y; A: +
o

in B(OR2N), Lz_s(R2N—, s  > 1/2, and

R (u), v; ± 10) = e " - " » '( H "  — (1/2)na v2 + A T- i0)
- l e m • y °

Thus Tpt((1/2)n a y2 +  A ; co, al) can be w ritten a s  follows:

(5.7) 74(( 1/2)nav2 +  A ; co, co') =  C I (v, pi) f e'n-vw — w). YadYa (x.)

x ([ — l a  + l a R"(co, y; — i0 )4]q$1(xb(' •))X Y (co, Y))(x., Ya)dx.

where

(5.8) X4 (co, y) = x'(co, y; x a , ya ) := e inbv' Yb- inow . Y.

Yb = Y b(X a, Y a) •

We define

(5.9)
E"(co, r; xa, Y .) := (27r)N12 (ha Y)i - N C1(Y, 1,00(x .)

x ([—L + l a R"(co, y; A : —  i0)lb]cffixb(• •))e( 0 ), Y))(x., Y .)

1 fG"(co, y; Y .) := E"(o), y ; x a , Y .)dx. ,
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and we denote by i3 the inverse Fourier transform i.e.

(5.10) 4(0 = (2 n r"  f  e "g (Y a)d Y a  •

Then we obtain

(5.11) Tit((1/2)nay2 + ):: co, al) = (na v)N
-

1 .6"(co, y; na y(ol — to)) .

for each w , a i e SN - i , y  >  0  sufficiently near y, and p »  1 .

5 .2 . T his subsection is devoted to show ing the existence of the lim it  of
G"(co, y; ya ) as p . -co and y v , in  a n  appropriate topology. W e write x = x a ,
Y = ya f o r  sim plic ity . x ,, y , a re  linear combinations o f  x , y  with p-dependent
coefficients (see (1.6)). T h e r e  a re  four cases o f pa irs o f the  in itia l and  fina l
2-cluster decompositions a  a n d  b: Case j-k  m eans th e  p a ir  (a, b) w ith  a = ai ,
b = a ,  (1 j ,  k  2). W e w ant to  express V, l a ,  l b  and g  a s  functions of x, y
with parameter p

(5.12)
ma ma Case 1-1: V =  V"(x, y) = V2 3 (x) + Vi3 ( —

m
X — y)  + Vi2 .A, X y  ,

1V1 2

m Ma/a  =  lb  =  Ig (X , y) = I g(x, y) = V i3  (
a

—
m

X — y )  + V 1 2  ( _ ? x X — y )  ,

O (X 1 o ) =  ° I (X9 Y) =  0 1/3(X) 9

Case 1-2: V  = V " and  /a  =  _if are the same as Case 1-1,

/ i, = /r(x, y) = V2 3 (x) + VI , (  
m

a  x  y )  ,
M 2

(xb ) = o(x, y )  = 0,1 (
m
ina x — y ) ,

(
m mCase 2-1: V = V"(x, y) = V 2 3  - -  X  -I- y )+  V 13 (x) + V i 2

(
M 1  XM 

ma ma/ a  = /r, (x, y) = V 2 3  ( — X  y )  + V i2  ( X  y )
M

lb  =  lt , i (X, y) = 1/1 3 (x) + V12 ( 1 1

M i

 X —  y) ,

0(xo = or3(x, y) = ( —m
m

a x + y) ,

Case 2-2: V  = V " and  / a  =  Ig  a re  the  same as Case 2-1,

/ (x , y) = If(x, y) ,

0 ( x )  = 0 111x, =  0 ( x )

Y),
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We see that when p, -+ co, V ", I : ,  I :  and O'fj  have lim its  V ', I ,  .4 , '"  and 013°
pointwise on R2 N  (see (1.4),). T h e se  lim its  have the following forms:

(5.13)
Case 1-1: V "(x , y ) = V23 (X ) ± V13 (X — y) + V12( — y),

i f  (X, y )  = y )  =  VI 3(X — ±  V 1 2 (  —  y )

115p x , y) =

Case 1-2: V  and I f  are the same as Case 1-1,

y) = V23 (X) + V12( — y)

V A X , y) = 07(x — y) ,

Case 2-1: V "(x, y) = 1723(X  +  y) + v13(x) + 1/12(

If (x, y) = V2 3 (x + Y ) + V12( —  .Y) = V13(x) + V12( —  .Y)

n ( x ,  y ) = g(x  + y )

Case 2-2: V ' and I f  are the same as Case 2-1,

/ ( x ,  y) = (x, y) ,

0,T(x, y) =x ) .

Now we investigate xP(u), v) as ji -4 co, v v o . x"(w, v) are given as follows:

(5.14) x"(0), y; x, Y) = (Case 1-1, 2-2)

= e i m "v ' ( v . A ) w . x + i " m b n b v ' ( " I m ) — n ° v ) " ( C a s e  1-2),

=  e
-im

.
v,(v,to.•x+i((mbno/(v,A)/m)-n„v)co•y (Case 2-1)

(see (5.2) for y' = v'(v, ti)).

Lemma 5.1. Define x(0) = x(o); x, y ), w  e  sN-1 ,

(5.15) x(o); x, y) = 4)v°1" (Case 1-1, 2-2)

= e i m"°'''x - i ( ( m/2 ) v°+ 1 )v°1̀ .° Y( C a s e  1 - 2 )

= (Case 2-1) .

Then we have f o r any  6 > 0  and any  multi-index y,

(5.16)J i m  s u p  <x; y>
-a

DY [e(co, —  *on 111 ( R 2 N )  =  O,
p--..co e SN -1

where D = (ax , 6,,) and <X; y> := (1 + Ix1 2 +1.3'1 2 )112 .

Pro o f . W e only prove this in Case 2-1, because the others can be proved
sim ilarly . W e first note that m a v'(v, p) -*mv o a s  p co, v v o . By (5.2) we
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have

mbnbv'

(  2
Mb nb

M .

2 n a )n a v  2  
2m2

n
+   6 2 -

nav  -

2
mbnbM 2 mSince 2 na - ,  we obtain
m M 2 +  M

n b [ +
mblY n a  

v
i

m  nb

mbnbv' 1 2
na y -  ( -

2
mvo + Achp - AT) as co , V Vo .

 

Therefore, in  view of (5.14), (5.15), it follows that

s u p  IIDY [x"(0), A wn IlL(K) = 0
w e sN-i

for any compact set K  in  R2 N  and multi-index y. The lemma follows from this
together with the estimates

1Dvx"(o), v; x, y)1 + /30 x(o); x, y)i Cy o n  R2 N  ,

where C y is independent of it »  1 , co e SN - 1  a n d  v with Iv -  vo << 1 -

We note that there exists a constant C > 0 independent of p. »  1  such that

(5.17) C-1<x; y> 5 e(x, y) 5 C<x; y> o n  R2 N

for p"(x, y)= < —
M a

X ± y; x>, < ±— x - y; x> (j = 1, 2),

ma ma( — x  -  y ;  - - x  -  y > , <—
rna

X + y; ma— x - y>  , <x; x ± y> .
M2 /71 M I

Lemma 5.2. Let k E N U  {0} and let s be a real with s < so  -  N , and assume
(V). Then

(5.18) S — lim If, n x " ( 0 ) ,  = 16° 1 1 3  X(W) in  I-I(R 2 N )
14- ' 0 0

uniformly for a) e S" .

Pro o f . W e se t g":= I , g  :=  11 3°. Then, f rom  (V), Lemma 2.1 and
(5.17), the estimate

(5.19) IDY g"(x, y)1 + ID Ygœ (x, Cy<x;

follows fo r  a n y  y, where C y  is independent of p .»  1. (5 .1 9 )  yields g"x"(co, v),
ex (w ) e I-INR2 N )  because of s <e 0 -  N .  Fix (5 > 0  with (5 + s < s o  -  N .  Then

lim
11- .vo
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we get

(5.20) lIgPx°(co, y) — eX(0 )11k, 5 Ile [e (c o , — )((w)111k, + IlEg' — glx(0))11k,s

5 C(E 11<x ;  y y 6 D v [e (co , — A(0)111,,Ilellk,s+6
IYIgk

+ E 11<x; yr 5D7x(011,4gA — gœllk,s+6) ,
M k

where C is independent o f  » 1, w E S N - i and y near vo . I le il k,s + , are uniformly
bounded for ti »  1  by (5.19). So by Lemma 5.1 the first term in  the  R.H.S. of
(5.20) goes to zero uniformly for w e SN - 1  a s  y —> cc, v o .  On the other hand,
by (V) and  Lemma 2.1 w e have

D 'g' pointwise o n  R '

as i —> co for any y. Thus, using (5.19) and the Lebesgue dominated convergence
theorem, we get lim  (Igo —  g 0. Therefore the second term in the R.H.S.

of (5.20) goes to zero uniformly for co e SI"  a s  /.2 cc.

Lemma 5.3. L et k eN U  {0} a n d  s  0. Then the map T defined by

Tf(y) := <x>- "If(x, y)dx for f  e lit(R 2 N )

is  a  bounded operator from 1-1,k (R2 N )  to  H(RN). Furthermore

D ;T f  = T D I

f or any  y with lyl k  and any  f  e

Pro o f . Apply the Schwarz inequality.

For each w e —(2m)-1.4 x — iv0 co•17 ,  is a self-adjoint operator in L2 (R2 N )
with domain

_  { f  Lz(R2N); _(2m) i A
x f  ivo co • Fy f e L2

( R 2 N ) }

and Y(R 2 N )  is  a  core of th is self-adjoint operator. Therefore

(5.21) H(co):-= —(2m) 41 x  — ivo co • V, + V'

is  a self-adjoint operator with domain D ,  and  9 9(R2 N )  is  a  core of H(co) since
V  is  a  bounded real-valued function. W e denote the  resolvent of H(co) by

(5.22) R(co; z) = (H(co)— z) - 1  .

The next lemma will be proved in Sect. 6 by using the abstract resolvent estimates
of Sect. 3.

Lemma 5.4. Assume (V). L et J be any compact interval in R, fix k E N U  {0}
and s e R w ith 0 k so —  2  and k  + 1/2 < s , an d  se t J ± := {z E C; Re z e J,
0 < +Im z  < 1}  and Bk , , : =  B ( H ( R 2 N ), s(R 2 N —)). Then:
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(i) There exist a large M  > 0  and  a small .50  > 0  such that

sup {MRA(a), v; Z)11Bk,s 111Z(C°; Z)11 < C°Bk, s

87

M I,M 2 > M ,Iv - vol<60
coeSN - 1 , z € 4

where p = (M 1 , M2 ).
(ii) T he norm limits

R"(co, y; 2 + i0) := firn R"(0), y; 2 + is) R(w; 2 + i0) := lim R(co; 2 + is)
E4-c)

exist in Bk, s uniformly f o r A e J, w  e SN - i , p = (M 1 , M 2 ) and y  with M 1 , M 2  >  M ,

Iv —  vol G 60.
(iii) For each f  e  I l s

k ( R ')  and A  e J,

s —  u r n  R "(co, y ; A' + i0)f = R(co; 2 ±  i0)f

in Il k
 s (R2 N ) uniformly f o r co e S N - 1 .

(iv) L e t f  e Hs
k (R 2 N )  an d  A e J. T h e n  R(w; A + i0 ) f  is  an  H k s ( R 2io_) valued

strongly continuous function o f  co e SN
-

1 .

We define

(5.23)
E(co; x, y) := i(2 4 2  - " 2 1,0 0:° (x) x ([ — + R(w; A c̀,' —  i0)Ii,]0;3° x(co))(x, y) .

G(co; y) := E (co; x , y)dx .

Lemma 5.5. (i) A ssume (V). Then

(5.24) sup {  G"(w, 01 1, + 1,11 <p»1,1v-vo l«1
coeSN - 1

(5.25) f irn  su p  11G"(a), — G(c0)M 1, = O,
p - , zo coeSN - 1

v- .vo

w here M  111,1 is the  H (R N )-norm and G"(co, y) = G"(co, y; y), etc. (see (5.9)), and

sup { • • •} := sup { • • •1
g »1 ,1 v -v o l« 1 M I,M 2 > M ,Iv -vo l< 6

coeSN - 1 t o e S "

f o r some M  > 0  and (5 > O.
(ii) I f  we replace (V) by (V)' and M M then (i) still[(N-1)/2]+1,(N+1)/29

holds ( [  ]  is Gauss' symbol).

Pro o f . (i) Here we denote by Mk,s th e  Hs
k ( R ') - n o r m . B y (5.9), (5.23)

a n d  Lemma 5.3 we can see that it suffices to prove

(5.26) sup { <x >N EP (0 ), I. +  < x  >N E(0 )) M 1, <  co
cue5N - 1

su p  M<x>N [Eu(co, y) — E(w)] M1,1 = O.
w esN-1

(5.27) urn
14 — . 0 0



(5.29)

sup
A »1 ,1 t, - v o l « 1

(0  e  siv-1

lim  sup II <x>"Egif Vilx"(co, -  (AT if 0 11° X(w)] 111,1 = 0 .
cL-co

{11<x>N egvainxP(co, v)II 1,1 + 11<x>N OTIf o,Tx(0)) 111,, } < co
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W e first note that

(5.28) (vo(N-2)/2(nano(N-1)/2(vna)i-N as it -) oo ,y  -) y 0  .

By Lemmas 2.1 and 5.2, we have

Set

(5.30) f"(o), v):= R"(a), y; 2 -  i0 )1 0 73 x"(o), y) ,

(5.31) f (0 )):=  R(0); - i0)Ig° 0 i3° X(c0) •

Then (5.26) and (5.27) can be reduced to the following estimates:

(5.32) sup { II <x>N OV :f '(0), 0111,1 + II <x>NOVf f  (0111,11 < C C  ,
/L>) 1 .1v - vo

E

(5.33) lim  sup II <x>N EOVU'(0), y) - f  (04]111,1 = 0 .
e  sN-1

Fix s  w ith 3/2 < s < E 0  —  N .  Then, by Lemmas 5.2 and 5.4, we have

(5.34)s u p {I1P(0, v)111,„ + < co .
g » 1 , I v  -  vol «1

co e sN - i

By (5.34) and the following estimates

(5 .3 5 ) II <x> Y>1+8 ./Y (<x>N OTif)111,- < cc ,

for I TI 1, we obtain (5.32).
Let 0, w  E SN - i . W e have

sup II<x; y>1 +sDY (<x>N OM)11L. < co
it » 1

(5 .3 6 ) IlfP (co, - f(w)II II R"(0), y; — (0)11 Bi .s lIg x"(0), y) — gc° x(0))111,,

+  IIER"(0), 1); — (0) — R(0); — i0 )19x X(8 )111,-s

+ IlKu (c0 , y; — i0 ) R(Ct); — i0 )11131,s lle(X( 0)) - Z(0 ))111,s

where Bk , ,  is  a s  in  Lemma 5.4, and g", gm ' are the sam e as in  the proof of
Lemma 5.2. By Lemmas 5.2 and 5.4 (iii), the first two terms go to zero uniformly
for co e 5N -1  a s  it -4 co, y y ,  for fixed O. The operator norm in the third term
is uniformly bounded for co E SN - 1 , »  1 and y with Iv - v o l «  1  (Lemma 5.4
(i)) and ex (co) is  an  Hs

i -valued strongly continuous function of co. Thus, we
see that for any e > 0 and 0 E 5N - 1  there exist M > 0, (5 > 0 and a neighborhood
of 0, U(0), such that

IIf (0 ) , — f(0))111,-s < E = (M1 ,  1W'2 ))
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if co e U(0), M i ,  M 2  >  M ,  y  — U01 < 6. Therefore, by using the  finite covering
argument, we see that

(5.37) lirn s u p  Ilf"(w, y) f(w)11 , _s = 0 •
g-■co, v-, vo e SN - I

To prove (5.33) we write

(5 .3 8 ) <x>" EOM f —  If f(c0)] = <x>N  141:[ f "(co, — f (04]

+ <x>'' EOM —  If] f(co)

By (5.35) and (5.37), the  first term tends to  zero in  111(R2 N )  uniformly for co  as
y -4 co and y y0 . W e next prove that the second term of (5.38) tends to  zero
uniformly for co as ti cc. F irst w e  c la im  tha t f(co) is H l s( R ') -valued strongly
continuous in  co. T o  se e  th is  w e  w rite  for 0, w e S N - 1

(5.39) f(co) - f(0) = (R(co; AT - i0) - R (0; AT - i0))4 3 0;°x(0)

+ R(co; - i0)1 px (w ) - x (0)).

The first term goes to zero in  H I
s o l 2 N ,

)  as co -+ 0 by Lemma 5.4 (iv). Similarly
for the second term  by Lem m as 5.1 a n d  5.4(i). This proves th e  continuity of
f(co). Now we will prove

(5.40) lim  sup 11FAf( := <x>N - .
A - 00 co e C011 1, 1 = 0  ,

W e have for co, 8 E 5N - 1

Fuf ( 0 ))111,1 IF/L.1(0 )11i + C II<x; y > i +S Dy m
111A l f ( CD ) f  Mil 1, - .5 •

IY1 1

By Lemma 2.1, (V) and f (0) e W s(R2 N ), the first term tends to  zero in  1-11(R2 N )
as tt o o  for fixed 0 e 5N - 1 . In  view of the continuity of f(co) and the bounded-
n ess  E li<x ;  y>i + TY P II L-  (see (5.35)), the argument sim ilar to that in  the proof

Iv! 1
of (5.37) yields (5.40), and  hence (5.33).

(ii) F ix  s i  w i t h  UN -  1)/2] + 1 + (1/2) < s, < 8 0 -  N .  I f  w e  replace s,
111(R 2 N ) and

s ( R 2 N ) b y  s 1 , H r( R 2 N ) a n d  l e s, ( R ') ,  respectively (M  =
UN -  1)/2] + 1, L = (N  + 1)/2) in  the  proof of (i), w e obtain the  desired results
in  the  same way as  above.

5.3. W e fix  co e SN - 1  i n  this subsection. W e first introduce a  a  family of
( R N+1) ,  R iv+i _ R ric  xoperators {L0 (q)}  (?) e H .) in 12

L .(n):=-(2m ) - 1  .%1 x - iv 0 0, + V x(x, tw + P1),
(5.41)

D(L.( 11)):= { f E L2 ; -(2m) - 1  / x f  -  iv o e, f e L2 }.

By (V), L o (rl) is  self-adjoint for each ti e H ., a n d  Y(R N ' )  is  a  core o f L.(q).
Furthermore the  norm limits

(5.42) (L .(q) -  A ± i0) - 1  := lim  (L .(n) - A + i) - 1

e4, 0
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exist in B (O R N ) (31 0 R ) , 
L 2 ( R N )  

Q9 L.- 2

5 (R)) uniformly for A in any compact set
in R, where s > 1/2 (see Lemma 4.1).

By the correspondence f(x, y) -+f(x, toi + ( t  e  R , e H .) we have L 2
( R 2 N )  =

L (R N )d,7 (see [R-SPV, XIII.16 for constant fiber direct integrals). Then,
f/L,
by (5.5) and (5.41), we have

(5.43) H(co) = L.(q)clq , (H(co) — z) - 1  = f  (L.() —  z) - 1

for z e C \ R . T h u s , for each f  e L 2 (RN  x  RN ) and z E C \ R, we have

(5.44) (R(co; z)f)(*, *co + q) = (L .(n)—  z) - 1 f (*, *co + ri)

in L2 (R„N x R f) for a.e. e  1 7 .. Here we note tha t (L.(g) — z) - '  operates on the
variable x , t  (the first *  stands for x  and the second *  for t). The limiting
absorption principle for H(co) (Lemma 5.4) and L.(ri) ((5.42)) together with (5.44)
yields the following lemma.

Lemma 5 .6 . Assume (V), and fix A  e R and f  e O R 2 N ) (s > 1/2). Then

(5.45) (R(co; 2 — i0)f)(*, *co + g) = (L.(q) — A + *co + q)

in  L (R N + 1 ) for a.e. E

Pro o f . Set

13,(7):= II<*, *co + nY s [(R(co; A — ie)f)(*, *co +

— (R(co; 2 — i0 )f)( 4., *co + n)]q.2(R-1)

for each e > 0 a n d  e H . .  Then, by  Fubini's theorem, lic (ri) is well defined for
a.e. e H .  and

114(011Licno,)  =  [R(co; 2 — te) — R(co; A — iO)]f

Since the R.H.S. goes to zero as e 10 by Lemma 5.4, we can choose a  sequence
El > E2 > • • • - 4  0  and a null subset e0  o f H . such that as j  co, B , ( 7 ) - .  0  for
every ri e 17.\e 0 . This implies that

(5.46) l i ( R ( a ) ;  2 — ic.).f)(*, *co + (R(c0; 2 — i0 )f)(*, *co +

as j  co for every ti e 17.\e 0 . On the other hand, there exists a  null subset et
of H . such that for every n e and all j,

f(*, *co + n) E  L ( R N + 1 ) ,
(5.47)

(R(co; A — isi )f)(*, *co + n) = (L.(ri) — A + ei )- 1 f(*, *co + q)

in L2_,(RN + 1 ). Thus, by (5.42) and (5.47), we have

(5.48) s — lim (R(co; A — iej )f)(*, *co + q) = (L.(q) — A + i0) - 1 f(*, *co + ?I)

in L2_,(RN + 1 ) for every ri e 17.\e By (5.46) and (5.48) we get the desired result.
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I n  Lemma 5 .8  w e sha ll p rove  tha t (5.45) holds fo r  a ll  n e H .  under the
stronger assumption (V)' if we require a  regularity of f. To th is end we review
the trace theorem.

Trace Theorem (see e.g. th e  proof o f  Theorem IX .38 o f  [R - S ]II). L e t p,
q e N, and let o- be a real with o- > p/2. Then there exists a constant C such that

f (z , *)I1L2( R. ) c lIf  II  ip (R ,

f o r all f e 99 (12" x Rq) and z e W . In  particular, the trace T'z f := f(z, *) e L 2 (Rq)
is w ell-def ined f o r  a l l  f e IPT(RP x R q ) a n d  z e W . Furtherm ore  7 ;  is a
WI-1(RP x  W), L 2 (Rq))-valued norm continuous function o f  z e W.

For e a c h  E 17.  we define a map yn from Y(R 2 N ) to ,99 (RN + 1 ) by (y,,f)(x, t):=
f(x, to) + y , f  is  the restriction of f  o n  a  p la n e  o f  codimension N — 1  in
R 2N. T h e  trace  theorem  guarantees that yn c a n  b e  u n iq u e ly  e x te n d e d  to  a
bounded operator from 11k (R 2 1") to L 2 (R 1 )  for any k > (N — 1)/2, and tha t yn

is a  B(I-P(R 2 N ) ,  L 2 ( R N + 1 • •
-)) valued norm continuous function o f ri e 1 7 . .  Further-

more we have

to a  bounded operator from H s
k (R 2 N ) to g (R N ' ) ,  and 7„ is a B(Hsk( R 2 N ) ,  O R N + 1 ) ) . .

Lemma 5.7. Fix  k > (N — 1)/2 and s E R . Then yl  can be uniquely extended

valued norm continuous function o f  ri e

Proo f . The relation yn<x; y> ' =  <X; toi +  17)_Sy
n  and the trace theorem yield

yn e  B w sk( R 2N) ,  L 2s ( R N-1-1—)). The continuity is easily verified.

Lemma 5.8. A ssum e (V)', a n d  f ix  A  e R ,  s > [(N — 1)/2] + (3/2) and
f  E  HI(N-1)12]+1(R2N) . Then

(5.49) ynR(o); A — i0)f = (4, (7) — 2 +  i0) - 1 ynf
i n  L 2 _

s ( R N - F 1

) f o r all n e

Proo f . R(o); 2 — ie) m ap s 1-4 2 ] ± 1 ( R 2 N )  in to  Ht(N -1)/2]+1 
( R 2 "  )  f o r  e a c h

s > 0, and we have

(5.50) ynR(co; 2 — ie)f = (1,0,(n) — 2 +  ie )'y n f
in  L 2 (RN-1-1.) fo r a.e. e  i1, (5.44) and  Lemma 5 .7 .  O n  th e  other hand, it
is  e a s y  to  s e e  th a t  (L.(q) — 2 + is) - ' is strongly continuous i n  ri e H .  a s  a
B (L 2(R N+1.—))- valued function. Thus both sides of (5.50) a re  strongly continuous
in  ti e H . in  L(RN4-1., D 

y
) Lemma 5.7, and  so  (5.50) holds for all e H .  W e

fix ne //,,,, and let ç 1 0 in  both sides. Then Lem m as 5.4 and  5.7  yield

yn R(o); 2 — ie)f —> yn R(o); 2 — i0)f in  L (R N + i)

Since yn f e L!
( R N + 1

)
,  

we get

(L.(n) — 2 + iE) l y,,f (1, ,0(q) - 2 + iOr l Yq f in  L2_5(R1+1)

by (5 .4 2 ). This completes the  proof.
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Lemma 5.9. We assume (V). Then we have

(5.51)( 2 ) ( N _ 2 ) / 2  G ( w ; toi + n)d t = V ac(vo w, n) — ba p

f or a.e. e  H .. (S e e  (1.24) f o r Sit(v o w, n).)

P ro o f. By (5.23), we have

( 5 . 5 2 )( 2 7 )(N-2)/2 G(co; toi + n)dt = (2 )( ' 2 ) /2 f  I  E(w; x, toi + ri)dxdt

for a.e. ij e 1 7 . .  Using Lemma 5.6 and (5.23), in  th e  R.H.S. of (5.52), we get

( 5 . 5 3 )  p i p-2)/2 if E(co; x, toe + n)dxdt

= ivo - '{ —(g)(x)If (x, toi + al°(x, toi + ri)x(a); x, toi + ri))

+ of(x)Il(x, toi + n), ((L .(ri) — ) + i0) - 1 4'(*, *co + ri)V ;(* , *co + ri)

X *0 ; *, ± ti)) (x ,  t))1

for a.e. e  1 7 . .  By scaling t vo t , L ( i )  turns into

Lo,(n):= —(2m)'Ax — ia, + v2 3 (x)+ v1 3 (x — vo w) — ri) + v12( — you° —

(for Case 1-1, 1-2)

:= —(2m) - 1 4 x — iô + V23 (x + v o t w  +  + v13(x) + v12(— votw —

(for Case 2-1, 2-2) .

Thus this scaling yields

(5.54) the  R.H.S. of (5.53)

=  —  i(e (x )/:(x , vo te) + T), n(x, v o to) + Ox(0); x, y a w  + 11))

+ i(((il co (q) — .. (*, vo * w + ri)e(*))(x, t), y0 toi + n)

x  Opx , v o tco + 11)X(co; x, votco + r1))

T o  finish our proof, in  view of (5.53), (5.52), (4.8) and  (1.24), w e have only to
show tha t (5.54) is  equal to  the  R.H.S. of (4.8) for = vo w  and each ri e
Case 1-1. W e can obtain the  desired result by observing that

(5.55) /°(x, yo u° + = Wc(vo co, ri; x, t) for c = a, b  (see (4.7))

(5.56) x(a); x, vo ta) + = e"T - 1 )t )(x, v o tw + = cl(x ) ,

(5.57) ilTt(L (01) — — i0 )-
1 = —  i0) - 1 e - i A Tt .

,
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Case 1-2. (5.55) and  (5.57) hold  a lso  in  th is c a s e . Instead o f (5.56), w e have
only  to  note that

x(co; x,v o
tw + n) = eonvo0x-iommv02+Aoi-AT)t

(5.58)
O (x, V0 toi +  n) = 0.,Nx — y a w  —

Case 2-1. W e use new  variables (X , s) = (x  + v o tco + t )  in  th is case and the
next c a s e . In  terms of the  new variables we can write

(5.59) Ff(x, vo tco + ri) = We(vo co, n; X, s) for c  = a, b ,

(5.60) x (o); x ,  v o  t o )  +  n) = e -
onvow•x+ WM/2 )llo  2 +  — Aps

(5.61) (x) = 45 (X — vo sw — n),

(5.62) Tolf(x, yaw  + ri) =  g (X )

(5.63)
(L.(q) — —  i0) -

1 = ( — (20 -
1 Ax — —  i v o w • V x  + V 23(X ) + V 13(X  —  vosw —

+ V 12 ( —v 0 sco — n) — —

= U(— (2m ) - 1 .61x  —  iô. + V2 3 (X ) + 1/13 (X  —  v o sco — n)

+ V 12 ( —v 0 sco — n) — i0) - ' U

where U  =  e -
unv0cox+iong2002+AT)s, a  unitary multiplication operator. N oting that

the  Jacobian fo r (x, t) —> (X , s )  is  one, w e can com pute th e  R.H.S. o f (5.54) to
obtain the desired result.
Case 2-2. W e use the same variables as a b o v e . (5.59), (5.61), (5.63) hold also.
Instead of (5.60), (5.62), w e have only  to  note that

(5.64) x(co; x, vo to) + n) = e";' - '1)s , 07(x, yo u° + n) = g (X  — vosw — q).

W e have show n that (5.54) equals th e  R.H.S. of (4.8) for = vo w  and  n e
and have finished the  proof o f Lemma 5.9.

L em m a 5.5 (ii) show s G(w ) e H 21 ' (R '') i f  w e  assum e (V )'. Thus
G(co; toi + n) e 143,+ " 2 (R i )  c  L 1 ( R )  is well-defined for each n e / / „ in  view of the
trace theo rem . A t the  end  of this subsection we prove the  following.

Lemma 5.10. W e assume (V)'. Then (5.51) holds for all n e 17„) .

Pro o f . By the trace theorem the  L.H.S. of (5.51) is continuous in  n e 17,,„
and by Lemma 5.8 and the smoothness o f Vi i , OT, g the R.H.S. of (5.53) (= the
R.H.S. of (5.51)) is continuous in  n e H .  H e n c e , (5.51) holds for a ll n E

5.4. W e assume (V)' and give the proof of Theorem 1.1 in  this subsection.
The following lemma will be proved in Sect. 7.
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Lemma 5.11. Let k >  1/2, s > (N — 1)/2, and h e C(SN - 1 ). Then f o r any
e > 0  there exists R o  = R o (k, s, E, h, N) > 0  such that

(5.65) f F(R(ol — 0)))h(a)dw' — h(w) f F(n)cirl Ilk,s

f o r all R Ro ,

Js

w e SN - 1  an d  F e lisk(12N ).

„,

Remark. F(R(* — co)) E L2 (S N - 1 )  and F(ri) E  (H.) c L '( [1 0,) are well-defined
by  the trace theorem.

Proof o f  Theorem 1.1. W e fix  f e C ( S - i )  an d  se t M  = [(N — 1)/2] + 1,
L = (N + 1)/2. T hen  by  L em m a 5.5 w e have 6P(co, -6(0 ) E H (R " ) ,  where
6#(co, v; 6(w; are the inverse Fourier transform of G"(co, y; y), G(o); y), respec-
tively. T hus apply ing  L em m a 5.11 with k = L, s = M, h = f, F = 6"(o), y), and
using (5.11) (see (1.16)), l i m  v n  00, we obtain

(5.66)

(7 4(( 1/2 )nav2 +  2 G:)f)(0)) — (f *6 (0 ); q)dq)f (w)
17,,

(vna )N - 1
 f

. 6"(o), y; yna (oi — co))f(ol)dco' — ( I  6" (o), y; ri)dri) f(co)
s N-L

+ II &I(0), ri) — 6(o); 011L1u u lf(0)1

0110(w, v) M,L C11&(0i, G(W)11 M ,L11 f 4.117,0

where B = y), which is independent of co e 5N -1 ,  satisfies 0 —) 0  as p —> co
and t) —) yo ,  and C is independent of co, t) and p »  1. In the last step we have
used  the following estimate, which follows from  the Schwarz inequality and
Lemma 5.7,

(5.67) ii(q) const. ii(11)11a p i j

const. II/4161(R )

for u e (RN ). Thus, by Lemma 5.5 and (5.66), we get

(5.68) lim (TA((1/2)t)2 + ) = 6(a); ri)dn) f(co)

uniformly on S ' -1 . N ow  direct calculation yields

(5.69) 1-4(odq = (2 )(N-2)/2 u(tco)dt
J i i J R

for each co e SN '  and u e .9112N ). By the Schwarz inequality and the trace theo-
rem we have

(5.70) Ilu(*(0)11/)(R) c o n s t .  Mu(*(.0)11 LI(R) c o n s t .  ullunitN)
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for any u e .TO R N ), regarding u(*(o) as the  trace  o f u  t o  the  one  dimensional
subspace {tco; t e R I  in  RN . This together with (5.67) im plies that (5.69) holds
for any u e Hr(le1). In  particular we have

(5.71) 6(0); t i ) d n  = (20N-20 G(co; tco)dt
n. JR

=  W l lo W ,  0) —

for a ll o) e V ' b y  L e m m a  5.9. Theorem 1.1 follows from (5.68) and  (5.71) if
we recall the  definition o f  WA).

5.5. W e assume (V) and prove Theorem 1.3 in  this subsection. The next
lemma will be proved in Sect. 7.

Lemma 5.12. L et 0 < s < k — 1/2. Then fo r  any  E > 0 there exists R o =
Ro(e, k, s, N) 1 such that

RN- 1  f I F(R(co
,(0 ))1 2  day_ I F(n)12 811F111,s

for all R Ro , w  e S '  and F e Y ( RN ).

W e define J  b y  (Jf ) ( )  = 7 (0  (the complex conjugation) a n d  PÇ, gi"A by
(PV)1x, := 46;"(xcV(.1)c),

(5.72) := s — u rn

for y = a, f i, c = D(y). Since

J i5v  _ 1 7  , jeitTV jeitlio for y = a, fi,

we have, by  (1.10), WA = ./1/VAJ and so

(5.73)S  =

where g:9 := 1,-V-p*I7V;3"_. W e can see that Ofg:fl Zrj * is decomposable in  terms of a
family of opera to rs { kW }  ([A-J-S], 15-3):

(5.74) Z :g 4 Z r = {g4(A)} (see (1.15)) .

F o r y = a, f i w e note th a t  JZr (A ) = (AP', w here  f is defined  by  (:ig)(w)
g(— co) for g e E = L 2 (SN - 1 ). Then we have by  (5.73), (5.74)

(5.75) S„(.1) = ALp(A)*.-1 on E , 2 e (AL, oo)\AP ,

where AL := max (2, 4), A" := {the thresholds of H"} U crp(H " ) .  Since both sides
are norm continuous by Theorem 2.3, (5.75) holds for all 2 e (A L, co)\A ". Let
t fl (A, co, oY) be  the  integral kernel o f g(2) — SOEfl. Then, by  (5.75), we get

(5.76) TA(2, , co) = —w') (cf. (1.16)) .

This equality holds for a ll (2, co, co') e ((4a, oo)\ A") x x 5 N - 1 , because both
sides are continuous in  a ll variables (Proposition 2.4).
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The arguments up to subsection 5.3 are valid even if we replace (the initial
channel) a and (the final channel) fl b y  /3 and a ,  respectively, and then relpace
0.;" and 07 by and 07, respectively for y  = a, f i. In the definition of OL(co, y; ya )
and G(w; y) (see (5.9), (5.23)), w e replace a and f i  by fi and a, respectively (the
initial speed y is replaced by y' (see (5.2)), and replace 0;" and O y X  by Of,' and
07", respectively. D enote the resulting function by p"(co, y; Y b )  a n d  e(w ; y ).
Then we have

14(A , to, = (n b y')N - 1  fio(co, y; nb v'(w' — con ,
(5.77)

A = (1/2)na v2 +  A = (1/2)nb v' 2 +

in the same way as (5.11). Thus, in  virtue of (5.76), the total cross section is
represented as (see (1.17))

(5.78) oW0 ((1/2)n0 y2 + )4; co)

— (27r)N-1(nay)i_N(nby')2N-2 Ç le ( — (0 , I); nb v'(ol + w))1 2 dco' .

W e have

(5.79) 0-4((1/2)na v2 + 2:; co) — (270N - 1 11P( — co; *)11,2( ru

10-1Ç((1 /2 )11.0 + /14; (.0) — (2 7 0N - 1 111)11 ( — (0, v; )11 I*.../,2 2(110).
( 2 7 0 N-10 .  _r  (  ( 0; *)I1L2 u u  + I '(—w, I ) ; * ) L 2 ( 1-1,0)

x  I II V( — 0 ); *)11 L2( H.) — v; *)111,2( /7,) I •

Under assumption (V), Lemma 5.5(i) holds even if G"(w, y; ya )  and G(a); y) are
replaced by p"(w, y; y,,) and p'(co; y), respectively. Thus, by using the trace theo-
rem, Lemma 5.12 and (5.78), we obtain

, 2(n.)(5.80) lim cria ((1/2)na v2 + co) = (27T)N - 1 11P")(—co; *)11
14, 00, V- q , 0

uniformly for co e SN - 1 . Since

p o p (  ( 0 ; =  ( 2 7 ) —(N-1)/2 ei4 .1  ( 2 7 )-1/2 f tC0 t i)d t  chi

for c  E H ., the R.H.S. of (5.80) equals

(2 7r)N-2 w ; tw  + ti)dt
JR

 

by  Parseval's equality.
We define ti/N , t i ; x, t) by replacing 07 by in the definition of t//7(, ri; x, t)

(see (1.20)) and define

2
dn

(5.81) .(27±(, := s — lirn q; 0, t)1./;;,°(, *, t) in L2 (RN )
t-
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for y  =  a , /3 . Then, in  the  same way a s  Lemma 5.9, we have

(5.82) (27 ) (N —  2)/2 , o ;  to.) + odt

= v12("°' " )d t (i2- 0 ( — vow, n), fja+( — vow, n)) — 6fla

for a.e. j  E 11m . Thus, by  (1 .24), (5 .80), w e have on ly  to  p rove  th e  following
lem m a to finish the proof of Theorem 1.3.

Lemma 5 .1 3 . For y a , ,6 and e R" \ 101, E H ,  w e have

(5.83) n) = QT(, n) .
Pro o f . Recall that n; t, s) i s  t h e  propagator of h m ( t)  (see (1.18)).

Q(t, s):= JU( —  n; — t, — s)J, (s, t e R) obviously satisfies (U-i) and (U-ii) of Sect.
1. Moreover we have

s) = Jh_ 4 , n (— t)U(— n; — t, — s)J

= h 4 , n(t)Q(t, s)

w here  w e h av e  u sed  h , , ( t )  = h_,,,(— t) i n  t h e  la s t  s t e p .  T hus w e  see  tha t
Q(t, ri; t, s) f o r  a l l  s , t e  R  b y  th e  uniqueness o f  propagator. Since
.47( —  ri; x , t) = n; x, —t) for y = a, ,(3, it follows that

fjy± ( = s —  lim  U(—  ri; 0, t) 7( —  n; *, t)
t— ±co

= s —  lim  JU(, n; 0, —t)J1-143 (—  n; *, t)
t—±co

= n)

§ 6 .  Proof o f Lemma 5.4

We shall prove Lemma 5.4, under assumption (V), by applying the abstract
theorem  ob ta ined  i n  S e c t .  3 .  W e  f ix  s  e  R  a n d  a n  in te g e r  k 0  w ith
0  k Eo — 2, k  + 1/2 < s ,  and a compact interval J  =  [e 1 , e ]  in  R  throughout
th is sec tion . W e m ay assume a = a, = {1, (2, 3)}, since th e  o ther case can be
treated similarly.

Let

(6.1) A, := (1/2i)(x • 17 „ + f7 „ • x + y • Vy Vy • y)

be the generator of dilations on R2 N , which is self-adjoint in y e  = L2(R2N) with

= 5I(R 2 N )  a s  a  c o r e .  F o r  a  t r ip le t  0 = (a), ft, y) with co e S N - 1 , »  1  and
— y0 1 «  1  fo r  fixed v, > 0, we define a  operator

(6.2) A , := n A0 +  yo) • y = na- i e - ca• y A o e in“vco • y

and for co e SN - 1  we define

(6.3) Aca°, := vo w • y .
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We also write

(6.4) H, = 11"(co, y) = H" — ivw•V y( s e e  ( 5 .5 ) )

for a triplet 0 = (co, i ,  v). A 0 , A a,  and H , are self-adjoint operators in  Y e with
9 '  as a core. A  direct calculation yields

2
(6.5) i[Ho, A o ]  = —

2

H9  —  [A 0 , ViL] — V" + y 2 ,
na n a n a

ma(6.6) i[Ao, V"] = 1/11 ) (x) + VA )  ( 11±
9  

x —  y) + V A )  (—
M

 x  —  y)
2

on .9 ', where V(x) = (x • V x )/ Vi k (x) (see (5.12)). Thus th e  R.H.S. of (6.5) can
be ex tended  to  a  bounded operator from  H 2 (R2 N )  to  Y e, and the  commuta-
to r  i[Ho , Ao ]  defines a self-adjoint operator iHo" )  i n  Y e  I f  e  so ,  the i-th
commutator

(6.7) it  [A0 , [..., [A 0 , ...]] = V g(x ) + V A ) ( il l a x — y) + 17 2(- 11± x  —  y )
M

2

is bounded by (V). Therefore, by using (6.5) we see that the /-th  commutator
i i [...[H,, A 9 ], ], A O on can be uniquely extended to a self-adjoint opera-
tor i' H 9  in  Y e for co.

Let 0  be a  C'-function on R  such that 0 1, 0 1  on J  and s u p p  c
[e i  — 1, e 2 +  1] (supp =  support).

Lem m a 6.1. L et d  be a  p o s it iv e  integer with d k + 1.
(i) There exist M > 0 and 60 > 0 such that assumption 3.1 (H =  ) t', H = H 9 ,

A = A 9 , I = J) is satisfied f o r  all tr ip lets 0 = (co, y, v) with co e S N - 1 , 4 u = (M 1 , M 2 ),
M1, M 2 > v c d  <  6 0  where we can take Co ( 1 / 2 )  in (H -v ) . Furthermore,
Ii'H9 Ro (i)  (e = d + 1 )  is uniformly bounded f o r  0 = (co, y, v), where we
write

(6.8) Ro(z) = (He — z) -
1

(ii) F or co e S N - 1  assumption 3.1 (H = H = H(w), A = A , I = J) is satisf ied,
w here w e can tak e C o =  v0

2 i n  (H -v ) . Furthermore, i[H(u)), = v 0
2  a n d

Aco ,̀1, ...], = 0  i f  2 e.
Proo f . (i) ( H - i) is obvious because is  a  common core for H , and A,.

(H-ii) follows easily from

(6.9) = e —in c,vco• ye itA o ln a e in“vco• y

We can verify (H-iii), (H-iv) by using the arguments before this lemma and the
fact that 9 )  is  a  common core for H , and A , .  Since na  —0 co as it —0 co, we
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obtain by (6.5)

2 1 2
(6.10) 16(14)iH0(1)0(He) ( —

n a  
(e) — 1) — —

n a  
[A0 — —

n a
+ v 2 )0 ( 1 4) 2

_> (1 / 2)y 0 2 ci0(110 )2

fo r a ll  B = (co, p, y ) w ith  co e SN - i , p »  1  a n d  Iv — v0 I «  1 .  T h is implies (H-v)
with C, = (1/2)v0

2 . The uniform boundedness of

(6.11) = Il((2/na) ( 1 -10 +  bounded operators)Ro(011

(t = 1, ..., d + 1) follows from (6.5), (6.7) and (V).
(ii) Y  is  a  common core for H(w) and  f ra'„ and (H-i) is satisfied. Noting

that

D(H(o))) = { f e  L2 (R2N) ; ( 2 m )  1  A x  iV 0 C 0  V y ) f  e L 2 (R2 N)}

we can easily see that (H-ii) holds. (H-iii)  (H -v ) fo llow  from  i[H(w), A ] =
on  Y .  This completes the  proof.

W e set SE, := {(9 = (w, p, y); M I ,  M2 > M ,  l —  Vol < 6 0 , CO e SN- 1, where p =
(M 1, M 2)}. H ere M  and 6 0  a r e  a s  in  Lemma 6.1.

We denote any o f  —iOx i o r  —iay i  (j = 1, N ) by D .  F or any f
and z e C \ R,

(6.12) e-"R (o); z )f  = (e - "D H(w)e" —  z ) -1 e - toy

Thus e - "R (o); z )f  is strongly differentiable in  t e  R  and

e Hi(R2N)

(6.13)
d  

e -tto R ( 0 ) ;

dt
= —i{R(o); z)D — R(o); z)(DV")R(co; z)} f ,

t=o

   

which implies R(o); z) leaves 111 (R 2 '')  invariant and

(6.14) DR(o); z) = R(o); z)D —  R(o); z)(Dr1R(w; z) o n  H1
( R 2 N )

for each z e C \ R. By using (6.14) and (V), we see that

(6.15) sup IIR(ar, z)11 s(He) < Go
coeSN - i,zeK

for any compact set K  in  C  \ R  and t  0 , where 11‘ H t(R 2 N ,.) In  th e  same
way a s  above for any compact set K  in C  \ R  and t  0  we have

(6.16) sup 11R0(Z)11 B(He) < 00 .
Oe ZzeK

Furthermore R 9 (z) (z E C \ R) leaves 99 invariant (e.g. Proposition 1.3 of [11), and
so by (6.1) we have

(6.17) i[R e(i), =  —iR o (i)[H o , A dR e (i)

=  - -
2

R0 (O +
a

[Ao, V IL] + —
2

(V P — i) — v2 } RAOna

on •99.
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Lemma 6 .2 .  Let e be a nonnegative integer. Then

sup na' IIR9(011 B(H1 , HI + 1)  <  C °  •
0e

P roo f. By (6.16), (V) and the resolvent equation

R e (i) = (Ho —  V" — — (Ho —  V" — i) ' V"Ro (i),
it suffices to prove

(6.18) sup na- '11(14 — V L— i) - 1 11 B(111 , He + I )  <  G °  •
e Zr."

Thus by (6.4) and the Fourier transform it suffices to show that

11+1 171+ I  (6.19) sup < oo .
1

(co, v) 1(2ma)- 11 12 + (2na r 1 1n12 + vw•nl + 1
4,rye RN

Taking account of the inequality 2ab a 2 + b 2 f o r  real a, b, we have

11+ I  +  1 -5 1(1/2 m.)1V

Therefore (6.19) follows.

Proof of (i), (ii) of Lemma 5.4.
(I) First we give the  proof for R(o); z).

W hen k = 0, we fix s > 1/2 and  d = 1. By Lemma 6.1(fi) and  Theorem 3.3,
we have

(6.20) sup 11<w•YY sR( 0 ); z)<co • Y› - s 11 < co
z eJ ± ,coeSN - 1

and the  norm limits

(6.21) lim <o)• y>'R(o); I  ± is)<w • yYs

e x is t  i n  Y e uniform ly f o r  co e S" - i  a n d  2  e J. F ro m  th is  to g e th e r  w ith
<co • Y>s<x; 1, <X; Y> := ( 1 + 1x12 + 1Y12 )112 , the desired results follow.

W hen k  1 ,  w e have only to prove

(6.22) sup 11<x; 0 -  slY R(w; z)<D>- k <x; Y> Il <  cc ,
Z E J ± ,co es N - I

(6.23) lim 11<x; yYsIY[R(w; 2 ± is) — R(co; 2 ± is )] <D> "<x; Y> - s 11 = 0

(<D> := (— x  — dy + 1) 1 ( 2 )

uniformly f o r  A e J, w e S" - 1  f o r  s > k + 1/2 a n d  ly1 k. B y  u s in g  (6.14)
repeatedly and  by taking account o f  <x; y>slY <DY k <x; yYs e B(.1€9) fo r ly1 k,
in  order to prove (6.22) and (6.23), it tu rns o u t to be sufficient to show

(6.24) sup 11<a) • Y ›- s R (0); z) Vy7 R(co; z) Vy7 R(co; z)<aP Yrs11 < cc,
zeJ,,w ESN - 1

(6.25) lim 11<co yYsIR(o); 2 ± is)V1,7 R(co; I  ± is) .... Vy7 R(w; 2 ± is)

— R(w; 2 + is')1Ç2
3 R(w; I  ± is') V77 R(w; -±i0 }< 0  Y> = 0 ,

+ (1/2n.)1712 + vo)•)/1+ na (v2 + 1) + 1 + (m0/2).
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uniformly for e J, w  e  SN ' ,  w here  1;7 = DYJV  a n d  1 < e  k, k
(j = 1, ..., ?). Since [V1,7, A ] =  0 for j = 1, ..., 0, taking account of Lemma
6.1, we can apply Theorem 3.3 with H = .1e, H  = H(w), A  = A , I  = J,  d = e + 1
and Wi  =  Vy7 for j = 1, ..., e to conclude (6.24) and (6.25). This completes the
proof of (i), (ii) for R(co; z).
(II) We next prove (i), (ii) for Ro (z) = R"(co, y; z).

When k  = 0, we fix s  with 1/2 < s < 1 and shall show that

(6.26)s u p < x ;  yYsR0(z)0c; < cc,
z E J , ,O E

(6.27) lim sup II <x; yYs[Ro(A ± je) — Ro (). ± le')] <x; y>'11 = 0.
,c' 4.O A eJ,O E

By the resolvent equation we get

(6.28) Ro(z) = Ro (i) + (z — i)R 0 (02 + (z  — 0 2 Re(i)Re(z)R0(i)

for z e C \ R . Thus, to obtain (6.26), (6.27) it suffices to show that

(6.29) sup 11<x; Y Y 'Re(i)Ro(z)Re(i)<x; <  0 0
ze..1 ± ,OE

(6.30) l i m  sup II <x; Y > s Re(i) [Re(2 —  R 0 ( 1  ± ie)]R9(0<x; .0 - 11 = 0.
,c '4 '0  2 6 .1 ,9 e  E

By Lemma 6.1(i) and Theorem 3.3 with d = 1, we have

(6.31) s u p  II<AerTe(z)<A0Y 5 11 < oo
z e .1 + ,0E

(6.32) firn s u p  II<A0> '[R 0(2 ± ie) — R o (A  ± ie'n<A o Y sil = 0 .
A e J,O e

We have Ao Ro (i) =--- R0 (i)A 0 + RA O] on Y . [A 0, Re(i)] is uniformly bounded
for 0 e LE by (6.6) and (6.17). Since

(6.33) A o = — ( a) 1 'x  •  X  —  i(na r i
 y  • y + tgo • y + (N /ina ) ,

we have sup IlRe(i)A0<x; y>- 1 11 < co by Lemma 6.2, and so we get
Cl e

sup 11 AeRe(i)<x; < co .
OE a"

By using interpolation this yields

(6.34) sup 11<Ae>s Re(i)<x; YY s 11 < oo
e

for 0 s 1. Thus, (6.29) and  (6.30) follows from (6.34) together with (6.31)
and (6.32), and so (6.26) and (6.27) are obtained.

When k 1, we fix a  real s  with k  + 1/2 < s < k  + 1. In  the same way as
(I), it suffices to prove
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(6.35)s u p <x; Y rR e (z ) Ro(z) VR0(z)(x; <  0 0  ,
zeJ ± ,OE E

(6.36) lim sup <x; yY sIR 0 (A + ic)Vygi R e (). + ie) Vyg,R0 (.1 ± iE)
AEJ,Oe

— R,(A + + is') ... V yge R 9 (2 ± i')}  <x; = 0 ,

where 173fs = IY V " and 1 e k, k.
Using (6.28) repeatedly, we get

{(6.37) Ro (z) = E (z — Oe1R,(i)12 + ( z  _ oz(k+i)R(1)k+io—  R0(z)12,(i)k+l
e2; finite

for z e C \ R. Thus, by substituting (6.37) in (6.35) and (6.36), we finally see that
the proof of (6.35), (6.36) can be reduced to that of the following

(6.38) sup < A 0 Y ' R 9 ( z ) U 2 R 0 ( z )  ... R0 ()<A 0 Y s  < oo
ze.1 ± ,0€ E

(6.39) lim s u p  11 <A O ' ± iE)U2  R o (2  ie) Um R 0 (.1. ± iE)
e,e4.0 AEJ,Oe E

—  Ro (A ic')U2 R 9 (À  + ie')... un i R e (), ± ie')}  <A ,Y 1 = 0 ,

(6.40) sup {11<x; y>- s Ui <A0>s +  <Ao>s Um+i<x; < co
0  E

for 2 m  k  + 1, where each yi  i s  the form

(6.41)U  =  Ro (  QiRe(i) QhRe(i) (h k )

w ith Qn =  1 or Vyg ( I I k ) .
W e first prove (6.38) and (6.39) by applying Theorem 3.3. It follows from

(6.17) and k co — 2 tha t q-th commutators ( 0  q k  +  2) [... [Up  A d, . . . ,
on 9 9 can  be  ex tended  to  bounded opera tors Ulq) o n  Ye, and their operator
norms are uniformly bounded for 6  e E. Thus each U = 1 , m  + 1) satisfies
Assumption 3.2 with A  = A , and d k  +  1, and so (6.38) and (6.39) follow from
Lemma 6.1 (i) and Theorem 3.3 with d k  +  1. Next we shall prove (6.40). We
have

(6.42) Aok+i = A o k+i + [U 1 , A 0
k + 1 ] on b " .

A 0i ( j = O. .... k +  1) has the form
y3

(6.43) Ajo = E c y , , 3xvi y Y2(—D
)

n a

where C y  y2 y3 are constants uniformly bounded for 0 e E . S in c e  U1 containes at
least (k + 1)1Z 0 (i), we obtain

(6.44) sup
0  E (

I D) Y U
nc,

<cc f o r  y + 1
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by Lemma 6.2 and (V), and  so w e have

(6.45) sup 11<x; y>-
k - 1  A o k + 1  

U 111 <  GO
Be E

The commutator [U1, A 0
k + 1 ]  has the form

[U1, Ae k + i ] =
'

C.A9jUi(k+1-.0
Ji=o 

where C are constants independent of 0 e E . W e  note that (6.17), (V) and Lemma
6.2 yield

(6.46) sup
1

 D  U1 '1 <  0 0
Be E na

for k +  1 and for j  = 0, k, and  so we obtain

(6.47) sup 11<x; Eu15 A o k+1111 <  c o

Oc E

It follows from (6.45), (6.47) that

(6.48) sup 11<x; y Y
k-l u i < A o k+111 <  00

Oc E

Similarly, we have

(6.49) s u p  II<A
ok+i u m + i<x ; y y k - i  <  00

Oc E

Therefore (6.40) follows by interpolation. This completes the  proof of (i), (ii) of
Lemma 5.4.

It remains to prove (iii), (iv) of Lemma 5.4.

Lemma 6.3. Let e be a nonnegative integer and f  E Then f or each c5 > 0,

(6.50) s — lim R"(co, v; 2' + icS)f = R(co; 2 + i6)f in Pl'

uniformly f o r co e S N - 1 .

Pro o f . By (6.15) and  (6.16) we may assume f  e  X  W e have

(6.51) [R"(co, 2 '  + — R(co; 2 + US)] f = —  R"(co, v; 2' +

[ (
)

1 11
2m 2ma

2n. A y i ( V  V  0 )  CO • V y  A' + 21R (co; + iS )f

—  R"(co, v; 2' + i6)[V" —  V ]R(co; 2 + i6 )f .

Taking account of (6.15), (6.16), we see that the first term in  th e  R.H.S. goes to
zero in 1-1 ' uniformly for co e Siv - 1  a s  p —> co, y —> vo , 2' — > 2. It is obvious that

(6.52) lim 11[P —  V ]R (co; 2  + i(5 )f  II 1,c1 =
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for each co e SN - 1 . S in c e  R(co; A + i.5)f is Ii'-valued strongly continuous function
of CO E SN - 1 , we can see that (6.52) hold uniformly for co b y  the  finite covering
argument (see (5.37)). T hus, by  (6 .15 ), the second term  in the R.H.S. of (6.51)
goes to zero in H e uniformly for CO E 5 N - 1  a s  kt —) co, y —> vo , A' —* A. This proves
the lemma.

Proof o f  (iii) o f  Lemma 5.4. F i x  f  e  II :  for s > k + 1 /2  an d  a  sufficiently
small T  >  0. B y  ( ii)  of Lemma 5.4 already shown, we can take a 6 > 0 such that

(6.53) sup Ili[Ro (2 ' + 10) — Ro (A' + i6 )] f 11 Hk.

13=(co, g,v)e z

+ il[R(co; A + i6) — R(o.); A + iO)] f  li Hk s  } < T  •

This together with Lemma 6.3 gives the desired result.

Proof o f  (iv) o f  Lemma 5.4. B y  ( i )  o f Lemma 5.4 already shown, we may
assume f  E ,99. F o r a n y  e  5 N - 1 , w e have

(6.54) [R (;  A ±  10) — R(co; A + i0)] f = [R(; A + 10) — R(; A ± is)] f

+ [R(co; A + je) — R(co; A ± i0 )]f

+  [R (; A ± je) — R(co; A ± is)] f .

By using the  resolvent equation,

(6.55) R(; z) — R(co; z) = R(co; z)ivo ( — co). fv R(co; z)

fo r z e C\R, w e can easily show th a t the  last te rm  goes to  zero  as co —> in
H k s(R2N) for each s > 0. B y  L em m a 5 .4  (ii) , th e  others g o  to  zero uniformly
for c ,  co e SN - 1  a s  E —> 0. T h i s  completes the  proof.

§ 7 .  Proof of Lemma 5.11 and Lemma 5.12

Lemma 7 .1 .  Let k >  1 /2 , s > (N — 1)/2. Then f o r  any e > 0  an d  any
0 < 6 1/2 there exist positive constants Ro  = R 0 (c, 6, s, k, N), C = C(s, k, N) such
that

(7.1) l i ' l  I F(R(w' — co))h(co')dw' — h(w) i .  F (q )d r i
sN-1 17.

5 EllhIlL-(sN-i)11Filk,s + C  s u p  Ih(oi)— h(0111FIlk,,
1w-.1 , 6

f o r all R  R o , h e C(SN - 1 ), F e 1-1 (R N )  and co e SN - i .

Proof o f  Lemma 5.11. Immediate from Lemma 7.1.

Lemma 7.1 will be proved after the  series of lemmas.
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Lemma 7.2. L et k > 1/2, s > (N — 1)/2. Then f or any  0 < 5 < 1 there exists
a positive constant C = s, k, N) such that

co - col>
(7.2) RN-1 F(R(I co , _ c o m  d a y  < R-s+aN-10)IIFIlks,

f o r all R  1 ,  F  e Y(R N )  and w e SN - 1 .

P ro o f . F or each co e 5N - 1  there exists a  xo, e 
C ( R N )  such that

0 x. 5_ 1 , supp x. e RN ; — col > 6/2, > 1/2},

xo , = 1 o n  {  E RN ; — 1 1 1 } :=

sup linx.()1 <0 f o r  each y.
weSN- 1 ,4e RN

Let dSR ( ) be th e  Lebesgue measure on S R  :=  e RN ; I =  R I. T h en

(7.3) RN-I IF(R(co' — (O &ld = — R(.0)I dSR()
fla)-co'l>6

• 11X o )()F ( R ( 0 ) 4 1 ( 5 1 4 )

14-wi>6

< C1 • R  - s + ( ( N -  1 ) 1 2 )  • II < U X u )()F ( R „L, (SR )

< C 2  R -
s+((N 2).m<>s x w ( ) n f „D(0)11Hk(RN)

< R-s+((N-1)/2)11 0 > k < o s a

x II < —  Rco>s F (  — R(0 )111/k

where in the second step we have used the Schwarz inequality, and  in  the  last
step but one we have used the  fact that

(7.4) Ilf()111.2(so clIfilw ( RN)

for all R  1 and f  e l i k (RN ), where C is independent of R  (cf. Proposition (2.1)
of [G -M ]). N ote that

II — Rco>sF( — Rco)Il = II a> sF()11Hk C F II H: •

Since co • (1 — (52/8)) for G supp x ., we have

— Rc012 (1 —  ( 6 2 /8 ))( W — R) 2 (6 2 / 8 ) ( ±  R 2 ) (6 2 / 8 )< W

for e supp x., w E SN - i  a n d  R  1, and so we obtain for any multi-index y

(7.5) sup ID)i<U< — RcoY sX.(01< c:c .
R a1 ,a ) e .5 8 - 1 ,4 €  RN

This means that II<DO k<Os< —  RcoY sX.,<D4Yk ll B(L2(RN)) is uniformly bounded for
1 and  co e S _ 1 .  Thus we have obtained (7.2).

R CO Y sX co<D4Y k B(L 2 )
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Lemma 7.3. L e t 0  t 1, k —  (1/2) > t, s — ((N — 1)/2) > t. Then there
exists a positive constant C = C(t, s, k, N) such that

LI <6 1i

(7.6) I F( 7, ,/ R2 — n2 — R) — F (,  0)Idn C • 6 1 1IFIlk,,

f or all R  1 ,  0 < 45 1/2 and F e g(R N ), where n e RN - 1 .

Proof. Using the Fourier transform, we have

( 7 . 7 ) F (n , . \  /  l e  —  re  —  R )  —  F ( n ,  0 )  =  (270—
N 12 f [e ixN( .1R 2 - 2 R) _

— co
l]dXN

co

x  f  e '' 1(x ', x N )dx' (x' e RN - 1 ).

N oting that le  —  11 21ri t for all r e R  and all 0 .- t 1, and that
for In' _- SR ,

(7.8) le ix N (,/R 2-n2-R ) — 26`InI t lxN1̀

Thus, by using the Schwarz inequality, we obtain

(7.9)

for In 5R.

   

< c . 62,1n12, oco 2kdxN

  

2
1F(n, N/R2 — — R) —  F(n, 0)12

 

xN)dx'

        

since k —  (1/2) > t. (7.9) and the Schwarz inequality give

(7.10) IF(n, .\./R 2  — n2 — R) —  F(n, CI)Idn
fln l<bR

flryl<SR

   

<02(s—t)1F(,1, N/R2 n2 R ) 0 7 5 dn

C • St { f cl o <xN>2 k dxN f <02sdn e'"P (x ', x N )dx'
211/2

  

}1/2
c • St { I  <xN >2 k dxN I<D x )st (x', xN )I2 dx'

C•ôtIIFIl
where we have used the Parseval equality in N —  1 variables in the third step.

Lemma 7.4. Let k >  1/2, s > (N — 1)12. Then f or any e > 0  there exists a
positive constant R, = R 0 (s, s, k) 1 such that

(7.11) RN - 1 J F u z ( 0 ) , _ cmcko, F(1)di 81IFIlk,s

  

f or all R  R ,, F  E .9'(RN ) and co e SN - 1 .
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P ro o f . Fix a sufficiently small positive constant S, and let (5' = (5 1 — ((52/4).
W e have

(7.12) f  F ( 11)chl = F( — Rw)dsR(,)I F( — Rco)dSR (0 —sN_, H. 14—(01),3

F( — Rco)dSR ( ) — F(n  1) dri
14-- (01<s Inl<a'R Inl „.

IR12

F(n )•[
fini<h•Rn e

= I l  I 2  +  13 +

   

11 dri — f F(n)d
I

ri
nl>a'R17e II .

     

In12

1R12

Applying Lemma 7.2 to  /1 , w e have

  

(7.13) I/11 CI R- 5 + "" - 1 )/ 2 ) 1IFIlk,„ 1

where C, = C1 ((5, s, k, N) > 0. Next we claim that

(7.14) 1121 C26 "11FIlk,s

f o r  a n y  t > 0  satisfying Min {s — ((N — 1)/2), k — (1/2), 1} > t, w h ere  C2 =
C2(t, s , k, N) > 0. Indeed, in  the case co = (0, ..., 0, 1), noting that

(7.15) F( — Rco)dSR ( ) = F(r), \ /R2  — n2 — R)
14— wi<6 1771<a'R

  

and that
1 11712

I R12

7.3, w e have (7.14). In  other cases we have on ly  to  change the coordinates.
N oting that fo r I1  < (5'R

 

1
1 c • 

 In12
C ( 5 / 2

IRI2
 — 9

 

.\/ 1,112 
1R12

   

we have

(7.16) 1131 5 C
• 6'2 11<n>sFlIv( HuoC 3 6 ' 2 11FIlk,

where C3 = C3(S, k, N), and we have used the trace theorem in  the  last step.
is estimated a s  follows.

1
< 2  for 1/71 <(5'R for sufficiently small (5, and applying Lemma
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1/2 1.1/2
(7.17) 1141 { f <nY 2 s d n }  If <021F(11)12dn

lryl>d'R n e 11.
7E 11.

C4((5' 1?)
- s - I - Y N  - l ) / 2 )

IIFIlk,s

where C4 = C4 (s, k, N) > 0. Thus we have the desired result by taking (5 suffi-
ciently small and then taking R  sufficiently large.

Proof o f  Lemma 7 .1 .  W e may assume F e .1'(RN )  b y  the approximation,
since g(R N ) is dense in W (RN ). We have

(7.18) RN - 1  I F(R(oi — co))h(ol)dco' = RN - 1  I F(R(ol — co))dco' • h(co)
SN - 1 SN- I

+ RN - 1 F(R (c o ' —  c o ))[h (o l)  —  h (c o )]d o l
11.-.•1<6

+ RN - 1 F(R(oi — co))[h(o1) — h(co)]dco'
Ito_w l>6

= J, + J2 + J3.

We first show that

(7.19) RN-1 1F(R(co' — (0 ))1dco' 5 Ci. IIFIlko  ,
L - coi<6

where C1 = C i (s, k, N) > 0. By the change of coordinates we may assume co
(0, ..., 0, 1). Then,

=

(7.20) R N - 1 IF(R(cti — (0))1da C - 1 IF(, ,/R2 — re — R)Idn ,
1.-wi<6 Inl<6•R

where (5' = 6 . \ /1 — ((52/4) (see (7.15)). By Lemma 7.3 we have

▪f IF(11, N/R2
 —  

2
 —  R) — F(tt, 0)1d

Inl<•R

< C  11Filk,s

and by the trace theorem we have

(7.22) IF(17, 0 )14 5. C • VII k,s •
Inl<a'R

Thus, by (7.20) — (7.22), we obtain (7.19). (7.19) yields

(7.23) 1./21 CI ' s u p  Ih(a) — h(w)HIFIlk,s •
1w-co <6
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By Lemma 7.2 we have

(7.24) 1.131 -- C2R — s + " - 1 ) 1 2 ) 01114FIlk,s

where C2 = C2(5, s, k, N) > 0.
By taking R  sufficiently large in (7.24), the desired result follows from (7.23),

(7.24) and Lemma 7.4.

Proof  o f  Lemma 5.12. The proof is similar to that of Lemma 7.1, and so
we give a sketch of the proof. W e m ay assume 0 < s <  1. Let 0 < 6  «  1 and
let 6 ' be the same as in  the proof of Lemma 7.4. We write

(7.25) I F ( — Rco)1 2 dSR() — f  I F0 012 cin — f IFg — R(0)1 2 dsR()f5N-1 H . i4—œi>6

± 1f — R(.0)12 d4(0 —  f{ 1F(012 
1  

.11'  1  12

IR 1 2

 c in }qiqc1<itiz

+ I F102 
1  

1
 In I2

1  d r i  —  
fini

IF(q)12(1/
>a'Rfi47.1.<; LR

rye  170 ,
IV

= 1 1  + 12 + 13 + 14.

In the same way as Lemma 7.2 we have

,s(7.26)I i C i <RY 2s 1I<OsX,01ffg — Ra411Z.0 5 c2(RY 2 s1IFIIZ,

where C2 = C2(ô, s, k, N). W e next estim ate 12, and assum e co = (0, ..., 0, 1).
Since 0 < 6 < 1, we have by the trace theorem

IF(
1

11, 0)12 
./1 InI2

 dn __ C3IIFIIZ,0 ,
fill<d'R

1R12

Furthermore, taking t =  s in  (7.9), and integrating it w.r.t. ri, we get

filli <6 'R

   

IF (11, \/R2
 —  

112  — R) — F( 11, 0 )12 d?) 5 C46 2 s1IFIlit5 •

Therefore, by using the inequality

111f112 — 11g112 1 5- 11f — g112 + 211f — glIllgll
we obtain

(7.27) 1121 -- Cs6 s 1IFIIZ,s •

In a way similar to the proof of Lemma 7.4, 13 and 14 can be estimated as follows;

(7.28) 1131 c66' 2 11F11L , 1141 -- c7O'RY 2 s1IFIIZ,s •
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Here note that C  =  Ci (s, k, N) for j =  3, ... , 7. Thus we have

1  ± 12  +  13 — 14 1 C81C(6)<RY
2 s  ±

 4

5.5 <6,1?
>

- 2 5

111F11Z,s 5
where C8 = C8 (s, k, N), which implies the desired result.

§8. Proof of formula (2.10)

W e shall prove here formula (2.10) of Theorem 2.3. The superscript "  will
be omitted in  the  p ro o f . Let J  be a compact interval of (2pOE, ) \ A  (see below
(1.15) for ApOE =  A = A#), and fix 4, G L(RN), s >  1/2, such that ET , (J )f), =
for t  =  a, la, where ET ( )  i s  the spectral measure o f  7; (see (1.9)). Considering
in  t h e  m o m en tu m  sp ace , w e  can  see  th a t su ch  f y' s  fo rm  a  d e n se  s e t  in
ET (J)L 2  (RN ).

W e denote the resolvents of H, h, 0 I + I ( —(2n) 1 A ), 7 ; by  R(z), R 7 (z)
and r(z ) (D (y ) =  c), respectively (see (1.7) fo r  he ). T h e  following relation are
obvious:

(8.1) Ry(z)Py = Pr(z ) (see (1.9)) .

Using the intertwining relation, we have

(8.2) fp) = (WŒ- L, fp)
=  s  _ li m (eitx pc, e -ifT4

1 >

 1 4 4 ,
J P i't-5—oo

= s — lim wfl+e-itTs f
P )J /

=  l i m  2 E f  e 2 " ( I ) , , e -
itTico pw f l + e -itT,TJ )dt .

o

4 o - .

L e t x (t) =  1  fo r  t < 0 a n d  =  0  fo r  t 0. T hen , fo r each  e > 0 , the inverse
Fourier transforms of the  vector-valued functions

pa  e Et- it r.x ( o f a  , w p + e E t - i t r o x ( o f f l

a re  i(27r) - 1 /2 /3„ rOE(À, — ic)fa ,  i(2n) - 1 /2 Wfl ,r (2  — ie)fp ,  respectively. Therefore, apply-
ing the  Parseval equality to the above integral in  (8.2), we get

e '
(8.3) (Spf„

f
f p ) = lim — (PA,(.1 — ie)fa , Wp ± rp (A — ie)fp )(12

E.1•o n -  Go

= urn —  f  (13„r„(.1. — is)fcc, Wfl + rfl (2 — ie)fp )d). ,
4 o  r

where we have used ET , (J)fy =  fy f o r  y = a , /3.
Set uy =  ry (2 — ie)f, (y = a, )8) Similarly to the above, we obtain

(8.4) ( PŒtrOE, Wfl + up)= lim f x  (R(C + i6)130 0 , Pp rp (t + i6)tip )g
It — 0 0

= lim —

a 
(R(C + i5)P0 Œ, Pp rp (C +iS)up )g  ,

.5.1.o  Tr
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w here w e have  used R( + i6)P„u„I1 2=  5 11/3. 14 112 ,  a n d  E T ,(J)fp = ffi i n
- œ

the  last step. F o r  z E C  \R  we define K(z) := / a +  4R(z)./a=  D(Œ), b = (fl);
l a := V — F 3 f o r  a = { i, (j, 3)}). Then the following relation

R(C + i6) = R a (C + i6) + Rp(C + i6)K(C + i6)R a (C + i6)

is obtained by using the  resolvent equations:

R(z) = R a(z) — R(z)la Ra(z) , R(z) R (z ) —  R p (z)lb R(z) .

Substituting this in  (8.4), we have

(8.5) (P„aa, Wp + up ) = rim —

a 
(RŒG + impa u„, Pf l rig  + im uda ,

,34•0 I t  j j

+ firn —

6  

f (K(C + i6)13„ra(C + i6)u„, P r (  —  i6)rp (C + i6)up )d( ,
.1.o

where we have used (8.1). Reversing the argum ent used fo r showing (8.3), we
see that the first term in  th e  R.H.S. of (8.5) is equal to

lim  ( pœ e -itr„uOE, pfl e -itr,u 0 )  =  ( W O E +

t—■ co

= 6 p „(Pa ra(A — ie)fa , Pp rp () — is)fp ) .

In  the  last step w e have used the  fact that Ran WOE+  I Ran W i n _ (Ran = Range)
for a 0 /3.

W e next consider the second term of (8.5). By the first resolvent equation
we have

1
ra(C + i6)ua = -  A) + i(  +

tra (C + i6) — ra(A — is)} fa ,
E 6

rp (C + i6)rp (C — i6)up = (2i6) - 1  

[
) 6){rp(C + i6) — rp (A — iE)}fp

G  -  A )  +  i ( E  —  6 )

{rp (C — i6) — rp (A — iE)} fp ] .

Thus we obtain

(Pa r A — ie)fa , Wp + rp (A. — iE)fp )

1
= Spa (Pa ra (A — ie)fa , Pp rp (A — iE)fp ) + lim

a.i.o [27r (C — A)2 + (E + 6) 2

x  (K( + i6 )Pa {ra(C + i6) — ra (A — i)} f, Pp {rp (C + 16) — rp (A — is)} f p )dC

1
2 7r JJ tg  -  A) + + 6 )} {G — — i(e — 6 )1

x (K(C + i6)Pcctrag  + i6) — ra(A — iE)} f a , Pp {rp (C — i6) — rp (A — ie)} fp )dd  .

UŒ , Wp+Up)
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The norm limits Pp *K(Ç + i0)13„:= Ern Pp *K(C + 45)13„, and ry (C + i0) := lim ry (C +
a 4 0

exist in B(L(11,N.), O R )), B ( 0 11 ), L2-(R )), respectively, where c = D(y), and
s >  1 /2 . Indeed, the former follows from Lemmas 2.1, 2.2 and (V), the latter is
well known (cf. [R-S]IV, XIII.8). Therefore we can write

(13„r„(2 — ie)f„, Wp + rp (A — = S pOE(PŒrc i (A — is)f„, Pp rp (A —

i 1
+  

2 .7 r ( Ç _  2 )
2

 +  e 2  

(h + (A, C, e) — h_(1, C, E))dC ,

h± (A, C, e) := (K(C + i0)13 {rOE(C + i0) — rOE(.1 — ie)} fct , trp (C + i0) — rp (A — ie)} fp ) .

By substituting in  (8.3) w e have

(8 .6 ) (Spfoffi) = bp.(f .,4)
. i

+ lim — dA (1/+(A, C, e) — h_(2, C, e))(1C
e.t.o 2ir nI(C — A)2 + C2 1

Since h± (2, C, e) is continuous in  (A, C) e J  x J  for each e >  0  and

h+ (2, () := lim 11 + (2, C, e)
40

= (K (Ç ± i0)13„{rOE(C + i0) — ra (A — i0)} fOE, Pp {r p (C ± i0) — r p (A — i0)} fp )

uniformly for (A, C) e J x J, the  lim it in  th e  R.H.S. of (8.6) converges to

(h (A A) h _(A, A))clA = jh,(A, A)clA ,
2ir fj

because of h_(2, A) = O. T hus, by  no ting  tha t

Z,*(A)Z y (A) =  1
 2 7 r i

[ry(A + i0) — r(2—  i0)] (see (1.12)) ,

for y = a , fl, we obtain

(So  fOE,43 ) = 6fict( f„, fp ) + 27ri (K(A  + i0)1)„Z:(2)4(2) foe , Pp Z:(A)Zp (A)fp )clA

This implies (2.10).
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