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Charge transfer model and (2-cluster) — (2-cluster)
three-body scattering

By

Hiroshi T. Ito

§1. Introduction

We consider a three-body system consisting of two heavy particles (particles
1, 2) with the masses M,, M, and a light particle (particle 3) with m. We
set u=(M,, M,) and write u>»> 1 (u— o0) for M;, M, » 1 (M;, M, - ©). Let
e RY (j=1,2,3), N =2, be the position of particle j, and let V, be the pair
potential between particle j and particle k. Then the three-body Hamiltonian is

- 2
A= =3 @M)74, - @m) 4, +V  in PR,
=

(L.1)
V =V(ry, ryr3) = Vas(rs — r3) + Vis(rs — 1) + Vig(ra — 1)

We assume the following throughout this paper:

(V) Vj(x) (1 £i<j<3)is a smooth real-valued function on RY™, and there exists
g0 > N + (3/2) such that

102 Vi(¥)] < Cy(1 + [x[)™*
Sor all multi-indices y.

Our main results are Theorems 1.1 and 1.3, which will be stated at the end
of this section. For the proof of Theorem 1.1, we assume further

(VY Vj(x) (1 £i<j<3) satisfies (V) with
g >[N -=1/2]+ N+ @3/2). (L 1 is Gauss’ symbol.)

As usual, we remove the kinetic energy of the center of mass from H* to
get an operator H* in L*(R?M). A 2-cluster decomposition of the set {1,2, 3}
is a partition of {1,2,3} into two nonempty subsets, and in particular we use
only the following 2-cluster decompositions:

(12) a={L.2.3}, a:={2(L3)},

and we define A :={a,, a,}.
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For each a€ A, the Jacobi coordinates {x,, y,} are defined by

M,r, + mry

Xi=Ty =T, Yai=T T for a=a,,
2
(1.3)
- '_M1r1+mr3 ; _
Xgi=T3 — Iy, ya,——M—+m~—r2 or a=a,.
1

Let m, = m" and n, = n* (a € A) be the reduced masses defined by

1 +
m, M,

1

1 1

1 1
1.4 —, — =
(1.4) m n, Mj+Mi+m

for a = {j, (@ 3)}.
Then H* is expressed as follows:

1 1 o 2(R2N
(1.5) Ht=——4 —TAG+V in L*(R*Y).

{Xa,» ¥a,} and {x,,, y,,} are related as follows:

m, m m
—_ 2 — az a,
xal - m xaz + yaz > yal - n xaz + m yaz 5
a,
(1.6)
m, m
— 1 — _ a1 az
xaz - m xal - yal > Yaz - n xa, + m yal .

az

Under assumption (V), H* is self-adjoint in J# := L*(R*") with domain D(H*)
= H%*(R?"), the Sobolev space of order 2. For a={i,(j,3)} €A the 2-body
Schrédinger operator h% is defined by

(1.7) hy = —(2m,) " A, + Via(xa) ,

which is self-adjoint in L?*(R} ) with domain D(h%) = H*(R"). Since m,—>m as
u— oo, h% converges to a self-adjoint operator

(1.8) hY = —(2m) M4, + Vi3(x,)

in the norm resolvent sense as u— co. Furthermore we note that —zA4, +
Vis(x,), ze C\{0}, is an analytic family of type (A) ([K], VIL2, [R-S] IV, XIIL.2).
Let k(a) be the number of negative eigenvalues (counting multiplicity) of AZ.
Under assumption (V), it is known that k(a) is finite ([R-S] IV, XIIL.3). We set

CH:={a=(a,kae A, 1=<k=<k()keN},

where N := {1, 2,...}, and write D(«) = a for “channel” o = (a, k)e CH. For a =
(a, k) € CH we denote by A? (< 0) the k-th negative eigenvalue of by and by ¢
the eigenfunction of h? with eigenvalue A such that {¢°} (a e CH, D(a) = qa) is
an orthonormal system for each ae A. If u> 1, we can find negative eigenvalues
A4 of hj,, and associated normalized eigenfunctions ¢} (hi,ds = A4¢L) for every
a € CH such that (i) 2% — A® as u— oo, (i) ¢* —» ¢* in L*(R¥) as u— oo and (iii)
{¢4} (x € CH, D(o) = a) is an orthonormal system for each ae A. (See [K], IL1, 4.)
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For each u > 1 and each o« € CH, D(x) = a, we define the channel embedding
P! e B(L*(R} ), #) and the channel Hamiltonian T* by

(1.9) (PEf)(xas ya) = $E(Xa)f (), T = —(Q2n)7'4, + 4%,

respectively. Here we denote by B(X, Y) the space of all bounded linear opera-
tors from a Banach space X to a Banach space Y.

Under assumption (V), the channel wave operators
(1.10) Wp :=s— lim "™ Pte T

=t

exist in B(LZ(R’;’E), H) (see [R-S] III, Theorem X1.35). For a, f € CH, the scatter-
ing operator for scattering o — f is defined by
(1.11) b= WEWE 2R} ) —> L*(R)

YD) Yo/ *

Here A* denotes the adjoint of the operator A.

For each « € CH we give the spectral representation of T". We define maps
ZHA), A> A4, from Z(RY) (the Schwartz space of rapidly decreasing functions)
to X := L*(SV™') (S¥! is the unit sphere in RY), by

(L12)  (ZEDS) @) = @n)VniP2n,(2 — AN -D"

x Je-mu-a:»“w«f(ya)dyu, a=D(),

where we SV7!, It is known that Z¥(A) can be extended to bounded opera-
tors from LZ(RY) to X for s> 1/2, where L2(R}):= L*(R}; {y>*dy), <y>:=
(1 +|y»)'* (cf. [G-M], Proposition 2.1). We define a map Z! from LZ(R}) to
L*((A%, 0); Z) by

(1.13) (ZE N, ) = (ZEADS) ), for 2> 45,

Then Z* can be extend to a unitary operator from L*(R})) to L*((A%, co); Z) and
gives the spectral representation of T, that is,

(1.14) (ZETE)(A, %) = A(ZEA)f) (), for ae. 4> A%,

for f € D(T}). We can see that ZjS;,Z4* is decomposable by a family of opera-
tors {S4,(1)} ([A-J-S], 15-3):

(1.15) (Z5 S}, ZE*h)(A) = Sh,(Ah(A) in & for ae. Ae (A, 0)\4*,

for h e L*((A4,, o0); 2), where 45, := max (4%, A5) and A4* = {the thresholds of H*} U
o,(H")(c,(H*) denotes the set of all eigenvalues of H*). We will show that Sj,(4)
is a B(ZX)-valued norm continuous function in (15, o)\4* (B(Z) = B(Z, X))
Furthermore, in Sect. 2 we will show that

(1.16) T (A) := Sj(A) — 0p,
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has an integral kernel T (4, w, '), which is continuous for (4, w, w')e
(A4, 0\ A*) x SN x SN71. Here &y, =1 (resp. 0) if a=p (resp. a# ). In
particular, the total scattering cross section for scattering a — f at relative energy
J and relative initial direction w (see [A-J-S], p. 627).

(1.17) Opa(4; ) 1= (27t)N_1(2nD(,)(,1 ) J

| T4, o, )*dw’
SN-l

is finite for all 1€ (A}, 0)\4* and we SV,

We next consider the following time-dependent Schrédinger equation for the
charge transfer or impact parameter model:

0 (t) = hy(OY()  in L*RY),
(1.18) hea(t) = [=2m) 7 4, + Va3(x) + Vis(x — &t — n)1y (@),
EeRN{0}, nell;:={neRY & n=0}.

(See [Y], [Ha], [G], [W]) The equation describes the motion of the light
particle (particle 3) under the influence of interaction potential V;; and V,; due
to two heavy particles 1 and 2; particle 2 is assumed to stay at the origin and
particle 1 is assumed to move classically on the straight line &t + .

Under assumption (V), (1.18) has a unique propagator
(1.19) u,s)=UE n;t,s), s teR,
such that

(U-i) Ul(t,s) is a unitary operator on L*(R") and jointly strongly continuous in
s and ¢t.

(U-ii) U, r)U(r, s)=U(t,s) forr, s, teR.

(U-iii) If fe H*RY), then U(t, s)f € H*(RY) for s, te R, and U(t, s)f (which is
strongly differentiable in s and ¢, respectively) satisfies

io,U(t,s)f = h, (U, 5)f, io,U(t, s)f = —U(t, s)he ,(5)f

(see e.g. [R-S]II, Theorem X.71).
The purpose of this paper is to relate the scattering theory for equation
(1.18) to that for the three-body system (1.5). We restrict ourselves to the (2-

cluster) — (2-cluster) scattering such that the initial and final channels belong to
CH.
For o € CH we define a function y2(x, t) = y2(& n; x, t) by

Yrlx, 1) = e75g2(x)  for D(o) = ay,
(1.20) ) ) ,
Y(x, 1) 1= eim e XTI Ao (x — &t — ) for D(a) = a; .
It is easy to see that Y2 (x, t) satisfies
i0,Y(t) = hY y(t) for D(o) = a, .

(1.21)
0Y2(t) =[—2m) ", + Via(x = &t = n)]Y()  for D(@) = a, .
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Furthermore the strong limits

(1.22) QF = QF(¢& n):=s— lim U n; 0,092

t=to

exist in L2(RV) for each « € CH and
(1.23) (Qz, .Qﬂi) = 04

holds for «, e CH ([Y], p. 155), where (-, ) denotes the inner product in
L*(RM). Let a, B CH be, for example, such that D(a) = a,, D(B) = a,. Then
the quantity [(22;,9;)/* is the transition probability that particle 3 forming a
bound state ¢® with particle 2 in the remote past will be captured by particle
1 (moving along the orbit &t + n) in ¢f in the far future.

Now we state the main results. For £ e R\{0} and ne II,, we define

(1.24) & m) 1= e Ea Vi QR(E ), Q5 (E, )

Theorem 1.1. Let o, f € CH, and assume (V). Then for fe C(S¥7!), the
continuous functions on S¥7!, and v, > 0, we have

(1.25) lim (S5((1/2)npgyv* + 25)f) (@) = S5 (vow, 0)f ()

uniformly on SV,
Since [[S4,(A)llp <1 for A>0 and C(S"™!) is dense in X, we have
Corollary 1.2. Let «, f e CH, and assume (V) and fix vy >0. Then
(126) s — lim (S&((1/Dnpep? + A)F)(¥) = Svox, Of(¥)  in =

add
v=vg

for any feZ.
Theorem 1.3. Let o, B CH and assume (V) and fix vy > 0. Then

Tadd
v=vg

(1.27) lim o4, ((1/2)npgyv? + A% 0) = J |S5vo, 1) — Jp,|*dn
,

uniformly for w e S¥7!, where dn is the Lebesgue measure on II,.

Scattering theory for the charge transfer model has first been studied by
Yajima [Y]. He has proved asymptotic completeness for equation (1.18). His
idea is to reduce the scattering theory for the time-dependent Hamiltonian to
that for a time-independent Hamiltonian following Howland [Ho] and then to
use the stationary method for three-body problem (cf. [G-M]). Hagedorn [Ha]
has obtained similar results by a time-dependent approach. Recently Wiiller
[W] and Graf [G] have extended Yajima’s results by using geometric methods
of Enss [E].

Now we explain the organization of this paper. In the preliminary Sect. 2
we shall give the exact form of the scattering matrix (Theorem 2.3) for scattering
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o — B, though Theorem 2.3 will be proved in Sect. 8. We shall need certain
uniform estimates for a family of self-adjoint operators which can be obtained
by extending multiple commuator methods of Jensen, Mourre and Perry [J-M-P]
(see also [J]), that had been originated from Mourre’s work [M] (see also
[P-S-S), [F-H], [T], [A-B-G], [Yaf]). These resolvent estimates will be given
in Sect. 3 by an abstract setting. In Sect. 4 we shall give a stationary expression
for (Q, (£, 1), 25(¢, ). Our main theorem will be proved in Sect. 5. Lemma 5.4
contains essential estimates in our proof. The proof of this lemma will be given
in Sect. 6 by using the abstract commutator estimates in Sect. 3. Certain lemmas
of Sect. 5 will be proved in Sect. 7.

§2. Preliminaries

For k, se R the weighted Sobolev space H¥(RY) is defined by
(2.1) H{R) = {f € 'R [|fllx,s := 1KEP (1 = S| < +o0},

where %’ denotes the tempered distributions, 4 the d-dimensional Laplacian and
&y :=(1+1&*)"?, EeR% Note that |f],, is equivalent to [[(1 — A2(EYS
and ) [IKEYDLSf|l if ke NU{0}, where |y| =y, + - + y,, D} := D}! --- D}4, D, :=

Ik
—i(0/0;) for multi-indices y = (y;,...,y,). We write H*RY):= H5R?) and
L%(R%):= H2(RY). Note that the Fourier transform on &'(R?) maps H*(R%) onto
H{(R?) boundedly for all k, seR.

Lemma 2.1. Let a € CH (a = D(v)), and assume (V). Then ¢, ¢° € L(RY)
and ¢* - ¢* in S(RY) as pu— 0.

Proof. Let a={i,(j,3)}. By (—4+ )@t =(2m,(As — Vj3) + 1)¢%, we have
for any ke N

(2.2) ¢ = [(=4 + 1)1 2m (25 — Vi3) + )14 .
Similarly we have for any ke N
(2.3) ¢7 = [(—=4 + 1)7'2m(A7 — Vi) + DI9¢ .

Since for any £ e NU{0} and fe H’(R")
s—lim (=4 + D)7 2m,(A% — Vi) + )f = (=4 + D)7Cm(A2 — V3) + 1)f

g}
in H’*2(R"), we see that
2.4 P — g2 strongly in H*(R¥)
as p— oo for any ke N. The following estimates are easily verified:

(2.5 sup {|I[(—4 + )7 (2m, (A% — Vis) + NN B(L2, H?¥)

u»1

+ I[(=4 + D)7'2mAL — Vi3) + D1l g2, 24} <
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for any ke N and s>0. Here sup{---}:= sup {---} for some large M,.
u»l M, M;>M,

We claim that for each ke N and s = 0:

(2.6) sup {lI¢41l2,s + 16211215} < 0.

ux»1

Indeed, (2.6) for k = 0 follows from [Ag], p. 52, and (2.6) for k =1 from (2.2),
(2.3) and (2.5). Thus by the Schwarz inequality, (2.4) and (2.6), we obtain

[KxD* (=4 + 15t — g2 = I(—4 + 1HBE — D I<KxD*(— 4 + 1) — 62|
S IBE — 82 M2k, 0102 | 26, 25 + 185 [l 24, 25) = O

as u— oo. Since k and s are arbitrary, this and (2.6) imply the desired results.

The following limiting absorption principle is important for a representation
of Sf,(4).

Lemma 2.2 ([M], [P-S-S]). Assume (V) and fix u> 1. Let J be any com-
pact interval in R\A* and fix s > 1/2. Then the norm limits

2.7) (H* = A4 10)™ i= lim (H* — 2 £ i0)”!
ev 0

exist in B(LZ(R?M), L% (R?Y)) uniformly for i€ J, and B(L2(R?"), L2 (R?"))-valued
functions (H* — A 4+ i0)™! are Hélder continuous in A€ J.

Remark. Resolvent estimates for three-body Schrodinger operators have
been studied by Mourre [M] for more general class of potentials including long
range potentials, and Mourre’s results have been extended by Perry, Sigal and
Simon [P-S-S] (see also [F-H]) to many-body Schrodinger operators. Recently
these results have been developed by Tamura [T] and Amrein, Berthier and
Georgescu [A-B-G].

For a={i,(j,3)} €A, we define the intercluster potential I, by I,:=
V — V3(ry —r;). For a e CH (D(x) = a), P** is given by

(2.8) (PE*f)(ya) = J 5 (xa)f(xa ya)dx,  (see (1.9)).

Thus, by Lemma 2.1, P* and P** can be regarded as operators in
B(LA(R}), L2(RY) ® L2RY)),  B(L2,(RY)® LA(R}), L}(R))),
respectively, for any s, t e R. Thus, by (V), we can see that
Py*I,P: e B(LL(R)), L3(R}))),
(29) I,P% e B(L2(R}), L2 _(R*")),
Py*1, e B(L2_, (R*M), LX(R)))
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for any a, f € CH (a = D(a), b = D(B)) and s with 1/2 < s < ¢,/2. Furthermore,
we note that Z£(A)* € B(Z, L2,(R}))), s > 1/2 (see (1.12)).. Now we give an expres-
sion of Sp,(4) for each u> 1.

Theorem 2.3. Let o, f € CH, and assume (V). Then
(2.10)  S§,(A) = Op, + 21ZFA)PY* [ —Ipy + Ipgy(H* — A — i0) I JPEZE(A)*

for ae. A€ (A, 0)\A4*. Furthermore, the R.H.S. of (2.10) is a B(X)-valued norm
continuous function of A e (s, c0)\ A%

Remark. S§f,(4) is well defined for all 1€ (4},, 0)\4* by (2.10).

Proof. We only prove the second half of the statment. The formula (2.10)
will be shown in Sect. 8. Let 1/2 <s < ¢g,/2. Then, it follows from (2.9) and
Lemma 2.2 that

@2.11) PY*[—I, + L,(H* — A — i0)',]P¥ € B(L2(RY), LA(RY))

(a= D(), b = D(B)). Furthermore Z%(4), y € CH, is a B(LZ(R"), X)-valued norm
continuous function in 4 (cf. [G-M], Proposition (2.1)), which together with
(2.11) and Lemma 2.2 implies the second half of the theorem.

Proposition 2.4. Let o, f € CH, and assume (V). Then T4 (A) (see (1.16)) has
an integral kernel Tf,(A, w, ') given by

@12) T o, o) = Q)N ) P dngny (2 — 2)(4 — A"
X ([ Lo + L(H* — A — i0)' I, ] gpei@rai=iner s,
G’ gy (a = D(@), b= D(B).

Furthermore, Tf,(, w, ') is continuous in (4, », ') € ((A4,, o)\ A*) x S¥™! x SN,
and so Tf(2) e B(C(SN™)) and is also a Hilbert-Schmidt operator on X.

Proof. Fix a real s with N/2 <s <¢,/2. Since the map R¥> ¢ —exp (i %) e
L* (R") is strongly continuous, the continuity of T4(A, o, ') in (4, o, ©') follows
in the same way as Theorem 2.3. To finish the proof, we have only to show
that Tf(4) is an integral operator with kernel Tf(4 w, @'). Let y =« B. For
each h,e C(S*™),

(2.13) (Zy*(Dh,) () = @r)™VPnP(2n, (4 — A))N-20
" J PP ()do (e = D),
which follows from (1.12). Therefore we have
(Tfa(Ahy, hg) = L L Th (A, ©, 0" )hy(0 ) hy(w)do'dw ,
where Tf(4, o, o) is the R.H.S. of (2.12). Since C(SV7') is dense in X, this

implies that Tj;(/) is an integral operator with kernel T} (4, w, @'). This completes
the proof.
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§3. Abstract resolvent estimates

This section is devoted to extending the abstract results developed in
[J-M-P].

Let H be a self-adjoint operator in a Hilbert space H whose inner product
and norm will be denoted by (f, g) and | f||. Then we define the scale of spaces
H,, and H_, associated to the self-adjoint operator H as follows. H,, is the
domain D(H) with the graph norm |f|,, = |(H + i)f| and H_, is the dual of
H,, obtained via the inner product in H.

Let H, A be self-adjoint operators in H, I a compact interval in R, and d € N.

Assumption 3.1.
(H-i)) D(A)ND(H) is a core for H.
(H-ii) €4 leaves D(H) invariant, and for each f e D(H)

sup |[He®4f| < 0.
191<1

(H-iii) Let H® = H. There are self-adjoint operators iHY, ..., iH@ sat-
isfying the following:
D(iHY) > D(H) (j=1,...,4d),

the form i[i" *HY™Y, A], defined on D(H)N D(A) is bounded from below and clos-
able, and the self-adjoint operator associated with its closure is i'HY(j =1, ..., d).

(([B, C]u, v) := (Cu, B*v) — (Bu, C*v).)

(H-iv) The form [H, A] defined on D(A)N D(H) extends to a bounded opera-
tor from H,, to H_,, which is denoted by [H?, A],.

(H-v) There exist C, >0 and ¢ € CF(R) supported in a sufficiently small
neighborhood of 1 and satisfying 0S¢ <1, ¢ =1 on I, such that
(3.1) ¢(H)iHV$(H) Z Cop(H)* .

Let W be a bounded operator on H, and 4 a self-adjoint operator in H.

Assumption 3.2. Let W = W. There are bounded operators W), ..., W@

on H satisfying the following properties:

The form [WY™Y, A], defined on D(A), extends to the bounded operator W4
G=1,...,d).

Theorem 3.3. Let H, A be self-adjoint operators in H, I a compact interval
in R, and deN. Furthermore, if d =2, let W,, ..., W,_, be bounded operators
on H. Assume assumptions 3.1 and 3.2 with W=W,, ..., W,_,. Fix a real
s>d—1/2, and set

I, ={zeCRezel,0< +tImz < 1}.
Define
D(z) = CADT*R(2)W R(z) ... Wy_{R(2)<{A)"° ford=2,
D(z) = CA>™°R(2)<A4)™* ford=1,
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for ze C\R, where R(z) = (H —2)7*, {A) = (1 + A*)"®. Then there exists a con-
stant K, such that:
(i) sup [D(2)ll =K.

zel
(ii) IID(iz) —D(2)|| £ K|z -2z’ for z, 2’ €l,, where
1
sd
s—d+ 12

(3.2) 0y = dy(s,d) =
1+

(iii) For Ael the norm limits

D(A + i0) := lim D(A + i8)
830

exist in B(H), and D(A + i0) are Holder continuous with exponent 8, in A€l in
the operator norm.

Moreover, if H, A, (W,,..., W,_, if d = 2) depend on a parameter v such that
@, C, can be taken independently of v, and that

[HPRG)(j=1,...,d), |RG[H?, Al R()| ,

(3.3) .
WG =0,....d;k=1,...,d—1)if d=2)

remain bounded in v, then K can be taken independently of v.

Theorem 3.3 gives an extension of Theorem 2.2 of [J-M-P], in which all
W, are the identity operator. Note that assumption 3.1 implies the non-existence
of the point spectrum of H in I ([M]).

Furthermore under assumption 3.1 the absence of the singular continuous
spectrum in I can be proved ([M], [P-S-S]).

We prove Theorem 3.3 by the commutator method of [J-M-P]. The fol-
lowing Lemma 3.4 plays an important role in our proof.

For small |¢] > 0 the operator

d gf
(34) Q)= Y. ZHY

i=1]
is H-bounded with H-bound < 1, since each HY is H-bounded by (H-iii) and the
closed graph theorem. Thus the operator H + Q,(¢) is a closed operator with
D(H + Q,(e)) = D(H), and furthermore the resolvents of this operator have the
following properties.

Lemma 3.4 ([J-M-P], Lemma 3.1). Let H, A be self-adjoint operators in
H, I a compact interval in R. Assume assumption 3.1. Then there exists a positive
constant &; such that for 0 < +e<e¢g,, z€l,, the following results hold:
(i) There exists a bounded inverse G,(g) of H + Qqu(e) — z.
(i) The following estimates hold for G,(e):

(3.5) IG.(e)ll < C-lel™,
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(3.6) I(H +)G.e) = C-lel™,  IG,(e)(H +i)| £ C-le| ™,
I(H + )G (e) <A < C-[e| 2,
IKA>™'G,(e)(H + i)l < C-]e| 2.

(3.7

(i) The form [A, G,(e)], defined on D(A), extends to a bounded operator on H,
which is denoted by [A, G,(¢)]o. Furthermore G,(¢) maps D(A) into D(A)N D(H).
(iv) For each zel, (resp. I_),

G.(e) € C*((0, &,); B(H)) (resp. C*((—eé;, 0); B(H)), and
(3.8) d%Gz(e) = [G,(e), Alo + %Gz(e) [H9, 41,G.(e) .

Moreover, if H, A depend on a parameter v such that ¢, C, can be taken
independently of v, and that

(3.9) IHOR@I(j=1,...,d),  [IRG[H?, ARG ,
remain bounded in v, then C can be taken independently of v.

See [J-M-P] for the proof of the first half of the lemma. The last half
can be shown by carefully checking the estimates carried out in [J-M-P] (see
also [M], [P-S-S]).

Moreover we need the following elementary lemma.

Lemma 3.5. Fix an integer k 20 and let f,() = |log ¢| for k =0, fi(e) = ¢7*
for ke N.  Assume that a B(H)-valued C'-function X(e), e € (0, &,) (g, > 0), satisfies
the following inequalities:

(3.10) ”d%x(s) SC(IX@ENP-e™ + file) + 1),

(3.11) X ()l = Cpre™,

where p, q, r, C,, C, are constants satisfying 0<p, q<1,r=20, C, >0, C, >0.
Then the following estimates hold:

(3.12) I X()| < C-g™**! when k=2,
(3.13) 1 X(e)|] = C-|log ¢ when k=1,
(3.14) IXEl=C when k=0,

where C =C(C,,C,,¢&,p,q,r)>0. Furthermore, when k =0, the norm limit
X(0) := lim X (g) exists in B(H)
ed0

Proof. Putting (3.11) in (3.10), we have

(3.15) ”%X(s) SCE"T+ file)+ 1)
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We first consider for k = 1. By integrating with respect to & we have (3.12),
(3.13) when pr + q £ k. When pr+q >k, we get |X(¢)| < C-e™", where r, =
pr+q—1. (Note that r—r,=(1—p)r+(1 —q)>1—4g>0.) Putting this
into (3.10), we have the inequality replaced r by r; in (3.15). If pr, + g <k,
we obtain (3.12), (3.13). If pr, + q>k, we get ||X(¢)|| £ C-e™ "2, where r, =
pr, + g — 1. Continuing this process, we can find some r, (= pr,_; + ¢ — 1) with
pr.+q=<k, pr.;+q>k since —r_; 21—-9>0. Thus we obtain (3.12),
(3.13). When k =0, (3.14) is obtained similarly and the existence of X (0) follows
from the integrability of the R.H.S. of (3.10).

Proof of Theorem 3.3. We have only to prove this theorem for d =2
because the theorem for d =1 has been proved in [P-S-S]. Moreover we give
only the proof for zeI,.

(i) For multi-indices of nonnegative integers a = (ay,..., %), B =(B1, ...,
Bi-1) we write |a| = a; + - + a4, and o < B if and only if a; < f; for all j. Let
I, be a family of all multi-indices § with a < f, |B| =|a|+ 1. Namely fe I,
implies that a; = f; — 1 for some j and B; = a; for i #j. We set

FXe) := CAY*G,(e) WG () WS VG, (e) ... W, VG, (e)<A>™*
for zel,, ¢e>0, a=(0ty,...,04_;) With |a| £d.

By Lemma 3.4 (iv), we have for |a] £d — 1,

d d
(3.16) %F:(s)=<A>'S(EG,(s)> WiG,(e) ... Wizt Gle)<Ad™

+ o+ (A TGW G, ... m‘f'f"(% G,(e)) <Ay

= (A{[Gi(e), AL WG (o) ... Wit{VG(e)
+ 4 GAW™Ge) .. WETVIG,(e), Lo} <A™

d
+ ‘%KA)‘SGZ(S)[H“”, ALoG.()W"G,(e) ... Wil G (<A™

+ 0+ (A TGEWG) .. WEVG, ()
x [H®, A]4G.(e)<A>™*}
=1,(e) + I,(¢) .
First we estimate I,(¢). Since s>1 and (H + i) '[HY, Alo(H +i)™!, W*
(j=1,...,d — 1) are bounded, by assumption 3.1 (iv) and assumption 3.2, we have

(3.17) 1) < Cref-e72 g% g2 < C

by Lemma 3.4 (ii).
Next we estimate I,(¢). Noting that G,(¢) maps D(A4) into D(A) and Vlg‘“”
maps D(A) into D(A), as follows from assumption 3.2 and Lemma 3.4 (iii), we
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have, by elementary computation,

Ii(e) = [F}(e), A1 — 3 Fi(e).

peT.
Since [[KAYF; ()], [IFZ(e)<AY| < C-¢7**W» by Lemma 3.4 (ii) and
IFZ@<A | S IF @1 F(e) <A Y,
[KCAYF (@)1 < IFZ )N~ II<CAY Fe(e)| Vs
by interpolation, we have
ILFZ(e), AJNl < IFZ()<A I + [KAYFZ(e)]
< C-||F(e)| L~ Wolgl-d+aps |

Thus we get

(3.18) i)l = C(IIFZ(IS)II““""‘3‘_"“1’2”’s + ) IIFf(8)||> .
s

el

Therefore F}(e) satisfies

(3.19)

= C(IIFZ(E)II"“’”8"““’2”" + Y IFfEI+ 1)

Bel,

d «
‘%Fz(s)

for all multi-indices o with |a| <d — 1.

Furthermore, it follows from Lemma 3.4 (ii) that
(3.20) [F(e)ll < Ce™**!
for all multi-indices y with |y| < d.

Let |a| =d — 1. Then we have by (3.19) and (3.20)

é C(”an(e)”1—(1/s)6(—d+(1/2))/s + 8—d+1 + 1) .

“ * F0
Applying Lemma 3.5 to this, we have
(3.21) IF; @) < Ce™*2.
Next let a| =d — 2. Then |f| =d — 1 for Be I,. Thus we obtain by (3.19)

< C(”an(e)”1—(1/5)8(—d+(1/2))/s + 8—d+2 + 1) .

d
—_F°
Applying Lemma 3.5, we have
IF;(e)ll < Ce™*3.

Continuing, we have for |a| =0

d i3
(3.22) “ ZF)

< C(IFz ()| 1710 Tar 20 4 Jlog ] + 1) .
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Thus we have the following estimate, by Lemma 3.5,

(3.23) sup [|F(e) =K < o0,

zel,,0<e<1

where F,(¢) := Fi(¢) for |a| = 0.
Since lifn 104e)R(2)| =0 for each ze C\R, 1+ Q,(e)R(z) has a bounded
tv0

inverse, and so
G,(e) = R(2)(1 + Q4(e)R(2)™"
holds for each ze C\R when ¢ >0 is small. Therefore we get

lim G,(¢) = R(2)
ed0

for each ze C\R, and so we have by (3.23)
sup [D(2)| S K.

zel,

(i) For simplicity we write n = (d — 1/2)/s. By (3.22), (3.23) we obtain

d
— < " .
{dst(s) <CE™"+1)
Integrating this we have
(324 IF.(e) = F,(0)| £ C-¢'™".

On the other hand G,(¢) is differentiable in ze I, for each ¢ >0 by Lemma
34. We have the following estimate by Lemma 3.4 (ii):

d
” EFZ(S) < IKAYT*GL(e)* W ... G,(e)<A>™l
+ 0+ [KATGW, ... Wy G(e)* (A
<C-e?,
which implies
(3.25) IF,(e) = E(e) £ C-e7%|z — 2|

for z, z’el,, e>0. Let e=|z—2z'|%, 6, =(1 —n)"'6, (see (3.2) for §;). Then
by (3.24), (3.25) we have

[F,(0) — F.(0)| £ [|F;(0) — F,(g)ll + IF(e) — Fo(e)ll + [ F.(e) — F Ol
<C:lz—2z'|.

Thus we have proved (ii). (iii) follows from (ii).
The proof of the last half can be obtained if one takes into consideration
the last part of Lemma 3.4 and the proof carried out above.
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§4. The quantity (2,(, n), 25, m)

We fix £ e R"\{0} and 5 e I1, and assume (V) throughout this section. We
define an operator in L2(R¥*!) (R¥*! = RY x R,):

1
@1 Keyi= =54 =10+ Vo300 + Vis(x = &t —m) + Vip(—¢t —m).

. 1 . . . .

Since —ﬁAx —id, is a self-adjoint operator with domain D, := {ue L*(RN*?),
—2—mAxu — idu e L*(R*')} and has a core #(R¥*"), K, is a self-adjoint opera-
tor with domain D, and with core £(R¥*!) by (V).

Lemma 4.1. Let J be a compact interval and s > 1/2.  Then the norm limits

42) (Kgp— %10/ = lim Ky, — 2+ i)
ev0

exist in B(L2(R") ® L(R), L>(RY) ® L% ,(R)) uniformly for AeJ.

Proof. We shall apply Theorem 3.3. We set H = L2(R¥*!), d =1, H = K, ,,
A=tx, and I =J. Then assumption 3.1, (H-i) is satisfied because L(R"*')
is a common core for H and A. (H-ii) is obvious. Since i[H, A] =1, (H-iii) ~
(H-v) follow. The conclusion follows from Theorem 3.3.

It is easy to verify that
(43) Uyt ) i= e BrmCsmnsy (g pins),  (6seR)
is the unique propagator of the following equation:

(4.4) i0(1) = [he y(1) + Via(—= St — MY (@),

where U(&, n;t, s) and hg ,(t) have been defined in (1.19), (1.18), respectively. We
identify L2(R¥*!) with L?(R,; L>(RY)) and introduce a family of unitary operators
U(x) (teR) on LARN*!):

(4.5) @@ 1) = Uy, t — D)f(*, t — 1)(x)
for fe L2(RN*h).

This family is a strongly continuous unitary group on L?(RV*!), and U()f
is strongly differentiable in t for each fe #(R¥*!) and

d

Eﬁ(f)ﬂwo = —iK:.qf-

Thus we have U(t) = e”"X¢r and so
0

(4.6) (Ke, —ie) ' =i J e~ =U(r)dr for e >0
0

(cf. [Ho] and [Y] for the above discussion).
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For ae A we define W,(x,t) = W,( n; x, t) by
Wi (6, 1) 1= Viglx — & — ) + Vis(—Et — ),
Wo,(x, 1) := Va3(x) + Vip(—&t — ).
Lemma 4.2. Let o, f € CH with a = D(a), b = D(), and assume (V). Then
(48) e IRV (E ), QF ( M)pawm — Oup
= =i, U aeeny + i((Kg .y — 0 W, Wolhig)Lammss)
where Y° = y2(x, t) (y = a, B; see (1.20)) and W, = W.(x, ) (c € A).

4.7

Remark. By (V) and Lemma 2.1, it is easy to see that Wp ¥ € L2(RY*)
for some s > 1/2. Therefore the second term in the R.H.S. of (4.8) is well-defined
by Lemma 4.1.

Proof. By V,,(—¢&t —n)e L'(R,) and (4.3), we have
(4.9) Qf = e iBaVucamnagr e (see (1.22))
=s— lim U,y (x, 1) in L*(RY)

=t

and (@}, QF ;)= &, (see (1.23)). Thus the LH.S. of (4.8) equals (21, — @7 ..,
Q7 4). Since for y € CH, y2(, t) € H*(RY) for each t € R, U, (0, 1)y°(x, 1) is contin-
uously differentiable with respect to ¢t in L2(R") and satisfies

(4.10) 0, UL (0, )y (x, 1) = iU (0, ) W, Y (, 1) .
Therefore we obtain

411) (@7, — Q. QFp) = —lim (U0, DY2(x, 1) — Uy 0, —0Y2(x, —1), Q7 )

T 00

*d
—lim J E(Ul(()’ DY (x, 1), Q7 p)dt

—i jw (U1(0, W, (%, DY2(x, 1), 27 p)dt .

Here we note that the integral converges absolutely because the following esti-
mates follow from (V) and Lemma 2.1:

(4.12) | Woiy (%, DW5° (%, )l L2rwy = const (1 + [t])7%, ye CH.
By using (4.10) for y = a, we have in the same way as (4.11)
(413) (Ul(Oa t)u/a(*’ t)‘//:o(*9 t), QT,[J) = (Ul (Os t) I/Va(*y t)'ﬁf(*’ t)’ UI(O’ t)'//;;o(*’ t))

+ lim (U, (0, YW, (%, )Y2(x, 1), LU, (0, DY (x, 7) — UL (0, hY(x, 1))

T+ 00

= (Walx, Y2 (%, 1), Y5 (%, 1))
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)

—i (Ul (0’ t) VVa(*’ t)lp:o(*’ t)a Ul (0’ S) l/Vla("‘o S)‘//;}O(*, s))ds
= (Wa(*, Y (x, 1), Yg(x, 1))

(* 0

=) (Ui, OWa(x, DY (x, 1), Wylx, sYp(x, 5))ds  (by (U-ii)),

Ji

where the integral converges absolutely by (4.12) for y = . Thus by (4.11) and
(4.13) we obtain

('Qr,a - Qr,a’ r.ﬁ) = —i(Walﬁ:o’ 'I/EO)LZ(RN”)
- ﬁ dt J (Uy(s, )Wo(*, Y2 (%, 1), Wy(x, s)Yg'(x, s))ds .

The double integral absolutely converges, since the inner integral is O(|t|”2%*?)
by (4.12), and this is calculated as

f_ de_ (Ui (s, W (%, Y (%, 1), Wy (%, s)Yp (x, s))de

- r ds f " Usls, s — Wy s — OU(e, 5 — 1), Wiyl (s, 9))dt

—o0 0

= L (OOWA2, Wl )2mendt  (see (4.5))

= lim j eHTOWNE, Wl )pacmnes
ed0 0

= —i((Kg,q - iO)_lVVaW:O, Wb‘pEO)LZ(RN“) >

where we have used (4.6) and Lemma 4.1 in the last step. This completes the
proof.

§5. Proofs of the main theorems

In this section we will prove Theorems 1.1, and 1.3. To do so we prepare
some lemmas and propositions. Throughout this section, we assume (V) and
u>»1, and fix vy >0 and a 2-body initial channel « € CH with D(a) = a and a
2-body final channel e CH with D(8) = b,

5.1. The purpose of this subsection is to rewrite TL((1/2)n,v* + 1% o, o)
in a form convenient for later purposes. We first note that when p— oo,

(5~1) my, m,—->m; Ny, N — 00 ; na/nb -1 ) yis _)Aao
Y Y

for y =a, f. Thus for any v > 0, there exists a unique v’ = v’(v, u) > 0 such that

1 1
(5.2 in,,v2 + A= inbv’2 + 14,
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since u» 1. Clearly v' > v, as p— 00, v > v,. Throughout this section we as-
sume |v — vy| « 1 in addition to pu>» 1. Therefore, using the cordinates (x,, y,),
we have for 4 = (1/2)n,0? + A*

(5.3)
Th(A 0, ') = Cy(v, p) J enarevady, f¢$‘(xa)

X ([=1, + L(H* — A + i0) ' L1 gg (x( -, -))e™ @) (x,, y,)dx,
(see (2.12) for Tj(4; w, ') and (1.6) for x, = x,(Xs Va)s Yo = Vu(Xas Va))» Where
(5.4) Ci(v, p) = iQm) ™V (wu YN 22 (n,ny, N VI,
For each w € S, v and p we define a self-adjoint operator H*(w, v) in L2(R?")

by

. 1 ‘
(5.5) HH(o, v) = e~ ¥e <H“ - Enavz)e"‘"”“"’“

=H"-ivw-V,
with domain D(H*(w, v)) = H*(R?"), and denote the resolvent of H*(w, v) by
(5.6) R*(w, v; 2) = (H*(w, v) — 2)*.
By Lemma 2.2 and (5.5) we have the norm limits

R*(w, v; Ak + i0) := lifn R¥(w, v; A + ig)
ev 0

in B(L2(R2M), L2,(R?M)), s > 1/2, and
R¥(, v; A4 + i0) = e~ e Ya(H* — (1/2)n,0* + AX F i0) " leimav®@ ¥

Thus 7},‘;,((1/2)n‘,v2 + A% w, w') can be written as follows:

57 TE(/2n0* + 5 0, @) = Cy(v, p) | 7@ edy, | g(x,)
s

X ([_Ia + IaRu(w: v; Ag - IO)Ib]¢;(xb(’ ))X"((D, U))(Xa, ya)dxa s

where
(58) HH@, 0) = (@, 13 Xg, ) 1= i@ i,
Yo = Yp(Xa» Ya) -
We define
(5.9

E“(O), v; xa, ya) = (zn)le(nav)l—Ncl(v’ #)¢g(xa)

X ([=1a + LR*(@, v; A% — i0) I, 145 (x,(+, ))x* (@, v))(Xa, ya) »

GH(w, v; y,) = fE“(w, v; Xg, Ya)dX,
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and we denote by ¥ the inverse Fourier transform i.e.

(5.10) g(¢) = 2m™2 f e'veg(y,)dy, .

Then we obtain
(5.11) TH((1/2)n0% + 25 0, @) = (n,0)¥ "' GH(w, v; n,0(0 — w)).
for each w, o' € S¥!, v > 0 sufficiently near v, and u> 1.

5.2. This subsection is devoted to showing the existence of the limit of
G*(w, v;y,) as u— oo and v -, in an appropriate topology. We write x = x,,
y =y, for simplicity. x,, y, are linear combinations of x, y with u-dependent
coefficients (see (1.6)). There are four cases of pairs of the initial and final
2-cluster decompositions a and b: Case j-k means the pair (a, b) with a = g,
b=a, (1<j,k<2). We want to express V, I, I, and ¢} as functions of x, y
with parameter p

(5.12)

Case 1-1: V= VHx,y) = Vy53(x) + Vl3<%x — y) + Vu(—-;;—“x — y),

m m
L=1,=I*x,y) = Ix, y) = V| =2 x — Vi, =2ax— ),
o =1y = 15(x, y) = I§(x, y) 13<mx Y>+ 12( sz )’>

Ph(xs) = Ph(x, y) = ¢j(x) ,

Case 1-2: V=V* and I, = I are the same as Case 1-1,

ma
I, = If(x, y) = Vy3(x) + V12<“ﬁx _J’) >
2

#(x) = Pf(x. ) = 4 (%x - y) ,

Case 2-1: V="V¥x,y) = V23<ﬂx + y) + Vis(x) + Vu(m“ X — y),
m M,
m, m,
I, =Ii(x, y) = Vp3 <;x + J’> + V12<"M—1x - J’> ,

ma
I, = If(x, y) = Vi3(x) + V”(X/I——x - Y> s

1
ma
Ph(xp) = Ph(x, y) = ¢f (;x + y) :
Case 2-2: V=V* and I, = I¥ are the same as Case 2-1,

Il‘:(x’ y) = I:(x’ y) s
P (xp) = Df(x, y) = B(x) .
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We see that when pu— oo, V¥ If, I} and @} have limits V>, I?, I;’ and &p
pointwise on R2V (see (1.4),). These limits have the following forms:

(5.13)
Case 1-1: V>(x,y) = Vp3(x) + Vizlx — ) + V(=)

12(x, y) = IF(x, y) = Vis(x = y) + Vio(— ),
DF(x, ) = ¢ (x) .
Case 1-2: V= and I? are the same as Case 1-1,
IP(x, y) = Va3 (x) + Via(—y),
DP(x, y) = g5 (x — ),
Case 2-1: V(x,y) = Vy3(x + y) + Vi5(x) + Via(—),
I2(x,y) = Vas(x + 3) + Via(=y), (% p) = Via(x) + Via(—),
D3 (x, y) = #5(x + )
Case 2-2: V= and I? are the same as Case 2-1,
P(x, y) = 17(x, y),
Dp(x, y) = #p(x) .
Now we investigate y*(w, v) as p — o0, v > vy. x*(w, v) are given as follows:

(5.14) (o, v; x, y) = e’y (Case 1-1, 2-2),

— eimav'(v,u)a)~x+i((mbn,,v'(v,p)/m)—"av)w.y (Casc 1-2)
b
= ¢ ima W0 X Fillmpnoy .MM =RaD0 Y (Case 2-1)
b
(see (5.2) for v’ = v'(v, p)).
Lemma 5.1. Define y(w) = y(w; x, y), w € S¥7!, by
(5.15) 13 x, y) = eIy (Case 1-1, 2-2),
= gimvow x—im2i+i=itwo'w'y  (Case 1-2)
= g imvow x~im)ug+ip=isws'ey  (Case 2-1).
Then we have for any 6 >0 and any multi-index v,

(5.16) lim sup [{x; 7D, v) = X(@)]llpmreny = 0,

pu—o weSN-
v=vg

where D = (0,, 0,) and {x;y) = (1 + |x|> + |y|*)'~.

Proof. We only prove this in Case 2-1, because the others can be proved
similarly. We first note that m,v'(v, uy) > mv, as u— 0, v—->v, By (52) we



Charge transfer model 85

have
2 2
myn, 2 . 2myny
—n, |n,v* + A — 25
mbnbv, 3 ) < 2 a) a 2 ( a )
U=
m myv'  n,
nb — + -
m ny
2
, min, M,m .
Since bzb —n,= — 2 we obtain
m M, +m
myn,v’ 1 1
—no— —|=m+ AP —A° ) — asu—o, v-ov,.
a 0 B a U o
m 2 o

Therefore, in view of (5.14), (5.15), it follows that

lim S‘;p 1D [x*(@, v) — x(@)]ll oy = O
n—o weSN-!
v-vo

for any compact set K in R?¥ and multi-index y. The lemma follows from this
together with the estimates

|D'y*(, v; x, )| + |D"x(@; x, y)| £ C,  on R,
where C, is independent of u>» 1, e S"™! and v with |v — vp| « L.
We note that there exists a constant C > 0 independent of u > 1 such that

(5.17) Cx;y) S p*(x,y) S C<x;y>  on R

for ph(x,y) = x4 yixd, { £o2x—y;xd> (j=1,2),
m Mj

m, m
X—=y), <—n;x+y;ﬁ“lx—y>, (s x+y).

g,

my
<m y; M,

Lemma 5.2. Let ke NU{0} and let s be a real with s <&, — N, and assume
(V). Then

(5.18) s — lim @iy, v) = [P®Fx(@)  in HXRM)
u—o0
v—vg

uniformly for we SN71.

Proof. We set g*:=I{®f, g*:=I®P. Then, from (V), Lemma 2.1 and
(5.17), the estimate

(5.19) ID?g*(x, )| + [D7g%(x, )| = C,Xx; yp~%°

follows for any 7, where C, is independent of u> 1. (5.19) yields g*x*(w, v),
g°x(w) € H*(R?M) because of s <egg —N. Fix § >0 with § + s <g, — N. Then
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we get

(5.20) llg*x*(@, v) — g°x(@)k,s < llg"[x*(@, v) — x(@)]llx,s + I[g* — g Ix(@)llx,s

< C( Y 1<%y 7D [, v) — x(@)]ll o llg* k.45

I7Isk

+ Y 1<Ky D (@) -l g* — % “k,s+6> ;

lylsk

where C is independent of u > 1, € S¥! and v near vy. [|g*|ly.s+5 are uniformly
bounded for x> 1 by (5.19). So by Lemma 5.1 the first term in the R.H.S. of
(5.20) goes to zero uniformly for w e S¥! as y— 00, v > v,. On the other hand,
by (V) and Lemma 2.1 we have

DYg* — D¥g® ointwise on RV
p

as pu— oo for any y. Thus, using (5.19) and the Lebesgue dominated convergence
theorem, we get lim ||g* — g%, s+5 = 0. Therefore the second term in the R.H.S.

=

of (5.20) goes to zero uniformly for w e S¥ ! as p— oo.

Lemma 53. Let ke NU{0} and s 20. Then the map T defined by

Tf(y):= J(x)‘"f(x, ydx  for fe H{(R?*Y)
is a bounded operator from HY(R?*") to H¥(RY). Furthermore
DITf = TD!f
for any y with |y| < k and any fe HR?M).
Proof. Apply the Schwarz inequality.

For each w e S¥™!, —(2m)™'4, — ivow" ¥, is a self-adjoint operator in L*(R?Y)
with domain

D, = {f e L*R*®™); —2m)'4,f — ivow-V,f € L*(R*™)} ,
and $(R*") is a core of this self-adjoint operator. Therefore
(5.21) H(w):= —2m)7'4, — ivp0V, + V®

is a self-adjoint operator with domain D,, and &(R?") is a core of H(w) since
V=® is a bounded real-valued function. We denote the resolvent of H(w) by

(5.22) R(w;z) = (Hw) —2)7*.

The next lemma will be proved in Sect. 6 by using the abstract resolvent estimates
of Sect. 3.

Lemma 54. Assume (V). Let J be any compact interval in R, fix ke NU{0}
and se R with 0<k<eg,—2 and k+1/2<s, and set J,:={zeC;RezeJ,
0< +Imz<1} and B, ;= B(H*(R?V), H* (R?M)). Then:
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(i) There exist a large M >0 and a small d, > 0 such that

sup {IR*(@, v; 2) g, , + IIR(@; 2)ll, .} < 00,
M, M;>M,|v—vo|<do
weSN,zed,

where u = (M;, M,).
(ii) The norm limits

R*(w, v; A £ i0) := lim R*(w, v; A + ig), R(w; A +i0) := lifn R(w; A + ig)
ed0 edo

exist in By ; uniformly for AeJ, we SN7', y=(M;, M,) and v with My, M, > M,
v — vo] < dp.

(iiiy For each fe H*R2N) and A€ J,

s— lim R*w,v;A +i0)f = R(w; A £ i0)f
giray

in H* (R?") uniformly for we S¥".

(iv) Let fe H*R?) and AeJ. Then R(w; A+ i0)f is an H*(R*")-valued
strongly continuous function of we S¥71.

We define

(5.23)
E(w; x, y) = im0, 71 g2(x) x ([— I + IPR(w; 47 — 0 [P] D7 x(@))(x, ) -

G(w; y) = JE(w; x, y)dx .
Lemma 5.5. (i) Assume (V). Then
(5.24) sup  {IG*@, 0)l,1 + [G(@)lly 1} < o0,

u»1,|lv—vgl« 1
weSN1

(5.25) lim sup [G*(w,v) — G(w)ll,,, =0,
u—oo weSN!

where | |y, is the H{(RN)-norm and G*(w,v) = G*(w, v;y), etc. (see (5.9)), and

sup ()= swp ()
u>»1,|lv-vo|lxl M ,M;>M,|v—vp|<é
weSN-1 weSN-!

for some M >0 and 6 > 0.
(ii) If we replace (V) by (VY and || |11 by I liw-1)21+1,(v+1y25 then (i) still
holds ([ ] is Gauss® symbol).

Proof. (i) Here we denote by | |, the H¥R?*M)-norm. By (5.9), (5.23)
and Lemma 5.3 we can see that it suffices to prove

(5.26) s {IKxOVE*(@, 0)ll 1,1 + IGHVE(@)4,1} < 0,
a),evs_"!)_ol <
(5.27) lim sup [[<x)"[E*(@, v) — E(@)]ll;,, =0.

p—oo weSN-!
v—vg
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We first note that

(5.28) (00" YN=22(p YNV (pn )1 7N 5 pg! as U0, D-ovg.
By Lemmas 2.1 and 5.2, we have

1S|up - {1V GETE P (@, V)1 1,1 + 1N PP Y (@) 4,1} < o0,
u»1,|v—vol«
weSN-1

%) lim sup [COM LD, 1) — 4IE DT )]y = 0.

Set

(5.30) fH(w, v) ;== R¥(w, v; A — i0)[f P x*(w, v),

(5.31) flw) := R(w; AT — i0)[;°®PF x(w) .

Then (5.26) and (5.27) can be reduced to the following estimates:

(5.32) P {1 [ (@, o)l 1 + 1ML fl)ly,1} < 0,
Ge s

(5.33) lim sup | COVGL [, 0) = 7L Tl = 0.

Fix s with 3/2 <s <¢g, — N. Then, by Lemmas 5.2 and 5.4, we have
(5.34) sup  {If ", )y, - + I fl@)ly, -} < o0

u»1,|lv—vgl«1
weSN-1

By (5.34) and the following estimates
(5.35)  [I<x; YO DY ONGR I o < 00, sup [[<x; > DY (KX )VEIL) | o < 00

u>»1

for |y| = 1, we obtain (5.32).
Let 6, we S¥"!. We have

(5.36) [ f*(@,v) — f(@)l1,-5 £ |R*(w, v; A5 — i0)| g, 9" %" (@, V) — g*x(@)l;,s
+ [|[[R*(w, v; A% — i0) — R(w; Ay — i0)1g™x (D)1, s
+ [[R*(w, v; A4 — i0) — R(w; A7 — i0)|| s, llg™(x(w) — 2Ol 4,5 »

where B, is as in Lemma 5.4, and g*, g® are the same as in the proof of
Lemma 5.2. By Lemmas 5.2 and 5.4 (iii), the first two terms go to zero uniformly
for we S¥! as y— o, v > v, for fixed #. The operator norm in the third term
is uniformly bounded for w e S, u> 1 and v with |[v — vyl « 1 (Lemma 5.4
(i) and g®x(w) is an H}-valued strongly continuous function of w. Thus, we
see that for any ¢ > 0 and 0 e S¥! there exist M > 0, § > 0 and a neighborhood
of 6, U(6), such that

”fll(w, U)—f(a))||1‘_s<3 (u=(M1aM2))



Charge transfer model 89

if weU@®), M;, M, > M, |v —vy| <d. Therefore, by using the finite covering
argument, we see that

(5.37) lim sup I f*(w, v) = f(@)],,-s=0.
u—o0,v-vg we SN!

To prove (5.33) we write
(5.38) GOV T, v) — 212 Flo)] = OV (o, v) — f(w)]
+ OV — 4171 )

By (5.35) and (5.37), the first term tends to zero in H{(R*") uniformly for w as
u— o and v —>v,. We next prove that the second term of (5.38) tends to zero
uniformly for w as u — co. First we claim that f(w) is HL(R?")-valued strongly
continuous in w. To see this we write for 0, we S¥™!

(5.39) fl) = f(0) = (R(w; 47 — i0) — R(0; 47 — i0)) ;> P51 (6)
+ R(w; 47 — i0)[7 D5 (x(w) — x(6)) -

The first term goes to zero in H! (R*) as w —» 0 by Lemma 5.4 (iv). Similarly
for the second term by Lemmas 5.1 and 5.4(i). This proves the continuity of
f(w). Now we will prove

(5.40) lim sup [F*f(@)ll,, =0, F*:= OV —¢717].

u—oo weSH-1

We have for w, 8 e S¥!
[Ff(w)ly, 1 < IF*fO) 1,1 + C ||251 I<x; yO' DY FH| | f (@) — f(O)Il 1, —s -
NS

By Lemma 2.1, (V) and f(0) € H:,(R?"), the first term tends to zero in H}(RZ")
as u— oo for fixed 0 € S¥"!. In view of the continuity of f(w) and the bounded-

ness Y [[<x; y>!**D"F*|| . (see (5.35)), the argument similar to that in the proof
lylst

of (5.37) yields (5.40), and hence (5.33).

(i) Fix s, with [(N—1)/2]+1+(1/2)<s, <gy— N. If we replace s,
H{(R*™) and H!,R?M) by s,, HMR?*M) and HY (R?M), respectively (M =
[(N —1)/2] + 1, L = (N + 1)/2) in the proof of (i), we obtain the desired results
in the same way as above.

53. We fix weS¥! in this subsection. We first introduce a a family of
operators {L,(n)} (ne,) in L*(R"*'), R**!' = RY x R}

L,(n):= —2m) ™4, — ivyd, + V=2(x, tw + 1),
D(L,(m) = {feL* —2m)'4,f — ivyd,f € L*} .

By (V), L,(n) is self-adjoint for each ne IT,, and S(R¥*!) is a core of L,(n).
Furthermore the norm limits

(5.41)

(5.42) (Lom) — A+ i0) = lijn (Lo(n) — A +ig)™!
e+ 0
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exist in B(L2(RY) ® L2(R), L2(R") ® L2 (R)) uniformly for A in any compact set
in R, where s > 1/2 (see Lemma 4.1).
By the correspondence f(x, y) - f(x, tw + 1) (t € R, n € I1,) we have L*(R*") =
®
J‘ L*(RN*1)dn (see [R-S]IV, XIIL16 for constant fiber direct integrals). Then,

nﬁ)

by (5.5) and (5.41), we have

® ®
(543) H(w) = L Lymdn, (Hw)—2)"' = L (Lo(m) —2)" dy
for ze C\R. Thus, for each fe L?(R¥ x R") and ze C\R, we have
(5.44) (R(@; 2)f) (%, %@ + 1) = (L,(n) — 2)f (*, *& + 1)

in L2(RY x R,) for ae. neIl,. Here we note that (L,(7) —z)™* operates on the
variable x, t (the first * stands for x and the second * for t). The limiting
absorption principle for H(w) (Lemma 5.4) and L,(n) ((5.42)) together with (5.44)
yields the following lemma.

Lemma 5.6. Assume (V), and fix AeR and fe L2(R?*) (s > 1/2). Then

(5.45) (R(@; 2 — i0)f)(*, *w + 1) = (L,(n) — A + i0)7'f(, *& + 1)
in L2 (R™*Y) for ae. nell,.
Proof. Set

B,(n) := [I[{*, *@ + 1) *[(R(w; A — i&)f)(+, o + 1)
— (R(@; A — i0)f) (*, *@ + 1)1l 12w+,

for each ¢ >0 and ne I1,. Then, by Fubini’s theorem, B,(n) is well defined for
ae. nell, and

Bl sy = ILR(@; & — ie) — R(w; 4 — i0)1f I 2, mem »

Since the R.H.S. goes to zero as ¢ |0 by Lemma 5.4, we can choose a sequence
€, >¢& > +—0 and a null subset e, of 71, such that as j— oo, B,(n)—>0 for
every n € IT,\e,. This implies that

(546)  [(R(w; A — ig))f) (%, ¥ + 1) — (R(@; 4 — i0)f) (%, ¥ + n)l| 2 gvesy = O

as j— oo for every ne Il \e,. On the other hand, there exists a null subset e;
of I1, such that for every ne Il \e, and all j,

SGx, %0 + n) e LZR"*™),
(R(w; A — ig)) f)(*, x0 + 1) = (L,(n) — A + &) f (¥, ¥ + 1)
in L2 (R¥*!). Thus, by (542) and (5.47), we have

(5.47)

(548) s — lim (R(w; A — ig))f)(*, *@ + 1) = (L,(n) — 4 + i0)71f (%, *w + 1)

j=oo

in L2 (R¥*!) for every n € IT,\e,. By (5.46) and (5.48) we get the desired result.
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In Lemma 5.8 we shall prove that (5.45) holds for all ne IT, under the
stronger assumption (V) if we require a regularity of f. To this end we review
the trace theorem.

Trace Theorem (see e.g. the proof of Theorem I1X.38 of [R-S]II). Let p,
g€ N, and let o be a real with ¢ > p/2. Then there exists a constant C such that

I f(z, *)||L2(R‘*) < C”f”H’(R"x RY)

for all fe #(R? x R? and ze RP. In particular, the trace T,f:= f(z, *) € L*(RY)
is well-defined for all feH’(R” x R?') and zeRP’. Furthermore T, is a
B(H°(R”? x RY), L*(R%))-valued norm continuous function of z e RP.

For each 7 € I1, we define a map y, from £(R?*Y) to S£(R¥*!) by (y,/)(x, t) :=
Sf(x,tw +1n). y,f is the restriction of f on a plane of codimension N —1 in
R?N. The trace theorem guarantees that y, can be uniquely extended to a
bounded operator from H*(R?*Y) to L*(R**') for any k > (N — 1)/2, and that y,
is a B(H*(R*"), L(RN*!))-valued norm continuous function of n € I7,. Further-
more we have

Lemma 5.7. Fix k> (N — 1)/2 and se R. Then y, can be uniquely extended
to a bounded operator from H*(R?*M)to L2(RV*'), and v, is a B(H*(R?¥), L3RV *1))-
valued norm continuous function of nell,.

Proof. The relation y,{(x; y>™* = {x; tw + n)>~*, and the trace theorem yield
7, € B(HE(R?N), LZ(R¥*')). The continuity is easily verified.

Lemma 5.8. Assume (V), and fix A€R, s>[(N—1)/2]+(3/2) and
f e HIN-D2I*L(R2NY - Then

(549) YaR(@; 4 —i0)f = (L,(n) — 4 + i0) 7'y, f
in L2 (R"*Y) for all nell,.

Proof. R(w; A — ie) maps HIN"DR2I*L(R2ZNy nto HUN-D2I+L(R2N) for each
e>0, and we have

(5.50) YaR(@; A —ie)f = (Ly(n) — A + ie) ™'y, f

in L2 (RM*!) for ae. nell, by (544) and Lemma 5.7. On the other hand, it
is easy to see that (L,(7) — A+ ie)”! is strongly continuous in nell, as a
B(L?*(R¥*!'))-valued function. Thus both sides of (5.50) are strongly continuous
in nel, in L (R"*') by Lemma 5.7, and so (5.50) holds for all ne I1,. We
fix nell,, and let ¢ |0 in both sides. Then Lemmas 5.4 and 5.7 yield

PoR(@; A — ie)f > y,R(w; A —i0)f  in L2 (RM*).
Since y,f € LZ(RN*'), we get
(Lom) — A+ i)'y, f = (Lo(n) — 4+ i0)'y,f  in LZ(RM)
by (5.42). This completes the proof.
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Lemma 5.9. We assume (V). Then we have
(5.51) (2Qm)yWN-202 ~[G(w; tw + n)dt = Sg (0o, 1) — Syp

for ae. nell,. (See (1.24) for Sg,(vow, n).)

Proof. By (5.23), we have
(5.52) (m®-22 jG(w; tw + n)dt = 2r)N~212 J:[ E(w; x, tw + n)dxdt
for a.e. nell,. Using Lemma 5.6 and (5.23), in the R.H.S. of (5.52), we get
(5.53) (2m)\WN-2r2 JjE(w; x, tw + n)dxdt
= ivg H{ = (LX) IX(x, tw + 1), BF(x, tw + n)x(w; X, tw + 1))
+ (@2 (%, tw + 1), (L) — A2 + i0)T IR (%, %> + M@ (%, ¥ + 1)
X y(@; *, x& + n))(x, 1))}
for a.e. neIl, By scaling t - vy, L,(n) turns into

L) = —(2m) ™4, — i0, + Va3(x) + Vy3(x — votw — 1) + Vy5(—votw — 1)

(for Case 1-1, 1-2)

—(2m)7 4, — 0, + Vy;3(x + votw + 1) + Vy3(x) + Vip(—votw — 1)
(for Case 2-1, 2-2).
Thus this scaling yields
(5.54) the R.H.S. of (5.53)
= —i(¢P(x)I2(x, votw + 1), PP (x, votw + n)x(w; x, votw + 1))
+i((Lo(n) — A2 — 10) ' I2(%, vo * @ + ME)(x, 1), [, votw + 1)
X @P(x, votw + Mx(w; x, votw + 1)).

To finish our proof, in view of (5.53), (5.52), (4.8) and (1.24), we have only to
show that (5.54) is equal to the R.H.S. of (4.8) for £ = vow and each nell,.
Case 1-1. We can obtain the desired result by observing that

(5.55)  IZ(x, votw + m) = Wivow, m;x, 1) for c=a, b (see (4.7)),
(5.56) x(w; x,vptw + 1) = XTI BR(x, votw + 1) = (%),
(5.57) e (Lo () — A2 — i0)! = (K .y — i0) Le 5,
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Case 1-2. (5.55) and (5.57) hold also in this case. Instead of (5.56), we have
only to note that

x(w; x, vptw + 1) = gimvowx—i((m{2)v,+ 27— A2) ,
(5.58)
DR (x, votw + 1) = 5'(x — votw — 1) .

Case 2-1. We use new variables (X, s) = (x + votw + #, t) in this case and the
next case. In terms of the new variables we can write

(5.59) I?(x, votw + 1) = Wrow, 1; X, 5) forc=a, b,
(5.60) 1(@; X, ot + n) = e iMoo X+illm2iwg’+3z =)
(5.61) $7(x) = 62(X — vosw — 1),

(5.62) P (x, votw + 1) = $F(X) ,

(5.63)

(Lon) — A2 — i0)™ = (= (2m) ™4, — 10, — ivow" V. + Va3(X) + Vy3(X — vosw — 1)
+ Vip(—vosw — n) — A® — i0)™?
=U(—2m) 4, — id, + V,3(X) + Vi3(X — vosw — 1)
+ Vi(—vgsw — 1) — i0)1U*,

where U = e™imrowX +im2v*+32)s 5 upjtary multiplication operator. Noting that
the Jacobian for (x,t) — (X, s) is one, we can compute the R.H.S. of (5.54) to
obtain the desired result.

Case 2-2. We use the same variables as above. (5.59), (5.61), (5.63) hold also.
Instead of (5.60), (5.62), we have only to note that

(5.64) x(w; x, votw + 1) = TS DR(x, votw + 1) = FP(X — vosw — 1) .

We have shown that (5.54) equals the R.H.S. of (4.8) for ¢ =vow and nell,,
and have finished the proof of Lemma 5.9.

Lemma 5.5 (i) shows G(w)e H\)P*'(RY) if we assume (V). Thus
G(w; tw + 1) € Liy1y)2(R,) = L'(R,) is well-defined for each n € IT,,, in view of the
trace theorem. At the end of this subsection we prove the following.

Lemma 5.10. We assume (V). Then (5.51) holds for all nell,.

Proof. By the trace theorem the L.H.S. of (5.51) is continuous in nell,,
and by Lemma 5.8 and the smoothness of V,;, 47°, ¢7° the R.H.S. of (5.53) (= the
R.H.S. of (5.51)) is continuous in ne IT,. Hence, (5.51) holds for all ne IT,.

5.4. We assume (V) and give the proof of Theorem 1.1 in this subsection.
The following lemma will be proved in Sect. 7.
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Lemma 5.11. Let k> 1/2, s> (N —1)/2, and he C(S*™'). Then for any
e > 0 there exists Ry = Ry(k, s, & h, N) > 0 such that

(5.65)

R”“J F(R(0' — w))h(w)do’ — h(w)j F(ndn| < & Flly,s
sh-1 1,

w

for all R=R,, weS""! and F e HXR").

Remark. F(R(x — w))e L2(S¥™!) and F(n)e Lﬁ(ﬂw) < L}(11,) are well-defined
by the trace theorem.

Proof of Theorem 1.1. We fix fe C(S¥ ') and set M =[(N — 1)/2] + 1,
L= (N +1)/2. Then by Lemma 5.5 we have G*(w, v), G(w)eH{;,(R"), where
G*(w, v; &), G(w; &) are the inverse Fourier transform of G*(w, v; y), G(w; y), respec-
tively. Thus applying Lemma 5.11 with k=L, s=M, h=f, F = C“(w, v), and
using (5.11) (see (1.16)), lim wvn, > oo, we obtain

pu—00,v—4vg

(5.66)
(TE((/2)n,0* + 2 ) w) — ( f . G(o; n)dn)f(w)l

<

(on V7! f GH(, v; vn,(@ — ))f(@)do’ — (j G*(w, v; n)dﬂ)f (w)’
sM-1 m

w

+ 1G*(@, v; ) — G(; )l L1y f(@)]
< 0)GH(®, 1)y, + CIGH@, ©) — G pg, Ll f Nl oz, »

where 6 = 0(y, f, v), which is independent of w e S¥7!, satisfies 6 >0 as p— o0
and v > v,, and C is independent of w, v and u> 1. In the last step we have
used the following estimate, which follows from the Schwarz inequality and
Lemma 5.7,

(5.67) L1,y < const. [[a(m)llLzm,
< const. |lul| HY(RY)

for ue H¥(RY). Thus, by Lemma 5.5 and (5.66), we get

(5.68) lim (T ((1/2)0* + 25)f) = <L G(w; n)dn)f (@)

=00, v4vg

uniformly on S¥!. Now direct calculation yields

(5.69) j i(n)dn = QmyN-22 J u(tw)dt
11, R

for each w € S¥! and u e #(RY). By the Schwarz inequality and the trace theo-
rem we have

(5.70) u(xw)||L1(ry < const. ||“(*w)||1,,%(n) < const. ”u”Hf(R")
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for any u e H¥(R¥), regarding u(*w) as the trace of u to the one dimensional
subspace {tw;teR} in R". This together with (5.67) implies that (5.69) holds
for any ue HY(RV). In particular we have

(5.71) j G(w; n)dn = Rr)yN-212 j G(w; tw)dt
n,

R
= Sﬁ(vow, 0) - 5&ﬁ

for all weSY! by Lemma 59. Theorem 1.1 follows from (5.68) and (5.71) if
we recall the definition of Tg,(A).

5.5. We assume (V) and prove Theorem 1.3 in this subsection. The next
lemma will be proved in Sect. 7.

Lemma 5.12. Let 0 <s<k—1/2. Then for any ¢ >0 there exists Ry =
Ry(& k, s, N) = 1 such that

RVN1 J |F(R(w' — w))*dow'— J
SN-1

for all R = R,, weS"™* and F e HXR").

_ We define J by (J)(¢) = f(¢) (the complex conjugation) and ﬁ;‘, W.,"t by
(P ) (xe, ye) = ) (x)f(ye),

(5.72) Wh :=s— lim e Ple T
t=*+o

IF(ﬂ)Izdn‘ < ellFlZ,

1,

for y=a, B, ¢ = D(y). Since

Jﬁ;‘J = P¥, e Ty = JehTiy e ' = JeitH'] for y=0a, B,
we have, by (1.10), Wi = JW;‘:J and so
(5.73) Sk, =JS4T,

where §;‘,, = VK&‘V%“.. We can see that Z;‘§;‘,,Z;," is decomposable in terms of a
family of operators {S4(4)} ([A-J-S], 15-3):

(5.74) Ze88Z8 = {Sh(D)}  (see (1.15)).

For y=a, B we note that JZ!*(3) = Z*"(4)J, where J is defined by (Jg)(w) =
g(—w) for ge X = L2(SV"!). Then we have by (5.73), (5.74)

(5.75) Sk =JS4(A)*J on E,  Ae(dh, 0)\4*,

where A4, := max (4%, A}), 4* := {the thresholds of H*}Ua,(H"). Since both sides
are norm continuous by Theorem 2.3, (5.75) holds for all 4 e (45,, 0)\4*. Let
TH(4, o, ') be the integral kernel of Sf(4) — d,5. Then, by (5.75), we get
(5.76) Th(A, o, @) = ﬁ‘;,(,l, —w, —©') (cf. (1.16)).

This equality holds for all (4, w, ') € ((44,, c0)\4*) x S¥~! x S¥~!, because both
sides are continuous in all variables (Proposition 2.4).
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The arguments up to subsection 5.3 are valid even if we replace (the initial
channel) o and (the final channel) § by B and o, respectively, and then relpace
¢} and ¢° by qT;‘ and ¢_§°, respectively for y = o, . In the definition of G*(w, v; y,)
and G(w;y) (see (5.9), (5.23)), we replace « and B by B and a, respectively (the
initial speed v is replaced by v’ (see (5.2)), and replace ¢/ and ¢° by qﬁ_;‘ and
?, respectively. Denote the resulting function by p*(w,v;y,) and p™(w; y).
Then we have

Th(A, o, @) = (m0" V" pH(w, v; nyp' (@ — w)),

A= (1/n0 + 2 = (1/2n,0'2 + i

(5.77)

in the same way as (5.11). Thus, in virtue of (5.76), the total cross section is
represented as (see (1.17))

(5.78) G ((1/2n,0* + M )

= 2V (n,v)! "N(n,v')*N2 J [P*(—w, v; nyv' (@ + w))]*do’ .
§N-1

We have
(5.79) |64u((1/2)n,0% + A% @) — Qu)¥ 1P — ;9| 220y
< loful(1/2)n,0 + 25 @) — oY p(— w, v; %) T2y
+ 2" (1P°(— @ D)2y + 15*(— @, 05 ) L2(,)
x [1P*(—@; )l 2, — 15*(— @, 0; 9| L2y -

Under assumption (V), Lemma 5.5(1)) holds even if G*(w, v;y,) and G(w;y) are
replaced by p*(w, v; y,) and p®(w; y), respectively. Thus, by using the trace theo-
rem, Lemma 5.12 and (5.78), we obtain

(5.80) lim  of((1/2)n,0% + 245 ©) = 20" M IP*(— @; #)lI L2,

=00, v-+vg

uniformly for we S¥!. Since
p(—w; &) = (M“”‘“”J e"‘"’<(2n)"’2j PP (—o; tw + n)dt>dn
1, R
for £e1l,, the R.H.S. of (5.80) equals

(zn)N— 2 J‘
11,

by Parseval’s equality.
We define tZ;”(é, 1; X, t) by replacing ¢}° by 3;" in the definition of Y;°(&, n; x, t)
(see (1.20)) and define

2
dn

f PX(—w; tw + n)dt
R

(5.81) Q& n):=s— lim UE 0,00 n; % 1)  in L2(RV)

-+
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for y=a, B. Then, in the same way as Lemma 5.9, we have
(5.82) 2m)N-212 j pe(— w; tw + n)dt
R

= e—if'fm Vn(votw_")dr(fjp_(_vows n)a é:(_vowa 1’,)) - Jﬂa s

for a.e. neIl,. Thus, by (1.24), (5.80), we have only to prove the following
lemma to finish the proof of Theorem 1.3.

Lemma 5.13. For y=a, f and £ e R"\{0}, ne II,, we have
(5.83) QF(—¢&n) =JQF(E ).

Proof. Recall that U(& n;t,s) is the propagator of h, ,(t) (see (1.18)).
o, s):=JU(—& n; —t, —s)J, (s, t € R) obviously satisfies (U-i) and (U-ii) of Sect.
1. Moreover we have

i0,0(t,s) = Jh_g (—)U(=&, n; —t, —s)J
= hg,,(0)Q(t, 5)

where we have used h,,(t) = h_,,(—t) in the last step. Thus we see that
o, s)=U(& n;t,s) for all s, te R by the uniqueness of propagator. Since
JUP(=& n; x, 1) = Y&, n; x, —t) for 7 =, B, it follows that

Q=& n) =s— lim U(=&n; 0, )f2(—=& 13 %, 1)

t— +o

=s— lim JU( n; 0, —)JPY2(—&, 1; %, 1)
t— + oo

= JQF(E )

§6. Proof of Lemma 54

We shall prove Lemma 5.4, under assumption (V), by applying the abstract
theorem obtained in Sect. 3. We fix seR and an integer k=0 with
0<k=<eg —2 k+1/2 <s, and a compact interval J = [e;, e,] in R throughout
this section. We may assume a =a, = {1, (2, 3)}, since the other case can be
treated similarly.

Let

6.1) Ao:= (120X F, + Vo x+yF,+ 7,y

be the generator of dilations on R?", which is self-adjoint in # = L2(R?¥) with
¥ = F(R*™) as a core. For a triplet 6 = (w, u, v) with weS¥!, u>»1 and
v —vy| « 1 for fixed vy, > 0, we define a operator

(6.2) Ag:=n,""4g + vy = n,te @YY ginavey
and for we SV! we define

6.3) AL =vow Yy .
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We also write
(6.4) H, = HY(w,v) = H" — iva "V, (see (5.5))

for a triplet 6 = (w, u,v). Ay, AL and H, are self-adjoint operators in # with
& as a core. A direct calculation yields

2 i 2
(6.5) i[Hy, Ag] = — Hy — —[Ag, V*] — = V¥ 4 2,
na na na
(6.6) i[Ag, V'] = V() + Vf}c(@x - y) + Vf?(—ﬁx - y)
m M,

on ¥, where ViO(x)=(x V) Vp(x) (see (5.12)). Thus the R.H.S. of (6.5 can
be extended to a bounded operator from H?(R?*¥) to #, and the commuta-
tor i[H,, A,] defines a self-adjoint operator iH,") in #. If ¢ <g, the ¢-th
commutator

6.7) i‘[Ags [.--s [Ao, V*1...11 = V9(x) + V,‘g’(%x - y) + V{g’(-%x _ y)
2
is bounded by (V). Therefore, by using (6.5) we see that the I-th commutator
i’[...[Hg, 4], ..., ], Ap] on & can be uniquely extended to a self-adjoint opera-
tor i’H,” in H# for £ < g,.
Let ¢ be a C®-function on R such that 0<¢ <1, ¢=1 on J and supp ¢ <
[e; — 1, e, + 1] (supp = support).

Lemma 6.1. Let d be a positive integer with d <k + 1.

(i) There exist M > 0 and 6, > 0 such that assumption 3.1 (H = 3, H = H,,
A = A,, I =J) is satisfied for all triplets 0 = (w, u, v) with € S¥™, u = (M, M,),
M, M, > M, |v — vy| < &y, where we can take Cy = (1/2)v3 in (H-v). Furthermore,
liH9Ry()| (¢ =1,...,d + 1) is uniformly bounded for 0 = (w, u, v), where we
write

(6.8) Ro(z) = (Hy— 2)7".

(i) For we SY™' assumption 3.1 (H=#, H= H(w), A= A2, I =) is satisfied,
where we can take Cy=vy® in (H-v). Furthermore, i[H(w), AZ] = v,® and
i‘[[...[Hw), 43],...1, 451 =0 if 2=¢.

Proof. (i) (H-i) is obvious because & is a common core for Hy and A,.
(H-ii) follows easily from

(69) eizA,, — e‘i"a"“"yeion/"aei"a"ﬂ"y .

We can verify (H-iii), (H-iv) by using the arguments before this lemma and the
fact that & is a common core for Hy, and A4, Since n,—> o0 as p— oo, we
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obtain by (6.5)

1 2
(6.10)  ¢(Hy)iH,'V$(Ho) 2 (nz(el = 1) = LA VHII = VAl + vz) ¢(Hp)

= (1/2)vo® (Hy)*
for all 8 = (w, u, v) with we S¥™*, u» 1 and |v —vy| « 1. This implies (H-v)
with C, = (1/2)v,2. The uniform boundedness of
(6.11) i¢Hy“Ry(i)|| = [1((2/n,)’Hy + bounded operators)R,(i)|l

(Z=1,...,d + 1) follows from (6.5), (6.7) and (V).
(i) & is a common core for H(w) and A%, and (H-i) is satisfied. Noting
that

D(H(w)) = {f € L*R*); (—(2m)*4, — ivow-V,)f € L*(R*M)},
we can easily see that (H-ii) holds. (H-iii) ~ (H-v) follow from i[H(w), A2] = v}
on & This completes the proof.

We set Z:= {0 = (o, p, v); My, My > M, |v — v5| < &, we SV!, where p =
(M, M,)}. Here M and ¢, are as in Lemma 6.1.

We denote any of —id, or —id, (j=1,...,N) by D. For any fe H'(R*")
and ze C\R,

(6.12) e "PR(w; 2)f = (e "PH(w)e" — z)"'e "Pf .

Thus e *PR(w; z)f is strongly differentiable in t € R and

(6.13) %e”"DR(w; z)| = —i{R(w;z)D — R(w; z)(DV®)R(w; 2)} f,
t=0

which implies R(w;z) leaves H'(R?¥) invariant and

(6.14)  DR(w;z) = R(®; 2)D — R(@:2)(DV®)R(w;z)  on H'(R?Y)
for each ze C\R. By using (6.14) and (V), we see that

(6.15) sup  |[R(w; 2)|l gaey < 0©

weSNl,zeK
for any compact set K in C\R and ¢ =0, where H’ = H/(R?"). In the same
way as above for any compact set K in C\R and /£ =0 we have
(6.16) sup  [|R4(2)ll ey < 0 .

e Z,zeK

Furthermore Ry(z) (ze C\R) leaves & invariant (e.g. Proposition 1.3 of [P]), and
so by (6.1) we have
(6.17) i[Ro(i)s Ao] = —iRo(i)[Ho, Ag]Rq(i)
2 i 2
= —ZR(0) + Ro(i){ni [, V¥ 4+ (V" — i) = vz} Ro(i)

a

on <.
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Lemma 6.2. Let £ be a nonnegative integer. Then

sup n, ! Rg(i) | B’ HOH) < O .

fe =

Proof. By (6.16), (V) and the resolvent equation
Ry(i) = (Hy — V* — i)™ — (Hg — V¥ — i) ' V#Ry(i)

it suffices to prove

(6.18) SUE na_l”(Ha h V“ - i)-l” B(HI_HI-H) < 0 .
Thus by (6.4) and the Fourier transform it suffices to show that
1 1€l + [l + 1
6.19 sup —- — — < 0.
OB R T T+ @n) T+ vl 1
,ne RV

Taking account of the inequality 2ab < a? + b? for real a, b, we have

1€+ Inl + 1 2 1(1/2mg)[E1 + (1/2n) 01> + v n| + ny(0* + 1) + 1 + (m,/2).
Therefore (6.19) follows.

Proof of (i), (i) of Lemma 54.
(I) First we give the proof for R(w; 2).

When k=0, we fix s>1/2 and d=1. By Lemma 6.1(ii) and Theorem 3.3,
we have

(6.20) sup  [[Kw'y>"*R(w; z){wy>~*| < ©

zeJ,, weSN!

and the norm limits

(6.21) li¢m {w y)*R(w; 4 + ig){w y>~*
ev 0

exist in 2 uniformly for weS" ! and AeJ. From this together with
o yYx; yd s £ 1, x; ¥ := (1 + |x|? + |y[*)'2, the desired results follow.
When k = 1, we have only to prove

(6.22) sup  [[<x; y>"*D"R(w; 2)<D>™*(x; y>~*ll < o0,

zeJ ,0eSN!

(6.23) lilIl [[<x; y>™*D"[R(w; 4 £ ig) — R(w; A + ig")]<DY*(x; y>~* = 0
£,e'v0

(DY = (=4, —4,+ 1)'?)

uniformly for AeJ, weS¥! for s>k+1/2 and |y| <k By using (6.14)
repeatedly and by taking account of {x;y)*D*(D)>7*(x;y) e B(#) for |y| <k,
in order to prove (6.22) and (6.23), it turns out to be sufficient to show

(6.24) sup [{w"y>~*R(w; 2) V;? R(w; 2) ... V7 R(w; 2)w- yp~*| < o0,

N—
zeJ,,weS

(6.25) liT [{w-y> *{R(w; 4 + i) V;? R(w; A £ ie) ... V7 R(w; A + ie)
£,e'v0

— R(w; A +ig")V;?R(w; A £ i€) ... V. R(w; +ie')}<w-y>~°| =0,
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uniformly for AeJ, weS¥!, where Vio=DWV>® and 1<¢<k |yl<k
(j=1,...,¢). Since [Vy;y,A51=0 for j=1, ..., £, taking account of Lemma
6.1, we can apply Theorem 33 with H=0f, H=H(w), A=A2, I=J,d=¢+1
and W, = Vi for j=1, ..., £ to conclude (6.24) and (6.25). This completes the
proof of (i), (i) for R(w; z).
(I) We next prove (i), (ii) for Ry(z) = R*(w, v; z).

When k =0, we fix s with 1/2 <s <1 and shall show that
(6.26) sup  [I<x; y> 7 Re(2){x; y>7°Il < 0,

zeJ,,0eE

(6.27) lim  sup [[<x;y>*[Ry(A t ie) — Ry(4 £ ie')]<{x; y>~* = 0.

£,e'd0 deJ,be =

By the resolvent equation we get
(6.28) Ro(2) = Ry(i) + (z — i)Rg(i)? + (z — i)*Ry(i) Rg(2) Ro(i)
for ze C\R. Thus, to obtain (6.26), (6.27) it suffices to show that

(6.29) sup (|5 > Ry(D)Ry(2) Ry(i)<x; y> Il < 0,

zel,,0e =

(6.30) lim sup _[I<x; y>7Ry(i) [Re(4 £ ie) — Ry(A £ ie)IRq(i)<x; y>™*| = 0.

£,e'V0 del,0e =

By Lemma 6.1(i) and Theorem 3.3 with d = 1, we have

(6.31) sup 1{4>™*Rg(2){Ag>™*|l < 0,
(6.32) lim sup [[<Ag)>"°[Ry(4 £ ie) — Ry(4 £ ie')]<{Ae)> ™l = 0.

6,e'V0 AeJ,fe =

We have AgRy(i) = Ry(i)Ag + [Ag, Ry(i)] on &. [A,, Ry(i)] is uniformly bounded
for e £ by (6.6) and (6.17). Since

(6.33) Ag= —i(n,) W, x —i(n,)"'V, y + vw"y + (Nfin,)
we have sup ||Ry(i)A4e<{x; y>!| < 00 by Lemma 6.2, and so we get
fe = :
sup [ AgR(i)<x; )7l < o0 .
By using interpolation this yields
(6.34) sup 1< Ag>°Ry(i)<x; y>~°Il < o0
for 0 =s<1. Thus, (6.29) and (6.30) follows from (6.34) together with (6.31)
and (6.32), and so (6.26) and (6.27) are obtained.

When k = 1, we fix a real s with k + 1/2<s<k+ 1. In the same way as
(I), it suffices to prove
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(6.35) sup [[<x; D7 R(2) VY Ry(2) ... VERg(2)(x; y>7°|| < 0,

zeli,GeE

(6.36) lim  sup [[<x; y>"*{R4(4 £ ie) V}iRy(A % ie) ... ViRe(A £ ie)

ee'd0 Aet, e =
— Ro(A +ie" ) V/iRy(A £ ie") ... VERg(A £ ig")}{x; y>™°| =0,

where V) =D'V* and 1 £/ <k, |y <k
Using (6.28) repeatedly, we get

(6.37) Ry(2) = { Y (- i)"Re(i)’z} + (2 — DP* DR ()T Ry(2) Ry (i)™
£1,£2; finite

for ze C\R. Thus, by substituting (6.37) in (6.35) and (6.36), we finally see that
the proof of (6.35), (6.36) can be reduced to that of the following

(6.38) Sup [{A49> *Rg(2) U, Ry(2) ... U Ry(2){Ag> ™"l < 00,
(6.39) lim  sup [[<Ap>{Ry(A + i) UyRy(A + ie) ... U, Ry(A + i)

£e'd0 delJ,0e =
— Ry(A £ ie)UyRy(A + i) ... U Ro(A 1 i€)} (A>™%| = 0,

(6.40) sup {I1<x; YU <AY | + 1K A) Upr x5 ¥ 7° 1} < 0

for 2<m <k + 1, where each U; is the form
(6.41) U = Ry(i)Q, Ryli) ... QuRe(i)  (h 2 k)

with Q, =1 or V! (|y| £ k).

We first prove (6.38) and (6.39) by applying Theorem 3.3. It follows from
(6.17) and k < ¢, — 2 that g-th commutators (0 < g <k +2) [...[Uj, 46, ..., 4]
on & can be extended to bounded operators U® on 3, and their operator
norms are uniformly bounded for 6 € 5. Thus each U; (j = 1,..., m + 1) satisfies
Assumption 3.2 with A = 4, and d £ k + 1, and so (6.38) and (6.39) follow from
Lemma 6.1 (i) and Theorem 3.3 with d < k + 1. Next we shall prove (6.40). We
have

(6.42) U At = 41U, + [Uy, 441] on &.
Ay (j=0,...,k + 1) has the form
. 1 V3
(6.43) A) = Y Cmmx“y“<—D> ,
[y1+y2llvalSi n,
where C, ,.,. are constants uniformly bounded for 6 € Z. Since U; containes at

least (k + 1)R4(i), we obtain

1 Y
2o
ng,

(6.44) sup

fe =

< for Iy £k+1
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by Lemma 6.2 and (V), and so we have

(6.45) sup [[<x; y) T AHUL | < o0
beZ
The commutator [U,, 4,**!] has the form

k
[Ul, A0k+1] — Z CjAinl(kH—i) ,
j=0

where C; are constants independent of § € 5. We note that (6.17), (V) and Lemma

6.2 yield

Y .
(6.46) sup ’(n—aD> U,%"0 < 0
for |y)<k+1 and for j=0, ..., k, and so we obtain
(6.47) sup [[Kx; )™ U 44 < w0
It follows from (6.45), (6.47) that
(6.48) sup |<x; )™ U KA < 0.
Similarly, we have
(6.49) sup 1< ApY T Upy (x5 > < 0.

Therefore (6.40) follows by interpolation. This completes the proof of (i), (ii) of
Lemma 54.

It remains to prove (iii), (iv) of Lemma 5.4.
Lemma 6.3. Let ¢ be a nonnegative integer and f € H’. Then for each & > 0,

6500 s—  lim  RMw,v; A +id)f = R(w; A +i0)f  in H’

A=A, u—00, 000
uniformly for we S¥7!,

Proof. By (6.15) and (6.16) we may assume fe % We have
(6.51) [R*(w,v; A +id) — R(w; A + i0)]f = —R*(w, v; X' + i)

1 1 1 . , ) .
X [<% - Z_rm>d" - 2_n,,Ay —i(v—vy)wV, — X + A]R(w,l +i0)f
— R¥w, v; ' + i8)[V* — V®]R(w; A + i8)f .

Taking account of (6.15), (6.16), we see that the first term in the R.H.S. goes to
zero in H’ uniformly for w € S¥™! as y— 00, v > vy, A’ > 4. It is obvious that

(6.52) lim [[[V* — V®]R(w; A + i8)fll,0=10

g
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for each w e S¥!. Since R(w; A + i8)f is H’-valued strongly continuous function
of weSV"!, we can see that (6.52) hold uniformly for w by the finite covering
argument (see (5.37)). Thus, by (6.15), the second term in the R.H.S. of (6.51)
goes to zero in H’ uniformly for w e S"~! as y— 00, v > vy, A’ > 4. This proves
the lemma.

Proof of (iii) of Lemma 5.4. Fix fe H* for s>k + 1/2 and a sufficiently
small > 0. By (ii) of Lemma 5.4 already shown, we can take a § > 0 such that

(6.53) sup. {I[R4(A" + i0) — Rg(A" + i6)] f |l s,
0=(uv)e 5

+ I[R(@; A + i0) — R(w; A + i0)]f g+ } < 7.
This together with Lemma 6.3 gives the desired result.

Proof of (iv) of Lemma 5.4. By (i) of Lemma 5.4 already shown, we may
assume fe . For any &€ S¥"!, we have

(6.54) [R(&; A +i0) — R(w; 4 £i0)1f = [R(&; 4 +i0) — R(E; A +ig)1f
+ [R(w; 4 £ ie) — R(w; A £ i0)]f
+ [R(&; 4 £ ie) — R(w; 4 £ ie)]f .
By using the resolvent equation,
(6.55) R(¢; 2) — R(w; z) = R(w; 2)ivg(§ — w)* ¥, R(w; 2)

for ze C\R, we can easily show that the last term goes to zero as w—¢ in
H* (R?M) for each ¢>0. By Lemma 5.4 (ii), the others go to zero uniformly
for &, we S¥! as ¢ —»0. This completes the proof.

§7. Proof of Lemma 5.11 and Lemma 5.12

Lemma 7.1. Let k>1/2, s>(N —1)/2. Then for any ¢>0 and any
0 < & < 1/2 there exist positive constants Ry = Ry(e, 8, s, k, N), C = C(s, k, N) such
that

(7.1)

RN1 J F(R(' —w))h(w')dw’—h(w)j F(n)dn‘
SN—l

n,

< el hllpogsn-n I Flli,s + CI sup |h(@") — h(@)[[IFllx,s

w—w'|<
for all R= Ry, he C(S"™'), Fe HYR") and we S¥".
Proof of Lemma 5.11. Immediate from Lemma 7.1.

Lemma 7.1 will be proved after the series of lemmas.
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Lemma 7.2. Let k> 1/2, s > (N — 1)/2. Then for any 0 < § < 1 there exists
a positive constant C = C(d, s, k, N) such that

(1.2) R j |F(R(@' — w))|dw’ £ C-R™HWN"DRYF|,
lo—w’'|>d

for all R=1, Fe R") and w e SV,
Proof. For each we S¥! there exists a y, € C°(R") such that

0<1,<1, suppy,c{EeRY|E—wl >0d2 ¢ >1/2},

Zo=1 on {€eRV|E-—w|l26E21}, (E:=¢1¢),

sup  |DIx,(¢)l <0  for each y.
RN

weSV- 1, ¢e
Let dSg(¢) be the Lebesgue measure on Sg:= {¢é e RY;|¢| = R}. Then
(7.3) RN j |F(R(0" — w))|do’ = L |F(§ — Rw)|dSg(&)
lo—’|>d le—w|>é

< 1%(&)F (€ — Ro)l| sy

< €y R0 Y Y (E)F(E — R) Lagsy

< Gy RTHOIR) (Y, (E)F (€ — Roo)l geam

< €, RH WD DYCEYCE — RoY 1ol Ded ™ prs)
x <& — RoYF(& — R0)| g,

where in the second step we have used the Schwarz inequality, and in the last
step but one we have used the fact that

74 1f ) L2sp = CULS Nlancrm

for all R =1 and fe H*RY), where C is independent of R (cf. Proposition (2.1)
of [G-M]). Note that

<€ = Rw)'F(& — Ro)llge = IKEYF(E)lgx < ClIF g -
Since w-¢& < (1 — (6%/8))|¢| for & € supp yx,, We have
|&€ — Rol* 2 (1 — (6/8))(I¢] — R)* + (6*/8)(I€I* + R?) = (6%/8)<&)?
for £ e supp x,, € S¥* and R =1, and so we obtain for any multi-index y

(7.5 sup IDEEFCE — Rwd™*xo(8)l < o .

R21,0eSN"1,Ee RN

This means that |[<{D, EY(E— Rw)"xm<D¢>"‘II B2 (rvy 18 uniformly bounded for
R=>1 and we S¥'. Thus we have obtained (7.2).
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Lemma 7.3. Let 0<t<1, k—(1/2)>t, s—((N—1)/2)>t. Then there

exists a positive constant C = C(t, s, k, N) such that

(7.6) J |F(n, /R* —n* = R) = F(n,0)|dn < C-&'||F,s
Inl<éR

for all R21,0<d=<1/2 and F € #(R"), where ne R,

Proof. Using the Fourier transform, we have

(1.7)  F(n,/R*—n> = R) = F(n,0) = 2m)™" r [ VR — 1]dxy

x fei"""ﬁ(x', xy)dx’  (x'eRV7Y).

Noting that |e" — 1| £ 2|r|* for all reR and all 0 <t <1, and that

1xy(/R2 — 2 — R)| = n* (R + /R* = n*) ! |xy| < 8Inllxyl  for [n] = IR,

we have
(7.8) |eBn(VR2 =R 1| < 26" In[flxyl  for |7 S OR.
Thus, by using the Schwarz inequality, we obtain

(19)
|F(, /R* —n* — R) — F(1,0)]* < C‘52'|'1|2"[ CxyyPdxy

— 0

2

’

Je“‘"”ﬁ(x’, xy)dx’
since k —(1/2) > t. (7.9) and the Schwarz inequality give

(7.10) J |F(n, /R* —n* — R) — F(n, 0)ldn
Inl<éR
2
< C{J (nY*|F(n, /R* = n* — R) — F(n, 0)lzdn}ll
In|<dR

® 2)12
<C-9¢ {j <xN>2kde j<n>2‘dn }

— 0

Je"‘""ﬁ(x’, xy)dx’

® R 172
<C-é U (xyy*dxy jKDx')‘F(X', xN)IZdX'}

S C-8'|Flly,s »
where we have used the Parseval equality in N — 1 variables in the third step.
Lemma 7.4. Let k> 1/2, s > (N — 1)/2. Then for any &> 0 there exists a

positive constant Ry = Rol(e, s, k) 2 1 such that

(7.11)

RN-1 J F(R(0' — w))dw’ — j F(ﬂ)dﬂ, < el Fli,s
sN—l

1,

for all R2 Ry, Fe #(RY) and we SV
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Proof. Fix a sufficiently small positive constant &, and let &' = 5,/1 — (6%/4).
We have

(7.12) f F(§ — Rw)dSg(&) — J F(n)dn = J F(¢ — Rw)dSg(¢)
SN-1 Jii |

@ 8_“)|>‘5

+J F(€ — Rw)dSg(£) — f Fl) ———dn
[&-w|<d Inj<&'R

Inl?
€, 1—-—
! v IRP

1
+J Fin) | ——=—1 dn—J F(n)dn
Inl<é'R q In In|>6'R

nefl, —W ne ll,

=L+L+1;+1,.
Applying Lemma 7.2 to I,, we have
(7.13) ;| £ C, RV UR|F|, .,  R2z1,
where C, = C,(d, s, k, N) > 0. Next we claim that
(7.14) 1] £ C0™M|F i,

for any t>0 satisfying Min {s —((N — 1)/2), k—(1/2),1} >t, where C,=
C,(t, s, k, N)> 0. Indeed, in the case w =(0,...,0, 1), noting that

(7.15) L F(§ — Rw)dSg(¢) = f F(n, /R* —n* — R);lzd’?’
E-w|<s

nl<6'R - Inl*
IR|?
1
and that ——W < 2 for |n| < &'R for sufficiently small 4, and applying Lemma
" v
IR|?

7.3, we have (7.14). In other cases we have only to change the coordinates.
Noting that for |#| < d'R

1 2
_——1 §C'|n—|2§C5’2,
LT, R
[R[?
we have
(7.16) ;] < C.5’2”<’1>SF”L2(IL,,) = C36,2”F”k,s s

where C; = C4(s, k, N), and we have used the trace theorem in the last step. I,
is estimated as follows.
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1/2 1/2
(7.17) TARS U <n>‘2’d'1} U <'l>2‘|F('1)|2dn}
Inl>3'R ne fl,

ne i,
< G0’ R UR|Fy

where C, = C,(s, k, N) > 0. Thus we have the desired result by taking ¢ suffi-
ciently small and then taking R sufficiently large.

Proof of Lemma 7.1. We may assume F e &%(R") by the approximation,
since #(RY) is dense in HXRM). We have

(7.18) RN j F(R(w' — w))h(w)dew’ = RN“j
SN-1

SN

 F(R(@ — 0))do* h(w)
+ RV! j F(R(0' — w))[Mw') — h(w)]de’
lo—w’'|<d

+ R¥! j F(R(o' — w))[hw') — h(w)]dw’
lw—w’|>6

=J1+J2+J3.

We first show that
(7.19) RN! j |[F(R(w' — w))|dw’ = Cy||Fll,s
lo—w'|<d

where C, = C,(s, k, N) > 0. By the change of coordinates we may assume w =
©,...,0,1). Then,

(7200 RM! j

lo—o’'|<d

|F(R(e' — w))ldo’ = C'j |F(n, /R* —n* — R)|dn

Inl<é’R

where 6’ = 6./1 — (6%/4) (see (7.15)). By Lemma 7.3 we have

J |F(n, /R? — 2—R)Idn—j
l<&'R

In|<é’R

(1.21)

|F(n, 0)|dnl

éj |F(1, /R* = n* — R) — F(n, 0)|dn
In|<é’R

S CIFll,s »

and by the trace theorem we have

(7.22) j |F(n,0){dn < C-||Fllys -
In|<é&’R

Thus, by (7.20) ~ (7.22), we obtain (7.19). (7.19) yields

(7.23) |l £ €y sup [h(@) — h(@)]- [[Fllys -

lo—w’'|<d
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By Lemma 7.2 we have
(7.24) [J3] £ CuR™H VD h|| ||l
where C, = C,(4, s, k, N) > 0.
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By taking R sufficiently large in (7.24), the desired resuit follows from (7.23),

(7.24) and Lemma 7.4.

Proof of Lemma 5.12. The proof is similar to that of Lemma 7.1, and so
we give a sketch of the proof. We may assume 0 <s< 1. Let 0<d« 1 and

let &' be the same as in the proof of Lemma 7.4. We write

(7.25) LH |F(¢ — Ro)|*dSg(¢) — J

n, &-w|>8

1
+ J |F(£ — Rw)|*dSg(&) — J |F(r1)|2—2 dn
&-wl<s In<a'R 1 In|

IR

1
+J |Fm))* | ———=—1 |dn —f |F(n)|*dn
m<a'R g n* in>a'R
w lRlz w

=Il+12+13+14'
In the same way as Lemma 7.2 we have

(7.26) 11 < CiL{RY ZIKEP () F(E — Ro)IIE o £ C{RYZ|IFIIZ,,

where C, = C,(d,s,k, N). We next estimate I,, and assume w = (0,...

Since 0 < é < 1, we have by the trace theorem

1
J |F(n, 0)|2—2
Inl<6'R | — Inl
IR|?

Furthermore, taking t = s in (7.9), and integrating it w.r.t. n, we get

j |F(n, /R* —n* — R) — F(n, 0)|*dn < C,6%||F|} .
Inl<&'R
Therefore, by using the inequality

WA = lgl®l < If —gl* + 21 = glligll

dn < G|IFliZo

we obtain

(7.27) ] = Cs&°|IFIEs -

|F(n)|*dn = J |F( — Rw)*dSg(¢)

,0,1).

In a way similar to the proof of Lemma 7.4, I; and I, can be estimated as follows;

(7.28) 1 £ Ce02IIFIRs, |1l S CKO'RYZ|FIZS .
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Here note that C;= C(s, k, N) for j=3, ..., 7. Thus we have
Uy + I, + Iy — 1] £ Cg{C(6)(RY™* + 6° + (O'RY ¥} F|i,,
where Cg = Cq(s, k, N), which implies the desired result.

§8. Proof of formula (2.10)

We shall prove here formula (2.10) of Theorem 2.3. The superscript * will
be omitted in the proof. Let J be a compact interval of (4,,, 0)\4 (see below
(1.15) for Ag, = A4,, A = A*), and fix f,e L2(R"), s > 1/2, such that E¢(J))f, = f,
for T =a, B, where Ey(-) is the spectral measure of T, (see (1.9)). Considering
in the momentum space, we can see that such f’s form a dense set in
Er(J )L2(RM).

We denote the resolvents of H, h,® I + I® (—(2n,)7'4,), T, by R(z), R,(2)
and r,(z) (D(y) = c), respectively (see (1.7) for h,). The following relation are
obvious:

8.1) R,(2)P, = P,r,(2) (see (1.9)).
Using the intertwining relation, we have
(8-2) (Sﬂa.ﬁa’fﬂ) = (w/a—fm Wp+fp)
=s— lim (e"P,e"Tef,, W, f)
= —o

=s— lim (Pae—itT,j;’ VVIHe—ixTﬁfﬂ)

= —o0

0
= lilyrg 2¢ J e*!(P,e"Tef,, Wy e "Tifp)dt .

Let x(¢()=1 for t<0 and =0 for t =0. Then, for each ¢>0, the inverse
Fourier transforms of the vector-valued functions

Paeel—irT,X(t)fa , %+e""”’x(t)f,,

are i(2n)"2P,r,(A — ie)f,, i(2n) 2 W, rs(A — ie)fs, respectively. Therefore, apply-
ing the Parseval equality to the above integral in (8.2), we get

o

83) (Syutoofy) = lim f (Para(k = ie)fs Wiyl — ie)f)dA

=lim & J (Pyry(A — i) fir Wyorg(h — ig)f;)dA,
edo T J

where we have used Er(J)f, = f, for y =0, B.
Set u, =r, (A —ig)f, (y = a B). Similarly to the above, we obtain

@

(8.4) (P, Wyiug) = lifn %j (R( + i0)P,u,, Pyrg(l + id)ug)dé
slo

— 0

— lim° j (R( + i8) Py, Pyry(( +id)ug)dé ,
J

o T
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@

where we have used J: [ R(é+ié)P,uallde=%|lPau,||2, and Ep(J)fy=f; in

the last step. For ze C\R we define K(z):= —I, + I,R(2)I, (a = D(a), b = (B);
I,:=V — Vs for a={i,(j,3)}). Then the following relation
R({ +i8) = Ry({ + i8) + Ry( + i8)K (L + iB)R, (L + i5)
is obtained by using the resolvent equations:
R(z) = R,(2) — R(2)[,R,(2),  R(z) = Ry(z) — Ry(2)[,R(2) .
Substituting this in (8.4), we have

83) (Pt Wyoti) = lim % f (R,({ + 16) Py, Pyrg(C + i6)ug)dl
40 J

+ lim éf (K(C + i0)P,ry(C + i0)uy, Parg({ — id)rg({ + id)ug)dl,
NOT )y

where we have used (8.1). Reversing the argument used for showing (8.3), we
see that the first term in the R.H.S. of (8.5) is equal to

lim (P,e™"Tu,, Pye™ "Toug) = (W, u,, Wy, up)

t=+ow
In the last step we have used the fact that Ran W,, L Ran W;, (Ran = Range)
for o # B.

We next consider the second term of (8.5). By the first resolvent equation
we have

1

W+ = e+ 8

{r.(C +i8) — r,(A — i)} £

1
(=24 +ie+9)

rg({ + i0)rg({ — id)up = (2i5)“1|: {rs(C + i8) — rg(A — ie)} f

1 , ,
+ T rie= 5){r,,(C —i6) — rg(d — te)}f,,} .

Thus we obtain
(Para(j' - is)f;v I/Vﬁ+rﬂ('1 - ls)fﬂ)

1
+ (e + 6)*

x (K({ + i) P,{r,({ + i8) — r(A — i€)} fo, P{rs(C + i6) — rg(A — ie)} f5)d{

. . 4 i
= Op(Py1o(A — i€)fy, Pyrg(A — ie)fy) + il{lg [Zr— L T2

i 1
—EL (€= + i+ 0)HE - —ie—6)}
x (K( + i8)P{r,(C + i8) — (A — ie)} fo, Pa{rg(l — i8) — rg(A — ig)} f,,)dc] .



112 Hiroshi T. Ito
The norm limits P;*K({ + i0)F, := lifn Pg*K({ + id)P,, and r,({ £ i0) := lifn r,({ + id)
ov0 o+0

exist in B(L2,(RY), LZ(R})), B(LZ(R}), L>_((R})), respectively, where ¢ = D(y), and
s> 1/2. Indeed, the former follows from Lemmas 2.1, 2.2 and (V), the latter is
well known (cf. [R-S]IV, XIIL8). Therefore we can write

(Puro(A — ie) fo, Wpatg(A — ie)fy) = Opo(Paro(A — i€)f, Pyrg(A — ie)fy)

i 1
" n J e ba—h (. L adl,

hy(4 ¢, 8) == (K( + i0)P,{r,({ + i0) — ry(A — ie)} fy, Py{rs({ + i0) — rg(A — ie)} fp) .
By substituting in (8.3) we have

(8:6)  (Spafusfp) = Spal fas f)
L £
+ l:ft; 7 L dA L —-—-——n{(c ST (he(A, ¢ e) — h_(A4, ¢, e)dC .
Since h,(4, ¢, ¢) is continuous in (4,{)eJ x J for each ¢ >0 and

hi(4,0):=1lim hy(4,( ¢
edo

= (K( + i0)P,{r,({ + i0) — ry(A — i0)} fy, Pp{rys({ £ i0) — rg(A — i0)} f3)
uniformly for (4,{)eJ x J, the limit in the R.H.S. of (8.6) converges to

L J (hy(4, A) — h_(4, A))dA = L J h, (4, A)d4,
2n J, 2n ),
because of h_(A, ) = 0. Thus, by noting that
ZXMNZ,(A) = % [r,(A + i0) — r,(4 — i0)] (see (1.12)),
for y = a, B, we obtain
(Spatas ) = Opalfor f) + 2mi j (K(A + i0)P,Z}(A) Z,(2) Jor PpZF (A Zg(A)f5)dA .
J

This implies (2.10).
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