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On the Dirichlet problem for the nonlinear
equation of the vibrating string. I

By

A. A. LYASHENKO

O. Introduction

In  this paper we shall investigate the  solvability of the  following Dirichlet
problem for the nonlinear equation of the vibrating string

u u f ( x ,  y, u) = 0, (x, Y )E
Wo o = 0

w h e r e  Q  R2 i s  a  bounded dom ain, convex relative t o  t h e  characteristics
x ±  y = c o n s t .  T h e  function f (x , y, u ) is assum ed to  be  continuous in (x, y),
continuous and m onotone in u.

The boundary value problems for the equation of the vibrating string have
been studied by m any authors. P lenty of works devoted to this theme can be
divided into two main parts.

The first one deals with the Dirichlet problem for the linear equation of the
vibrating string

(2)
ux , — u v y  = g(x , y), (x , y )e
u(x, y) = 1//(x, y), (x, y)E0S2

J. H adam ard [1] no ted  tha t the Dirichlet problem (2) is a  non-well-posed
problem . D . G . B ourgin, R . D uffin [2] a n d  D. W . Fox, C . Pucci [3] gave a
complete discussion of problem (2) in  th e  ca se  where as-2 i s  a rectangle with
sides parallel to the coordinate axes. The existence and uniqueness of continuous
solutions of (2) were completely investigated by F . Jo h n  [4 ] . T h e  measurable
solutions were considered by R. A . A leksandryan [5]. The solvability of (2) in
the Sobolev spaces W 2

k (Q ), k Z was investigated by M. V. Fokin [6] in the case
of analytic boundary.

Another p a r t  o f  w orks deals w ith T-periodic so lu tions o f the  nonlinear
equation of the vibrating string

Liu — ux x  +  f  (x , t, u) = 0, o <  x  <  7r, t  E R,

(3) u(0, t) =  u(rc, t) = 0, t E R
u(x, t +  T ) = u(x , t), o  < x  < TC, t  E R
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where f(x, t, u) is  a given T-periodic function of t. In the case TIrt is rational
a lot of results concerning existence, uniqueness and regularity of weak solutions
of (3) w ere obtained. W e mention here the works of O. Vejvoda [7], L. Cesari
[8], J. Hale [9 ], P. Rabinowitz [10], H. Lovicarova [11], H. Brezis [12].

In the case w hen T In  is irrational problem (3) is much more complicated.
There are only a few works dealing with this case. W e mention here the work
of P. L Plotnikov and M. N. Urgerman [13].

In the present paper for some class of domains we shall prove the existence
and uniqueness of weak solutions of problem (1) if the function ,f (x, y , u) satisfies
some conditions.

1. Main notations

We rewrite the nonlinear equation of the vibrating string in the characteristic
form

ux ,. + f(x , y ,  u)= 0

W e shall look for the solutions in L 2 (Q ) of the following operator equation

(4) Au + f (x , y ,  u)= 0

where the operator A is the closure in L 2 (0) of a symmetric operator A, u =
o

D(A 0 ) = C' (Q) n W21 (0).
The domain 0  is assum ed to be bounded and convex relative to the lines

=  const, y  = cons!. W e shall assume also that the boundary I -  = 052 is infinitely
smooth and the curvature of T  a t th o se  points where the tangent is parallel to
one of the coordinate axes is  positive. W e shall call such points "the vertices"
of T  [4].

Following [4], we define diffeomorphisms T + , T -  of the boundary T:
assigns to  a point of the boundary another boundary point w ith  the same
coordinate y, while T -  a ss ig n s  to  a point of the boundary another boundary
point with the same coordinate x (any vertex of T  is a fixed point of either T + or
T - ). W e set F  =T -  , , T + (see  Figure 1).

The diffeomorphism F belongs to the class C  and preserves the orientation
of the boundary.

Let I -  = (x (s), y (s))10 s < /1 b e  a  natural param etrization o f T .  s  be
parameter of arc's length, I be total length of F. For each point PEE we assign
its coordinate S(P) e [0, 1). Then the diffeomorphism F  can be "lifted" [14] to
a map f :  R —> R .  It means that there exists increasing function f :  R '2> R such
t h a t  0  f (0) <  /  and

f (s + 1) = f  (s) + 1, se R ; S (F P )= (S (P ) )  (mod I), PET .

The function f (s )  is called the "lift" of F [1 4 ].  Since F E C"' then . f e C' (R ).
If w e set f (s) = .fk(s) = -1(s)), k  = 2, 3, ..., then  J ( s )  is  the lift of
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. It is know n [14] that independently of the choice of SER there exists the
following limit

J (s) def.
lim  OE(F)e [0, 1]
n

The number oc(F) is called the "rotation number" of F  [1 4 ].  The following cases
are possible:

(A) at(F)= —m  i s  a  rational num ber, a n d  F" = I ,  w here I  i s  th e  identity
11

mapping of F  onto itself

(B) OE(F)= —

m  

is  a  rational number, F" d  I ,  Fn has a  fixed point on F;

(C) oc(F) is a n  irrational number, and F" has no  fixed points on F  for any
k  N.

In the present paper we shall consider only domains for which the condition
(A) h o ld s . W e  po in t ou t th a t the condition of rationality o f  T  Itt in  problem
(3 ) a c tu a lly  m e a n s  th a t  th e  r o ta t io n  n u m b er a ( F )  o f  t h e  corresponding
diffeomorphism F  is  ra tio n a l and  the  cond ition  (A ) h o ld s . S o  p ro b le m  (3)
is well studied exactly in the case (A).

2. The null space of the operator A

Following [15], we shall describe here the null space of the operator A .  F o r
this w e need to  in troduce som e notations.

D enote Po , P 1 , P 2 , P 3 e  I-  th e  vertices of the boundary F , moreover assume
po in t P o (P 2 )  h a s  the maximal (minimal) coordinate y  o n  F, P 3 ( P , )  h a s  the
maximal (minimal) coordinate x  o n  F  (see Figure 2).

Then

T + Po = P o , T +  P 2 =  P 2 ,  T -  P i=  P , ,  7 - 13 3 = P3
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Figure 2.

We assume in present paper that condition (A) holds. So there exists number
ne N  such, that F" = I ,  F " 'P  P  for any PET ,=  1, 2,...,n — 1 [14].

Following [6], for any PE T  w e shall m ean by a "cycle" the following set
(see Figure 2)

0(P) = IP, T P, FP, T + o FP, F 2 P,..., F" - 1 P ,T +  F " - 1 11

Then for any  P E T  it follow s that the  se t 0 (P) is  invariant relative t o  T ,  F,
i.e . 7' (0(P)) = T -  (0(P)) = F(O(P))= 0(P).

Consider the point Po . As far as T +  Po =  P ,  then the cycle O(Po )  consists
of n different p o in ts . Hence it should be 0(P0 )n{13

1 , P2, P3 }  0 0 .  So it is easy
to  check that:

if n  is even then F 2 Po =  P 2  and hence P2 e 0(13
0 ), 0(P 2 ) = 0(P 0 );

n + 1 /1+1 

(2) if n  is odd then F 2  P 0 = P ,  o r  F 2  P 0  = P3.

Follow ing [15], w e define so-called  generating set of the diffeomorphism
F .  If n  is even then we denote by P* the point from finite set 0(P 1 )n(P0 , P i ] ,
such that (Po , P * ) ,n 0 (P ,)= 0  (for any P, Q e F we denote by (P, Q), the open
arc of F from P to  Q according to the positive orientation of F; (P, =  ( P ,  Q ) ,
U {Q }). If n is odd then we denote by P* the point from finite set 0(P2)n(P0‘ Pir
s u c h  th a t  (13

0 , P*),n0(P 2 ) =  0 .  B y  a  "generating se t"  (G .S .)  o f the  d iff-
eomorphism F  we shall mean the arc /17/ 0  =  [13

0 ,
From  th e  results obained in  [1 5 ]  it  fo llo w s th a t the following statements

hold.
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L e m m a  1 . (1 )  For any  P, Q E  I 0 , P Q  w e  h av e  0 (P)n 0 (Q ) = 0 ;

(2) U  0(P) = I - , i.e. fo r any QEF there exists P e 11710  that Q e 0(P).
P E A )

Denote the null space of the operator A  by  N (A ). It is  w e ll know n  (for
example, [16]) that any u E N(A) can be written in the form

(5) u(x, y) = G(x)+ H(y), (x, y)e

where

(6) G(x ) + H(y )= 0, a. e. (x, y)E F

Besides G(x)E L 2 ,  (a, b), 1-1(y)EL 2 .p 2 (c, d); a = x (P,), h = x (P3), c = Y (P2),
d = y (P0), Pi = Pi(x ) = N/x —  a • N/b — P2 = P2(Y ) = N/Y  — c • N /d —  y , where
for a n y  P E T  b y  x (P), y (P) w e deno te  the coordinates of the point P ,  i.e.
P = (x(P), Y (P)).

According to (6) each u e N(A) can be uniquely determined by the values of
th e func tion  G(x), x  (a, b). Besides, a s  fa r  a s  fo r  a n y  P  e  F  w e  have
x (P)= x (T  P), y (P)= y (T + P), then from (6) it follows that for almost every Pe F

(7) G(x(P))= G(x(Q)), H(Y (P))= H(Y (Q))

for any  Q E  0 (P). S o by  (7 ) and L em m a I w e  have th a t  the functions G(x),
H(y), u(x, y) are uniquely determined by the values of G(x) on /1-4- ,  (as function
from L 2 ).

We choose the natural parametrization of T : T  = { (x (s), y (s))10 < s< /1 such
tha t Po  = (x(0), y(0)), Pi  = (x(s i ), y(s i )), j  = 1, 2, 3; 0 < 51 < s 2  < s 3  < 1.

Define the functions

(8) g(s) = G(x (s)), h(s) = H(y (s)), () s < /

As it has been mentioned earlier, the diffeomorphisms T ,  T  -  can be lifted to
maps f + ,  f  : R R ,  i . e .

f  (s  + 1 )  = f  (s )  —  1 , f  (0 ) =  0 , f ( s 1 ) = s 1 , S ( T ± P) = f  (S (P)) (mod /)

for a n y  s  I t ,  PET.
Following [15], we define functions f k : R R, k  = 0, 1, 2,...

fo (s ) s, ( s )  =  f +  (s ) , f2 (s )  =  f (  f ( s ) )

f
j \

f  ( f ())2k S „  5 2k + 2 S) f 2 ( f 2 k ( S ) )

It is easy to see that f 2 k (s) is the lift of Fk . As far as F E  C  and the curvature
of T  a t  the vertices P0 ,...,P 3 i s  positive then f  . f  L  E C ( R ) ,

 f  f2 k  + 1  are
strictly decreasing functions, f2 k  is strictly increasing function for any k EN [15].

We define also functions f k (s): [0, 1) ->"  [0, 1)

f k (S )  =  fk (S )  (mod 1), s e [0, 1)
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It is easy to  see that for any k e

ofk  e C '( [0, /)\ E)

where the  finite set

E  =  {S(P)11 e 0(13
0 )} c  [0, 1)

consists of n numbers.
The formulas (6), (7) can be rewritten in  the  form

(9) g(s) = — 11(s), a.e. s e [0, I),

(10) g(s) = g(fk (s)), k e N ,  a.e. s e [0, I)

W e denote  M o = (0, s * ) w here  P* = (x(s*), y(s*)). T hen from  (9), (10) and
Lemma 1 it follows that the values of g(s), h(s) are determined uniquely for a.e.
s  [0. 1) by the values g(s) o n  Mo .

Denote

M k  = .11(0 S E MO, k = 1,...,2n — 1

Then Lemma 1 can be reformulated as follows.

L em m a I '. (1 ) M k  n M„, = 0, In k, in , kc {0,..., 2n — 1};
2n-1

(2) U  M , =  [0 , / )  E.
k = 0

So f k  e  C '(M i )  fo r a n y  k EN, je {0, 1,...,2n — l} . M o re o v e r  it  is  e a sy  to
s e e  th a t  f o r  a n y  k eN, J E 0, 1, ..., 2n — 1} there  exists in  =  m (k . j)eZ  that

f ( s )  f 1 (s) — m(k, j) • 1, s e Al i . H en ce ' -  (s)e C' (M i ).
ds

T hus w e have ob ta ined  tha t any  u eN (A ) is uniquely determ ined by the
values o f  t h e  corresponding function g (s ) o n  Mo . M oreover any  func tion
g (s ) 1, 2 (M o ) genera tes w ith  th e  h e lp  of formulas (5), (8), (9), (10) a function
u E N(A). Indeed, if g(s) is some function from L 2 (M 0 ) then using (10) we define

g(s) for all s e [0, 0\ E. A s far a s  
d l k ( s )  

e C' (M i ) , keN , je {0, ..., 2n — 1} then
ds

g(s)e L 2 (0, I). Then according to (9) we have h(s) = — g(s)e L 2 (0, 1). It is easy
to  see  th a t the  maps x(s): [s i , s3 ] —> [a , b], y(s): [0, S2] —>"  [c, d ] are  one-to-one

mappings. So there exist functions S'(x): [a , b] -4" [s 1 , 53 ], 5'(y): [c. d] --%n  [ 0 ,  S 2 ]

that

x(g(x)) x, x  e  [a , b ];  y ( (y ) ) y, y e  [c, d]

Because of formula (9) we obtain that functions

(11) G (x) =  g((x)), x e [a, h ]; H (y ) =  1 (,(y )), y  e [c, d]
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satisfy (6).
As far as r e  C "  and the curvature of F a t  the vertices

then there exist constants c , c , >  0  su ch  th a t

c, d (x )e 2

X  e (a, b)
((x) dx P 1(x) '

P 0 5 • • • 5 P3 is positive

c, 1§‘(Y)C 2 y c(c, d)
P2(Y) dY P2(Y)

Hence G(x) e L 2 .  1  (a, b) L2 ,p , (a, b), H(y)e L 2 .  1  (c, d) c  L 2 2 (c, d). So the func-
P ition P2

u(x, y) = G(x) + H(y)

belongs to  N (A ). Thus the following theorem holds.

Theorem 1. ( 1 )  For any  u E N (A) there ex ists a .function g(s)E L 2  (M 0 ) such
that equalities (5), (8), (9), (10) hold.

(2) Any function g(s) e L 2 (M 0 ) generates some janction ue N(A) with the help
of  form ulas (5), (9), (10), (11).

3. The normal solvability o f equation Au =

M. V. Fokin in his w ork [6] shows tha t if the condition (A) holds then the
operator A  is  a selfadjoint operator in L 2 (0 )  and equation A u =  f  is normally
solvable, i. e . the range R (A) is closed in L 2 (52). Although this statement was
formulated under assumption of analyticity of F  it rem ains true if r e  C  (the
proof in the case F c  C '  is exactly the sam e as in the case of analyticity of
F ) .  W e shall give here the sketch of the proof because we shall use it further.

Theorem 2 (M. V. Fokin). I f  T e  C x  and  the  condition (A ) holds then the
range R (A) of  the  operator A  is closed in  L 2 (0).

Sketch o f  the p ro o f  We shall construct an operator B: R (A) —* L2 (0) such
that for some constant C > 0

(12) Bu = u, u  e R (A)

(13) RuC  •  1 1 1(111_2 w) , U E R(A)

Clearly it is sufficient to construct such operator B on R (A) n (Q).
Let u  R (A) n c- (0 ) .  Then

(u, 0)1, 2 (f2) =  f  u • O d  =  0 , E N(A*)
f2



550 A . A . Lyashenko

It m eans u EN(A*) in L 2 ( 0 ) .  We consider the function

x

(14) v(x, y ) =  f ddri
J o Jo

(we se t u(x, y) =  0  if (x, y) F ) .  Then v E ( Q  F )  and v x ,(x, y) = u(x, y),

( x, y)e  Q . W e shall construct such  functions G (x) e  C  (a, b)n (S2), H(y)E

C " ( c ,  d)nwl (Q) that

(15) v(x, y) + G(x) + H(y) = 0, (x, y)E

Denote

(16) u(s) =  v(x(s), y(s)), s e [0, I)

We extend u(s) to  a /-periodic function defined o n  R  by the formula

u(s) = u (s + /), S E R

Then v(s)E C"(R).
It  is easy  to  see  that to  construct the  functions G (x), H (y )EC ' satisfying

(15) it is sufficient to find /-periodic functions g(s), h(s)eC ' satisfying

(17) g(s) = g(f (s))

(18) h(s) =  h(f + (s))

(19) u(s) +  g(s) + h(s)= 0

for all se R .  Using the induction we obtain from (17), (18), (19) for any k eN, se R

2k - 1
(20) g(f2k(s)) = g( f2 k _ 1 (s)) = g(s) — E  ( v ( f2 ; , ( s ) )  — v(f2.0)))

i=o

A s far as  f 2 (s) s  (m od /) then a  necessary cond ition  fo r the  solvability of
(17)—(19) is

(21) E  (v(f2,+  (s)) — v(f2 ; (s)) = 0, SER
i= o

It is  easy  to  show that equality (21) is a  necessary and  sufficient condition for
u e(N(A*)) ± . T h e  equality (21) means exactly that u is orthogonal to all piecewise
constant function from N(A*) we shall discuss later. So as far as u E R(A) then
the function v(x, y) defined by (14) satisfies (21).

From (20) and Lemma I' it follows that any /-periodic function g(s) satisfying
(17)—(19) can be uniquely determined by the values of g(s) for se M o . S o  w e
denote by go (s) 1-periodic function such that go (s) 0, se M o  and (20) holds. W e
set

/10(S) =  —  V(S) g O ( S ) ,  SE R
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It is easy  to  prove that g0 , E C ( R )  and  go , ho satisfy (17)—(19). We denote
by Go(x), Ho(Y ) the functions defined by the go (s), h o (s) according to the formulas
(11). It is easy to verify G o (x)EC"(a, b)n W1(0 ) ,  lio(Y )EC '(c ,  d )n lI ( .5 2 )  and
(15) holds. Then using (11), (14), (19), (20) we can find a constant C >  0  which
depends only o n  Q  an d  such that

Ilv(x, Y) (f-2) + 11G0(x) +  1-10(Y) 14(n) C • Ilult,(.(2)

Thus the function

wo(x, = v(x, + Go(x) + Ho(y)

belongs to C"(S2)n wl(f2) and

wo(x, y) II;;, ( f2)c  •  d  u  L2(Q)

Besides

(wo(x, Ynxy = u(x, y), (x, y)EQ

It is not difficult to show that w o eD(A) and Aw o  =  w 0 u .
W e set

= WO

Then B o is linear operator from C"(S2 u fin R(A) to W° 1(52) and (12), (13) hold
for all ucC"(S2 u R (A ) . L et B  =  Bo -closure in L 2 (Q). Since the  operator
A is closed in L 2 (52) then B: R(A)—> D(A) and (12), (13) hold. From (12), (13) it
follows that the range R(A) is closed in L 2 ( 2 ) .  Theorem 2 is proved.

It is not so  d ifficult a lso  to  prove that A  is  a selfadjoint operator. Since
A  is sym m etric then to prove this it is sufficient to show that N(A) = N(A*).
T hus A  =  A *, d im  N (A )=  co , R (A ) is c losed . So  L 2 (Q )  h a s  an orthogonal
decomposition

L2(Q) = R (A) 0 N(A)

W e denote  by  P 1 , P2 th e  operators of orthogonal projection from L 2 (0)
onto R(A), N(A) respectively. Consider the operator

AR = : R (A) R (A)

Then the inverse operator AR- 1 :  R ( A )  R(A)n D(A) can be represented in the form

AR- 1  P ,  .  B

So because o f (13) and  embedding theorems it follows that i s  compact
operator. H ence the operator A  has the following Property 1 [17].
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Property I ([17], p . 2 3 1 ). Let H be a real Hilbert sp ac e . Let A : D(A) OE H -+
H  be a closed linear operator w ith dense dom ain and closed range. A ssum e that

N(A) = N(A*) (or equivalently R(A) = N(A) ± )

A is therefore a one-one m ap of  D(A)n R(A) onto R (A ) . Assume furthermore that
the inverse

A-1 : R(A) — + R(A ) is compact.

Operator A  satisfy ing all these conditions w ill be said to have Property  I.

4. The solvability of problem (4)

W e denote by (-  a 1), oc2 th e  first negative and first positive eigenvalue of A
respectively. Then

(22)
1

— 11 Au IlL(n) > (Au, ti)L2(f2) . 
1

11 Au q 2(n) ,U  E  D(A)

It is easy to  verify  that A  has positive and negative eigenvalues. Indeed. denote
= x +  y , q = x  -  y  and chose a rectangle H = { p  < < q , r < q  < el Q .  Let

f g (1) E C '(R ), supp  f  OE (p, q), supp g OE (r, e). Then

o
u(x, y) = f  (x  + y) • g(x  - y)E C'(Q),

Au = u x v  = f  "(x  + y) • g(x  - y) - f  (x  + y) • g" (x - y),

(Au, u),,,2 ( 0 ) f  ( f  " (x  + y)g (x - y) - f  (x  + y)g" (x  - y)) f  (x  + y)g(x - y)dx d y

1
= -

2

• f — f 2 ( ) .  (n) • O W  (R dq

fq
=  

2  
f  2  (0  g  •  

I r
 ( 0 11W  111  -  

fq
0 ) 2 k - •  f  g 2 (1) d ij2  p

o
Hence there exist u, v e C' (52) such that (Au, u),,, < 0 < (Au, v)L 2 . So (-  x i ) < 0 <

Œ2 .

Assume K: H is a (nonlinear) operator satisfying the following condition

[17] :

(23)
{  For some positive constant y < a,

1
(K u - Kw, u) > - r Ku V  - C(w ), V u, w  e H
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were C(w) depends only on w.

T h e o re m  3  ( [1 7 ]) . S uppose A  h as  P ro p e rty  I .  L e t  K  b e  a  monotone
dem icontinuous (i.e. continuous from  strong H  into w eak  H )  operator satisfying
(23). Then

R (A  +  K ) R (A ) +  cony R(K)

where "cony" denotes th e  convex  hull an d  C  D  m eans th e  se ts  C  and D  hare
the sam e interiors and the same closures.

C o ro lla ry  1  ( [1 7 ] , p . 2 3 3 ) . U nder the  assum ptions o f  T heorem  3, if
N ( A )  R(K) (w hich is in the  case when 11K c o  a s  lull —> oo), then A + K  is
onto.

Corollary 2 ([17], p . 2 3 5 ). A ssume A  has Property  I. S uppose K  is onto,
and satisfies

(24) (Ku — Kw, u — w) — 1  1l Ku — Kw11 2, Vu, W E H

with y < a i .
Then f o r any  f  E H there ex ists a solution of

(25) Au + Ku = f

and the solution is unique m od  N (A ). if  :furthermore K  is one-one the solution is
unique.

Consider problem (4)

(4) Au + f (x, y, u) 0

We assume that f  EC ° (S2 x R), furthermore either f  or — f  is nondecreasing as
a  function of u  and satisfies for a.e. (x, y) EQ, any u e R

(26) n • u — h 1 (x, y) (x, y , u)1 < y u  +  h 2 (x, y)

where n > 0, 17 1 , h2 eL 2 (52), a n d  y <  a ,  o r  y  <  a , acco rd ing  a s  f  or
 — f  is

nondecreasing.

Theorem 4. Under these conditions the problem  (4) possesses a so lu tion  in
L 2 (Q).

P ro o f . Obviously it is sufficient to consider the case f  is nondecreasing.
W e app ly  C oro lla ry  1 . F o r  th is  it is  necessa ry  to  p rove  tha t Ku =„f(x, y , u)
satisfies (23), N(A) R ( K )  and K : L 7 (Q) L 2 (Q) is demicontinuous operator.
Assumption (23) for Ku = f (x , y , u) follows from the following Proposition.

Proposition 1 ([17], p . 317). L et Q be a m easure space. L et a > 0. Assume
f (x , u): Q x  R  11 is m easurable in x  and continuous nondecreasing in u. Suppose
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if  (x, . u  +  h (x )  a.e . xeQ , V ueR

w ith 0< a  an d  h E L2 ( 0 ) .  Set (Ku)(x) = f (x, u(x)).  T h e n  f o r some y <

(Ku — Kw, u — -
1

II Ku — C(u, Vu, u, w  L 2 (Q)

Let ye L 2 ( Q ) .  Set

u(x, y) =  max tu e f  (x, y , u) = v(x, y)}  , (x , y)E Q

Then from [19, Theorem 12.4] it follows that u(x, y) is measurable. Besides from
(26) and f (x , y , u(x, y)) = v(x , y ) we obtain

I u(x, y)I - v(x, y)I + (x, y), (x, y)ES2

H ence u eL 2 (Q ). S in c e  y  is arbitrary then R(K ) =  L 2 (52). S o  N ( A )  R ( K ) .
Demicontinuity of the operator K  follows from the following Lemma 2 which
will be proved in Appendix.

Lemma 2. L e t Q  be a  bounded domain, .f(x, y , u)EC
°
(2  x R ) and f or ac .

(x, y)E,Q, any u E R

If(x, y, u)1 C• 1141 + h(x, y)

for some h E L2 (52) and some constant C > O. Then the operator K  is a continuous
operator from  L 2 (Q) into itself .

So Theorem 4 follows from Corollary 1

Theorem 5. I n  T heorem  4 if  w e add the condition

(27) (x, y , u) —  f(x, y , v) l < y u  —a c .  (x , y), Vu, V ER

with y < a ,  or y  < a 2 respectively.
T hen the solution o f  (4) is unique m od N (A ). If, f urtherm ore, f  is strictly

monotone in  u f o r every (x, y) E Q , then the solution is unique.

Theorem 5 follows from Corollary 2.

5. General s tru c tu re  o f domains with the  property (A)

In paper [4] F. John notes tha t the null space N(A) is invariant relative to
the following change of variables

(28) • 1. f ( x), Yi =

Following this idea we shall prove

Theorem 6. (1) L e t Q  be a  bounded dom ain, convex  relative to the lines
x =  con.vt, y  = const; Of2 e  C  ;  t h e  curv ature o f  T  a t  t h e  vertices be
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positive. A s s u m e  ( F r ) = —  ; (m, n) = 1; ( F )  =  I r . L e t .f  (x)E Ccc[a, b]. g(y)e

C " [c, d], f ' ,  g' > 0. Consider

(29)Q 1  =  {(f (x), g(y))1(x, y)et-21

Then c ( F r ) = — ; (F)" = Q , is  c o n v e x  re lat iv e  to  th e  lines x  = const,

y  = const; the curv ature of  T , = Q 1 a t  the vertices is positive.
(2) L e t  Q, Q ,  be bounded dom ains, conv ex  relativ e  to  the  lines x  = const.
y = const; T  = Of leC", T , = 052 1 e C " ; the curvature o f  T , T , a t  the vertices be

positive; a(F r ) =  ( F r i ) = —  , (m, n) = 1; (Fr )" = (Fr y  = Then there exist

functions f  (x), g(y) and num ber 6 > 0  such that

f ( x ) E C ' [a, b] n [a, h) o r f  ( x ) e  C  [a, b] n Cx' (a, b];

g(y)e [c, d]nCG° (c., d];

f ' (x) > 0, x  E [a, h], g' (y ) > 0, y e [c, d]

and (29) holds.
(3) L e t  0 ,  Q ,  be bounded dom ains, conv ex  relativ e to th e  lines x = const,

y = const; oc(F r ) = ( F )  =  —rn ,  (m, n) = 1; (F r )" = I T , (F r ,)" I n ,. T h e n  th e re

exist strictly  increasing functions .f (x ), g(y ) such that (29) holds.

P ro o f . We shall widely use here the notations introduced earlier.
1. Since the map (28) transforms any segment of the line x = const (y = const)

in to  segment of line x, =  const (y , =  const) then Q , is convex relative t o  the
lines x, = const, y , =  const and any cycle 0 (P ), PE T  is transformed into cycle
0(P 1 ) ,  P ,= (P ) ,E F ,  (fo r  an y  P = (x, y )e Q u  F w e denote  (P), = (f (x), g(y))e

2 1U T i ). Besides Tr ( T r ± P )1 , F r , (P ) i= (F rP ), ,  P e r .  H en c e  (F =

oc(Fr I ) = —  = '4F r). It easy  to  see that (P0 )1 .....(P 3 )1 a r e  t h e  vertices of

T'1 . Consider, fo r example, th e  "left" vertex (P ,), =  (f (x (s,)), g(y (s,))). Since
(x(s), y(s)) is natural parametrization of T  then  x '(s i ) = 0, y'(s,) = —  1 and the
curvature of I" a t  P , is equal to

x' (s i )y" (s ,) — x"(s i )y'(s i ) = (s,) > 0

So the curvature of T 1 a t  (P ,) , is equal to

(( f (x(s)))' • (g(y(s)))" — (f (x(s)))" (g(y(s)))')I s _ s ,

= f  '(x (si)) • g'(Y (si)) • (x"(s1)) > 0.

2. Let A4 0  = (0, s*), M c; = (0, si') be the generating sets for T  = { (x(s), y(s))10
15_ s < /1, T1 =  {(x, (s), y ,(s))10 s < I ,{  respectively. Let ho (s) be some function
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such that h ,: [0, s*] -°4  [0 , s t];  ho eC  [o , s* ]; h ,(s)> 0, SE [0 , s * ] .  Define a map

h: [0, I] [0, I ,] by the  following formulas

f h(s) = 11 0 (s), s e  [0 , s*] = M ,;

h(s) = (h(I f k (s))), s  E M k , k  = 1 , 2,...,2n  - 1

where f ik  =  (.4(r ) - 1  i s  inverse function for fk
r = j k defined for T = e t2  in section

2. U sing Lem m a l' and  properties of f k , j-k  w e  ob ta in  tha t h(s): [0, I]  [0 , /,]

is strictly increasing function, h e C [0, /] n c-(mk ), k  = 0, 1 ,. . . ,2 n  -  1 .  Besides,

since  1 ( l k ( s ) ) '
6  > 0 ,  s  E  M  m, k e {0, 1 ,...,2n - 1}  [15] then  h ( s )  >  6 , >0 .

se M k , k  = 0 ,...,2 n  -  1  for som e (5, >0. W e shall show that h e [0, I]. We

extend h(s) to  a  function h(s): R R  by  the following formula

(31) h(s + k l)= 11(s) + k l„, k  e Z , s e [0, I)
2n - 1

T h e n  h e C(R)n C"(fk (M,„)), k e Z, m 2n  -  11 . S ince  [0 , U  M k =
k 0

{ 4 (4 i =  0 ,...,2 n  -  1 , i = 0, 1, 2, 3} where P1 = (x(s i), y(s i)), i = 0, 1, 2, 3 are the
vertices of T  then we need to prove

dk h dkh
(32) (fi(si) + 0) - k ( f i (si)  -0 )d s

dsk

for k EN, 2n - 11 , ie  {0 ,..., 3} . A s far as fi (s)eC "(R ), jeN  then from
(31) it follows that to prove (32) it is sufficient to prove

dk h
(32')

h  

(s1 + 0 )  -  (s• 0), i = 0, 1, 2, 3.
dskd s k

Let E  be some positive number that (s, - e)E(0, s ,) , f  ( s , -  e )e ( s i , s 2 ). Then

on
f  : [s ,  -  e ,  s i ] [s i ,  f  ( s , c ) ] .  f  ( s i ) = s i ,  f  ( f  ( s ) ) s.

Besides it is not difficult to prove that f  E C ' [ s ,  -  f  ( s i + c)], (f  -) ' -
< 0 and

(33) . f  (s) 2 s ,  -  s +  g(s), s eR

w here  geC " and g(k ) (s i ) --- 0, k  = 0, 1,....
From (30), (31) it follows that h(s) satisfies

h(s) = (s))), s  R

So

(30)

(34) h(s ) = 2h (s ) - (s)) + ( fr (s)) 2h(s i ) - 1(2s - s + g(s)) + g (s))
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where f  (s) = 2h(s 1 ) — s + q 1 (s), g (,"(h(s,))= 0 , k = 0, 1,.... A s  far as g(k ) (s i ) -=
g(,k ) (h(s,.)) = 0  then from  (34) it fo llow s that (32 ') holds for i = I. The cases
i = 0, 2, 3 can be considered similarly. Thus h EU (R ) .

According to the definition of I  (s) we have

Y(s) = Y(fr+ (s)), x(s) =  x (fr-  (s)), s c [0, /)

O s )  =  .12 1(1,-±, (s)), xi (s) = xi (IF, CO) ,
 S  [°, 11)

So from (30) it follows that h(s) satisfies the following equalities:

(35) U(s)) = Yl(h(fr+ (s))), (1)(s)) = (h(1,--  (s))), s e [0, /)

W e set

(36) f (x )=  x i (h(.i(x))), g(y ) = y,(h ((y ))), (x, y )ef2 u F

From (35) it folows that the map (36) transforms F  onto  F , .  Since Q, 0 1 are
convex relative t o  the lines x = const, y  = const then from (35) it follows that
(29) holds.

Obviously f e C' (a, b), y E C ' (c., d); ' ( x )  > 0, x c (a, b): y '(y )>  0 ,  ye(c, d).
Further

lim f'(x) = lim x (h(i(x))) • h'(g(x)) • (S - (x))'
xn+0 x--■a+0

=  i i m  x i ( 11(i(x ))) h js (x )) =  lim  
x ' , ( h ( s ) )  

h'(s)x -+ 0 x T,-;(x )) s sj + 0  x j , )

=  ( h  ( s 1 ) )  • h
'1.

m  

x '(/)(s)) ( h ,( s 1 ) ) , x ,(h (s ,))
s-s, + 0  x " (s ) x"(s1)

Since F, F, have positive curvature at the vertices then x'i'(h(s i )) > 0, x"(s i ) > 0.
Hence f + 0)e (0, co). S im ilarly  w e can obtain .f '(b — 0), g' (c + 0), g' (d — 0)c
(0, c c ) . T h u s  ,f e C l  [a, b], y E [e, d], f', g' > 0.

As it was mentioned before the following three cases are possible:

(1) n is even, F 2 P0 =  P2
n+ 1 

(2) n is odd, F 2 j 0
0 J 1 ;

n+ 1 
(3) n is odd, F  2 P o  =  P 3 .

We shall consider only the case (1). The cases (2), (3) can be considered similarly.
Let n = 2k, P P ,  = P2 .  Since P* = (x(s*), y(s*))E0(P i ) =  0 (P 3 )  then there

exists a number m e n — 1} th a t F P *  =  P 3 . T hen M2,„ [ I 7,,(0), s3 ]

[s 1 , s3 ] ,  where Pi  =  (x(s ; ), y(s i )). Let e > 0  be  so  sm all tha t S'(y)e(o, s*)= M o

for any yE(d — e, d), (x )e (f2„,(0), 53 ) = M2„, for any xE(b — e, h) and

(37) —  r) < 2„,(:"(b — r))
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g(Y) = Y1( 110(s(.3) ))), G (d — e, d)

(x) = x (NCI 2,„(g(x))))), x  e (b —  E, b)

o(Y): Cd — ±I-41 [3; la s t ) ,  d1],

on
.fo(x) : [b —  r, I)] [x ( Î2 n : (iS n ), d

be arbitrary functions such that

g o e Cc° [d — r, d ] ,  f 0 C ' [b  —  e , b ], g ,, 6 > 0

where [a 1 , b 1]. [c 1 ,  d i  are the projections of 0 1 u T , onto the x and  y  axes. We
set

h 1 (s) = i(tio(Y (s))), s e [0, —

h2 (s) frim( -1 (fo(x(f2rm(s))))) , s  E Eff2m(i(b s*]

Then

h, : [0, — e)] [0 , isf],

h2 : [11:2 ,,((g(b — e)), s*] — >"  [ i s t ,  s t ] ,

h, Cœ  [0, S '(d —  e)], h 2 E C [1f2,,(R(1) — s*], h ,  h'2 > > 0

Because of (37) there exists function h 0 : [0, s* ]>' [0, st], h , e C  [0 , s*], h, > 6 > 0
such that

/O s) = h (s), s e [0, §(d — e)]

h0 (s) = 11 2 (s), s e 2 „,(R(b — e)), s*]

So if w e  define  (x)„q(y) by formulas (30), (36) then

(x ) = fo (x), x e [b — E, b]

g(Y) = go(Y), Y E [d  — r, d]

Thus f (x)E C" (a, h], g(y )e C' (c, d].
3. The proof of the existence of functions f (x ), g(y ) such that (29) holds in

the case (3) is exactly the same as in the case (2). Thus Theorem 6 is completely
proved.

R em ark . It is easy  to  construct dom ains S2, 0 1 sa tisfy ing  the conditions
o f  th e  c a se  (2) a n d  su ch  th a t th e re  ex is t n o  functions f (x ), g(y ) such that
fe  C ' [a, h], g e C' [c, d ] an d  (29) holds.

558

Then

(38)

(39)

Let
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It is  n o t so  d if f ic u lt  to  o b ta in  a  necessary a n d  sufficient conditions for
existence fe C " [a , b ], g e C "[c , d ]  that (29) holds. W e shall w rite  here such

conditions without proof in the case when n is even and F 2 Po = P 2 . Denote

4)(x) =  x(f„((x))), x e [a, b], i(y) = Y(.f;,( , (Y))), Y  [c ,  d ]

01 (x ) =  x l(f[ 1(gi(x))), X E [a l, h i, 0 1 (Y ) I'l(rnr ( O W  Y E  [ c i ,

Then there exist f E C' [a, b ], g  C ' [c , d], f ',  g ' > (5 >0  such  that (29) holds if
and only if

chi(p(ch(x)))eCcc[a, a + g)

01 (90M Y M E C [c, +

f o r  som e g, p(x), g(y) s u c h  th a t  r  >  0; p C' (h —  g, h], p(b) = b p' > 6 > 0;
geC"(d — g, d], g(d) = d i ,  g' 6 > O.

Corollary 1. Let Q he bounded domain convex relative to the lines x = const.

y  = const, a(F ) = — , (m, n)= 1, F ',=  F . T h e n  f ro m  th e  statem ent (3 )  of

Theorem 6 it follows that the topological structure of  F , coincides with the structure
o f  honzoeomorphism F i 7 . ,  where F,T = 8 I1 ' the boundary of rectangle

in n — in
0 < x + y < , 0 < x y < 

  

( i f  F= 1 ,, a (F )=  —M  then always 0 < in < n ) .
n

The boundary Pn" is very convenient for studying of the topological properties
o f F  because all functions f  (s ) ,  fk (s) are  linear and  can be w ritten in  explicit
fo rm . F o r  example, f t(s) = n  —  s , f (s) =  in  +  n — s, f 2(S ) = f ( f ( s ) )  =  n i + s,

a (F )= e (0, 1).

In  other words, the rectangle 17,T is  the  simplest representative of the class
of domains E(m, n) such that any 52E E(m, n) is bounded domain convex relative

to  the lines x = const, y =  const and c((Fr ) = — , =

Corollary 2. T he boundary  F,'", o f  th e  rectangle /7,7' is  n o t sm o o th . The
simplest representative o f  E(m, n) with smooth boundary is the ellipse E,'," [4]

OE,m,  =  (sin 2n ( t  +  — 1  —
m

) ,  cos 27-tt)
4  2  n

where t is called the canonical param eter Jr the  diffeomorphism F [4]. It is easy
in

to  v erif y  that, rough ly  speak ing , T + : tF—* — t, T : — t, F: t t +

teR }
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te R . So F": ti— *t + ru, t e  R. Hence F" = I. a (F) = 
ni

Corollary 3. L et Q E(in, n), 0Q = T E CX , the curvature of  T a t  the vertices
is positive. L e t  .f (x)e C "  [a, b ], g (y )e C '[c , d ], f  g ' > 6  > 0 an d

Q  =  ft(f  (x), .0 01(x . y )ef2}

Consider the following Dirichlet problem in  Q

(40)
u„,,(x, y) + h(x , y , u)= 0,

t11 (x, = 0(x, y),
Y1EQ

(x, y)e

Denote

ui(x, =  u ( f  '( x ) ,  g  (y)), ( x ,  y)GQ I UT I

h 1 (x, y , u) = h(f (y) , u) • f '(f - 1 (x)) • g'(g - 1 (y)), (x• A ef2 1- ue R

01 (x, .);) = 0(.f .t - 1 - 1 ( y ) ) ,  ( x ,  . ) ,1 E  r = 00,

Consider the follow ing Dirtichlet problem  in 0,

u i x y (x, + b i (x, y. u) = 0, (x, Y)EQ1
t (il(x, Y) = 01(x, Y), .11e

Then

(1) u e 0 ( Q u F ) - 4 u 1 eC k (521 UT,);
(2) ueN(A)<=>14 1 EN(A 1);
(3) u lr= 0<=>Hilr 1 =  0 1 ;
(4) f o r any  k  = 0 , 1,... there ex ist constants C 1 (k). C 2(k) such that

C1 (k) Mu C 2(011 U

(5)
 U is a solution of  (40)<=> a, is a solution of  (41).

6. The orthogonal projection onto N(A)

After we proved the solvability of the problem (4) it is interesting to study
the regularity of the solutions. If we follow the techniques developed in [18]
we have to study the regularity properties of the orthogonal projection P ,  from
L 2 (52) onto  N ( A ) .  W e shall obtain here the explicit form of PN  and consider
some properties.

Let u E 1, 2 (Q ) .  D enote u2 P N u e N (A ) . A ccording to  Theorem  1 there
exists some function g2 (s)e L 2 (M 0 ) which generates the function u 2 w ith  the help
of formulas (5) (9) (10) (11). So it is sufficient to define g2 (s) for any se M o .

Following [15] we introduce the piecewise constant functions (P. C. functions)

(41)
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v(x, y, y )E N (A ), y eM 0 . T h e  function v(x, y, y) is generated by the following
function g(s, 7)6 L2(M0)

(42) g(s, =
{0, s < y,

))) =  0(s — y), se  M o
1, s > y.

where 0(x) is the  Heaviside's function.
We shall describe below the structure of the P. C. function v(x, y, y)e N(A).

According to Corollary 1 of Theorem 6 it is sufficient to consider the structure
of v(x, y, y) in the case Q = 17",'.

Consider the rectangle 11, n, m EN , n > in (see  Figure 3).
i n n

Then s 1 = — , s 2 = —  s3 =

n  +
m ,

2

I  —  n. A s far as f k (s), k E {0,...,2n — 1}
2 2' 

a re  linear functions and  fil(s) -...= (— 1)k ,  then all intervals M k h a v e  a  common
/

length. So from  L em m a I it follow s that M o =  0 ,  =  0  —
\.

1

.
2n ' 2

Let y c (0, From (10), (42) and  Lemma l' it follows that
2

1, s e  U + k, k + 1 — y);
(43) g(s, y) = k = 0

n-1
0, s  (0, 0\ U (y  + k , k  + 1 —  y).

k = 0

n - 1
= E (0(k + 1 — y — s) —  0(k + y — s))

k = 0

Since S- (x) = in in
+ —

2

, , §s(.))) = — 2y then from (5), (9), (11) we obtain

(44) v(x, y, y) g (  2x + —
2

— y), (x, y)c /7'
2

Because of (43), (44) w e have for (x, y)e/7;','

(45) v(x, y, y) = E
1

(0 (k  + 1 -  y — m
k = o 2

) — e ( k  + y — —
m

2 x ) )

1 1  -  

-  E  (0 (k  + 1 - y — —
111 

+ .) — e ( k  + y — —
111 

+ .\ / 2y))
k = o 2 2

So the structure of u(x, y, y) is  the following (see Figure 3): each y E M, = (0,1)
generates a  system of rectangles /1 k (y) c 17, k  = 1,...,(n —  m)m, such that

(1) for any k c { 1, ... , (n — m)m} there exist j, i e }1,..., n — 1} that

{ mH
In in ni

k(Y ) = (X , ,Y )   <  X  G       <  y <  
—2 — l  —

 Y  }
i — y — — i + y — — -- — (j + 1) + y2 2 2



(46) v(x, y, =  {  ( - 1 )k ,( x ,  Y) E llk
(n — (n)m

0, (X, U  HIS)) )
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Figure 3,

if k  is odd and

11k(Y) = { („, y )

in . m In
.  + I 7 — y — i

2 2 2 2
 <  x  <    <  y < 

..,/ • .N./ •\/ - •\/

if k  is even;
(2) for any (x, y) EH

k= I

Using Corollary 1 of Theorem 6 we obtain that if Q e E(m, n) for some in . ne
n> in then any y G M , generates a  system of rectangles /7(y), k = 1,...,(n —  m)m
with the sides parallel to x and y axes and such that (46) holds.

We denote by N i (A) a  subset of N(A) consisting from all functions u eN(A)
which have  the  generating functions g(s)e C 1 (M 0 ) = C 1 [0, s * ] .  Since fo r  any

constant C  functions g(s), g(s) + C  generate th e  sam e ue N (A ) th en  fo r  any
u e N i  (A) we denote by g„(s) e [o, s*] the generating function such that g„(0) = O.

Let ueN , (A ). T hen  for any se [0, s*]

(47) gu(s) =  f( -/LO/) • e(s — n)dn = f  g(i) • g(s, n n)d

It is easy to verify that operator A which assigns with the help of (5), (9), (10), (11)
to  any  g(s)E L 2 (M 0 ) th e  corresponding function u e N (A ) is linear bounded
operator from L 2 (M 0 ) to L 2 (52). So from (47) it follows that for any ueN , (A)
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s.
(48) u(x , y) = A g„(s) = g(i) • A g (s , 9 )d r, = f  g g )  •  v (x , y, g)dg

Jo o

Let u, we N , (A). Then

(49) (u, w)L2if2i f gL (1) • g(y) • k ( 1, 7)dg dy
o o

where

(50) k(g, y) = (u(x , y, g), u(x, y•, y))" , 2 ,, e [0, s*]

Using the structure of P. C. functions u(x, y, y) w e can obtain explicit formula
for k(g, y). First, we consider the case of domain represented in Figure 4.

Let ii >  y. Then for any se [0, s* ] we have

(s) = (x(x 7 ), x(s i )) x (y(s 7 ), y (s,))

I7 2 (s) = (x(s2), x(s6)) x (Y (s2), Y (s6))

173 (s) = (x(s,), .x(s 3 )) x (y(s 5 ), y(s 3 ))

Figure 4.

where sk = fk (s), k  =- 1, ..., 7. So from (46) it follows that k(9, T) is equal to  the
total area of shaded rectangles

(51) k ( 1, 7) = (x(.1'1(7)) — x(I7(7))) • (Y (.i.1(1)) —  Y (I7( 11)))

+ (Y (16(7)) — Y(12(7))) • (x(16(i1)) — x(.1201)0

+ (4 3 0 ) — x(f5(7))) • (Y(13(;7)) — Y (J501)))
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= (11(7) 1)1(i1) + a2(7)b2(i1) + a3(7)b3( 11)

From (50) it follows that k(n, y) = k(y, n). So for any n, y  E [0, s * ] ,  n 0 y
3 3

k(11, =  0
(

11 — T) • akd • bk(11) + e(Y —  
11) • E ak(11) • b(y)

k = 1 k = 1

It is easy to see that for any k = 1, 2, 3, ak , bk e C  [0 , s*]; a k , bk > 0; ak is strictly
increasing function, a k (0) = 0; b k  is strictly decreasing function, bk (s*) = 0.

L e t  Q e E(m, n), OS2 =  F e  C " ,  the curvature  of T  a t  the vertices is
positive. Then for any n, y e [0, s*], n y

— ni)m ( n  —  m )

(52) k(n, y) = 0(u — y) • ak(7) • bk(11) + 0 (7 — 11) • E  a kco• b k(Y )
k = 1k = 1

where for any k = 1, ... m (n — in)
(1) ak , bk e C '[ 0 .  s* 1 ;
(2) ak(Y), bk(Y) > 0, y (0, s*), a k (0) = h k (s*) = 0;
(3) a(y), (— b(y)) 6 > 0. ye [0, s*].

For simplicity we omit here the proof of (52). I t e a sy  to  note that according
to Corollary 1 of Theorem 6 it is sufficient to prove (52) for the case Q = H .

Let 1.4 e C[0, S
* ]  satisfies the following integral equation :

(53) k(n, y) • u(y)dy = h(n),1  c [0, s*]
fo*

Then from (52), (53) it follows
m(ii — m)

(54) u(n) • (bi:(11)ak(h) — c(rI)bk( 11)1
k = 1

m(ii m) s*

+ E
k = 1

( 1) f ak(Y)u(y)dy + (11)
0

bk(7)u(y)dy)

= h"(n)

We denote
—

q (n ) =  E (N(q) • a(n) — a(i) • b k (n)), i  e [0, s*]
k = 1

Since for a n y  k = 1,...,m(n — m), a(y), b(y) > 0. y  (0 , .M ; ak(0) = bk (s*) =  ;
a(y), N(Y)) > 0, y  [0 , s*] then (hL(1/)cik(r1) — ai,(11)bk(0) <0 .  17 E [ O, s * ] .  So
q(n )eC ' [0, s*] and q(n) < — 6 < O, I/ c [0, s*] for some 6 > 0. W e  d en o te

1
m(11— ni) m(n — in)

ki (n, y) =  (0(n — y) • K(u)ak(y) + 0(1' — 11) • a;:(11)bk(7))
(101) k = 1 k = 1

Then equation (54) can he rewritten in the form
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(55) u(ri) + f k,(11, y) • u(y)dy =

q(q)

So w e have obtained the Fredholm  integral equation of the second kind with
the bounded kernel k y).

The homogeneous problem (55) has only trivial solution in L 2 (0, s*). Indeed,
if there exists v(i1)E1 ,

2 (0, s*) such that

v(q) + f y) • v(y)dy = 0, li e [0, s*]

then y c C [0, and for the  function

= i
s* 

k(11, )') • 17(7)(17
o

we have h"(t1) =  0 , //E [ O, s'y]. Besides as far as k(0, y) = k(s*, y) = 0, e[O, s*]
then h(0) = h(s*) = 0 Hence h(q) O. D e n o te  g (s ) =  fv (i)d , s  e [0, s*]. T h e n
gc C 1 [0, s*], g(0) = 0 and  g  generates some function u g c N i (A). F ro m  (4 9 )  it
follows

0 =  1 h(ri)v(q)dll = f 
i

 k((1, -01)(y)v(ri)dydri = Ilu g lIL(Q)
0 0 0

Hence ug  =  O. S o  g(s) = u (q )d ri =  0, s e [0, s*] and consequently u = O.
From  Fredholm 's alternative theorem  it follows that fo r  any  h E WDO, s*)

there exists a unique solution of the equation (55) in L 2 (0, s*).
W e denote by R , the  resolvent of the operator

(I + K i )u(ri) =  u(11) k,(11, y)u(y)dy
Jo

i.e.

R , .( I  +  K O = (I + K,)o R , =  I

Let u E E,(Q) =  R (A) () N, (A), u = u, + u 2 , u, E R(A), u, E N, (A). C o n s id e r  the
function

h(ri) = u(x, Y)v(x, Y, ri) dx cl y = f u2(x, Y)v(x, Y, 17) dx dY = f gg 2 (s)k(s, ii)ds
s.

where g,, 2 (s) is  the  generating function for u 2 E N ,(A ). A s  far as g,, 2 cC ' [0 , s*]
then he C 2 [0, s*] and g, 2 (s) satisfies (55). S o

h"(q) (  1 d2

g,',2 (s) = R,  R ,    ( 1  u (x , y)v(x, y, ii) dxdy))
q(q)\ q ('/) ( 1(12o

Since u 2 =Ag„ 2 (w e  have denoted by A  the  linear bounded operator which
assigns to any g(s)EL 2 (M 0 )  the corresponding function u E N(A)) then

h" (!7)

52 0



11,,' 011

A s  f a r  a s  ap , bp , qe C  [0 ,  s * ] ,  11:: c C' 1 [0, s * ],  0 1 )  < —  6  0  t h e n  g 2 e
C '  [ 0 ,  s * ] .  Then

1 *sm(t) - m) 1,;(n ) ,1 1Mtr- m) a  ''0)
gL2 (t1) + E   apog:,,ody + E P bp(y)g„(y)dy =

p=1 9011 o p= 1 c1(1) q( 1 0 7 )

566 A . A . Lyashenko

1 d 2

(56) u2 = A (1 .  R ,
0

u(x, y)v(x, y , n)dx dy ))dq) dLf  PN , U
SI0 1 ) d q 2  \ j

Thus the operator P N ,  defined by (56) is  the  operator of orthogonal projection
from E2 (Q) onto  N, (A).

W e point out tha t the function

(57) h1(q) =
'i n

u(x, y) • v(x, y , n)dxdy, E [0, S

belongs to W1(0, s*) for any u e L 2 (Q). However h„(q)E lAq (0, s*) if and only if
u e ii 2 (Q).

A s far as N, (A) is dense in N(A) then we obtain

(58) PN = PNI

where PN ,  means closure of PN ,  in  L,(Q).
L e t  u E 052 u F), k  E N . T h e n  h„(ti)E Ck  + 1  [0, s*]. In d e e d  it  is  e a sy  to

verify that

h „(n )= E (— Ir • u5cx (5(0), y(f„,()))
m =0

U„(x, y) = 1 4 (, O g C l i t 7

  

w here w e assume K) = 0 ,  (  0 0  Q .  A s  fa r  a s  x(s), y (s)eC"' [0, 1], j, n (s)e
C ' [0 , s* ], u  C k  (.(2 F )  th e n  U„ e Ck  + 1 (Q U F) , h u e C I ̀ ± 1  [0, s * ] .  Since k 1
then g 2 (s) (where u2  =  PNU = PN i U E N i (A ) )  satisfies equation (55) which can
be written in  the  form

g,2(q) = gL2 (s)ds E C k  [O, S 4 ]

0

Using (10) it can be show n gu2e Ck [0, 1]. Since

u2 (x, Y) = P N u (x , Y) = 0 2 (ri(x)) — g,0Y))

then u2 eC k (t2 u T \ { P 0 ,..., P 3 }) because of S.(x)e C "(a b), S '(y)eC"(c, d), 's."(x)- - - *

°D, co •y-■c-1-0
1,-)(1-13

Thus we have verified
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T heorem  7 . I f  ueC k (Q U T) then u2  P N ueC k (Q u F \

Remark 1. It seem s to us that it can be proved PN : C k (S2 u —> Ck(S2 u F).
The plan of the proof may be following: First, we transform Q onto the rectangle
ITT by  the  m apping (28). Then for any k e NI the  space C'(52 u T ) corresponds
to a space C p

k ,, (//,T) where P k
 is corresponding weight function. Second, we obtain

p N : c plck ( l l nm) cpkk(Hrims) Third, we transform TIT onto Q  by the inverse mapping
(28). But, of course, this question needs a  special consideration.

Remark 2. I t  i s  e a s y  t o  s e e  t h a t  if 2 = H T  t h e n  f o r  a n y  k E N.
PN: Ck (Q u F) (Q U T)./ ) .  So using the techniques developed in  [1 8 ]  we can
obta in  that under the conditions of Theorem  4 there exists a  C '-so lu tio n  o f
problem (4) if f e  Cc° and J  >  r > O.

Remark 3. It is in teresting to  point out that in the domain H,T with piecewise
smooth boundary problem (4) is in  a  sense "better" than  in the case 052e C '.
I t  is  due to  the  hyperbolic character of the problem (4).

Appendix

Proof of Lemma 2. Let 52 be a  bounded domain, f (x , y, u)eC ° (2  x R) and
for a.e. (x, y)e Q, any u E R

(59) (x, y, u)1 _ C u  + h (x , y)

fo r som e h e L 2 (Q) a n d  som e constant C >  0 .  L e t  unu .  W e shall show
L 2 (n )

th a t  f (x , y, un (x, y)) - f (x, y, u(x, y)). L e t  e > 0  b e  a n  a rb itra ry  positive
number. ThereThere exists N , > 0 such that for any n  > N , we have

(60) U n k 2 (f2 ) 2  u  111.,,(2),n >  N
1

From (59) it follows that for n > N 1 a n d  fo r  any dom ain G  Q

(61) f (x. y, u(x, y)) — (x, y, u„(x, y))11L2(G) 21 h111.2 (G) + 3 C  u111.,(G)

So from the properties of Lebesgue integral it follows that there exists i5 > 0 such
that

(62) f (x, y, u(x, — f(x, Y, un(x, Y))111.2 (.(2\o„) < -5

where

Q r5 =  {(-X 1 y)dist ((x, y), 0Q) > (5}

Consider

u„(x, y)) 11L2(0,5)f (x, y, uk, y)) — foc, y,

Using Chebyshev's inequality we obtain that for any r > 0
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1
(63) P.42,) ,u( { (x, EQ1u 2 (x, 32) r 2 } ) --  •  II u  L 2 (f2)

r 2

So from the properties of Lebesgue integral it follows that there exists r > 0 such
tha t for any n >  N ,

(x , y , u(x, y)) — f (x ,  y , u„(x, y))11L2(nr) 211 h
C

L 2 (f2r )  +  3 C11u L 2 (0  )  <  —

' 5

Consider for n > N ,

(65)

where

f  (x, y .  u(x, Y)) — .1. (x, 32, u„(x, y))11L2(Q8\ nr)

II f (x , Y, u) (x ,  y ,  „) IlL2 «f2 6 \ nr)

+  f (x t  Y, f  (x , y, t n) 111.2((f26 n r ) n

=  ( x 5  A I (X• P21

1 4
(66) p(S2'pl) • 11 14 (0) •

From (59), (61), (66) it follows that there exists p  > 0 such that for any n > N ,

(67) f(x, y , u(x, y )) -  f (x , y, u„(x, y))11L,w0,\.(20,f2p -

5

Consider for n > N ,

II f  (x , y , u (x , y )) -  f ( -x, y, un(x, 32))11L2«f-26\f2,0\nr»

As far as f (x , y , u )  C
°

(S2 x R), Q Q  then .f (x, y , u ) is uniformly continuous

for (x, y , u)e(S2 6 x [—  d, + d] ) where d =  max (r, p). So there exists continuous

function p ( i ) ,
 p ( K )  - -K , 0 f  0 such that

(68)

(x, 32, u(x, y )) -  (x , y, ujx, 32))1 P(u(x, y ) -  u„(x, y )), y)E(Q, \ \

Since p (K ) - - -  0  then there exists i  >  0  such that for any 1h-1 <

_ 1
(69) POO < (P(Q)) 2

From (61), (68), (69) it follows for any n > N

y, ox , y)) — f (x , y, uu(x, y)) d L2((126 \ f2,1 \
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< (3 Cu + 2 h) 2 dx dy 2

(( 12 5\firl\ f2 P n tlu (x .y ) - 1 0 x , yll I )

(70)

f (a2,5\00\f2PnIlt4(x.y) —  io,,(x,391 < K i t
 p 2 (u(x, y) — u„(x, y))dxdy

113Cu + 2h IL2()1u(x.yl —  u”( , •Y)I K I I )  +  —

5

As far as

1
11 (1(x, .0 1 lu(x, Y) — K11) 11„112 0.2 L2(.0)

th en  th e re  ex is ts  N 2  >  N 1 s u c h  t h a t  for a n y  n > N 2

(71) 113 Cu + 2h IlL2(t(x.y)a2110x.y),„(..yr K i n  < 5

S o  fro m  (62), (64), (67), (70), (71) w e  o b ta in  for a n y  n > N 2

I l f ( x ,  y, u(x, y)) —.1. (x, y, u„(x, y))11L2(n) <

L2a2)A s  fa r  a s  e > 0  i s  a r b i t r a r y  i t  m e a n s  th a t  f(x , y, u„(x, y)) - -+f  ( x , y, u(x. y)).
11 GC'

Thus the operator K u = f  (x , y, u) is continuous operator from  L 2 (0) into itself.
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