J. Math. Kyoto Univ. (JMKYAZ)
33-2 (1993) 543-570

On the Dirichlet problem for the nonlinear
equation of the vibrating string. I

By

A. A. LYASHENKO

0. Introduction

In this paper we shall investigate the solvability of the following Dirichlet
problem for the nonlinear equation of the vibrating string

) Uy, — Uy, + f(x, y, u) =0, (x, y) e

ulap="0

where Q < R? is a bounded domain, convex relative to the characteristics
x + y =const. The function f(x,y, u) is assumed to be continuous in (x, y),
continuous and monotone in u.

The boundary value problems for the equation of the vibrating string have
been studied by many authors. Plenty of works devoted to this theme can be
divided into two main parts.

The first one deals with the Dirichlet problem for the linear equation of the
vibrating string

() Uy — Uy =g(X, ), (x,y)eQ

u(x, y) = y(x, y), (x, y)eoQ

J. Hadamard [1] noted that the Dirichlet problem (2) is a non-well-posed
problem. D. G. Bourgin, R. Duffin [2] and D. W. Fox, C. Pucci [3] gave a
complete discussion of problem (2) in the case where Q2 is a rectangle with
sides parallel to the coordinate axes. The existence and uniqueness of continuous
solutions of (2) were completely investigated by F. John [4]. The measurable
solutions were considered by R. A. Aleksandryan [5]. The solvability of (2) in
the Sobolev spaces W5(R2), ke Z was investigated by M. V. Fokin [6] in the case
of analytic boundary.

Another part of works deals with T-periodic solutions of the nonlinear
equation of the vibrating string

Uy — Uge + f(x, 8, u) =0, 0o<x<m, teR,
3) u(0, t) = u(n, t) = 0, teR
u(x,t + T) = u(x, t), o<x<m teR
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where f(x, t, u) is a given T-periodic function of t. In the case T/n is rational
a lot of results concerning existence, uniqueness and regularity of weak solutions
of (3) were obtained. We mention here the works of O. Vejvoda [7], L. Cesari
[8], J. Hale [9], P. Rabinowitz [10], H. Lovicarova [11], H. Brezis [12].

In the case when T/m is irrational problem (3) is much more complicated.
There are only a few works dealing with this case. We mention here the work
of P. I. Plotnikov and M. N. Urgerman [13].

In the present paper for some class of domains we shall prove the existence
and uniqueness of weak solutions of problem (1) if the function f(x, y, u) satisfies
some conditions.

1. Main notations

We rewrite the nonlinear equation of the vibrating string in the characteristic
form

U, + flx, 3, u)=0
We shall look for the solutions in L, () of the following operator equation
4) Au+ f(x, you)y=0

where the operator A is the closure in L, (£2) of a symmetric operator Agu = u

0
D(Ay) = C*(Q)n W, ().

The domain Q is assumed to be bounded and convex relative to the lines
x = const, y = const. We shall assume also that the boundary I = ¢Q is infinitely
smooth and the curvature of /" at those points where the tangent is parallel to
one of the coordinate axes is positive. We shall call such points “the vertices”
of I' [4].

Following [4], we define difffomorphisms T*, T~ of the boundary /I": T*
assigns to a point of the boundary another boundary point with the same
coordinate y, while T~ assigns to a point of the boundary another boundary
point with the same coordinate x (any vertex of I"is a fixed point of either T* or
T7). Weset F=T «T%" (see Figure 1).

The diffeomorphism F belongs to the class C* and preserves the orientation
of the boundary.

Let I = {(x(s), ¥(s))|0 <s <[} be a natural parametrization of I', s be
parameter of arc’s length, [ be total length of I. For each point Pel we assign
its coordinate S(P)e[0, /). Then the diffeomorphism F can be “lifted” [14] to
a map f: R—>R. It means that there exists increasing function f: R %R such
that 0 < f(0)y < I and

fs+ N =f(s)+1 seR; S(FP)=f(S(P) (modl), Perl.

The function f(s) is called the “lift” of F[14]. Since FeC* then feC* (R).
If we set fi(s) = f(s), fi(s) =f(fu_1(5)), k=2,3,..., then f(s) is the lift of



Dirichlet problem 545

Figure 1.

F*. It is known [14] that independently of the choice of seR there exists the
following limit
lim 9 y(Fre o, 1]

neopl

The number «(F) is called the “rotation number” of F [14]. The following cases
are possible:
(A) ac(F)zT is a rational number, and F" =1, where I is the identity
n
mapping of I" onto itself:
(B) a(F) _n is a rational number, F" # I, F" has a fixed point on [;
n
(C) a(F) is an irrational number, and F* has no fixed points on I” for any
keN.
In the present paper we shall consider only domains for which the condition
(A) holds. We point out that the condition of rationality of T/ in problem
(3) actually means that the rotation number «(F) of the corresponding
difftomorphism F is rational and the condition (A) holds. So problem (3)
is well studied exactly in the case (A).

2. The null space of the operator A

Following [15], we shall describe here the null space of the operator A. For
this we need to introduce some notations.

Denote P, P,, P,, P;eI the vertices of the boundary I, moreover assume
point P,(P,) has the maximal (minimal) coordinate y on I, P;(P,) has the
maximal (minimal) coordinate x on I (see Figure 2).

Then

T*Po=P,. T*P,=P,, T"P,=P,, T Py=P,
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Figure 2.

We assume in present paper that condition (A) holds. So there exists number
neN such, that F" =1, F"P # P for any Pel, m=1,2,...,.n —1 [14].

Following [6]. for any Pel we shall mean by a “cycle” the following set
(see Figure 2)

O(P) = IP, T"'P’ FP, T+ OFP, FZP,..., F"_IP, T+ OFn—lP}

Then for any Pel it follows that the set O(P) is invariant relative to T*, F,
i.e. TT(O(P)) =T~ (0(P)) = F(O(P)) = O(P).

Consider the point P,. As far as T* P, = P, then the cycle O(P,) consists
of n different points. Hence it should be O(Po)n{P,. P,, Py} #@. So it is easy
to check that: _

(1) if n is even then F%P0 = P, and hence P,e€O0(P,), O(P;) = O(P,);

(2) if nis odd then F' 2 P, =P, or F' 2 Py = Py,

Following [15], we define so-called generating set of the difftomorphism
F. If n is even then we denote by P* the point from finite set O(P,)n(Py, P,]1r
such that (P,, P*)-nO(P,) =@ (for any P, QeI we denote by (P, Q)r the open
arc of I' from P to Q according to the positive orientation of I'; (P, Q] = (P, Q)r
u{Q}). If nis odd then we denote by P* the point from finite set O(P,)n(Po. Pi]r
such that (P,, P*);nO(P,) =@. By a “generating set” (G.S) of the diff-
eomorphism F we shall mean the arc M, = [Py, P*].

From the results obained in [15] it follows that the following statements
hold.
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Lemma 1. (1) For any P, QEIVIO. P # Q we have O(P)NO(Q) = 0;

(2 U O(P)=T. ie for any QeI there exists Pe M, that Qe O(P).
PeMo

Denote the null space of the operator A by N(A). It is well known (for
example, [16]) that any ue N(A) can be written in the form

(5) u(x, y) = G(x)+ H(y), (x, y)eQ
where
6) G(x)+ H(y) =0, a.e. (x, y)el”

Besides G(x)eL, , (a.b), H(y)eL, ,(c.d): a=x(P,), b=x(P;), c=y(P,),

d=y(Py). py=p(x)=/x—a /b—x py=p,0)=y—c-Jd—y, where
for any Pel by x(P), y(P) we denote the coordinates of the point P, i.e.
P = (x(P), y(P)).

According to (6) each ue N(A) can be uniquely determined by the values of
the function G(x), xe(a, b). Besides, as far as for any Pel we have
x(P) = x(T~ P), y(P) = y(T* P), then from (6) it follows that for almost every Pe I

(7) G(x(P)) = G(x(Q)),  H(y(P)) = H(y(Q))

for any QeO(P). So by (7) and Lemma | we have that the functions G(x),
H(y), u(x, y) are uniquely determined by the values of G(x) on 1\710 (as function
from L,).

We choose the natural parametrization of I": I" = {(x(s), y(s))|0 < s < I} such
that P, = (x(0), y(0)), P; = (x(sj). y(s})), j=1,2,3:0<s, <5, <s3 <L.

Define the functions

(8) g(s) = G(x(s)), his)=H(y(s)), 0<s<I

As it has been mentioned earlier, the diffeomorphisms T*, T~ can be lifted to
maps f*,f":R->R, ie.

fEs+ D= 3 =1L fT0) =0, f(s)=s,, S(T*P)=f*(S(P))(mod )

for any seR, Pel.
Following [15]. we define functions f,: RS R, k=0, 1, 2, ...

fo®) =5, fis)=17(s), fols)=Ff"(f"(s)
So+1(5) =f+(f2k(5)), Sar+208) = f2(f2u(s))

It is easy to see that f5,(s) is the lift of F*. As far as I'e C* and the curvature
of I" at the vertices P,....,P; is positive then f*, f~, ieC®(R), f%, f5,,, are
strictly decreasing functions, f, is strictly increasing function for any ke N [15].

We define also functions f,(s): [0, 1) 5 [0, I)
fils) = fils) (modl),  se[0, 1)
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It is easy to see that for any keN
feeC=([0, D\ E)
where the finite set
E = {S(P)|P€O(P,)} < [0.])

consists of n numbers.
The formulas (6), (7) can be rewritten in the form

9) g(s)y = — h(s), a.e. se[0. 1),
(10) g(s) = g(fils),  keN. ae se[0.])

We denote M, = (0, s*) where P* = (x(s*), y(s*)). Then from (9),(10) and
Lemma 1 it follows that the values of g(s), h(s) are determined uniquely for a.e.
se[0.I) by the values g(s) on M,.

Denote

M, = {fk(s)|5€Mo}~ k=1,....2n—1

Then Lemma 1 can be reformulated as follows.

Lemma 1'. (1) M,nM, =0, m+#k, m kef{0....,2n — 1}:

2n—-1
2 U M =[0,D\E.
k=0
So _f',‘eC”“(Mj) for any keN, je{0, I,..., 2n — 1}. Moreover it is easy to
see that for any keN, jel0, l,...,2nA—1} there exists m = m(k. j)eZ that
N ) df, _
Juls) = fi(s) — m(k, j)- I, se M;. Hence %(s)eCw(Mj).
as

Thus we have obtained that any we N(A) is uniquely determined by the
values of the corresponding function g¢(s) on M,. Moreover any function
g(s)eL,(M,) generates with the help of formulas (5), (8).(9), (10) a function
ue N(A). Indeed, if g(s) is some functAion from L,(M,) then using (10) we define

df (s _
g(s) for all se[0, )\ E. As far as %S)GCI(Mj), keN, je{0,...,2n — 1} then
s

g(s)eL,(0, ). Then according to (9) we have h(s) = — g(s)eL,(0, ). It is easy
to see that the maps x(s): [s,, s3] 5 [a, b], y(s): [0, s,] 5 [¢, d] are one-to-one

mappings. So there exist functions $(x): [a, b] 3 [s1. 831, $(v): [e, d] 3 [0, s,]
that

x(8(x))=x, xela, b]; yS(y) =y, yele d]
Because of formula (9) we obtain that functions

(11 G(x) = ¢g(5(x)), xela, b]; H(y)=h(@3()). yelc d]
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satisfy (6).
As far as 'e C* and the curvature of I" at the vertices P,,..., Py is positive
then there exist constants ¢, ¢, > 0 such that
¢ < ds(x) ¢y
pi(x) dx  py(x)

|

S x€(a, b)

¢ <d§(y)< I

< < , yel(c, d)
P2(y) dy p2(y)

Hence G(x)eL2 L (a,b)yc L, , (4, b), H(y)eLZ.L(c, d)c L, ,,(c.d). So the func-
tion ~ =
u(x, v) = G(x) + H(y)
belongs to N(A). Thus the following theorem holds.
Theorem 1. (1) For any ue N(A) there exists a function g(sye L,(M) such
that equalities (5), (8), (9). (10) hold.

(2) Any function g(s)e L,(M,) generates some function ue N(A) with the help
of formulas (5), (9), (10), (11).

3. The normal solvability of equation Au = f

M. V. Fokin in his work [6] shows that if the condition (A) holds then the
operator A is a selfadjoint operator in L,(£2) and equation Au = f is normally
solvable, i.e. the range R(A) is closed in L,(Q). Although this statement was
formulated under assumption of analyticity of I” it remains true if I'e C* (the
proof in the case 'eC™ is exactly the same as in the case of analyticity of
I"). We shall give here the sketch of the proof because we shall use it further.

Theorem 2 (M. V. Fokin). If I'eC* and the condition (A) holds then the
range R(A) of the operator A is closed in L,(Q).

Sketch of the proof. We shall construct an operator B: R(A) —» L,(£) such
that for some constant C >0

(12) Ac Bu=u, ueR(A)

(13) IBullgi@ < C- lull,@ ueR(A)

Clearly it is sufficient to construct such operator B on R(A)nC*(Q).

Let ue R(AA)nC*(£2). Then

(u, qﬁ)hm,zj u-¢dQ =0, peN(A*)
0
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It means ue N(A*)* in L,(€2). We consider the function

(14) v(x, y)=J J u(é, n) dédn

0JoO

(we set u(x,y)=0 if (x,y)¢QuUl). Then veC*(QUI) and v, (x, y) = u(x, y),

(x, y)eQ. We shall construct such functions G(x)eC*(a, b)nWi(Q), H(y)e
C*(c, dyn W3 (£2) that

(15) v(x, ¥) + G(x) + H(y) =0, (x, yel
Denote
(16) v(s) = v(x(s), y(s)), se[0, 1)

We extend v(s) to a [-periodic function defined on R by the formula
v(s) =v(s+1), seR

Then v(s)e C*(R).
It is easy to see that to construct the functions G(x), H(y)e C* satisfying
(15) it is sufficient to find I-periodic functions ¢(s), h(s)e C* satisfying

(17) g(s)=g(f(s)
(18) h(s) = h(f™(s))
(19) v(s) + g(s) + h(s) =0

for all seR. Using the induction we obtain from (17), (18), (19) for any ke N, seR

2k—-1

(20) g(f2:(5)) = g(frx-1(5)) = g(s) — Z (U(f2j+ 1(s)) — U(ij(S)))
j=0

As far as f,,(s)=s (mod /) then a necessary condition for the solvability of
(17)-(19) is

2n—1

(21 'ZO (0(f2j+1(5)) — v(f25(s)) =0,  seR
i=

It is easy to show that equality (21) is a necessary and sufficient condition for
ue(N(A*)'. The equality (21) means exactly that u is orthogonal to all piecewise
constant function from N(A*) we shall discuss later. So as far as ue R(A) then
the function v(x, y) defined by (14) satisfies (21).

From (20) and Lemma 1’ it follows that any [-periodic function g(s) satisfying
(17)~(19) can be uniquely determined by the values of ¢g(s) for se My. So we

denote by g,(s) /-periodic function such that g,(s) = 0, se M, and (20) holds. We
set

ho(s) = — v(s) — go(s), seR
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It is easy to prove that gy, hoe C*(R) and gq, hy satisfy (17)—(19). We denote
by Go(x), Hy(y) the functions defined by the g,(s). hy(s) according to the formulas
(11). It is easy to verify Go(x)eC™(a, b)nW3(Q), Hy(y)e C*(c, d)n W3(22) and
(15) holds. Then using (11), (14), (19), (20) we can find a constant C > 0 which
depends only on @ and such that

lv(x, y) ||\“v;(m + [ Go(x) ”v"v‘l(ﬂ) + ||H0(J’)||\Li:;(m <C-| “”Lz(m

Thus the function

wo(x, y) = v(x, y) + Go(x) + Hy(y)

belongs to C®(Q)nWi(Q) and

wolx, y) ||"§z;(m < Culli,w
Besides
(WO(xa y))xy = M(X, ,V)s (x’ ,V)GQ

It is not difficult to show that woe D(A) and Aw, = wo = u.
We set

Bou = w,
Then B, is linear operator from C*(QUTI)NR(A) to Wi(£2) and (12), (13) hold

for all ueC*(QUI)NR(A). Let B= l?o-closure in L,(2). Since the operator

A is closed in L,(2) then B: R(A) —» D(A) and (12), (13) hold. From (12), (13) it
follows that the range R(A) is closed in L,(22). Theorem 2 is proved.

It is not so difficult also to prove that A is a selfadjoint operator. Since
A is symmetric then to prove this it is sufficient to show that N(A) = N(A*).
Thus A =A*, dim N(A)= o0, R(A) is closed. So L,(22) has an orthogonal
decomposition

L,(2) = R(A)® N(A)

We denote by P,, P, the operators of orthogonal projection from L,(£)
onto R(A), N(A) respectively. Consider the operator

Ag = Alga): R(A) — R(A)
Then the inverse operator Az ': R(A) —» R(A)nD(A) can be represented in the form
Ag'=P, B

So because of (13) and embedding theorems it follows that Ag' is compact
operator. Hence the operator A has the following Property I [17].
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Property I ([17], p. 231). Let H be a real Hilbert space. Let A: D(A)c H —
H be a closed linear operator with dense domain and closed range. Assume that

N(A) = N(A*) (or equivalently R(A) = N(A)*)

A is therefore a one-one map of D(A)NR(A) onto R(A). Assume furthermore that
the inverse

A~': R(A) — R(A) is compucl.

Operator A satisfving all these conditions will be said to have Property 1.

4. The solvability of problem (4)

We denote by (— ;). 2, the first negative and first positive eigenvalue of A
respectively. Then

1
(22) — | Au |||2_2(Q) > (Au, U)o =
o, —

AU, 0 ueD(A)

1

It is easy to verify that A has positive and negative eigenvalues. Indeed. denote
E=x+4y,n=x—yand chose a rectangle [T={p<é<q,r<n<e}=Q. Let
(&), g(meC*(R), supp f < (p, g), suppg = (r, ¢). Then

0
u(x, y) = f(x +y)-glx —y)eC*(Q),

Au=uy=f"x+y - gx =)= flx+y)g"(x=p),

(Au, U)y, ) = J (f"(x+y)glx —y) = flx + )g"(x — ) f(x + »g(x — y)dxdy
ko]
_1

5 J (S7E) - f &) g* ) — f2E) - g"n) - gln) dEdn
Il

e

1 q C ] q
=J fz(f.)dé'f (g'm)*dn — J (.f’(é))zdc“f g*(m)dn
2), , 2J,

”

0
Hence there exist u, ve C*(£2) such that (Au, u), <0 < (Av, v),. So(—a,)<0<

“2-
Assume K: H — H is a (nonlinear) operator satisfying the following condition

[17]:

For some positive constant y < o,
(23)

1
(Ku — Kw. u) > — |[Ku||> — C(w), VYu.weH

U
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were C(w) depends only on w.

Theorem 3 ([17]). Suppose A has Property 1. Let K be a monotone
demicontinuous (i.e. continuous from strong H into weak H) operator satisfying
(23). Then

R(A + K) ~ R(A) + conv R(K)

where “conv” denotes the convex hull and C ~ D means the sets C and D have
the same interiors and the same closures.

Corollary 1 ([17], p. 233). Under the assumptions of Theorem 3, if
N(A) = R(K) (which is in the case when |[Kul| - oo as ||u| — o), then A + K is
onto.

Corollary 2 ([17], p. 235). Assume A has Property I. Suppose K is onto,
and satisfies

1
(24) (Ku — Kw, u —w)>—- |Ku — Kw|?, Yu, we H
y

with y < .
Then for any feH there exists a solution of

(25) Au+Ku=f

and the solution is unigue mod N(A). [If furthermore K is one-one the solution is
unique.

Consider problem (4)
(4) Au + f(x, Y, u) = 0

We assume that feC°(Q x R), furthermore either f or — f is nondecreasing as
a function of u and satisfies for a.e. (x, y)e£2, any ueR

(26) nelul —hy(x, ) <10y, )l <y ful + ha(x, p)
where >0, h,, h,eL,(Q), and y <a; or y<a, according as f or —f is

nondecreasing.

Theorem 4. Under these conditions the problem (4) possesses a solution in
L,(9Q).

Proof. Obviously it is sufficient to consider the case f is nondecreasing.
We apply Corollary 1. For this it is necessary to prove that Ku = f(x, y, u)
satisfies (23), N(A) = R(K) and K: L,(Q)— L,(2) is demicontinuous operator.
Assumption (23) for Ku = f(x, y, u) follows from the following Proposition.

Proposition 1 ([17], p. 317). Let Q be a measure space. Let o > 0.  Assume
f(x,u): 2 x R—> R is measurable in x and continuous nondecreasing in u.  Suppose
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[f(x,w)| <O-|ul + h(x) ae xeQ, VueR
with 6 < o and heL,(). Set (Ku)(x) = f(x, u(x)). Then for some y < o

1
(Ku — Kw, u —v)p, >~ ||Kullf, — C(v, w) Vu, v, weL,(Q)

I
Let veL,(£). Set
u(x, y) = max {ueR|f(x, y, u) = v(x, )}, (x,y)eQ
Then from [19, Theorem 12.4] it follows that u(x, y) is measurable. Besides from
(26) and f(x, y, u(x, y)) = v(x, y) we obtain
1 1
[u(x, y)| < ;IIU(x, i+ 5111(x, y), (x,y)eQ

Hence uel,(Q). Since v is arbitrary then R(K)= L,(2). So N(A)< R(K).
Demicontinuity of the operator K follows from the following Lemma 2 which
will be proved in Appendix.

Lemma 2. Let Q be a bounded domain, f(x, y, uye C°(Q x R) and for a.e.
(x, y)eQ, any ueR

Lf Gy )l < C-Jul + h(x, y)

for some he L,(Q) and some constant C > 0. Then the operator K is a continuous
operator from L,(Q) into itself.

So Theorem 4 follows from Corollary 1
Theorem 5. [In Theorem 4 if we add the condition
(27) Ifx y, u) = fx, y, o)l <ylu—vl ae (x. y), VYu,veR

with y < oy or y < a, respectively.
Then the solution of (4) is unique mod N(A). [If, furthermore, f is strictly
monotone in u for every (x, y)€Q, then the solution is unique.

Theorem 5 follows from Corollary 2.

5. General structure of domains with the property (A)

In paper [4] F. John notes that the null space N(A) is invariant relative to
the following change of variables

(28) Xy =f(x), yy=40)
Following this idea we shall prove

Theorem 6. (1) Ler Q be a bounded domain, convex relative to the lines
x = const, y=const; ' =0QeC>*; the curvature of [ at the vertices be
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positive. Assume a(Fp) = %; (mn)=1:(F)' =1 Let f(x)eC*®[a, b]. g»)€
C*%[c,d], f'.g =0>0. Consider
(29) Q= {(/(x). gNl(x. y) 2}

Then oz(F,-)-—A (Fp)'=1p: 8, is convex relative 1o the lines x = const,

y = const; the curvature of 'y = 02, at the vertices is positive.
(2) Let 2,9, be bounded domains, convex relative to the lines x = const.
y=const; I'=0QeC*®, I'y =0Q,e€C%; the curvature of I', I') at the vertices be

positive; a(Fp) = a(Fp) = % (m,n)= 1 (Fp)' =1, (Fp) =1p,. Then there exist
functions f(x), g(y) and number & > 0 such that
f(x)eC'[a, bInC*[a, b) or f(x)eC'[a, bJnC>(a, b];
g eC' e, dInC=(c, d]:
f'(x)=2d>0, xe[a,.b]. ¢g(y)=206>0, ye[c, d]
and (29) holds.
(3) Let Q,Q, be bounded domains, convex relative to the lines x = const,

y=const; a(Fp)=a(F)= T, (m,ny=1;(Fp)' =1y, (Fp)' =1p. Then there
n

exist strictly increasing functions f(x), g(y) such that (29) holds.

Proof. We shall widely use here the notations introduced earlier.

1. Since the map (28) transforms any segment of the line x = const (y = const)
into segment of line x, = const (y, = const) then @, is convex relative to the
lines x, = const, y, = const and any cycle O(P), Pel is transformed into cycle
O(P,), P, =(P),el'; (for any P =(x,y)eQUI we denote (P), =(f(x).g(y)e
Q,url). Besides T7 (P,)=(TFP),, Fr (P), =(F:P),, Pel'. Hence (F ) =

Ip, o(Fp) = m_ a(Fp). It easy to see that (Py),,...,(P;); are the vertices of
n

I';. Consider, for example, the “left” vertex (P,), = (f(x ( )) g(y(sy))). Since
(x(s), y(s)) is natural parametrization of I then x'(s;) =0, y'(s,)= — 1 and the
curvature of /" at P, is equal to

X'(s)y"(sg) — x"(s1)y'(s1) = x"(s4) >0
So the curvature of I'; at (P;), is equal to

((f(x(9)) - (gs)) = (f(x(9))" - (@) 5=y,
= f'(x(s1)) - g'(¥(s1)) - (x"(51)) > O.

2. Let M, = (0, s*), M} = (0, st) be the generating sets for I" = {(x(s). y(5))|0
<s<Ij, I'y = {(x,(s), y,(5)|0 < s < [,} respectively. Let hy(s) be some function
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such that hg: [0, s*] 3 [0, s¥]: hoe C* [o, s*]; hy(s) > 0, se [0, s*]. Define a map

h:10,1] 3 [0, 1,] by the following formulas

{M®=%m se[0, s*] = M,;

(30) o
his) = 7 (W(fE(9)), seM,, k=1,2,...2n—1

where 7, = (f;)™! is inverse function for ' = f, defined for I"= 0 in section
2. Using Lemma 1’ and properties of f,. f, we obtain that h(s): [0, [ [0, ]

is strictly increasing function, he C[0, []nC*(M,), k=0, 1,..., 2n — 1. Besides,
since |(fy(s))|=0>0, seM,.m ke{0, 1...., 2n — 1} [15] then h'(s)=d, >0,

seM,, k=0,....,2n — 1 for some §, >0. We shall show that heC*[0,[]. We

extend h(s) to a function h(s): R> R by the following formula

(31) h(s + kl)y = h(s) + kl,. keZ, se[0,])

2n—1

Then heC(R)NC*(£,(M,)), keZ, me{0,....2n —1}. Since [0,/]\ U M, =

k=0
{(fis)lj=0....,2n — 1, i =0, 1. 2, 3} where P; = (x(s;). y(s;)), i = 0. 1,2, 3 are the
vertices of I" then we need to prove

d*h d*h

(32) Sa s+ 0 =" 2 (fis) =0
for keN, je{0,....2n — 1}, i€{0,....3}. As far as f(s)eC*(R), jeN then from
(31) it follows that to prove (32) it is sufficient to prove
k) d*l
(32) d ’( +0)= 1(s,~—0)‘ i=0,1,273.

" Let & be some positive number that (s, — ¢)€(0, s,), (s, —&)e(sy, s;). Then

S — s 51]_”[91’f (s;—e). fTs)=s,, (S (s)=s

Besides it is not difficult to prove that f~eC*[s; —& f (s, +&)]. (f7) <=9
<0 and
(33) ST(s)=2s; —s+g(s), seR

where geC® and ¢¥(s,) =0, k=0, 1,....
From (30), (31) it follows that h(s) satisfies

h(s) = fr, (h(fF (s))), seR

So
(34) h(s) = 2h(sy) — k(S () + g, (fr () = 2h(sy) — h(2s; — 5+ g(s) + ¢, (fr (5))
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where fr(s) = 2h(s;) — s + ¢g,(s), ¢ (h(s)) =0, k=0, 1,.... As far as ¢¥(s,) =
g¥(h(s,)) =0 then from (34) it follows that (32’) holds for i= 1. The cascs
i=0,2,3 can be considered similarly. Thus he C*(R).

According to the definition of f *(s) we have

ys) =y ). x()=x(f7(s),  sel0.1)
yl(s)zyl(f,-*l(s)), X, (s) = x, frl(s) se[0, 1)

So from (30) it follows that h(s) satisfies the following equalities:

(35 yi(h(s)) = yi(h(fF ). x,(h(s) = x, (h(f7(9)), se[0, 1)
We set
(36) f(x)=x,(h(5(x)), g(y) =y, (h(Y), (x.y)eQul

From (35) it folows that the map (36) transforms /" onto I",. Since Q, Q, are
convex relative to the lines x = const, y = const then from (35) it follows that
(29) holds.

Obviously feC*(a, b), geC*(c,d); f'(x) >0, xe(a, b);: g'(y) > 0, yel(c, d).
Further

lim f'(x)=lim x;(h(5(x)))- h'(3(x)) - S(x))

x—a+0
o G X ()
- xllm-o ) x’(g(x)r h (S(\)) - S—!{r1n+0 x’ S) i ( )
e g X(R(s) xj(h(sy))
= (h'(sy)) S_!i?lo _x,,(s) = (W(s))*- _—f”(sl)

Since I, I} have positive curvature at the vertices then xj(h(s,)) > 0, x"(s,) > 0.
Hence f'(a + 0)e(0, o0). Similarly we can obtain f'(b —0), ¢'(c +0), ¢'(d — 0)e
(0. o0). Thus feC'[a, b], geC'[c, d], [,y = >0.

As it was mentioned before the following three cases are possible:

(1) nis even, F2P, = P,:
nt1

(2) nisodd, F ? Py,=P,;:
n+1

(3) nisodd, F 2 P,=P;.

We shall consider only the case (1). The cases (2), (3) can be considered similarly.
Let n =2k, F*P, = P,. Since P* = (x(s*), y(s*))eO(P,) = O(P3 ) then there
exists a number me{0,...,n — 1} that F"P* =P;. Then M,, = [f£.(0),s,]

[s;. s3], where P; = (x(sj), »(s;)). Let ¢>0 be so small that §(y)e(o, s*) = M,

for any ye(d — &, d), §(x)e(fA2,,,(0), s3) = M,,, for any xe(b — ¢ b) and

(37) §(d — &) < f1,,(5(b —¢)
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Then

(38) g(y) = yi(he(8(y)). ye(d —e. d)

(39) S) = X, ([ o ([1,,(3(x)))). xe(b— e b)
Let

y):[d—e d] =, yi(3sh), d],

Jox) s [b — & b] = [x, (/3 (Gs)). b,]

be arbitrary functions such that
go€C¥[d — e, d], foeC*[b—¢ b], go, fg=0>0

where [a,. b,]. [c,, d,] are the projections of 2, U I, onto the x and y axes. We
set

hi(s) = $1(go(y(s))). se[0.$(d —¢)]
hy(s) = F TG (foX(fE (). se[f5,mG(b — ). s¥]

Then

hy: [0, 8(d — )] = [0, 4st].

hyt [ Tom((3(b — €)). s¥] = [3st, st1.
h,eC=[0, $(d —¢)]. hyeC*[f5,,(5(b —¢)). s*]. h|, hy>5,>0

Because of (37) there exists function hy: [0, s*] 3 [0, s¥], hoeC* [0, s*], h{=0>0
such that
{ho(s)z hy(s),  se[0.5(d —e)]
hO(S) = hZ(S)’ SE[frz,”(S b - 8 ) ]
So if we define f(x), g(y) by formulas (30), (36) then

f(x)=fo(x).  xe[b—e¢ b]
gy =goy),  yeld —e d]
Thus f(x)eC*(a, b], g(y)eC=(c, d].
3. The proof of the existence of functions f(x), g(y) such that (29) holds in

the case (3) is exactly the same as in the case (2). Thus Theorem 6 is completely
proved.

Remark. 1t is easy to construct domains Q, Q, satisfying the conditions
of the case (2) and such that there exist no functions f(x), g(y) such that
feC*[a, b], ge C*[c, d] and (29) holds.
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It is not so difficult to obtain a necessary and sufficient conditions for
existence feC*[a, b], geC*[c. d] that (29) holds. We shall write here such

conditions without proof in the case when n is even and F? P, = P,. Denote
¢(x) = x(£,(5(x)), xela, b], Yy =y, yele d]
¢ (x) = x, (75, (x)). xela;. b)), ¥i(y) =y, (LG 0)). yeley,d,]

Then there exist feC*[a, b], geC*[c, d], f'. g = 0 > 0 such that (29) holds if
and only if

¢:(p(¢(x))eC*[a. a +¢)
Yi(q(y)eC>[c, ¢ +¢)

for some e, p(x), g(y) such that ¢>0;peC*b —¢ b], pb)=b,.p=20>0;
geC®(d —¢e d],qd)y=d,, ¢ =06 >0.

Corollary 1. Let Q2 be bounded domain convex relative to the lines x = const,

m . .

y=const, a(Fp)=—, (myn)=1, Fr=1p Then from the statement (3) of
n

Theorem 6 it follows that the topological structure of F - coincides with the structure
of homoeomorphism Fpm. where I = 0II)' is the boundary of rectangle

H{f’z{(x,y)‘0<x+y<_’1,0<x—y<n_—m}

V2 V2

(if Fr=1p, a(F) =% then always 0 <m < n>.

The boundary I is very convenient for studying of the topological properties
of F because all functions f*(s). f,(s) are linear and can be written in explicit
form. For example, f*(s)=n—s, f(s)=m+n—s, f20)=f"(f1(s)=m+ s,

2(F) =2 e, 1).
n

In other words, the rectangle /1) is the simplest representative of the class
of domains E(m, n) such that any Qe E(m, n) is bounded domain convex relative

. m
to the lines x = const, y = const and a(Fp) = —, Fi= I, I'=0Q.
n

Corollary 2. The boundary I" of the rectangle II" is not smooth. The

n

simplest representative of E(m, n) with smooth boundary is the ellipse E' [4]

11
OE) = {(sin 27z<r +-—= T), cos 2m> teR}
4 2 n

where t is called the canonical parameter for the diffeomorphism F [4]. It is easy

. . _ m m
to verify that, roughly speaking, T*:t— —1t, T it———1t, Fitrt+—,
n n
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m

teR. So F":t—t+m, teR. Hence F'=1. oa(F)=—.
n

Corollary 3. Let Qe E(m. n), 02 = I'e C*, the curvature of I at the vertices
is positive. Let f(x)eC* [a, b], g(y)eC*[c,d]. f'. g = >0 and

Q, = {(f/(x). gW)I(x. y)eQ}

Consider the following Dirichlet problem in Q

(40) {uxy(x, M+ =0, (x,))eQ

u(x, y) = ¢(x, y), (x. el

Denote

ur(, ) =u(f 1), g7 W), (x, y)eQ Ul
hyCx, you)y = h(f 71 ), g7 ) ) - /(7)) g/ (g7 ). (x. e, ueR
G, ) =d(f X g7 W), (x, »el| =02,

Consider the following Dirtichlet problem in 2,

@ {ul_w(.\', V+hix,pu)=0 (x,y)eQ,

u(x, y) =, (x, v), (x, yyel,

Then

(1) ueCHQuUIN <u,eCQ,ul);

(2) ueN(A)<=u,eN(A));

) ulp=d<=ulr, =¢;

(4) for any k =0.1,... there exist constants C,(k), C,(k) such that

Collsian < 1ty Iyt gy < Co() 1l gy

(5) wu is a solution of (40)<>u, is a solution of (41).

6. The orthogonal projection onto N(A)

After we proved the solvability of the problem (4) it is interesting to study
the regularity of the solutions. If we follow the techniques developed in [18]
we have to study the regularity properties of the orthogonal projection Py from
L,(©2) onto N(A). We shall obtain here the explicit form of Py and consider
some properties.

Let uel,(Q). Denote u, = Pyue N(A). According to Theorem 1 there
exists some function g,(s)e L,(M,) which generates the function u, with the help
of formulas (5) (9) (10) (11). So it is sufficient to define ¢,(s) for any se M,.

Following [15] we introduce the piecewise constant functions (P. C. functions)
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v(x, y, )€ N(A), yeM,. The function v(x, y,y) is generated by the following
function ¢(s, y)e L,(M)
0, s<7y;

= =0(5—7y), se M,
1, s> 9.

(42) g(s,y) = {

where ©(x) is the Heaviside’s function.

We shall describe below the structure of the P. C. function v(x, y. y)e N(A).
According to Corollary 1 of Theorem 6 it is sufficient to consider the structure
of v(x, y,y) in the case Q2 = [T}

Consider the rectangle I1)', n, meN, n > m (see Figure 3).

Then s, =Ln. sz=§, S3=n+m

2 2 2

are linear functions and f;/(s) = (— 1), then all intervals M, have a common

. l=n. As far as fi(s), ke{0.....,2n — 1}

l 1
length. So from Lemma 1’ it follows that M, = <0, 2—> = <0, 5)
n

1
Let ye<0, 5) From (10), (42) and Lemma 1 it follows that

n—1
1, se UG +kk+1—19):
(43) g(s.y) = 0

1
U@y+kk+1—1y).
=0

0, se(. )\

k

n—1
=Y @Ok+1—y—5)—0Ok+y—y9)
k=0

. . m
Since §(x) = ﬁx + 51 S(y) = g - \/Ey then from (5), (9), (11) we obtain

m
(44) v(x, y. y) = g<\/§x + 5 y> - g(% -2y, V>~ (x. y)e T}

Because of (43), (44) we have for (x, y)e IT"

n—1

45 o(x, y,9) = Z<(9<k+l—y—g—ﬂx>—9<k+)}—;—ﬁx>>

k=0
n—-1 m
—k;)(@(k +1—y—5+\/§y>—@<k+)}—g+\/§y)>

So the structure of v(x, y, y) is the following (see Figure 3): each ye M, = (0, )
generates a system of rectangles I7,(y) < IT", k= 1,..., (n — m)m, such that
(1) for any ke{l,...,(n — m)m} there exist j, ie{l,...,n — 1} that

, m . m m . m
i—y—== ity—5 S5 -0U+D+y o Al

2 2 2 2
NG

I (y) = (x,y))——<x< . <y<

NG NE N
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y

m/2 o
(m+mf2
[T, n=s. 7
V v(x, y,8) = —1
% N7/
s v(x, y,5) =1 /2
Figure 3.
if k is odd and
- m 1 m m )i m i+
i+y—— J —vTy STl o T
M(y) = (x.y)’ 2 cv< 2,2 <y<2 /
if k is even;
(2) for any (x, y)e I}
(=1 (x.yelly),
(46) v(x, y,7) = { (n—km)m
O. (X, )’)¢ U ”k(y)
k=1

Using Corollary 1 of Theorem 6 we obtain that if Qe E(m, n) for some m, neN,
n > m then any ye M, generates a system of rectangles I7,(y), k= 1,....,(n — m)m
with the sides parallel to x and y axes and such that (46) holds.

We denote by N,(A) a subset of N(A) consisting from all functions ue N(A)
which have the generating functions g(s)e C'(M,) = C'[0, s*]. Since for any

constant C functions ¢(s), g(s) + C generate the same ueN(A) then for any
ue N,(A) we denote by g,(s)e C' [0, s*] the generating function such that ¢,(0) = 0.
Let ue N,(A). Then for any se€[0, s*]

§*

(47) gu(s) = J gu(n) - O(s — n)dn = f gu(n) - g(s. n)dn

0 0

It is easy to verify that operator 4 which assigns with the help of (5), (9), (10), (11)
to any g¢g(s)eL,(M,) the corresponding function we N(A) is linear bounded
operator from L,(M,) to L,(2). So from (47) it follows that for any ue N(A)
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§*

gu(n) - Ag(s, n)dn = f guln) - v(x, y, n)dn
0

§*

(48) u(x, y) = Ag,(s) = j

0

Let u, we N,(A). Then

(49) (u, W)Lz(ﬂ):f J du(n) - g () - k(n, y)dndy
0 0
where
(50) k(n. p) = ((x, y. n), 00X, ¥, Ve 0 YELO, s*]

Using the structure of P. C. functions v(x, y, y) we can obtain explicit formula
for k(n,y). First, we consider the case of domain represented in Figure 4.
Let # >y. Then for any se[0, s*] we have

IT,(s) = (x(x4), x(s;)) x (p(s7), y(s,))
II,(s) = (x(s2), x(s¢)) X (y(52), y(S6))
IT5(s) = (x(ss), x(s3)) x (y(s5). y(s3))

v
S _ Sy
| |
t —_— d__ L
0 & } x
KT
|
5 _+__ — Se
S.I —_ _ I — Sy
| | | |
1—]:' m=1,n= , _—!—_ ﬂ__ |
Sk = Jils) " _—F |_ !
=il ST
Figure 4.

where s, = f,(s), k=1,...,7. So from (46) it follows that k(n, y) is equal to the
total area of shaded rectangles

(51) k(n.7) = (x(f10) = x(/s00) - W) = y(Fr ()
+ (fs) = y(f20)) - (x(f6 () — x(f2(m)))
+ (x(f3) = x(fs3)) - 0(F3(m) — y(fs())
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=a; ()b, () + ax()by(n) + as(y)bs(n)
From (50) it follows that k(. y) = k(7. n). So for any n, y€[0, s*]. n #y

3 3
k(n, 1) =00 =7 Y aly) b + O —n)- Y an)- by
k=1 k=1
It is easy to see that for any k = 1, 2. 3, a,, b,e C*[0, s*]: a,, b, = 0; a, is strictly
increasing function, a,(0) = 0; b, is strictly decreasing function, b,(s*) = 0.
Let QeE(m, n), 02 =TeC>*, the curvature of [ at the vertices is
positive. Then for any », ye[0, s*], n # 7

m(n—m) m(n —m)

(52) k(n, 7) =00 —7) kZl a(y) - b)) + O —n) - kZl ay(n) - bi(y)
where for any k= 1,....m(n —m)

() a,. b,eC*[0, s*];

(2) @), bi(y) > 0, 7€(0, %), a,(0) = by(s*) = 0:

() ), (= bi(y)) =0 > 0. ye[0, s*].
For simplicity we omit here the proof of (52). It easy to note that according
to Corollary 1 of Theorem 6 it is sufficient to prove (52) for the case 2 = IT}.

Let ueCJ[0, s*] satisfies the following integral equation:

(53) j k(n, y)-u()dy = h(n)., nel0, s*]

0

Then from (52), (53) it follows

m(n—m)

(54) um)- Y. (bemag(n) — ag(mby(n))

k=1

m(n—m) n s*
+ X (bi’(ﬂ)J ak(v)u(*,')d*/+ak”(n)f bk("/)u()')d?)
k=1

0 n

=h"(n)

We denote

m(n—m)

g =Y, (be(m) - ay(n) — ag(n) - b(m).  nel0, s*]

k=1
Since for any k= 1,....m(n —m), a;), b(y) >0, ye(0, s*): a,(0) = b (s*) = 0:

ai(y), (= bi(y) = 6 > 0, ye [0, s*] then (by(n)ai(n) — ap(mb,(n) < 0. ne[0, s*].  So
q(neC=[0, s*] and g(n) < — <0, ne[0, s*] for some 6 > 0. We denote

m(n—m) m(n—m)

1 "
ky (. V)=m(9('7—“/)' k; bima )+ OG —n) - Y. a (b))

k=1

Then equation (54) can be rewritten in the form
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(55) u(n) + f k- utdy =
0 q(n)
So we have obtained the Fredholm integral equation of the second kind with
the bounded kernel k, (1, 7).
The homogeneous problem (55) has only trivial solution in L,(0, s*). Indeed,
if there exists v(n)e L,(0, s*) such that

v(n) +J ky(1,7)-o(p)dy =0, nel0, s*]

0

then veC[0, s*] and for the function

h(n) = J k(n.y)-o(y)dy
0

we have h"(n) = 0. ne[0, s*]. Besides as far as k(0. y) = k(s*, y) = 0. ye[0, s*]

then h(0) = h(s*) =0 Hence h(ny) = 0. Denote ¢(s) = ﬁ) v(n)dn, se[0.s*]. Then

geC'[0, s*], g(0) =0 and ¢ generates some function u,e N;(A). From (49) it

follows

0 =J h(mv(n)dn =J J k(n. e dydn = [u, 12,0
0 0 0
Hence u, =0. So g(s) = j‘gu(n)dn =0, se[0, s*] and consequently v = 0.
From Fredholm’s alternative theorem it follows that for any he W3 (0, s*)
there exists a unique solution of the equation (55) in L,(0, s*).
We denote by R, the resolvent of the operator

s*

I+ K)vy) =vy) + J ki(m, yu(y)dy

0
L.e.
R,-(I+K)=(I+K,)-R, =1
Let ueL,(Q) = R(A)® N,(A), u=u, +u,, u e R(A), ue N,(A). Consider the
function

§*

h(n) = f u(x, y)o(x, y, n)dxdy = J u,(x, y)v(x, y. n)dxdy = J g, (s)k(s, n)ds
Q Q

0
where g,,(s) is the generating function for u,eN,(A). As far as g,,e C'[0, s*]
then he C2[0, s*] and g,,(s) satisfies (55). So

uz

uz( )=R =R T (-‘» ) ("7,' )d‘d
Fual® 1 q(n) l q(n) d'72 rlu P B

Since u, =Ag,, (we have denoted by A the linear bounded operator which
assigns to any g(s)eL,(M,) the corresponding function ue N(A)) then
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s 1 d? def
(56) u, = A R —— u(x, y)v(x, y, n)dxdy | Jdn ) = Py u
0 q(n) dn ro}

Thus the operator Py, defined by (56) is the operator of orthogonal projection
from EZ(Q) onto N,(A).
We point out that the function

(57) h,(n) = J u(x., y)-v(x, y, n)dxdy, nel0, s*]
Q

belongs to W1(0, s*) for any ueL,(Q). However h,(n)eW3(0, s*) if and only if
uel, ().
As far as N,(A) is dense in N(A) then we obtain

(58) Py = Py,
where ]—’;1 means closure of Py, in L,(£).
Let ueCxQur), keN. Then h,(n)eC**'[0, s*]. Indeed it is easy to
verify that
h(n) =% (= 1" U x(u). y(fulm))

m=0

Uulx, y) = J J u(E K dEdx
where we assume u(&, x) =0, (& k)¢Q. As far as x(s), y(s)eC* [0, [], f,,,(s)e
C*[0, s*], ueC*(QurI) then U,eC**'(QuT), h,eC**1[0, s*]. Since k> 1
then g,,(s) (where u, = Pyu = Py ueN,(A)) satisfies equation (55) which can
be written in the form

m(n m) b ’) m(n—m) a s* h,:/
’ (o, + ¥ ) f by (gl dy = 01
p=1 4 J, q(n)
As far as a, b, geC*[0,s*]. h;eC* '[0,s*], gq(n) < —d<0 then g,,€
C*"'10, s*]. Then

G, (1) +

"
g, () = J g.,(s)dse C¥[0, s*]
0

Using (10) it can be shown g,,€C*[0, []. Since
uy(x, y) = Pyu(x. y) = ¢,,(5(x)) — ¢,,(5(»)

then u,eC*(QU '\ {Py,..., Py}) because of $(x)eC>(a, b), §(y)eC*(c, d), §'(x)T+?
x—b-0
+ o0, § (y)—+—0>+ .
y-*(cl 0

Thus we have verified
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Theorem 7. If ue CHQUT) then uy = Pyue CX(QU I\ {Py,..., P5}).

Remark 1. It seems to us that it can be proved Py: C*(QuI)— CHQuTI).
The plan of the proof may be following: First, we transform Q onto the rectangle
1" by the mapping (28). Then for any keN the space C¥(QUT") corresponds
to a space Ck (IT)") where p, is corresponding weight function. Second, we obtain
Py: Ck (IT7) - Ck (IT7).  Third, we transform I7)" onto Q by the inverse mapping
(28). But, of course, this question needs a special consideration.

Remark 2. It is easy to see that if Q=1/II" then for any keN,
Py: CHQuUIN) - C*QuTI). So using the techniques developed in [18] we can
obtain that under the conditions of Theorem 4 there exists a C®-solution of
problem (4) if feC*® and |f,| =¢>0.

Remark 3. 1t is interesting to point out that in the domain /7)) with piecewise
smooth boundary problem (4) is in a sense “better” than in the case 0Q2eC™.
It is due to the hyperbolic character of the problem (4).

Appendix

Proof of Lemma 2. Let  be a bounded domain, f(x, y, u)e C°(22 x R) and
for a.e. (x, y)eQ, any ueR

(59) Lf(x, y, Wl < C-ful + hix, y)

for some heL,(£2) and some constant C > 0. Let u, 2@ . We shall show
n—o

that f(x, y, u,(x, y)) Ll—mzf(x, y, u(x,y)). Let ¢>0 be an arbitrary positive

n— o0

number. There exists N, > 0 such that for any n > N, we have
(60) lualle, < 20ullL, ) n>N,
From (59) it follows that for n > N, and for any domain G < @

(61) I f(x.py, ulx, p)) = f(x, p, u,(x, W L,6) < 2| h”Lz(G) +3C|ullpye

So from the properties of Lebesgue integral it follows that there exists 6 > 0 such
that

62) £ G o, 1)) — £ v (s YD) aenan < ;

where
Q5 = {(x, y)|dist ((x, ). 0Q2) > &}
Consider

lf e,y ulx, ) — £, p, w06 Y L,

Using Chebyshev’s inequality we obtain that for any r > 0
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, 1
(63) 1eR,) = pu{x, yeQlui(x, y) = r*}) < e 12

So from the properties of Lebesgue infegral it follows that there exists r > 0 such
that for any n > N,

e
If(x. y.ulx, y)) — fx, y, u,(x, ,V))”Lzm,) <2|h HLz(n,) + 3C||’!||L2(Qr) < g

Consider for n > N,

I (s youlx, ) = (X, ps (x5 YD) L, 000200
(65) < [ f(xoyu)— f(x, p, “n)HLz((.Q.;\Q,.)\.()',',)
+ 1Sy uw) = fxys u) i eneonan
where
Q= {(x, Pug(x. y) > p?)
n I 2 4 2
(66) €2y < — -yl < 5 lullt,o
p r
From (59), (61), (66) it follows that there exists p > 0 such that for any n > N,
&
(67) ”f(X, V. “(xa .))) - f(x~ Vs ll,,(.\', }’)) ”L:((Do\f)rmﬂf,) < g
Consider for n > N,

IS, y. ulx, p) — f(x, 3, u,(x, ) ||Lz((.()6\ﬂr)\QTvJ

As far as f(x, y. u)eC°(Q x R), 55 < Q then f(x, y, u) is uniformly continuous
for (x, y. u)e(Q,; x [—d, + d]) where d = max (r, p). So there exists continuous

function p(x), p(k) T()»O such that

(68)
L, y, ulx, ) — f(x, 3, u, (x5 DI < plulx, p) —u,(x, p), (X, p)e(2;\2,)\ €2

Since p(x) ——0>0 then there exists x; > 0 such that for any |x| < K,
-

> 1
(69) plK) < g‘w(m) 2

From (61), (68), (69) it follows for any n > N,

“f(xa g ll(X, Y)) - f(x’ ¥, ll"(.\', })) ”Lz((!l‘s\f)r)\ﬂ’,',)
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1

2

< <j (3Cu + 2h)? dxdy)
((Q2\ 2N\ Q2P0 |u(x.¥) = un(x.0)| 2 K1}
(70) 1
+ <J pru(x, y) — u,(x, y))dxdy>
26\ 2\ Q)N u(x.p) —un(x. )| <x1}
&
< ” 3Cu+ 2h ”Lz((lu(x.yj—u,,(.\‘.y)l2:(.)) + g
As far as
1 2
r({ls DI ) = 00 D12 ) < 5 =) 2 0
1

then there exists N, > N, such that for any n > N,

&
(71) ” 3C“ + 2h “Lz({(.\xyie.()lIu(.\‘.y)—u,'(x.y)l >K1}) < g

So from (62), (64), (67), (70), (71) we obtain for any n > N,

If(x, . ulx, p)) — f(x, y, u,(x, M, <&

As far as &> 0 is arbitrary it means that f(x, y, u,(x, y)) L—:ﬂf(x, ¥, u(x, y)).
Thus the operator Ku = f(x, y, u) is continuous operator from L,(£2) into itself.
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