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On the structure of the solutions of the first initial boundary
value problem for the Sobolev’s equation

By

A. A. LYASHENKO

0. Introduction

In this paper we investigate the first mixed problem for the so-called
Sobolev’s equation

(0.1) =0

=
0x3

0% (0%u 0*u  0*u\ O%u

o\ ox? = ox3  ox3

in the model case of two spatial variables.
Investigations of the equation (0.1) were initiated by S. L. Sobolev [1], [2],

although this equation arose in the work [3] (pp. 355-356) by H. Poincare in

1885. -Equation (0.1) is closely connected with the system of equations describing
small oscillations of a rotating fluid

0.2) a—v=1')'><é'3—l7p, divs=0

where U is a relative velocity, p is a relative pressure.

System (0.2) is a linearization of the Euler equations in the uniformly rotating
coordinate system near an equilibrium solution describing the motion of the ideal
fluid rotating with a fixed angular velocity about axis x;. This system was
considered by S. L. Sobolev in [2] in connection with the studying of the stability
to the first approximation of the top with symmetric cavity filled with an ideal
fluid. He showed that if ¥, p satisfy (0.2), initial conditions

0.3) V=0 = Uo(x) » x =(xy, X5, X3)€R
and one of the following boundary conditions

0.4) Ploag =0

(0.5) T-H)lae =0

then p satisfies (0.1), initial conditions

(0.6) Pli=o =Po>  Pii=o =p:

and the boundary condition (0.4) or
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0% (op d( dp dp op
0.7 == |+ = z—cos(. — —cos(#. ——cos(# =
0.7) pre: <67z> +at<axzcos(n,xl) a)Clcos(n, X,) +6x3 cos(7, x3)|30 =0
respectively.
Problems (0.1), (0.4), (0.6) and (0.1), (0.6), (0.7) are called the first and the
second initial boundary value problems for the Sobolev’s equation and can be
written in the form of abstract Cauchy problem

(0.8) P« =Ap, Plh=o=DPo> DPili-=o=p1
(0.9) U, = iBu,  ii|,.q = U,

where A is a bounded selfadjoint operator in W;(Q) with spectrum o(A) =
[—1,0]; B is a bounded selfadjoint operator in H = {u e L,(2)|div i =0, U - #i|ag
=0} with spectrum o(B) = [—1, 1].

One of the basic questions in theory of small oscillations of the rotating
fluid is that of the behavior of the relative pressure p for the large time. A
complete solution of this question is closely connected with a detailed study of
the spectral properties of the operators A, B which represents one of the most
interesting and complex problems in this theory. This is connected with the fact
that the qualitative properties of the solutions of (0.8), (0.9) as t —» oo differ in
a number of cases from the properties of the solutions of the majority of problems
of mathematical physics. In connection with this S. L. Sobolev posed the prob-
lem of studying of the asymptotic properties of the solutions of mixed problems
for the equation (0.1) in various domains.

A number of papers by R. A. Aleksandryan, T. I. Zelenyak, V. N.
Maslennikova, M. V. Fokin, B. V. Kapitonov, V. V. Skazka and others have
been devoted to this theme; the history and bibliography can be found in [4], [5].

The present paper deals with the model case of two space variables. T. I
Zelenyak showed that in two-dimensional case solutions of the first and the
second initial boundary value problems had the same qualitative properties when
t > . So we consider the first mixed problem

0% (0*u  0%u\ O*u
. — — + — — =0, Q2,t>0
(0.10) p: <6xf + ax§> + 2 0 X € >
0.11) Plaa=0, t>0
(0.12) Pli=o = Po » Pili=0o =Py » xeQ

which can be rewritten in the operator form (0.8). In the paper the following
results are obtained: a class of bounded domains 2 = R? with corner points is
selected such that the operator A has no eigenfunctions in W;(Q) but for every
ie[—1,0] there exists a class of generalized eigenfunctions (G.E.) from L,(€2)
corresponding to 4: the structure of the G.E. is completely described; the
completeness of the G.E. in W;(Q) is proved: general integral representation of
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the solutions of the problem (0.8) is obtained; inversion formula and Parseval’s
equality for the integral representation are derived.

1. Choice of the domains

n
Let 2 be a bounded convex domain; 02 =I'= | ) I}, I;€ C* I} is either
j=1
piece of line or has positive curvature at any point including endpoints (curvature
at the endpoints is regarded as the limit of curvature at the interior points).

Let the set {a,...,0,} < [O, g:l consist of angles between axis x, and all
one-sided tangents to I” at the endpoints of I}, j=1, ..., n. We suppose 0 <

T
4 < <ay <5

Problem (0.10)-(0.12) can be rewritten as an abstract Cauchy problem in
W3(Q)
(1.1 P« = Ap, Pli=o ="Po» Pili=0 = P4
where A = Aj-closure in W1(€) of an operator Ay, D(A,) = WL(R)N WZ(Q) and
for any u € D(A,) image v = Ayu is a solution of the following Dirichlet problem
_%u
ox3’

From (1.2) it follows that for any u, ve Wi(Q)N W(Q)

(1.2) Av = olp=0.

(Au» v)l = _(AAu’ U)L;(.Q) = (ux2x27 v)Lz(Q) = _(uxza vxz)Lz(Q)

where

(1.3) (u, v); = (U, V) Wi = J Up, "Dy, T Uy, Dy, dQ.
Q

So A is a bounded selfadjoint operator in W(®2) and

(1.4) (A, 0); = —(y, 0 )1, W vE WH(Q).
Hence for any u e Wi(Q)

(1.5) 0> (Au,u)y = —llug,ll, > —lul,

and the spectrum g(A) = [—1,0]. It is easy to show [6] that ¢(A) =[—1,0].
We shall say that a function u e L,(£2) is a generalized eigenfunction of the
operator A corresponding to 1e [—1,0] if

(1.6) J U (Ays, + (1 + Dy, )JdR2 =0, e WHQINW3(Q).
Q

It is easy to see that if uch'Vi(Q) and (1.6) holds then u is an eigenfunction of
A corresponding to 4. Denote
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oc=a(,1)=arccos(./—,l)e[0,g} , A= —cos?a,

E=¢(x,a) =x,sina + x,cosa, n=mn(x,a)=x,sina— x,cosa.

Then (1.6) can be rewritten in the following form
(1.7) f U @, dQ2 =0, ¢eW2(Q)ﬂW ().
Q

It is known [7] that if @ is strictly convex relative to the lines & = const,
n = const and (1.7) holds for some u € L,(2) then

u(x) = P(¢(x, @) + Q(n(x, ), xeQ,
P(&(x, o)) + Q(n(x, a)) =0, ae. xell
where P(¢) € L, , (&0, &1), Q) € Ly ,,(M0sM1); S0 = &o(@) = min(x, ), & =

xel
&1 (a) = max &(x, a), 1o = nola) = mm n(x, @), 1, =n(x) = max n(x, o); py(&), p2(n)

xel

are some weight functions; pleC[éo,é 1, pzeC[no,nl] pl(é)>0 Ee (&, &)
p2(n) >0, ne o, ny); p1(&) = pi(&1) = p2(no) = p2(ny1) =

Thus if we denote A;= —cos’aq;, j=1, ..., m then for all Ae(—1,0)\
{A1,..., An} €ach G.E. u(x, ) corresponding to A= —cos?a can be written in
the form
(1.8) ulx, o) = P(x, o), ) + Q(n(x, 0),0),  x€Q,

(1.9) P(&(x, a), a) + Q(n(x, o), ) = 0, ae. xel.

Following [8], we define for any a € (0, g)\{cx,, ..., 0,,} homeomorphisms T™(«),

T () of the boundary I': T*(«), T («) assign to a point x € I" other boundary
points T*(a)x, T (x)x such that the following equations hold

(1.10) nx, ) =n(T*(@x,0),  &x,a) =T (W)x, o).

In other words, T*(x)(T ~(x)) assigns to a point of the boundary another boundary
point with the same n (£) coordinate (see Figure 1). We set

Fla@)=T (@)oo T* ().

The homeomorphism F(x) preserves the orientation of I' (see Figure 1).
The spectral properties of the operator A depends essentially on the prop-
erties of the homeomorphism F(x). The point is that from (1.9), (1.10) it follows

(1 l]) {P(&(X, a)a a) = P(é(F"(a)x, a), a) = P(é(Ti(d) o F"(a)x, a)’ a) s ne Z
' Q(n(x, ), @) = Q((F"(a)x, &), &) = Q(n(T *(a) o F"(ax)x, ), 1) , neZ

for ae. xerI.
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Figure 1

2
F(x) possesses a fixed point then A = —cos®a is not an eigenvalue of A.

Theorem 1.1 ([9]). If for some ae€ |:0, E] \{al,...,am} the homeomorphism

There exist domains with corner points such that for every ae (0, g)\
{oy,..., a,} the homeomorphism F(«) has a fixed point.

Theorem 1.2 ([9]). The homeomorphism F(x) possesses a fixed point for any
ae(O,g {ay,..., 0} if and only if there exist a* € {a,, ..., a,}, x*, x2 € I such
that (see Figure 2)

Sx!, a®) = &(x% a*) or nix', a*) = n(x? a*),

(1.12) (x eR?|E(x, a%) = E(x), a®)}NQ =6, j=1,2,
{x e R*|n(x, a*) = n(x),a®)} NG, j=1,2.

Domain 2 will be said to have Property 1 if (1.12) holds for some a* € <0, g),
x!, x2€dQ.

From Theorem 1.1, Theorem 1.2 it follows that if 2 has Property 1 then
any Ae(—1,0\{4,,...,4,} is not an eigenvalue of A. It is easy to show that
values —1, 4,, ..., 4,, 0 are not eigenvalues of the operator A as well. So for
any domain  which has Property 1 the operator A has purely continuous
spectrum. Henceforth we shall consider only domains which have Property 1.

2. The structure of the G.E.

Let Q have Property 1. Then the operator A has no eigenfunctions in

Wi(Q). At the same time for any o € <0, g)\{al, ..., ®,} there exists a system of
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"

xl

Figure 2

G.E. u(x, ®) e L,(Q) corresponding to 4 = —cos? « which can be written in the
form (1.8), (1.9). In the present section we shall describe the structure of the G.E..
Since (1.12) holds for some o* € {a;, ..., a,}, x', x> € I', x' # x* then one of
the following two cases holds:
(1) x' is the fixed point for F(x) for any o€ (0, a*)\{ay,..., ,}, x* is the

fixed point for F(a) for any ae(cx*, g)\{al,...,am}; or
(2) x* is the fixed point for F(a) for any a € (0, a*)\{«;, ..., &,}, x* is the
fixed point for F(x) for any ae(a*, g)\{al, ey O )

It may be assumed with no loss of generality that the case (1) holds. For each
case o S a* we choose the natural parametrization of I’

T = {x(s) = (x(s), x5(5))|0 < s < I}
such that
x(0) = x!, o< a*,
x(0) = x?, o> ak,

and the domain 2 remains on the left when traversing the boundary in the
positive direction.

T
2
F(x) can possess one or two fixed points (each fixed point of F(«) is a corner point).

It is easy to see that for any ae<0, >\{al,..‘,am} the homeomorphism

2

Lemma 2.1 ([9]). If Q has Property 1 then there exist numbers o', a’e

|:0, g], al < a? such that F(a) has exactly one fixed point for any ae (o', a®)\

{oy,...,2,}; F(a) has exactly two fixed points for any ae((O,ocl)U<a2, g))\



Sobolev's equation 915

) T
{oy, ..., %y}. Besides o', aze{O,al,...,am, 5} and

(2.1) 0<a'<a*<a’<

[ ST ]

The structure of G.E. u(x, @) corresponding to 4 = —cos® « depends essen-
tially on the number of fixed points of the homeomorphism F(a). Following [10],
we define for any a € <0, g)\{“n ..., &,} functions f(s, +a): (0, )35(0,1) by the
following equations

22 fils®)=S(T*@x(s), fils —0)=S(T (0)x(s)), s5€(0,1])

where by S(x) € [0, [) we denote the coordinate s of xe/l". The functions f,(s, +a)
can be defined also as continuous strictly decreasing solutions of the following
implicit equations

(2.3) n(x(s), @) = n(x(fi(s, @), o), E(x(s), @) = E(x(fi (s, —a)), ) .

In other words f,(s, +«) are “representations” of the homeomorphisms T*(x) in
the variable s.

Define for any a € (O, g)\{al, ...y 8y}, k € Z functions fi(s, +a): (0, 1) 3 (0, 1)

(24) fo(S, id)ES, f—1(59 '_"(Z)=f1(8, -T-d),
fk(s’ id) =f1(ﬁc—1(sa ia)a (_l)k+l(ia)) .

Then for any ke Z the functions f,,(s, +a) are “representations” of the
homeomorphisms F**(ax) in the variable s. It means that

(2.5)  fouls, +a) = S(F(a)x(s)), se(0, 1), oE (0, g)\{al, -

Because of the properties of I and choice of the parametrization the functions
Ji(s, +a) satisfy the following properties [9]:
(1) For any ke Z the functions f5,(s, ®), —f5+1(s, @) are strictly increasing
functions in se(0,/) and strictly decreasing functions in ae(—%,%)\
{0, +oy,..., o}

(2) For any ke Z, ae(—%,%)\{O, toy, ..., +a,}
Sulfils, @), (=1 to) = 55

(3) For any keZ, f(s, a)eC((O, Iy x <(—g,g>\{0, tay,..., i‘%}));
(4)  fals, @) # s for any |a| € (¢, &®*)\{ay, ..., &}, S€(0, 1), |kl € N; fouls, &) #
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(2.6)

)
2.7)

()

(2.8)

A. A. Lyashenko

s, fi(s', ) = s' for any |a|e<(0,a‘)U<a2, g))\{al,...,cxm}, se(0,s)U
(s%, 1), |kl e N where

ste(0,]), F(la))x(s') = x(s!).
Such number s €(0,[) exists and is uniquely determined since F(|a|)

has exactly two fixed points for any |a| € <(0, a‘)U(aZ, g))\{al, .

and x(0) is fixed point for F(|«|) for any |a|e| O, 7—5) {otyy .oy s

For any |a| € (o}, a®)\{ay, ..., &}, s€(0,1)

{ (s, )} 5 { fakar (s, )2,

are strictly monotone sequences having the sets of the limit points {0, I};

For any |a|e<(0,a‘)U<oz2, g))\{al,...,am}, se(0,s')U(st, ) the

sequences (2.7) are strictly monotone and the sets of the limit points
coincide with {0, s', I};

For any |a|e<0, g)\{al,...,am}, keZ

Jals, @) —5> +0, Jauds,®) —=> 10,
fan18,0) —=75> 1 =0, faun(s ) 5= +0.
For any |« e((O,a‘)U(az, g))\{al,...,am}, keZ
fuls0) =5 50, fanl(s ) w5 s'F0.

For any ke Z, o e(—g, g)\{o, +0y,..., +a,}, s°€(0,)\E,(«°) there
exists ¢ >0 such that f,(s, 2)eC*((s® — &, s° + &) x (2° — ¢, «® + ¢)) where
Ela)={f(sp, 0j= =k, ....k,p=1,..., n}
{x(sy), ..., x(s,)} is the set of endpoints of {I}}].

ai+jﬂ
0s' 0o’

Ifi, j=0, ..., 4 i+j<4 then there exist

s* € E,(a°), «° € <_§’ g)\{o, +oy, ..., £}

(s* £ 0,a°) for any

Let u(x, o) € L,(£2) be a G.E. of A corresponding to 4 = —cos?a, o € <O, 7—;)\
{oy,...,,}. Then u(x, ) can be written in the form (1.8), (1.9)
(1.8) u(x, a) = P((x, a), o) + Q(n(x, @), o),  x€L,
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(1.9) P(&(x, a), &) + Q(n(x, a), ) =0, ae xel.
We set
29)  p(s, @) = PE(x(s)a) o),  q(s, ) = Qn(x(s) ®) ),  se[0,1]).
Then from (1.9) it follows
(2.10) q(s, o) = —p(s, a), ae se[0,1).
Because of (2.3), (2.9) we obtain
Q@11)  psa)=plfils, —0),0),  4gls, @) =4q(fils,a)a), se[0]).
From (2.10), (2.11) it follows
(2.12) p(s, @) = p(fi(s, ta), a), ae se(0,]), VkeZ.

Thus any G.E. u(x, &) corresponding to A = —cos?a, o e( )\{al, .ees Oy} gEN-
erates some function p(s, a) satisfying (2.12).

Let a e( )\{al, ...y 8y}, Then for any &° € (&o(a), & (), n° € (1o(2), 11 ())

each of the lines &(x,a) = &°% n(x,a) =n° has exactly two different points of
intersection with the boundary I. So there exist §*(&° a), §%(#% o) € (0, ]) such
that

{x(8*(&% ), x(§7 (&% @)} = {x e R*[{(x, ) = E°}N T,
{x(5T(n°, @), x(5~(n° @)} = {x e R¥|n(x, @) =n°}N T,
Q213) (€% a) o) < n(E* (€% a)a),  EE(M° @), @) < EET(M°, ), a).

In other words the functions §%(&, a), §¥(n, «) are solutions of the following implicit
equations

X1 ($%(&, @) sin a + x,(§%(§, @) cosa =&, e [Eo(a), & (0],
x1(§*(n, @) sin & — x,(§*(n, @) cosa =n,  nelng(@), n (@],
satisfying (2.13). Obviously, §*(&, a) € C[&o(@), &;(2)], $E(n, a) € C[no(a), ny(x)] for

ay 2e(0

Let ae(O 2)\{1,,... a,} and p(s, o) satisfies (2.12). We set

(2.14) {

(2.15) P o) =pE (0,0, Q@ma)=—pE (na),a).

Then from (2.12), (2.14), (2.15) it follows that (1.9) holds. Hence, the following
function

u(x, o) = P(&(x, o), a) + Q(n(x, o), a)
is G.E. from L,(Q) if
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P(é’ a) = p(§_(éa a), a) € L2,p|(éo(a)’ él(a)) s

2.16
(16) {Q(n, @) = —p(§ (n, a), ) € L, ,,(no(®), 11 (a)) .

Thus any measurable function p(s, ) satisfying (2.12), (2.16) generates in L,(£2)
the following G.E.

(2.17) u(x, o) = p(§™(£(x, @), &) — p(§~(n(x, @), @), )

corresponding to A = —cos®a, a€ (0, g)\{al, ey O )

Consider the system of functional equations (2.12). Because of (2.4) the
system (2.12) is equivalent to the system

{p(s, a) = p(fi(s,®),2), ae se(0,]),

1
2.18) p(s, @) = p(fr(s, o), @) , ae se(0,]).

Such functional equations are studied in [11], [12].
Consider the following two cases.

I. Let ae((O,cx‘)U(az, g))\{al,...,am}. Then the homomorphism F(x)

possesses exactly two fixed points x(0) and x(s') where s'€(0,!) is uniquely
determined by (2.6). From (2.3), (2.4) and the properties of f(s, ) it follows

(2.19)  fils’, ) =s',  fils, x0)#s,  [kleN, se(0,s))U(s,]).
Let s® €(0, s') be an arbitrary point. We set

(SO, fZ(SO’ a)] ’ SO < f2(s0! (X) ’
(fo(s% @), s°1,  $°> fu(s® ).

Following [10] we shall call My(a) the generating set for f,(s,«). We denote
(2.21) M (@) = { fi(s, a)ls € My}, keZ.

(2.20) My(o) = {

The following lemma follows from the properties of the functions f(s, «).

Lemma 2.1 ([9]).
() M@NMj)=9, k#j, k, jeZ;
() kUZ My(o) = (0, s1), kUZ Masy = (s1, ).

Corollary 1. Let p,(s, @), p,(s, «) satisfy (2.12). Then

Pi(s, &) = pa(s, @), ae se(0,1)
if and only if
P1(s, @) = py(s, a), a.e. s€ Mgy(a)
Corollary 2. Let p(s, @), s € My(a) be an arbitrary measurable function defined

in My(a). Because of Lemma 2.1 for any se€(0,1) there exists a unique number
k(s, ) € Z such that
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(2.22) S, (S, ®) € Mo(@) .

Then the function

(2.23) p(s, ) = P fus,w(S @) @), s€(0,1)

is a solution of (2.12).

In other words, any measurable solution p(s, ) of (2.12) is uniquely deter-
mined by the values p(s, ®), s € My(x) and any measurable function p(s, «), s€
M,(x) generates by (2.23) a measurable solution of (2.12).

Now we can completely describe the structure of G.E. in the case ae

(0, 2")U (az, %))\{al, )

Theorem 2.1 ([9]). Any G.E. u(x, )€ L,(R2) corresponding to A= —cos®«
generates a function p(s, a) € L,(My(a)) by the formulas (1.8), (2.9).

Any function p(s, «) € L,(Mo(2)) uniquely determines some G.E. u(x, o) € L,(2)
by the formulas (2.17), (2.23).

Il Let ae(a!, 0®)\{o;,..., a,}. Then F(x) has exactly one fixed point x(0)
and f,(s, +a) #s for any se(0,1). As far as f(s, +a):(0,1) 35 (0, ]) are strictly
decreasing functions then there exist points s*(«) € (0, I) such that

(2.24) fi6T@),0) =s%(@),  filsT(@) —x)=57(®).
If s*(a) =s (x) then fo(s*(a), ) = s*(«) contradicts to fy(s, + o) #s, se(0,]).
Hence s*(a) # s~ ().
We set
(67 @,sT@), s <sT(@),
(223) Molo) = {(s*(oo, S@),  s@>st@

the generating set in the case o€ (a!, a®)\{a;,...,,}. Define M,(x) by (2.21).

Lemma 2.2 ([9]).
(1) M()NM@) =0, k#j, k, jeZ;
) kUZ M, (@) = (0, ).

Therefore in the case a € (o', a®*)\{ay, ..., ®,} Corollaries 1, 2 hold and the
structure of G.E. u(x, a) € L,() is compltely described by Theorem 2.1.

3. Reformulation of Theorem 2.1

Using the intervals M,(x) and the functions f(s, +«) we have described
completely the structure of the G.E. of the operator A. However the system of
the intervals M,(a) is not convenient because the length of M,(x) tends to zero
as |k| - oo but, at the same time, for any k, je Z

{p(s, a)ls € My(@\O} = {p(s, 2)|s € M;(@)\O}



920 A. A. Lyashenko

for some set O < [0,]), mes(0) =0 due to (2.12). T. I. Zelenyak suggested to
apply a change of variables r = G(s, a): (0, /) 5 R such that the condition

p(s, @) = p(fils, +a), ), ae se(0,])
could be written in the form
3.1 p(r,a) = p(r + 2m, o) , ae. reR

where p(r, o) = p(G(r, ), ®). We shall use this idea to reformulate Theorem 2.1
in a more convenient form.
We need the following statement.

Lemma 3.1 ([9]). Let v(s, o): [0, 11 x [0, 11— [0, 1] satisfy the following
conditions:

(1) v(s, @) € C*([0, 1] x [0, 1]);

2) v0,0)=0, 0<v(s,)<s, se(0,1), ae[0,1];

(3) v(+0,a)=¢g(a), 0<q, <q@®)<q, <1, ae[0,1].

We set

(3.2) vo(s, ) = s, v (s, @) = v(ve_, (s, @), &) , keN,
£ )

(3.3) hy(s, o) = ”";(,f(a")‘ ,  keN.

There then exists a function H(s, «) € C2([0, 1] x [0, 1]) such that for any ¢ € (0, 1)

C%([0, ] x [0, 1]): H
k— o

hy
O hy(s, a) B 0" H(s, a)
0s' 0o’ 0s' oo’

where i, j=0, 1, 2, i +j <2 Besides, if vy(s,a)>0, se[0,1], [0, 1] then
Hy(s, ) >0, se[0,1), a€[0,1].

(3.4 < const - kig*(a), se[0,¢], «e[0,1]

Such functions H(s, a) are considered in [11], [12]. The function H(s, «)
satisfies the functional equation of Schroder [11], [12]

(3.5) H(v(s, o), o) = q(o)- H(s, a) , se[0,1), ae[0,1].
Consider
(3.6) G(s, o) = 2m-log,, H(s, o), se(0,1), xe[0,1].

The function G(s, «) satisfies the functional equation of Abel [11], [12]
(3.7 G(v(s, o), a) = G(s, ) + 27, se(0,1), ae[0,1].

Assume v(s, a) is strictly increasing function in s for any a € [0, 1] and v(1, ®) = 1,
ae[0,1]. Then G(s, a) is strictly decreasing function, G(s, ): (0, 1) x [0, 1] 2R
and G(s, o) € C*((0, 1) x [0, 1]).
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If some function p(s, ) satisfies
(3.8) p(v(s, o), &) = p(s, @) , ae se(0,1), ae[0,1],
then the following function
(3.9 p(r,a) =p(G'(r,a), ), reR
satisfies (3.1).
Let [a, b] = <0, E)\{ozl, ...,a,} be an arbitrary interval. Consider the fol-

2
lowing two cases.

2
exists s' € (0, [) defined by (2.6). It is easy to check that s' does not depend on
a€[a, b]. Then fi(s*, a) =s*, fi(s,a) #s, a€[a,b], se(0,s')U(s!, ]). Define for
any a € [a, b], s€(0,s')

I. Let [a, b] < ((0, a‘)U(az, E))\{al, ..es 0, }. Then for any o € [a, b] there

fZ(S,.a)a f2<§,d><§ 5
(3.10) v(s, o) = . .

Hls —a. (% a) >2,
(3.11) v(0,0) =0, o(s!, o) = st

Then o(s, «): [0, s'] x [a, b] 5 [0,s'] is a strictly increasing function in s;
0<v(s,a) <s,se(0,s'), ae[a bl Itis easy to verify that for any s e (0, )\ E,(x)
the following equality holds [9]:

o, _ sin(fa—y(s)  sin(fa + y(fils, £)
Gl e 0 = R Ta— 76, £9) sin(ta +7(h6, L)

0s

where E,(a) is defined by (2.8) and y(s) € [0, 2n) is uniquely defined for every
s€(0, )\Ey() by the following equation
dx(s)

(3.13) (cos y(s), sin y(s)) = s

Equation (3.13) means that y(s) is equal to the angle between (1, 05 and (x(s), x5(s)).
From the property (6) of the functions f, and (3.12) it follows that

sin(+o — y(+0)) sin(ta+y(1—0) 1
sin(a —y(l —0)) sin(+a+y(+0) f£,.(+0, Fo)

As far as [a,b]N{ay,...,a,} =0 then

(3.14) £, (40, +a) =

(3.15) f2,(+0, +a) ¢ {0,1, 0}, a€[a,b].
Because of (3.14), (3.15) we obtain
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{fz (+0,2)€(0,1), ae[a,b] if f,(s, ) < 5, s€(0, s'),
f,.(+0, —a)€(0, 1), a € [a, b] fo(s,0) > s, se(0,s).

Hence v(+0, 2) € (0, 1), a € [a, b] and there exist q,, g, € (0, 1) that
(3.16) 0<qg,<q@)=v(+0,0)<g, <1, o€ [a,b].

From the property (7) of the functions f, and (2.8) it follows that there exists
e€(0,s') such that f,(s, +a)e C*([0,e] x [a, b]). Using Lemma 3.1 we obtain
that the function

Ui (s,

@ ))> , se€(0,¢], a€[a,b]

satisfies (3.7) for any se (0, ¢], a € [a, b] and

(3.17) Gy (s, ®) = 2n-log,g, <1‘

(3.18) G,(s, ®) € C*((0, €] x [a, b]).

Let My(a) = (v(e, @), €] be the generating set for v(s, «). Hence for every s e (0, s!),
o € [a, b] there exists k(s, o) € Z such that

(3.19) Vkis, o) (S @) € M(@)
where we set

f2k(sa —(1) ) U(S, a) = fz(s, (‘1) 5
(320) k(s a) - Uk( a) {ka(S, a) > U(S, a) = fz(s, —CX)
Define
(321)  Gi(s, )= Gl(v,‘(s’,,(s, a), o) — 21 k(s, a), se(0,s'), ae[a b].

Because of (2.4), (3.17), (3.21) and continuity of fi(s, +«) the following equality
holds

(322)  Gy(sa)=2n logq(a,<ll ”"(,f( °)‘)> s€(0,st), ae[a,b]

and G, (s, a): (0, s') 3 R is strictly decreasing function satisfying (3.7) for any se
(0, s'), « e [a, b]. Using (3.18), (3.21) and the property (7) of the functions f, we
obtain

G, (s, @) € C((0, s*) x [a, b])N C?(((0, s'\E(@)) x [a, b])
and for any i, j=0, 1, 2, i +j <2, o€ [a, b], s* € E(x) there exists

6t+JGl . ai+jG
~T%a (s* £0,0) = s_llsf‘nioa . J(s )

where

(3.23) E(a) = U Ef@) = {fi(s;, +o)lkeZ, j=1,....n}.
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Hence the function
(3.24) pi(r,) = p(Gy'(r,@),0), reR, ae[a,b]

satisfies (3.1).
Consider the interval (s',[). Denote for a € [a, b], se[0,] —s']

1 1
f2(s+sl,a)_sla f2<sT-H9a><s +l,

2
1 I} 1 |
f2(s+sl’ _a)_sl’ f2<%9a)>s 2-'- s

(3.25) w(s, o) =

(3.26) w(0,a)=0, wl—-sl,o)=1—s!, a€[a b].

Then w(s, «): [0, ] — s'] x [a, b] 3 [0,] — s'] is a strictly increasing function
ins; 0<w(s,a)<s, se(0,/—s'), ae[a,b]. Using (3.12) and the same argu-
ments as for the function v(s, ) we obtain that there exist d,, d, € (0, 1) such that

(3.27) 0<d, <d@)=wy(+0,0)<d, <1, a€[a,b]

and the following function

(3.28)  Gyls,0) = 2n-logd(a,< lim %) . se(0,]—s') aelab]
ko0

satisfies

(3.29) G,(w(s, &), @) = G,(s, o) + 27, s€(0,]—s'), ae[a,b].

Define

(3.30) Gy(s, )= Gy(s — s, @) +s', se(s,]), ae]a b].

Then G,(s, a): (s*, [) S R is strictly decreasing function satisfying
(3.31)  Gy(w(s — s',a) + s', @) = Gy(s, @) + 27, se(st, ), ae[a, b].
Besides
G,(s, @) e C((s*, ) x [a, b])NC?(((s*, D\E(a)) x [a, b])
and for any i, j=0, 1, 2, i+j <2, a€[a,b], s*€ E(x) there exist

i+j i+j
g Gz(s*-f_-O,a)= lim 071G,

357000 i s &Y

Let p(s, o) satisfy (2.12). From (3.25) it follows
(3.32) pw(s — s', a) + s*, @) = p(s, @), ae se(s, ).
Then the following function

(3.33) pa(r, ) = p(G;(r, o), &) , reR
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satisfies

(3.34) pa(r,0) = po(r + 2m, ) , ae. reR, aefaq b].
Because of (2.11), (3.24), (3.33) and f,(s, —a): (0, s*) 3 (s*, ) we obtain

(3.35) P (B(r, ), @) = py(r, o), reR, aela,b]
where
(3.36) B(r, ) = Go(f1(G{ (r, @), —a), @), reR, ae[a, b]

is a continuous strictly decreasing function, B(r, «): R3R and

(3.37) B(r + 2m, a) = B(r,a) — 21, reR, aela,b].

Thus Theorem 3.1 in the case a € ((O, a‘)U(az, g))\{ocl, ..., ®,} can be written
in the following form.

Theorem 3.1. Let a € <(O, a‘)U(az, g)) {ay,...,0,}. There then exist con-

tinuous piecewise smooth strictly decreasing functions G, (s, «). (0, s) B R, G,(s, a):

(s', ) 3R, B(r, »): R 3 R satisfying (3.7), (3.31), (3.37) which are uniquely determined
by the shape of the boundary I' and such that:

(1) If u(x,a) € L,(Q) is G.E. corresponding to i = —cos? o then there exist
pi(r, @), p,(r,a), r € R satisfying (3.35),

(3.38) pir,a) = pir +2n,0), ae reR j=1,2,
(3.39) pir,0) e Ly(0,27), j=1,2
and such that u(x, o) satisfies (2.17) where

ﬁl(Gl(s5 a)’ a)’ SE(O,SI),
P2(G,(s, @), @), se(sh, ).

(2) Any functions p,(r, @), p,(r, @), r € R satisfying (3.35), (3.38), (3.39) deter-
mine uniquely some G.E. u(x, a) € L,() corresponding to i = —cos® a by
the formulas (2.17), (3.40).

IL. Let [a, b] < (a!, 0®)\{oy, ..., %,}. Then fy(s, ) #s, s€(0,!), aela, b]
We set for any se(0,1), a € [a, b]

(3.40) M&@={

3

N~

fz(S, a)! fz(éﬂ”) <
(3.41) u(s, @) =

s

N~

l
fZ(S’ _a)’ fz(i»“>>

(3.42) v(0,a) =0, v(l,)=1.
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Then o(s, a): [0, 1] x [a, b] 35 [0, I] is strictly increasing function in s; 0 < v(s, a) <
s,s€(0,1), a € [a, b]. Applying the same arguments as in the case I we obtain

0<q; <q(@)=v4(+0,0)<g, <1, o€ [a,b],
the following function

(s, @)
q"()

satisfies (3.7), G(s, a): (0, 1) x [a, b] 3R is strictly decreasing in s,
G(s, @) € C((0, 1) x [a, b])N C*((0, H\E(w)) x [a, b])
and for any i, j=0, 1, 2, i+j <2, ae[a,b], s*€ E(x) there exists

(3.43) G(s, o) =2m- lqu(a)(]l > R s€(0,0), ae[a,b]

i+iG i+j
e 0@ = Im o -
Since
p(s, @) = p(fo(s, +a), @), ae. se(0,])

the following function

(3.45) p(r,a) = p(G~(r, @), a) , reR
satisfies
(3.46) p(r + 2m, a) = p(r, o) , ae. reR.

Because of (2.11)

= p(fi(s, —a), &), se(0,1).
Hence
(3.47) pu(r, o), o) = p(r,a),  reR
where
(3.48) ur, o) = G(f,(G™*(r,®), —a),), reR

is continuous strictly decreasing function which maps R onto R and
(3.49) ulr + 2n, a) = p(r, «) — 2w, reR,
(3.50) wlu(r,a), ) =r, reR.

Thus in the case a€(a', a*)\{o;,...,,}} Theorem 2.1 can be written in the
following form.

Theorem 3.2. Let o € (o), a®)\{a;, ..., @, }. Then there exist continuous piece-
wise smooth strictly decreasing functions G(s, a): (0, 1) S R, u(r,«): R3 R satisfying
(3.7), (3.49), (3.50) which are uniquely determined by the shape of the boundary I’
and such that:
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(1) If u(x, a) € L,(Q) is G.E. corresponding to A = —cos® a then there exists
p(r, ), r € R satisfying (3.46), (3.47),

(3.51) p(r, @) € L,(0, 2m)

and such that u(x, a) satisfies (2.17) where

(3.52) p(s, @) = p(G(s, @), @),  s€(0,1).
(2) Any function p(r,a), reR satisfying (3.46), (3.47), (3.51) determines
uniquely some G.E. u(x, o) € L,() corresponding to A = —cos®> a by the

Sformulas (2.17), (3.52).

4. Integral representation of solutions

Consider the operator equation in WQ(Q)
@.1) u,=Au, ueWiQ).

S. L. Sobolev suggested to look for solutions of (4.1) in the form

0
4.2) u(t) = J xa-expliy/ —A-t)du(4d)
-1
where x, is a family of G.E. of the operator A, u(4) is some nondecreasing
function. Consider the following function

/2
4.3) v(t, x) = f exp(i-cos a-t): u(x, a)da

0
where u(x, «) is some family of G.E. in L,(2) corresponding to 4 = —cos? a. If
o(t, x) € Wi(Q) for any t > 0 then v(z, x) satisfies (4.1). So we shall discuss under
what conditions on the family u(x, a) the following function

(4.4 W) = J " . o)do
0

belongs to \O’V;(Q). In section 6 we derive the Parseval’s equality for the integral
representation (4.4) which gives complete answer to this question. In the present

section we construct a class of smooth G.E. u(x, a) e C? (Q X [O, g}) such that

u(x) e W(Q)N C(Q)N C(R).
We consider again two cases.

I. Let [a,b]c ((O,al)U<a2, g))\{al, ...,0,} be an arbitrary interval.
Then for any a € [a, b] each G.E. u(x, a) € L,(2) corresponding to A = —cos® a
is uniquely determined by some functions p;(r, ), j = 1, 2 satisfying (3.35), (3.38),
(3.39). From (3.38), (3.39) it follows that p;(r, ) can be regarded as a function

defined on the
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4.5) S' x [a, b] = {exp(ir)ire R} x [a,b] = {te C||t| = 1} x [a, b]

the lateral surface of the unit cylinder I} = {(x, ®)||x| < 1, « € [a, b]}. So instead
of p(r,a) we can consider the functions

46) {ﬁ,-(t, @) = plargt,®), |t|=1, ae[a, b],
( ‘ ﬁj(t’ a)ELZ(Sl)9 ae[a, b] .

The function B(r, a) defined by (3.36) generates
4.7) Bt o) = exp(i-Blarg t, ),  |t| =1, a€[a,b]

an orientation-reversing homeomorphism of S*.
Consider the set E(a) defined by (3.23). From (2.4), (3.23) it follows that

(4.8) E(@) = {fals,0)lke Z,s€ E,(a)}

where from (2.8)

4.9) E\@) = {f(s, ®)lj=—10,1;p=1,....n},
{x(s), ..., x(s,)} is the set of the endpoints of {I}}] .

So E,(«) is a finite set. Denote

{01(05) = {exp(iG,(s, ®))|s € E;(®) N (0, s*)} = §*,
0,(x) = {exp(iG,(s, ®))|s € E (@) N (s, 1)} = S*.

Since Gi(s, @) satisfy (3.7), (3.31) then using (3.10), (3.25), (4.8), (4.10) we obtain

@.11) {01(“) = {exp(iG, (5, ®))Is € E@) N (0, s)} ,
' 04(@) = {exp(iGy(s, a))Is € E@)N(s", 1)}

(4.10)

Because of (4.9), (4.10) and continuity of f,(s, +a)
(4.12) 0, ={tf@j=1,....,k}, 0,() = {TF@|j=1,...,k;}

where 7} («), t?(«): [a, b] - S are some continuous functions uniquely determined
by the shape of the boundary.
Since

{fi(s, —a)|s € (0,s")NE(@)} = (s, )N E(w),
{fi(s, —0)[se(s", DNE(®)} = (0, s') N E(a)
then from (4.7), (4.11), (4.12)

(4.13) 0,(2) = f(0,(2), ) = {A(t, ®)|t € 0, ()} .
Hence
ky =k
4.14 1=k,
w19 {Tf(a)=ﬂ(r,-‘(a), W, j=1,.., k.
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For any ¢ > 0 we denote by Bfa_,,] < C%(S! x [a, b]) such a set that p(t, «) € éﬁ:,b]
if p(t, ®) € C*(S' x [a, b]) and the following condition holds

(i) plt,®)=0if |t — 1} ()| <& for some je{l,...,k}.
Let p(t, o) € 15‘[8,,',,] be an arbitrary function. Then using the properties of G,, G,,
B and formulas (4.11)-(4.14) we obtain that

@) Pl = {ﬁﬁiiiﬁi?(ic?&°3> Dt sein
satisfies (2.12),

(4.16) p(s, a) € C2((0, s') x [a, b])NC*((s*, 1) x [a, b])

and for any o* € [a, b], s* € E(a*) there exists 6 >0 such that
(4.17) ps(s,0) =0, se(s* —06,s* —98), ae(a* —d,a* + J).

From the properties of the boundary I" and formulas (2.14), (4.15)-(4.17) it follows
that G.E. u(x, «) defined by (2.17), (4.15) satisfies

u(x, ) e CH(Q x [a,b]);  u(x,0) € L,(R), a €[a,b].

We denote by B, ; < C*(Q x [a, b]) such set of G.E. u(x, «) € L,(£2) that u(x, a) €
B,y if there exist ¢ >0, p(t, @) € B, ) that (2.17), (4.15) hold.

II. Let [a,b] = (&', «*)\{ay,..., ®,} be an arbitrary interval. Then for any
we[a b] each G.E. u(x,a)eL,(®) corresponding to A= —cos®« is uniquely
determined by some function p(t, ) € L,(S*) satisfying

(4.18) P(A(, &), @) = p(t, o)
where
(4.19) fi(t, o) = exp(i- pu(arg t, )

is an orientation-reversing homeomorphism of the unit circle S' satisfying the
Carleman’s condition

(4.20) L, a)a)=t, teS.

Denote

4.21) 0(a) = {exp(iG(s, ®))|s € E{(a)} = S*.

Then there exist k,e€ N and continuous functions 7,(®), ..., 7, («): [a,b] =S !
such that

(4.22) O() = {;)j=1,....,ko} .

From (4.8) it follows that

(4.23) 0(2) = {exp(iG(s, ®))|s € E(x)} .

Since
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{fi(s, —0)ls€ E()} = E(%)
then
(4.24) {Als, )ls € O(0)} = O(a) .

For any ¢ >0 we denote by v[‘a,,,] = C?(S! x [a, b]) such set that p(t, oc)era,,,]
if pe C*(S' x [a, b]) and the following condition holds:

(i) p(t,0) =0 if |t — 7;(0)| < & for some je{1,...,kq}.
Let p(t, a)eéfa,b] be an arbitrary function satisfying (4.18). Then

(4.25) p(s, a) = pexp(iG(s, a)), &) , s€(0,1)
satisfies (2.12),
(4.26) p(s, @) € C%((0, 1) x [a, b])

and for any a* € [a, b], s* € E(a*) there exists > 0 such that (4.17) holds.
So from the properties of the boundary I' and formulas (2.14), (4.17), (4.25),
(4.26) it follows that G.E. u(x, «) defined by (2.17), (4.25) satisfies

u(x,0) € C3(Q x [a,b]);  u(x,a) e L,(R), a € [a,b].

We denote by B, ,; = C*(22 x [a, b]) such set of G.E. u(x, a) € L,(Q) that u(x, «) €
B,y if there exist ¢ > 0, p(t, a) € é{a‘,,] that (2.17), (4.25) hold.

Thus for any [q, b] = (0, g)\{al, ..., 0, } we have defined the set of functions

u(x,a) € By, 5, such that u(x, a) € C*(2 x [a,b]) and for any ae€[a,b], u(x,a)e
L,(2) is G.E. of the operator A corresponding to A = —cos? a.

We denote by D set of the functions u(x, a), x € 2, o € I:O, g] satisfying the

following conditions:
(1) u(x,a) e L,(R2) is G.E. of A corresponding to A= —cos?a for any a €

n
(03):
(2) u(x,x) e C? (Q x [0, g:l),

(3) there exists 6 > 0 such that u(x,a) =0, € [0, 6] | l:g -4, g] C) [o; — 6,
=1
a; + 6];
(4) u(x,a) e B, for any [a,b] (O, g)\{a,, ooy O

Theorem 4.1 ([9]). If u(x,a)e D then

/2
4.27 u(x) = f u(x, a)da € WHQ)NC@)NCHQ\{P,, ..., P})

o
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k
(4.28) [u, ()], u,,(x)| < const-
j; |P; — x|

where Py, ..., eI, k <4 are corner points of I' such that each P; is fixed

point of F(a) for some oce<0, g)\{al,...,am}.
Corollary. If u(x, a) € D then the function v(x,t) defined by (4.3) is a continu-

ous solution of the equation (4.1).

5. Piecewise constant G.E.

Piecewise constant G.E. (P.C.G.E.) of the operator A were first studied by
R. A. Aleksandryan [13]. We consider again two cases.

I. Let ae((O,a‘)U(az, g))\{al,...,am}. Let 0 €[0,2n) be an arbitrary
point. We set

s S bl
where for any t,, t, € S* we denote
[ty ] = {{exp(t:r)larg t, <r<argt,}, argt, <argt,,
{exp(ir)|arg t; < r < argt, + 2n}, argt, >argt, .
Following (2.17), (4.15) we define
LB o
(5.3) u(x, a, 0) = p(8~(&(x, o), a), a, ) — p(§~(n(x, a), a), a, 6) .

We shall call u(x, a, 6) the P.C.G.E. generated by 6 € [0, 2n). From (5.1)—(5.3) it
follows that u(x, o, 0)e {—1,0,1} for any x € Q.
The structure of u(x, a, 0) is rather simple: values 6, 0 € [0, 27) generate points

(5.4) 50, ) = Gy 1(6, o), 50, ) = G71(0, @)

which belong to (0, s!); the points s(6, &), s(0, @) generate two infinite polygonal
lines with the segments parallel to the lines &(x, ) = const, n(x, @) = const (see
Figure 3); these polygonal lines form infinite set of parallelograms I, c Q, ke Z
such that (see Figure 3)

(-0,  xell,
0, xe\|J I, .

keZ

(5.5) u(x, a, 0) =

II. Let ae(a!, a®)\{ay,...,%,}. Let 8€[0,2n) be an arbitrary point. We
set



Sobolev’s equation

X2 4

s(6,a)  s(0,q)

n
Figure 3
1, exp(ir) € [exp(iB), exp(iu(, a))]s: ,
o = {7 o o oot
Then p(r, a, 0) satisfies (3.47). Following (2.17), (4.25) we define
(5.7) p(s, o, 0) = p(G(s, a), @, 6) , se(0, 1),
(5.8) u(x, o, 0) = p(§~(&(x, ), &), &, B) — p(§~(n(x, o), @), &, 6) .

931

Using (5.6)-(5.8) we obtain that u(x, o, 8) e {—1,0, 1} for any x € 2. The struc-

ture of u(x, a, ) is rather simple: the point 6 € [0, 2n) generates

(5.9) 56, 0) = G™1(6, a)

which belongs to (0, I); the point s(6, a) generates infinite polygonal line with the
segments parallel to the lines £(x, a) = const, n(x, o) = const (see Figure 4); this
polygonal line forms an infinite set of parallelograms 77, c Q, k€ N such that

(see Figure 4)

(—1)*-sgn(0 — arg(exp(ip(d, 2)))), xell,,
(5.10) u(x, a, 0) =

ke N

Figure 4

0, xe 2\ | 11, .
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Theorem 5.1 ([9]). Let u(x,a)e D. Then the function u(x) defined by (4.4)
satisfies:

2n _
511 (du(x), u(x, @, 6)p, 0 = % L pi(r, ) [cot% — cot %}

— pi(r, ) [cotw — cot f] dr

2
if ae ((0, a‘)u<a2, g))\{al, o)

2n _ _
(5.12) (Au(x), u(x, o 0) 1@ = — = J f’"(r,ot)l:cotr 0_ 7 uz(a,a)] Y

2 Jo 2
if ae (@ a®)\{oy,. ., Uy}
The functions p, p, p* correspond to the family of G.E. u(x,«) and are
determined by (1.8), (2.9), (3.24), (3.33), (3.45).

Remark 1. Since u(x, )€ D then u(x) e Wi(Q)NCXQ)NCX(Q\{P,, ..., P.}).
So regard

(du(x), u(x, &, 0))L,0) = liTo (du(x), u(x, o, 0)),0,

(5.13)
Q, = {xeQ|dist(P, x) >¢&j=1,...,k}.

Remark 2. The integrals on the right-hand side of (5.11), (5.12) are under-
stood in the sense of the Cauchy principal values.

6. The Parseval’s equality

In the present section we derive the Parseval’s equality for the integral
representation (4.4).

I. Let ae((O,cx‘)U(az, g))\{al,...,am}. We denote

6.1) iz = {p(r), r e R|p e L,(0, 2n); p(r + 2n) = p(r), a.e. re R}

Let p(r)e L, be an arbitrary function. We define

62) A@P() = u(x, 3) = p(E(E(x, o), o), ) — pE(1(x, ), 2), 2)
where

_ ﬁ(Gl(S’ a))’ 86(0981)3
©3) pls. o) = {ﬁ(ﬂ—l(Gz(sa W,0),  se(sh]).

From Theorem 3.1 it follows that A(a) is linear operator which maps L, onto
the space of G.E. u(x, a) € L,(22) corresponding to 4 = —cos?a. The following
statement can be derived from the results obtained in [9].
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Lemma 6.1. For any interval [a, b] = ((O, al)U (az, g))\{al, ..y Oy} the op-

erator A(x) is bounded uniformly in o € [a, b]. It means that there exists a constant
C > 0 such that

(6:4) IA@Pl e < Co 1By, PELy xelab].
Let ve [0, 2n) be an arbitrary point. From (5.1)-(5.3) it follows that

(6.5) A@)OWV —r) = u(x, a, v)
where
L, =0,
mw—{m <0

is the Heaviside’s function. It is easy to see that (6.2), (6.3) imply
(6.6) A@C =0

for any constant C.
Let p(r,a) € C'[0,2n]. Then

2n
(6.7) u(x, o) = Al@)p(r, o) = A(a)(fo Pol@, @) O(r — @)do + p(O, a))

2
B f Pol@, @) A()O(r — @)do
0

2n
f Pol@, a) A()(1 — O(p — r))de

0o

2n
_J\o ﬁ«p(‘p’ a) : u(x, a, (,D)d(P .

IL Let ae(a',a®)\{ay,...,,}. Consider the function u(r,«) defined by
(3.48). Since u(r,a): R 3R is a strictly decreasing function then there exists a
unique number r*(x) € R such that

(6.8) w(r¥(o), a) = r*(a) .
Define
(6.9) Mo(r, a) = 21 — r*(a) + u(r + r¥(o), a), reR.

Then from (3.49), (3.50), (6.8), (6.9) we obtain

(6.10) Holr + 21, o) = pg(r, @) — 2m, reR,
(6.11) Woluo(r,a), ) =r, reR,
(6.12) 1o(0, a) = 27, Uo(2m, ) =0.
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Hence u(r, a): [0, 21] 3 [0, 2n] is a strictly decreasing function satisfying (6.11). If
p(r, o) satisfies (3.46), (3.47) then the following function

(6.13) Po(r, @) = p(r + r*(a))

satisfies (3.46) and

(6.14) Do(to(r, @), @) = po(r, @), ae. reR.
We denote

(6.15) Go(s, o) = G(s, @) — r¥(o), s€(0,1).

Thus Theorem 3.2 can be written in the following form.

Theorem 6.1. Let a € (!, a*)\{ay, ..., ®,}. Then there exist continuous piece-
wise smooth strictly decreasing functions Gy(s, a): (0, I) B R, po(r, ): R 5 R satisfying
(3.7), (6.10)—(6.12) which are uniquely determined by the shape of the boundary I’
and such that:

(1) If u(x, a)eL,(R) is a G.E. corresponding 1o A = cos® a then there exists
Po(r, @), r € R satisfying (3.46), (6.14),

(6.16) Po(r, @) € L,(0, 27)
and such that u(x, a) satisfies (2.17) where
(6.17) p(s, @) = po(Go(s, @), o), s€(0,1)

(2) Any function py(r, o), r € R satisfying (3.46), (6.14), (6.16) determines some
G.E. u(x, a) € L,(Q) corresponding to A = —cos® « by the formulas (2.17),
(6.17).

It is also easy to check that (5.12) can be written in the form

r—6 r — po(6, a)] dr

2n

2 — cot 5

1
(6.18)  (du(x), u(x, &, 0))p,0) = ~3 J po(r, o) [cot

[}

As far as po(r, ): [0, 2n] 3 [0, 2n] is strictly decreasing function then there exists
unique @*(o) € (0, 27) such that

Ho(@*(®), ) = @*(ar) .

Denote

6.19) L, = {p(r, 2, reR, o€ (0, g) p(r,0) e Ly ae (0, g)

p(uy(r, a), @) = p(r, a), ae. re(0,2n), ae (!, ?)\{ay,..., am}} )

For any p(r,o) e £2.uo we define u(x, o) = A(x)p e f.z(Q) by (6.2) where
(6.20) p(s, o) = p(Gy(s, a), @) .
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From Theorem 6.1 it follows that A(x) is a linear operator which map IAJZ,#U
onto the space of G.E. u(x, ) € L,(£2) corresponding to 4 = —cos? a. The follow-
ing statement can be derived from the results obtained in [9].

Lemma 6.2. For any interval [a, b] < (O, g)\{al, .eus 0} the operator A(x)

is bounded uniformly in a € [a,b]. It means that there exists a constant C >0
such that

(6.21) IA@PI Ly < C Bl Lyo,2m > PELs . xe[ab].
Let ve [0, ¢*(@)] be an arbitrary point. Because of (5.6)—(5.8)
(6.22) A@)(O(po(v, o) = 1) — O(v — 1)) = u(x, a, v)

Let p(r,®) € C'[0,27]NL,, . Then

ﬁ(r’ a) + ﬁ(.“o(r’ a)’ (1))
2

(6.23) u(x, o) = A()p(r, o) = A(a)(
- A(a)%( f 8o, DO — 9) + Oluto(r, 2) — p)]dip + 2600, a))
- A(a)%( Lz" Bl 1L — 60 — 1) + Oluole, 0) — N1dg + 2600, a))
- f :" o0, YAG[O(kole, @) — 1) — (e — )] do

1 2n
= i f ﬁ(p(‘ps (Z)‘ u(x’ «, (P)d(/) :
V]

Let

2n

(6.24) v(x) = Jzn u’(x, a)da , w(x) = f u®(x, a)do

0 0

where u’(x, «), u*(x, 2) e D. Then using (4.27), (5.13) we obtain

(v, Wwig = J U, "Wy, + Uy, W, dx = lirg J Uy, Wy, + Uy, W, dX
Q [ ind 3

. LA, ow
= —lim | v-dwdx + ) lim v —ds
e=0 JQ, Jj=1¢-0 Sj(e) an
where
Se)={xeQ|Ix—Pl=¢}, j=1..,k.
From (4.27), (4.28) it follows that

K
Y limI v-a—wds =0
Sje)

s
j=1¢-0 on
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Using (5.11), (6.7), (6.18), (6.23) we obtain

(0, W)Wy

2n
= —limJ J u®(x, o) - Awdadx
Qi

=0 0

al (2n
= —lim J‘ I:—J J Po(@, @) u(x, a, p)doda
e—0 . 0 0

1 a2 (2= n/2 2n
t5 j f Pol(e, 0)- u(x, o, @)dpda — j J po(@, ) u(x, a, ¢)d¢da]
al 0 a2 0

“Aw(x)dx

1 al f2n (F2n _
= EL L L bolo, a)[ v(r, a)(cotr 2(p — cotg)

— p3(r, @) <cotﬂﬁ — cot %)] drdodo

a2 n (*2n _ _
+a J JZ J Pole, ®) [ﬁ(‘f (r, @) (cot =% cot LM)] drdgda
4o Jo Jo 2 2
/2 2n 2n _
7 [ e
—p3(r, ) (cotﬂw’—a) — cot 1)] drdedo
2 2
where
(6.25) u’(x, o) = A()p°(r, o) , u”(x, o) = A()p*(r, o)

(6.26) prro)=p*(na),  PY(na)=p (BN (n @) ),  ae ((0, a')U (az, g))
(6.27) Y @) =p¥(ra), ae(@a?)

and p°, ﬁweC2<R x [o, gDnB[a.,,, for any [a, b] c(o, g)\{al,...,am} as u',

u” eD.
Denote

pir @) = p'(ra),  pi(r,@)=p'(B7(r0) ), ae <(0, a!)U <a2, g)) ,

pé(r o) = p*(r,a),  ae(@l,a?).

Using the properties of B(r, o), po(r, a), p°(r, @) we obtain
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B((p, a) Y

0 r —
_J‘ (ﬁv(ﬂ_l(% d), a))v.COt 2 d'}’
2n

j bo(p, ) cot 2%

-7

2n r
=L(ﬁmmwm dy

2n r— Lo 2n .
—f Polo, a)'cot—u;((ﬂ—)d(p = f (B(y, a))y-cotTydy.
0 0
Hence
(6.28)
(©, W)wice)

1 al 2n (*2n r—o
=3 L(B1(@, ) B1(r, @) + (P3(e, @), B3 (r, @)] cot drdpdo
2 0 0 0 2

1 a? 27 (*2n .o
2 J J J (Po(@, 0))e b3 (r, @) cot
al 0 0
¢

1 n2 (*2n (*2n .
+§J2 JO fo L(P3 (@, @), BY(r, @) + (B3(e, @), b3 (r, ®)] cot 5 drdoda .

¢ drdoda

We write p;, p’ € f,z, j=0, 1, 2 in the form of Fourier series

Y(r, @) = af®(@) + Z (af**(«) cos kr + bj*(a) sin kr) reR,
(6.29)
by(r, ) = af™ () + Z (af*(«) cos kr + bj*(«) sin kr) reR.

From the Hilbert’s formulas [14] it follows that

—r
7 W

1 2n . y
cos kr = — sin ky - cot
2n ),
(6.30) |
. " —r
sin kr = ~5 L cos ky cot—z—dy .

Using (6.28)-(6.30) we obtain

(631) (0, Wsa =72 5 k- [ f T (al*@af (o) + bl (@b *(@)dx

k=1

+Jﬂwwwww+wwwwmm

n/2
+ I Y. (@ (@af™(«) + b,{'"(a)bi'”(a))da]
a2 j=1,2

We denote
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2n
(6.32) Wi = {p(r) e L, NW¥2(0, 2m) j p(r)dr = O} ,
0
(6.33) Pl = n*- kZl k(ag + bg)
where
1 2n 1 2n
(6.34) a, = — J p(r) cos krdr , b, =— j p(r) sin krdr .
T Jo T Jo

Thus if u(x, «) € D then the function u(x) defined by (4.4) satisfies

(6.35) nuu’w;msf (1B, ) 3ya + 155, ) fy2)der
0

a2 n/2
+J 168, @)l yader + f (IBYC, )1 Tyz + 1B3C, )1 Fyya) o

a a?

where pY, p4e L,NWY?, pse L, , NWI? satisfy

u(x, ) = A(a)pi(r, ) = A(@)ps(B(r, @), @), oE ((O, a)u (az, g))\{al, U I
u(x, o) = A(a)ﬁa(", ), ae(alvaz)\{al""’am} .
We denote
2n
(6.36) L, = {p(r, ael,, J p(r, a)dr = 0} .
0

Then u(x, «) = A(a)p(r, «) is a family of G.E. for every p(r, ) e I:z_,‘o. From the
equality (6.35) it follows that the following statement is valid.

Theorem 6.2. For any p(r,a) € I:z',,o the function

(6.37) u(x) = Lm A@)p(r, o)dot

belongs to Wi(Q) if and only if

(6.38) pira),  pOr o) o)eL, (v"v;/2 x <0, ’_2‘>>

where

639 som o Bir o), oe ((o, a‘)U(az, g))\{al, )
ol @), ae(at, a®)\{oy, ..., 0} .

If (6.38) holds then

2 2 2
(6.40)  flu(x)ll wiQ) = lip(r, @)l Ly(W1/2 x(0,7/2)) + |p(y(r, @), )|l Ly( W12 x((0,a1)U(2, 7/2)))
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7. Inversion formula

In the present section we derive an inversion formula for the integral repre-
sentation (4.4). It means that we construct an operator IT(x): W3() —L,(R),

ae<0, g)\{al,.‘.,am} such that if u(x, «) e D and

n/2
(7.1 u(x) = J u(x, a)da
0
then
(7.2) u(x, a) = M(a)u(x) .
I. Let ae ((0, a‘)U(aZ, g))\{al, ooy} Let u(x) be defined by (7.1)

where u(x, ) e D. We define
(1.3) hO, @) = (4u(x), u(x, & O)iyey,  O€[0,2m).

As far as u(x, @) € D then there exist 2n-periodic functions p,(r, @), p,(r, @) € C*(R)
satisfying (3.35) and such that

(7.4) u(x, o) = A(a@)p(r, o) .
From (5.11) it follows that

(7.5)

2n B — -
h(6, a) = % L pi(r, ) _cot% — cot %] — ba(r, ) [cotr [;(9, I cot g] dr.

We denote for j =1, 2

1 (2 r—argt r .
(7.6) Ri(t, o) = o I pi(r, ) [cot 3 — cot 5] dr, teS’,
(7.7 Ij(t, o) = pj(arg t, @), teS!

where S' = {zeC||z| =1}. From the Hilbert’s formulas [14] it follows that
there exist some functions Aj(z,a), j=1, 2 analytic in the domain D* =
{ze C||z| < 1}, continuous in D*US' and such that

(7.8) AF(t @) = Ri(t, @) + i-[t,0),  teS!

where

(7.9) Af(t,a) = lim Az, ®), [t|]=1.
H<1

From (3.35), (7.5)—(7.8) it follows that A4,(z, @), 4,(z, o) satisfy the following equa-
tion

(7.10) At @) — A3 (B, a), @) = H(t, a), teS?
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where
1
(7.11) Hi(t, oc)=;h(arg t, o), teS!

and f(t, «) defined by (4.7) is the orientation-reversing homeomorphism of S!.
We define a piecewise analytic function

Ay(z,0), lzZl <1,
(7.12) Az, o) = 1
A, —,a), lz] > 1.
z
Then A(z, o) satisfies
(7.13) A*(t, o) — A (k(t, @), ) = H(t, o), te S,
(7.14) |A(0, 2)| < 00
where
(7.15) Kk(t, o) = P(z, o) = exp(—i- P(arg t,a)), teS?
is an orientation-preserving homeomorphism of S'. Following [14] we denote
(7.16) A™(t,) = lim A(z, o).
z—t
lz|>1

Thus in the case ae((O, a‘)U(az, g))\{al, ..., d,} we reduced the problem of

constructing of the inversion formula to the Riemann boundary value problem
(7.13), (7.14) with the shift x(¢, a) [14].

II. Let ae(a!, a®)\{oy,...,0,}. Let u(x) be defined by (7.1) where u(x, ) €
D. We consider the function h(f, ) defined by (7.3). From (6.18) it follows that

-0 r— u;((-), a)] dr

1 (2m r
(7.17) h(@®, a) = —5 Po(r, a)| cot >~ cot
o

where p,(r, «) € C*(R) is a 2m-periodic function satisfying (6.14) and such that

(7.18) u(x, @) = A(@)po(r, @) .
We denote
2n _
(7.19) Rolt. ) = — j polr,a)-cot” —28Lg st
2n J, 2
(7.20) Io(t, ) = polarg t, o), teSt.

From the Hilbert’s formulas [14] it follows that there exists a function Ag(z, a)
analytic in the domain D*, continuous in D* US' and such that

(1.21) AZ(t, @) = Ro(t, o) + i-Io(t, ), teS
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where

(7.22) Ad(t, ) = lim Agy(z, o), teSt.
z—t
lzi<1

Because of (6.14), (7.17), (7.19)—(7.21) the function Ay(z, ) satisfies
(7.23) Ad(ko(t, a), ) — A (t, ) = H(t, a) , teS!
where H(t, a) is defined by (7.11) and

(7.29) Ko(t, @) = exp(i- polarg t, a)), teS!

is an orientation-reversing homeomorphism of S' satisfying the Carleman’s
condition

(7.25) Kolko(t, a), ) =t teSt.

Thus in the case a € (a!, a*)\{ay, ..., a,} we reduced the problem of constructing
of the inversion formula to the Carleman boundary value problem (7.23) with the
shift x,(t, o) satisfying the Carleman’s condition (7.25) [15].

From (3.36), (3.48), (6.9), (7.15), (7.24) and properties of Gj(s,a), j=0, 1, 2
it follows that

k(t, @) € C(SHNCHS \{t1(@), ..., T, (@)}) ,
Ko(t, ®) € C(S)NCHS'\ {1, (), ..., T4, (@)})
and for any je{l,....,k;}, ke {l,...,ko} there exist
K(tj (@£ 0,0) = lim «(exp(io), ),
cp—wrgt;io

Koti(@) £ 0,0) =  lim kg (exp(io), a)
@—argT, 10

where 1} (%), 7,(0) € S are defined by (4.12), (4.22). So the general theory of the
equations of the type (7.13), (7.23) detailed in [14], [15] can not be applied.
Therefore we shall use the results of the work [16] which deals with the solvability
of the Riemann boundary value problems with nondifferentiable shift.

Consider the following problem. It is required to find a function ®(z) ana-
lytic in C\S!, the limiting values of which on the unit circle satisfy

(7.26) o*(t) - 7(B(t) = G(t), teS',
(7.27) ®&(0)=C, CeC
where B(t) is an orientation-preserving homeomorphism of S.

Theorem 7.1 ([16]). Let G(t), te S' be extendable to a function G(z)€
WX(D~) for some p>2 where D~ ={zeC||z| >1}. Let B(t), teS' can be
extended to a K-quasiconformal mapping B(z) [17] which maps D* = {z e C||z| < 1}
onto itself.
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Then for any C e C there exists a unique solution ®(z, C) of the problem
(7.26), (7.27). This solution can be written in the following form

qb(z,C)=—1” o0, 1 6O 44 c. 1z > 1,
) <1t —2 2 Jy=1 t— 2
(7.28) 1 ® 1 G(t)
_ .’ ¢ _
D(B(2), C) = n,”mq : _zdt =l _zdt +C, zI<1
where
(7.29) 0@ = (I — p(x)T)" (’ﬁ f ¢w dr) o lel<d,
2ni Jy= t— 2
TN I | o)
T(p(Z) - cl—lvTO { n J‘J‘lz'—rlfc (t - 2)2 dt} ’ |Z| <l ’
_ B:(2)
(71.31) uz) = 50" 1z < 1.

Theorem 7.2 ([17]). Let h(r): R 3 R be a strictly increasing continuous func-
tion. Then there exists K-quasiconformal function H(z) which maps the half-plane
{ze C|Im z > 0} on itself and

lim H(z) = h(r), reR
Imz>0

if and only if h(r) satisfies the following M-condition

_y _h(r+s)—h()
(732) MlSmSM, r, seR

where M depends only on K.
If (7.32) holds then H(z) can be taken in the following form

(7.33) Hiz)=H(Xx+iy = %} J: (h(x + s) + h(x — s))ds

y
+i-ij (h(x + s) — h(x — s))ds, y>0, xeR.
2y Jo

Let B(t) be an orientation-preserving homeomorphism of S! satisfying

(1.34) ) =1.

We define

(7.35) Br) = (B4 ®), reR
where

(7.36) b= i1 ec.

z—1"
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Then B(r) is an orientation-preserving homeomorphism of R. As far as ¢(z) is
conformal mapping which transforms D* = {ze€ C||z| < 1} onto the half-plane
C* = {weC|Imw > 0} then B(z), ze D* is K-quasiconformal extension of f(t)
if and only if B(w) = ¢(B(#~1(w))), w e C* is K-quasiconformal extension of B(r).

So if B(t) satisfies (7.34) then there exists K-quasiconformal extension p(z),
ze D* if and only if the function B(r), r e R defined by (7.35) satisfies (7.32) for
some M > 0.

Lemma 7.1 ([9]). Let B(t) be an orientation-preserving homeomorphism of S!
satisfying (7.34) and such that for some points t,, ..., t, € S the following conditions
hold:

(1) B eCESHNCHS \{t1, .-, te});

(2) for any je{l,..., k} there exist

ﬂt(tj +0)= lim B(expio);

@—argt;+0

() inf |B,(1)] > 0.

teSI\{ty,.ceilie}

Then B(r) defined by (7.35) satisfies (7.32) for some constant M > 0.

We denote for o€ ((0, a')u (az, g))\{al, ey O}

(7.37) kolt, @) = K(t, 8) + 1 — (1, ),
_JA@z, ), Izl <1,
(7.38) Aoz, o) = {A(z fr(lg)— 1,0, |z/>1.

Then A(z, ) satisfies (7.13), (7.14) if and only if A,(z, ) satisfies (7.14) and
(7.39) Ad(t, 0) — Ag(kolt, o), ) = H(t, o) , teS.

From (7.37) it follows that the orientation-preserving homeomorphism (¢, «)
satisfies (7.34).

Using (3.36), (3.48), (6.9), (7.15), (7.24), Lemma 3.1 and properties of the
functions fi(s, +a), Gi(s,a), keZ, j=0, 1, 2 we obtain that the homeomor-

phism k,(t, o) satisfies the conditions (1)—(3) of Lemma 7.1 for any ae(O, g)\
{oty, .oy 0y}
Let ae((O,al)U<a2, g))\{al,...,am}. From Theorem 7.2, Lemma 7.1 it

follows that there exists k,(z, «), z€ D* an K-quasiconformal extension of x,(t, «).
As far as p,(r,a), p,(r,2)e C*(R) then because of (7.5), (7.11) we obtain
that H(t,0) e C'(S'\{r}(®), ..., 7, (®)}) and for any je{l,...,k;} there exist
H/(tj(«) + 0,2). Hence H(t, ) can be extended to a function H(z, a)e Wi(D7)
for any p>2. So from Theorem 7.1 and Sokhotski’s formulas it follows that
there exists a constant C(x) e C such that
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1 , 1 _
(7.40) Ag(t, a)= _EJ£|<1%‘12_§H(KOI(I’ a),a)
1 H(z, o)

- " _di+C(), teS?
27 J =y T — Ko (2, @) v+ ) €S

where

(141) oz @) = — plz 0)T)™ <"(Z’ ?‘)J B, “)dr>, Iz <1,
2 J=1 T2

142)  uz z) = (Kol@ D) 1zl <1,

(KO(Z’ a))z ’

and the operator T is defined by (7.30).
Using (6.6), (7.2), (7.4), (1.7), (7.8), (7.12), (7.38), (7.40) we obtain that for any

ae <(0, a‘)U(aZ, g))\{a,, ..., a,} the following inversion formula holds:

(7.43)  u(x, o) = T(@)u(x) = A(@)p,(r, ®) = A(e) Im(A43 (exp(ir), a))

- A(oz)<1m[—1 j J o@0 4 %H(xgl(exp(ir), %), &)
|

n J Ji<1 2 — ko' (explir), o)

1 J H(z, ) d])
270 J =1 T — Ko (explir), @) )

Consider the following Carleman boundary value problem. It is required
to find a function F(z) analytic in D* the limiting values of which on the unit
circle satisfy

(7.44) F*(t) — F*(Bo(®)) = G(1), teS?
where B,(t) is an orientation-reversing homeomorphism of S' satisfying (7.34) and
(7.45) Bo(Bo()) =1t , teSh.
Necessary condition for the solvability of (7.44) is
(7.46) G(t) = —G(Bo(r), teS'.
Let (7.46) hold. We denote

F(2), lzl <1,
(7.47) d(z) = FG) , 2> 1.
Then @®(z) satisfies (7.26) and

1

(7.48) *e) = ‘p(E) ’

|®(0)] < 0
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where the homeomorphism

(7.49) Bt) =Bo(), teS'
preserves the orientation and satisfies (7.34),
(7.50) ﬂ(ﬂ(t =t, teS!.

Let B(t), G(t) satisfy the conditions of Theorem 7.1. Then for any C e C there
exists a unique solution @(z, C) of the equations (7.26), (7.27) which can be
written in the form (7.28). Consider

(7.51) D, (z) = qb(%, 0) .
From (7.26), (7.51) it follows that
o7 (F) — &} (B0) = G(r).
Hence
o7 (B(1) — 7 (B(B() = G(BD).
Using (7.46), (7.49), (7.50) we obtain
o (1) — D7 (B1) = G(r).

From Theorem 7.1 it follows that there exists a constant C € C such that
1
115(;, 0) =@,(z) =D(z,C) = D(z,0) + C.

Therefore
& (1,0)=d7(1,0)+ C.
Because of (7.26), (7.34), (7.46) we obtain that C = 0. Hence

(7.51) d(z,C) = 45(;, C) .

So &(z, C), ze D* is the general solution of the equation (7.44).
Let ae(a!, a®)\{o;,...,,}. Then the analytic in D* function Ag(z, @)
satisfies (7.23). Hence there exists a constant C(a) e C such that

(7.52)

Ao(koz @), 0) = ——” o L HEY e, 1z<t
lel<1 T—Z 27tl =t T—2
where ¢(z, ) is defined by (7.41),
(7.53) u(z, @) = oo D

(o(2, @),
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Ko(z, ), ze D* is an K-quasiconformal extension of k,(t, ®). From (6.6), (7.18)-
(7.22) and Sokhotski’s formulas it follows that for any o« e (a!, a®)\{ay,..., a,}
the following inversion formula holds:

(7.54)  u(x, o) = TH(@)u(x) = A(®)po(r, @) = A(a) Im(Ag (exp(ir), @)
@(z, ) .o
Im| —- e _

< m[ J\J\Iz|<1 z — Ko(exp(lr) 3 4 3 (rco(exp(ir), a), o)

)
- _dr|]).
27[1 ltl=1 T — KO(CXp(lr), a)

8. Completeness of G.E.

To obtain a general representation of the solutions of the Cauchy problem
(1.1) in the form (4.3) we need to prove that the system of G.E. u(x, a) e L,(Q)
is complete in WZ(Q) It means that for any u(x)e WZ(Q) there exists a family
of G.E. u(x, a) € L,(22) corresponding to 4 = —cos? a such that

n/2
(8.1) u(x) =J u(x, a)de ,

0

n/2
(8.2) Au(x) = J —cos? o u(x, a)da
0
It should be noted that the general theory on generalized eigenfunction expansions
(for example, [7]) guarantees in the case being considered by us the completeness
of a system of such functions when the space is more extensive than L,(£2).
One of the possible ways to prove the completeness is to apply the inversion

formulas. Actually we constructed the operator Il(«), ae<0, g)\{al,...,am}

such that

n/2
(8.3) u(x)=J/ IT(x)u(x)do

for any
n/2

u(x) € D(I(a)) = { f u(x, y)dy

0

u(x, y) € D} c WiQ).

So to prove (8. 1) (8.2) it is sufficient to show that Il(«) can be extended to an
operator M(a): w! 2(Q2) - L,(Q), D(ﬁ(a))=V°V§(Q) such that (8.3) holds for any
u(x) € Wi(@Q).

We shall apply another idea suggested by T. I. Zelenyak. He proposed to
use the following well-known result.

Proposition 8.1. Let A be a bounded selfadjoint operator in a Hilbert space
H. Let feH and for any A€ [a, b] = R there exist u; € H satisfying
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(8.4) Au; —Au, = f.

Then E,,f =(E, — E,)f =0 where E; is the resolution of the identity corre-
sponding to A.

Proof of the proposition can be found, for example, in [18].

Theorem 8.1. For any u(x)e\o’V;(Q) there exists a family of G.E. u(x,a)€
L,(Q) corresponding to 1= —cos*a, a€ (0, g)\{al, <evs 0y} such that (8.1), (8.2)
hold.

The proof of the theorem is too tiresome and needs a lot of calculations.
Therefore in the present paper we only sketch it.

Sketch of the proof. To prove the theorem it is sufficient to show that for
every v(x) e C*(Q) = {ve C*|supp v = Q} there exists a family of G.E. u(x, o) €
L,(22) such that the following equation

n/2

(8.5) Au — Au = v(x) — J u(x, o)do déff(x)

0o

is solvable in Wi(Q) for any Ae(—1,0\{4;,.... 4.}, Aj= —cos? a;.
Indeed, from Proposition 8.1 and the properties of the projectors E, it
follows that

(8.6) E[—l-ll)sz[Aj:;'j*l)f=E[lmro)f=0’ j= 1, ceey, M — 1.
As far as A has no eigenfunctions then
8.7) E, =0, E _o=E .. E=I, j=1..m.
Because of (8.5)-(8.7) we obtain

n/2
(8.8) v(x) = J u(x, a)do .

0
As far as €2(Q) is dense in W;(Q) then from the Parseval’s equality and complete-
ness of Wi(Q), Wi2(0, 2n) it follows Theorem 8.1.

Let v(x) e C*(Q), 4°€(—1,0\{4,,..., 4,} then (8.5) holds for a function
uo e W) if and only if '
(89) (a0 eoouyiay = —(fs Wiy, ¥ € C(Q)
where
E0 = E%x) = &(x, o) = x, sin a® + x, cos a®,

(8.10) n° = n°x) = n(x, a°) = x, sin a® — x, cos a®,

o® = arcos ./ —A°.

Assume that u(x, a)e L,(2) is a family of G.E. such that (8.5) is solvable
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in Wi(Q) for every Ae(—1, ON\{4{, .., 4. Then (8.9) holds for any A° e (—1, 0)\
{A1s..., An}. Under some conditions about the smoothness of u(x, a) which will
be checked later it can be shown that the following function

™2 (sin(e — a®) sin(x + a°)
0y _ _ 0
(8.11) w(x, a°) = L (sin(a o) + Sin(x — 29 2 cos 2a° Ju(x, a)do

&(x,a%)  (*n(x, a°) E4+n E-—
j J (2 sin a®’ 2 cos a° )déd"

also satisfies (8.9). Hence

(8.12) (uz0(x) — w(x, a®), Yeop0) 1,20 = O, Y e E=@)

Therefore for any «° € <0, 3

E)\{al, ..., &,} there exist some functions B(&(x, «°), «°),
D(n(x, a°), «°) such that

(8.13) w(x, a°) + B(E(x, a°), a°) + D(n(x, «°), a°) = u,0(x) € Wi(Q).

So the problem of the solvability in W;(Q) of (8.5) is reduced to the existence
of the functions B(¢, o), D(n, «) such that for any ye (0, g)\{al, ey O}

(8.14) w(x, 7) + BEE(x, 7). 9) + D(n(x, 7). ) € W) .

Using the results obtained in [9] it can be shown that the solvability of (8.14)
is equivalent to the solvability of

8.15
( vzs u(x, o) (x,7) ("n(x,y) o
J_a_yM—L L 5(¢, n, v)d&dn + B(S(x, ), 9) + D(n(x, 7),7) € W3()

for any ye(O, g)\{al,...,am} and for any small ¢ > 0, where

E+n &—n
2smy 2cosy

sin 2y

(8.16) (& ny) =

The properties of the function of the following type

do

(8.17) g(x,7) = f Tl )

Y€ a—7

where u(x, «) is a family of G.E. are studied in [9] when the formulas (5.11),
(5.12) are derived. Using the results obtained in [9] it can be shown that the
solvability of (8.15) is equivalent to the solvability of the following systems:
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r

pa(r.y) — by (B, 1) 7) =0,  re[0,2n],
(8.18) ) % L“ Pule. ) °°tt—;_rdt - % LG Po(r.7) COt%M‘h
i = L u(x, vy, r)‘s'i%(z);)d!), r e [0, 2n]
if ye ((o, )t U (az, g))\{al, RS
[ Po(r ) — Boluo(r, 1), 1) =, re[0,2a],

_ 4,0(x)
= L u(x, y,r) Sin 2y aQ re [0, 2n]

if ye (', a®\{oy, ..., a,}. Here pj(r, @), j =0, 1, 2 are 2n-periodic functions corre-
sponding to the family of G.E. u(x,a). Therefore u(x, «) satisfies the inversion
formulas (7.43), (7.54). As far as v(x)e(oj‘”(Q) then it can be shown that the
function u(x, «) determined by (8.18), (8.19), (7.43), (7.54) is smooth enough and
all the smoothness assumptions we used to derive (8.11)—(8.19) are valid.

Thus, using the formulas (7.43), (7.54), (8.18), (8.19) we construct for any
veéw(Q) a family of G.E. u(x, ) € L,(£2) such that (8.8) holds. The proof of
the theorem is completed.

9. Structure of solutions

Now we can construct the general form of the solutions of the Cauchy
problem (1.1)

(1.1 p. = Ap, Pli=o = Po > Pili=0o =Py -

Let py, p, € VoVi(Q). Then from Theorem 8.1 it follows that there exist families
of GE. uj(x, ) e L,(2), j =0, 1 such that

n/2
9.1) pi(x) = J uj(x, a)da

0
n/2

9.2) Ap(x) = j —cos? o uy(x, a)do .
0

Then the unique solution of the problem (1.1) can be written in the following form

sin(t - cos &)
cos o

/2
(9.3) p(x, t) = J / [cos(t - COS )" Ug(x, a) + u,(x, a)] do .
(0]

From the Parseval’s equality, the inversion formulas and Theorem 8.1 it follows
that the set



950 A. A. Lyashenko

n2
{ j u(x, o)
0

is dense in W;(Q) and the operator Il(x) can be extended continuously to a

u(x, o) € D}

bounded operator TT(a): W;(Q) - L,(2), D[II(a)) = W;(Q), oaE <O, g)\{al, ey O}

such that for any ue Wi(Q)

n/2 _
9.9) u(x) =J IT(o)u(x)do .

0
Therefore the functions uy(x, a), j =0, 1 satisfying (9.1), (9.2) can be determined
by the following formula

9.5 ulx,a) = M@)p(x), j=01, ae (0, g)\{al, ey O}

Thus for any pg, p, e\o’Vi(Q) the unique solution of the problem (1.1) can be
written in the form (9.3) where the families of G.E. uj(x, ) e L,(), j =0, 1 are
determined by (9.5).
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