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Local existence for the semilinear Schrodinger
equations in one space dimension

By

Hiroyuki CHIHARA

1. Introduction

In this paper we study the initial value problem for the semilinear
Schrodinger equations in one space dimension:

(1.1) we—iuzz=F (u, uz) in (0, ) XR ,
(1.2) 1 (0, x) =uo(x) in R,

where u (t, ) is complex-valued, u, = Ou/0t, uz = 0u/0x, and uzz= 0°u/0x?.
We assume that the nonlinear term F : CXC— C is

(1.3) F(u, q) EC*(R*XR%C) , |Fu, 9| <C(|ul*+1q?)
near (u, q) =0 .

We regard the second variable ¢ as u;. Let 8/0u=1/2(d/dv—1i0/0w), 0/0n
=1/2 (8/ov + id/0w), 8/0q =1/2 (0/0& —i0/07n), and 0/053=1/2 (9/0E +
10/0n) where u=v+iw, g=&-+in and v, w, § NER.

The purpose of this paper is to show the local existence of solutions to
(1.1) — (1.2). When we try to get a classical energy estimate, Im 0F/dq (u,
uz) which is imaginary part of coefficient of u, gives the loss of derivatives,
and then we cannot derive the estimate. Our idea to resolve this difficulity
comes from the theory of linear Schrédinger type equations. More precisely,
let us consider the following linear problem:

(1.4) e — g+ b @) ustc@)u=rI(t x) in RXR
(1.5) u (0, ) =uo(x) in R,
where b (x), c (x) €B° (R), uo (x) EL*(R), and f (¢, x) €ELL. (R; L (R)).

According to Takeuchi [10] (see also Mizohata [6]), a necessary and suffi-
cient condition for L2— wellposedness to (1.4) — (1.5) is

j;zlmb(y)dy <+oo |

(1.6) sup
r€R
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In fact, if we assume (1.6), then the following transformation

(1.7) ux) — vix)=ulx) exp(%j;xb (y)dy)
is automorphic in L2(R) and (1.4) — (1.5) become

(1.8) v,*ivu+?(x)v=j7(t, x) in RXR ,
(1.9 v (0, x) =vo(x) in R,

where Z(x) = —b; (x) /2+ib* (x) /4 +c (x) €87 (R), vo (&) =uo (x) ex"(%j;zb

) dy) €L2(R), and T(t, 2) =/ (t, ) exn (§ [ b () dy) € L (R: L2 (R)).

Since the first order term is eliminated in (1.8), we can easily obtain the ener-
gy inequality in L2(R). Thus, this shows that (1.6) is a sufficient condition
for L2—wellposedness.

Studies on semilinear equations have been mainly concerned with the case
of Im@F/0g=0 (Klainerman-Ponce [4], Shatah [8], Cohn [1].). The reason
is that it is difficult even to show the local existence because of the loss of de-
rivatives. But Hayashi [2] succeeded in treating some cubic polynominals
which include the type of Im0F/0q =0, in some classes of analytic functions.

We prove the local existence of solutions to (1.1) - (1.2) with general non-
linear terms, by using a modified method of linear theory. The main results
are following.

Theorem 1. Let m be an integer=3. Then there exist a constant >0
and a time T >0 depending only on @y such that for any uo € X™ with ltollxm < cto,
an initial value problem (1.1) — (1.2) possesses a unique solution u €L* (0, T;
X™), where X*=H"(R) N X and 2= W EL*(R); zu<€L? R)| with |uls=]<>

14”1.2-

We introduce the following quantity

(1.10) <§f|6§u|2exp(f;lm%—§ (u, uz) (y)dy)dx)m ,

X
which corresponds to the transformation (1.7). If f_ Imaa—{: (u, uz) (y)dy is

bounded, then (1.10) is equivalent to H™ norm. Namely this condition is the
same as (1.6). To ensure this, we introduced the function space 2. (see Lem-
ma 4).

Recently Soyeur [9] has succeeded in solving the next type of the semi-
linear equation:
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. 21 .
(1.11) om—idu=— Tt |22(6 Mk in (0, ©) XR¥ .

(Actually he solved the Ishimori equation. But this is essentially the same to
(1.11) from our point of view.) The equation (1.11) is in the stereographic
representation of Heisenberg ferrowmagnetic model equation (HFM). He in-
troduced

1/2

(1.12) lifJQﬂJ—d

(1 +]ul?)?

as a quantity corresponding to conservation laws of HFM. Takeuchi’s method
is available to the case of general space dimensions:

N
(at—iA-i-ij (x) 0z, +c (x)>u=f(t, x) in RXRY |

j=1
if
0zImb; (x) — 0zImb; (x) =0 for 1,7=1, .., N .

And for (1.11) we have
exp(f Im (u, 0u) (X1, ..o Tic1, Yy Tiw1, oo, xN)dyj>

7 (|lul?) > 1 .
= —2 ’”d , =1, .. N
e""( f T2 ()

Thus, the quantity (1.12) is useful to solve the equation (1.11).

Acknowledgements. The author would like to express his sincere
gratitude to Professors Ohya and Tarama for their valuable guidance and en-
couragement throughout. The author also thanks all members of Professor
Ohya’s Laboratory for helpful comments and conversations.

2. Some Lemmata

In this section we prepare some lemmata to prove Theorem 1 by using
viscosity method.

By Taylor’s formula near (u, g) =0 and the assumption (1.3), we have
the following decomposition of the nonlinear term F (u, q):

Fu,q)=Qu, q) +Cu, q) near (u,q) =0

where
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Qu, q) = Q(Z)—Z Z (6z o2 (0)>z,zk ,

j k=1
4
1 3
C (u, q)=C(z)=% E (_l; (1—8)2%;(%)(18>2jzk21 ,
Jk0I=1

near z= (u, u, ¢, ) =0. Since we consider only small solutions, we can treat
C (u, q) as if it were a second order polynominal. Thus we will prove
Theorem 1 when F (4, q) is a second order polynominal and we will give the
correction for the case of general nonlinear term in remarks. Now the prop-
erties of F are following.

Lemma 2. Let m be an integer>2. For u, vEH™ (R) (C W' (R)),
the following bounds hold:

(2.) IF Ge, uz) lam-s < Clhullwrelbellm
(2.2) IF (u, uz) —F (v, v2) llam-r < CRIu —vllgm |,
where R=max {"M”Hm ||v||ﬂm} .

Proof. Let w, 2=wu, #, uz, g and k=0, 1, ., m —1. It is sufficient to
treat the product of w and z, namely

I04F (., uz) lloe ~ 0% (wz) |2 .

Leibniz’ formula implies that

O/ k
<¥(¥)laswoizlss
=0 7

By Holder inequalities, we have

k

k . ;
@3 <) (" )6k ulama-rldtelionn
= 7

Gagliardo-Nierenberg inequality yields
(2.4) 185wl ek < Cllokwlts=" " hwllt= %27, |02l 2es < Clokz i halli=* .
Substituting (2.4) to (2.3), we obtain (2.1). Similarly we can derive (2.2).

Remark 1. If F (4, q) is general, then the properties of F (u, q) are
following:

(2.5) IF (, wz) llgm-s < Clhsllwrellllzrm
(2.6) IF (u, uz) —F @, v2) lgm- SCRlu —vllgm
for any u, vEH™ (R) (m>2) with [ullwm-1-, lvlwm-1-<1. The proof of (2.5),
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(2.6) is similar to Moser’s lemma [7] (see also Klainerman [3]).
We use the viscosity method with € (0, 1] in some sense:

2.7 ué—eusr—iuse=F (u, us) in (0, ©) XR ,

(2.8) u® (0, x) =uo(x) in R.

We can easily solve (2.7)-(2.8): namely

Lemma 3. Let m be an integer=2. For any uo € H™ (R), there exixts a
time Te=T (¢, lluollam) such that an initial value problem (2.7) - (2.8) possesses a
unique solution u® €C ([0, Te); H™ (R)). If the maximal existence time T is fi-
nite, then

(2.9 lim suplu® (t) |gm=+0 .
t1Te

Proof. The idea of proof is due to contraction type arguments in L™ (0,
T; H*(R)). Let S*(t) be a semigroup generated by the linear equation:

(2.10) Ui— (e+1) U =0 .
Let 7 be a nonlinear map defined by

t
21) T =5 Ouot [ S M—DF e, us) (Ddr |
We have only to show that the map 7 has a unique fixed point in L* (0, T; H™
(R)) provided T is small enough, because it is easy to check that the fixed
point u¢ is in C ([0, T]; H®(R)) and (2.9) holds. Let Yr=L~(0, T; H"(R))

and let Bg (Y1) = M EYr; |ullv,. <R}
Assume u €Yr, then we have

176 O lm <15* O+ [ 15— 2V F a, w2) (2) lma

with Plancherel’s formula

(212 = [<yme gt [ Km0 F T ) (2) e

Llheollgm+ f ‘sup(<E>e‘“z“‘”)||<5>'”"Fm(r) llo2d T
0 teR

< Jheollam + f; égg(<€>e_‘““_”)|ll“ (u, uz) () lam-d T,

where (&)= (1+ £2)2  Note that

(2.13) §25<€>e"“’“-”sce(1+ Jtl—_r) , for t— 1t >0,

and substituting (2.1) (in Lemma 2) and (2.13) to (2.12), we have
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13 0 bm < tln+C. (1772 o ()l

If uEBg (Y1), we obtain

\Tully 7 <lsollem+Ce (T+T2) R .

Here we remark that C. is independent of T. If u, v € Bg (Y1), then similar
evaluations imply that

”gu _«7‘1)||Y1‘S Ce (T+ TI/Z)R““ —U"YT .

Let R>||u0||ym and let T be sufficiently small, then there exists a contrac-
tion factor 0 with 0<d<1 such that

1Tullyr, 1Tvlly <R, NTu—Tollyr <8l —vlly;

for any u, vEBg(Yr). Thus, the map 7 is contraction in Bg(Y7), and there-
fore we have a unique fixed point u. €L=(0, T; H* (R)).

As we mentioned before, we need bounds for weights in (1.10) to ensure
the condition (1.6). Now we define the following two weights:

(2.14) 0o (t, x: u) =exp<j:1ﬁllmg—s (ou, oug) (t, y)dady) ,

(2.15) 0,(t, x; u) =exp<jilm%—§ (u, uz) (t, y)dy) )

Concerning the bounds for @, and 6, we obtain the following

Lemma 4. Assume that u is a solution to (2.7)-(2.8) with u€L> (0, T;
X™), m=3). Then there exists a constant Cy which is independent of € € (0,
1], such that we bound

(2.16) exp (—Cullu (t) |xm) < 6; (¢, 2; u) <exp (Cillu (t) llxm) |

(217) 10, (6 (t, ; w) ) | <C16; (¢, 2 u) (e () lers e (&) lrs)

for (t, x) €0, T) XR and i=0, 1.

Proof. 1t is enough to show the case i=1 because the proof of the other
case is similar to that of i=1. Since F is a second order polynomimal of u, i,
q, g, there exist constants &, SE€C such that

tm 3G, 02) = (-G + (BB
Integrating over (—©°, x), we have
x 6F _ T —
f_mlma—q(u, u,)dy—f_m(au-l-@_) (¢, y)dy+ Bu+pu) (¢, x) .

Then we get
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sup| [ 1m 3 1 )y <C U+ )
Note that

||u||u=f|u|dx=f<x> WU luldx |
with Schwarz inequality

@1  <([ @) ([ @lulax)” <cluls .

where <x)>= (1+z?Y2 By (2.18) and Sobolev's embeddings, we obtain

z 1
f_wlm%q—(u, uz)dy‘Sanullmnz :

sup
r€R

This shows (2.16). Concerning (2.17), we differentiate 6, (¢, x; u) with re-
spect to ¢, then

(2.19) 0:(6:(t, x;u)) =a,<exp<ﬁzmlm—?£ (u, u,)dy))
=0,(t x;u) a,(f_ilm%% (u, ux)dy>

=6tz ([~ (au+amay+ (Bu+Bm))
Since u is a solution to (2.7)-(2.8), (2.19) becomes
8,61 (¢, z: ) =26,z wRefax [ 1(e+4) st F (o, ) Yay +
BleHi)uast BF . ) )
=26, (t, 2 wRefae+i)usta [ Flu u)dy+
Bleti)umtBF(u, u) | |

Here we note that ¢€ (0, 1], there exists a constant C; which is independent of
e€ (0, 1] such that

10, (6, (¢, z; u)) | <C16: (1, x; w) (hallwrm 3 el - Toalli 2. el 1)

This completes the proof of Lemma 4.

Remark 2. When the nonlinear term F (u, ¢q) is general, them Im
OF/0q are following:

Im-*(u q) —Im (u q) +Im—(u q)
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4
ocC _ . oC,v_1. 0 v 0°F
Im Oq (, ¢) =Im Oq (2) = ZIm Oq [ Z (./; (1 S)zﬁzjazkaz; (s2) ds)z;zkz,]

Jk,0=1
4
_3 Y12 O0F
= zlm.;l(/; (1 S>zaz,~azkaq (sz)ds)z;zk
P
4
1 N s
+21m ’; (j:)s(l S)Zaz,az,,az,aq (sz)ds)z,—zkz, )
jil=1

fu€L(0, T; X™) (m=3) is a solution to (2.7) - (2.8) with supreio,lle ) |wee
<1 then similarly we obtain

(2.20) exp (—Cy e (&) llxm e () xm?t) <6, (2, x; u) <
<exp (Cy {lle () lxm+The (8) |xm? )
(2.21) 10, (6: (¢, ; u)) | < Ci6i (¢, 3 u) (e (8) sl () ls)

for (¢, x) € (0, T) XR and i=0, 1.

3. Energy estimates

In this section we derive the energy estimates for (2.7) - (2.8) to get the
uniform bound for the solutions. We use the quantities such as (1.10) to re-
solve the loss of derivatives. Now let us introduce the following notations:

6D w®lu= | @m0l OFart Y [6,0 00080 Faz)

In order to estimates for [u®(t)]m, €€ (0, 1], the following lemma holds.
Lemma 5. Let m be an integer m =3, uoE X™, and u €L (0, T; X™) be

a solution to (2.7) - (2.8). Then we have

t
(32 WIS leodntCo [ sup 160(z, 2 u) +6, (2, x0)] X

rER

{1+t () lm+ e () [t [ (2) xma T

for t € [0, T1, where C, is independent of €€ (0, 1].

Proof. We show the ineqality (3.2) in two steps.

Step 1. First we consider the first term in the right hand side of (3.2).
We use the mean value theorem to the nonlinear term of the equation (2.7)
with u in place of u%, then (2.7) becomes

1 1
(3.3) u,—euu—ium=uj; %Z;(O'u Guz)da-l-ﬁj; %ME(OM, Ouz)do
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+u,f a (ou, 0‘14,)d0'+uf o (ou, oug)do .

If we multiply 2u8,(t, x; u) <x>? to (3.3) and take the real part, then we have
(3.4) (|]?) 106€x )% — € (U gt +itzan) Oo <D 2 —1 (gt —ikzau) Oolx)?

—2|u|200<x>2Ref —d0‘+2Re(-230<x>2 %Fw

+i (uat —tzu) 0o<x>2f Im da+ (|u]?) 260 <x> f Re—do
OF
+Re( (700> [ aqda) ,
here we used the identity aB+aB= (a+a) (B+8)/2+ (a—a) (8—B) /2, for
a, ,BEC to the third term of the right hand side. We remark that 6, <x)?
f Im—do {6o<x>? ;—260x, then (3.4) becomes

(35) {ul?66<x>?  —|u|?8,60<x>?

— & (gt Fitzzur) o< 2 —1 (Uggtt —itzan) Go x> ?

= 2lul26,Ced Re %do-l—ZRe('z@o(x)Z —da)

Filuai— ) {100~ 2002] + (uf?) 00>* [ 'ReDodo

+Re((ﬂ2)zﬁo(r>2 %—Zd )

Integrating over R and integrating by parts, the left hand side of (3.5) becom-
es

(36) LHS.=% f 260> 2 — f |20, 60<xc> 2
2 f o200 > 2 — f lul? 160 x> aadar
+ f (i —itn) 160<>? s |

Since the third term of (3.6) is non-negative, we can neglect it. And we here
note that

G 16z ) @ ,x|=| 0> [ im0 do-+ 28] |
bit. 20| @ [ m T do) +az [ m G a

+@(['m%a0) +2|
<CO,(t, x; u) x> (1+|ullwes+lelfr-)
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Substituting (2.17) (in Lemma 4) and (3.7) to (3.6) we obtain
(3.8) LHS zi‘—fl |260<x> 2dx — C5 (14 halls + el 26, <x)*
. T, u|“0o X Ca UllH3 u|1-13) 'u| 00(r> dx
—2f1m(u,u‘) {606€x>% 2dx |

where C3>0 is independent of e€ (0, 1]. On the other hand, after some com-
putations the right hand side becomes

(39)  RES.Clulw- [ Iu6,&dr
—Zflm (uat) 166<x>? 1d.r+4f[m (uat) Ooxdx

—f|u|2(0o<x>zj;lReg—Zda>Idx
—Re [ (6@ [ FFao) ax

For the third term of (3.9), by Schwarz inequality we obtain
(3.10) lflm (uat) ﬁordx'
1/2 1/2
<Csupbd’?(t, x; u) <f|u$|2dx) (f|u|zﬁorzdx)

r€R

<Csupl* (. 2 w) el [ ul?6zaz)

r€R

1/2

and similarly to (3.7) we have

(3.11) (60,0 32 [ keQrdo) (600, i) a2 la—Fdo)J
<CO(t, z; u) x> ? (lullwas+lullfyr-)
Substituting (3.10) and (3.11) to (3.9), we have

(312)  RHS.SCulustlulfo) [0z
1/2
+Csupbd’(t, 3 200x2d
sup6s (t, z; u) lulla <f|u| or x)

—2 [[Im (u.it) 160> cdx

Since the last term of (3.8) is equal to that of (3.12), they are canceled.
Thus we obtain

172
L [luleue>ax) " <o 0+ lullsthull) supbe ¢, z: )l
r€R

where C, is independent of e<€ (0, 1].
Step 2. Next we derive a higher order estimate. Differentiate the equa-
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tion (2.7) with respect to x up to order &, (=1, ..., m)

(aﬁu)t_e(a;‘“)‘u‘_i (a;‘“) ;::‘ l(g{: +%17‘r+_aa£uxz+%xx> ,

Leibniz’ formula yields

(313) =Z<k] 1)(6" 1= ’gga’“ +0k- 1—1311::3”1 )

i=0

6F
6

oF

k+1 k417
S-05 'y +a_6+

Similarly, we multiply 26,0%%, integrate over R, and take the real part. Then
the left hand side becomes

LS. =L [195u6.dz~ [105ul0,6ux
+2¢ [ 108+ ulbudz —e [ |0ul?026:dx
+i [ 0k uki— ok i0k) dsbadx .
Here we note that

1826, (¢, x; u) | <CO, (t, z; u) (lullwes+|ellfr-)

After the same computations as in (3.8), there exists a constant Cs>0 which
is independent of e € (0, 1], such that

(610)  LHS.> (1880 —C, s+l [105260.0
—2 f Im (8z*'udzu) Oz6hdx .

by the way, the right hand side of (3.13) becomes

(3.15) RHS.= 2Rez f (ak - f?;; B Bk + 91 ’g{:@’“ua}‘u)@ldx

j =0

+2Rez f (ak 1_,6F DI Db+ 9k 1_,gF 0’+2uazu>01dx

—2flm—Im (0% 0fn) 01dx

+fRe (|0kul?) 01dx+Ref — {(0f4) % 0udx .
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Now, we estimate the first and second terms in (3.15). Let Iy, l,=1, 2, v, w=

u, w. It is enough to treat only the form £ 2*"~7yai*"wdky. 1f j=0, then the
terms of this type can be evaluated by

k k
Clokli-). [0l 6udz <Cluls, [ 10iul*6rdz |

j=1 j=1

because 1 <k—2+1, <k and [,<2. On the other hand, if j =1, this type of
term can be estimated by

k k
closrul-). [[1oul6az <Chils ). [03ul6:dz |
j=1 j=1

because k—2+1,—j <k—1 and 1<1;+j<k. Thus we have

k
(316)  RHS.ZClulan). [ 10360z

j=1

—ZIIm%EIm(ax"“ua}‘u_) Odx

—f|6§u| ( e—ﬁl) dxr— Ref (0k) 2 <—0l>

Similar caluculations to (3.7) give

(regtr). - (500,

By using (3.17) to (3.16), we have

(3.17) <CO,(t, x; u) (hellwamloelfnn)

k
(3.18) RH.S. <C (el + i) Z f |04u*6:dzx

j=1

—2f1m Im (04 'uoki) O1dx .

Combining (3.14) and (3.18), and summing up on k, we get

j’;(i [162ul6:dz) " < Co Qullm+ elfm) (i [lazul6az)” .
k=1 k=1

where Cs is independ of e € (0, 1].

Remark 3. When the nonlinear term F (1, q) is general, if we consid-
er the solution » €C ([0, T];: X™) to (2.7)- (2.8) with supseio,nlllwm-1-<1 then
we can obtain the energy inequality such as (3.2).
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4. End of proofs

In this last section we complete the proof of Theorem 1. Concerning the

existence, we derive the uniform bound for {u®} cc.1 by using the energy esti-
mates in Lemma 5. And therefore we can construct a solution to (1.1) - (1.2)
provided ¢ | 0.

Proof of Existence. Since we consider small solutions, there exists a con-
stant C;>0 which is independent of €€ (0, 1], such that (3.2) becomes

@) W OInS bl m o[ (0 hemat

Here we used (2.16). Let ap=min(1/2, 1/10C,) and let a=|uolxm<ao. Now
we define

(4.2) T*=sup {T>0/h (1) [xm <2 , 0<t<T} |

and it is clear that T*>0. When t€ [0, T¥], (4.1) is valid because |l® (¢) [xm
<1. Using (2.16) to the left hand side of (4.1), we have

bt () em <%t Ce*o [t (D)lxmdz . for €00, T2 .
Gronwall’s lemma yields
(4.3) e (2) loem <e*“*arexp (Cre*t) .
If we put t=T¥, (4.3) becomes

2a<e* aexp (Cre*CTY)
which implies

log2—3Cia - log2—3Ciao
T?Z CTe4C1a 2 C,e‘c‘a: 0_T>0 '

Since {u®} ce is bounded in L= (0, T; X™) and {uf} ccou is bounded in
L=, T; H*"2(R)), ¥ cewn is bounded in C*! (0, T; H" 2 (R)), and then

i cc,u is bounded in C*%% ([0, T]; H*°(R)) for any 0>0 with the inter-
polation. We remark that L= (0, T; X™) is the dual space of L' (0, T; X™)
which is a separable Banach space. Thus, by Banach-Alaoglu theorem, there
exist a subsequence and x €L* (0, T; X™) such that

wk

u*——u in L%(0, T; X™) (asel0) .
By Rellich’s theorem and Ascoli-Arzela, theorem we obtain
ut——u in c([0, T]; HB:Y (R)) (asel0) , (6>0) .

(cf. Aubin’s compactness theorem. see Lions [5] Théoreme 5.1. in CHA-
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PITRE 1.) It is easy to check that u is a solution to (1.1)-(1.2), and thus the
proof of the existence is completed.

Finally we prove the uniqueness of solution by the same technique used
in the energy estimates.

Proof of Uniqueness. Let u, vE€L™ (0, T; X™) be solutions such that u (0,

x) =v (0, x), let w=u—v, and let R=max {lull,- 7 x, ltlle r. xm}. We here
define the weight:

x 1 aF
(4.4) n(t, x;u, v) =exp<f_ j; Ima—q (ou+ (1—0)v,

ouz+ (1—0)vz) (y)dady) |
and it is clear that the similar estimates in Lemma 4 for n (¢, x; u, v) hold:
(4.5) e R (t, x; u, v) <eF |
(4.6) [0: In (t, x; u, v)} SCR+R)N(t, x;u, v) |
for (¢, x) €[0, T] XR. Taking the difference between two equations, we have
wr—iwez=F (u, uz) —F (v, vg)
Mean value theorem yields

1
“7) =wj; %E(au+ (1—0)v, ouz+ (1—0)vs)do
1
+1Fj; %uf_i(mﬁ- (1=0)v, ous+(1—0)vy)do
'oF _ _
+wzj; o4 (ou+ 1—0)v, ou+ (1—0)vz)do
_ (10F _ _
+iz, | e (out (1=0)v, ourt (1= 0)us)do
Multiplying 2wn to (4.7) and after similar calculations, we obtain
g_t |w|2nd;15—f|w|2 Indr+if (wap—iwzw) 0zndx
_ 19F 1oF
—2Ref(|w|2 Oada+u72 . au_do)ndx
+i f (wath — wyw) Orndx

1
+f(|W|2)Inj;lRe%§dde+Ref (1172)17]—’.0 %;:dodx .

Similarly it follows that

%f|w|2ndx£C(R+Rz)f\w|2ndx )
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Thus, Gronwall's lemma yields

(4.8)

f|w|21]dx=0 , te[o, 1] .

Note (4.5), (4.8) shows the uniqueness of solution.
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