On derivatives of holomorphic functions on a complex Wiener space

By

Shizan FANG

This note is a complement of the joint work with Professor J. REN (cf. [1]). Let us keep the same notations as in [1]. Recall that a holomorphic function $F \in H^p(X, \mu)$ on a complex Wiener space X is defined by the limit in $L^p(X, \mu)$ of holomorphic polynomials on X.

1. H-derivatives

1.1. Proposition. Let $F \in H^{\flat}(X, \mu)$, $h \in H$, then

$$D_h F(x) = \lim_{\varepsilon \to 0} \frac{F(x + \varepsilon h) - F(x)}{\varepsilon}$$
 exists a.e.

Proof. Let P_n be a sequence of holomorphic polynomials such that $F = L^p - \lim_{n \to +\infty} P_n$.

Define $G_n(x, \xi) = P_n(x + \xi h)$ and $G(x, \xi) = F(x + \xi h)$, $\xi \in \mathbb{C}$. It is clear that $G_n(x, *)$ are holomorphic functions on \mathbb{C} . Let R > r > 0, by Cauchy formula:

$$G_n(x, \xi) = \frac{1}{2\pi i} \int_{|\eta|=R} \frac{G_n(x, \eta)}{\eta - \xi} d\eta$$
, $|\xi| < r$.

Therefore:

$$\sup_{|\xi| \le r} |G_n(x, \, \xi)| \le \frac{R}{2\pi (R-r)} \int_0^{2\pi} |G_n(x, \, Re^{i\theta})| d\theta.$$

Taking the expectation relative to x, we get:

$$\begin{split} \mathbf{E} \left(\sup_{|\xi| \le r} \left| G_n(x, \, \xi) \, \right| \right) & \leq \frac{R}{2\pi \, (R-r)} \mathbf{E} \left(\int_0^{2\pi} \left| G_n(x, \, Re^{i\theta}) \, \right| d \, \theta \right) \\ & = \frac{R}{2\pi \, (R-r)} \int_0^{2\pi} \mathbf{E} \left| G_n(x, \, Re^{i\theta}) \, \right| d \, \theta \\ & = \frac{R}{2\pi \, (R-r)} \int_0^{2\pi} \left(\int_X P_n(x) \, e^{\langle x, \, Re^{i\theta}_h \rangle - R^2 ||h||_H^2 \checkmark 4} d\mu(x) \, \right) d \, \theta \\ & \leq \frac{R}{R-r} ||P_n||_{L^p(X, \, \mu)} \exp \left\{ (q-1) \, R^2 ||h||_H^2 \diagup 4 \right\} . \end{split}$$

It follows that there exists a subsequence n_k such that

 $G_{n_k}(x, \xi)$ converge to $G(x, \xi)$ uniformly in $|\xi| \le r$ a.e. So $F(x+\xi h)$ is holomorphic in $|\xi| < r$. In particular, we have:

$$D_h F(x) = \left\{ \frac{d}{d\varepsilon} F(x + \varepsilon h) \right\}_{\varepsilon = 0}$$
 exists.

It is natural now to ask if $F \in H^p(X, \mu)$ belongs to some Sobolev space $W_{p,r}(X)$? In infinite dimensional case, this is false, as shown by the following example.

1.2. Example. Let φ_k be a Hilbertian basis of $H^{*(1,0)}$, define:

$$F(x) = \sum_{k \ge 1} \frac{\langle \varphi_k, x \rangle^k}{k \sqrt{k!}} .$$

Then $F \in H^2(X, \mu)$. However let C be the Cauchy operator on X:

$$Cu_k = \sqrt{k}u_k$$

where $u_k(x) = \frac{\langle \varphi_k, x \rangle^k}{\sqrt{k!}}$. We have:

$$CF = \sum_{k>1} (1/\sqrt{k}) u_k$$

and
$$\int_X |CF(x)|^2 d\mu(x) = \sum_k \frac{1}{k} = +\infty$$
.

2. Malliavin derivatives

2.1. A family of Borelian probability measures. Introduce first by $\rho_0 = \mu$,

$$\rho_n(A)=(2/\pi)\int_X\!\!d\rho_{n-1}(x)\int_{\mathrm{D}}\!\!\mathbf{1}_A(\xi,x)\log\!\frac{1}{|\xi|}d\sigma(\xi)$$
 , $A\subseteq X$ Borelian

where **D** is unit disc of **C** and σ Lebesgue measure on **D**. As remarked in [1], the measures introduced here ρ_n are singulier to the Wiener measure μ . So given a holomorphic function $F \in H^p(X, \mu)$, we have to extend its definition.

2.2. Redefinition of a holomorphic function. Let P_n be an approximating sequence of holomorphic polynomials of F in $L^p(X, \mu)$. By proposition 5.3 of [1], P_n is a Cauchy sequence in $L^p(X, \rho_k)$ for $0 \le k \le n$. So taking $\nu = \frac{\rho_0 + \dots + \rho_n}{n+1}$, P_n is also a Cauchy sequence in $L^p(X, \nu)$. Now let $\widetilde{F} = \frac{\rho_0 + \dots + \rho_n}{n+1}$

 $\lim_{n\to+\infty} P_n$ in $L^p(X, \nu)$. Then \widetilde{F} satisfies the following properties

- (i) $\widetilde{F} = F \mu \text{a.e. and } \widetilde{F} \text{ is } \rho_k \text{-measurable } (0 \le k \le n).$
 - **2.3.** Theorem. Given $F \in H^2(X, \mu)$, then

(i)
$$\widetilde{\mathscr{L}}F = \operatorname{Lim}_{t\to 0} \frac{\widetilde{T}_t F - \widetilde{F}}{t} exists in L^2(X, \rho_2);$$

(ii)
$$\int_{X} |\widetilde{\mathcal{Z}}F|^{2} d\rho_{2} \leq \int_{X} |F|^{2} d\mu$$

where T_t is Ornstein-Uhlenbeck semi-group on X.

Proof. Let P be a holomorphic polynomial, we have

$$T_t P(x) = \int_X P(e^{-t}x + (1 - e^{-2t})^{1/2}y) d\mu(y) = P(e^{-t}x).$$

Therefore

2.3.1.
$$\mathcal{L}P(x) = \lim_{t \to 0} \frac{T_t P(x) - P(x)}{t} = \lim_{t \to 0} \frac{P(e^{-t}x) - P(x)}{t}$$

$$= \lim_{\epsilon \to 0, \epsilon > 0} \frac{P((1-\epsilon)x) - P(x)}{\epsilon} .$$

It follows from proposition 5.4 of [1] that

$$\int_{\mathcal{X}} |\mathcal{L}P|^2 d\rho_1 \leq \int_{\mathcal{X}} |P|^2 d\mu .$$

Now by definition of ρ_2 and proposition 5.3 of [1], we get

2.3.2.
$$\int_{X} |\mathcal{L}P|^{2} d\rho_{2} \leq \int_{X} |P|^{2} d\mu .$$

Replacing P by $\mathcal{L}P$ and integrating the two sides of (5.9) of [1] with respect to ρ_1 , we obtain

$$\int_{X} |\mathcal{L}^{2}P|^{2} d\rho_{2} \leq \int_{X} |\mathcal{L}P|^{2} d\rho_{1} .$$

So

2.3.3.
$$\int_{X} |\mathcal{L}^{2}P|^{2} d\rho_{2} \leq \int_{X} |P|^{2} d\mu .$$

Put $G(t, x) = T_t P(x)$, we have $G'(t, x) = \frac{d}{dt}G(t, x) = T_t \mathcal{L}P(x)$. We have:

$$T_t P(x) = P(x) + \int_0^t \mathcal{L} T_s P(x) ds$$

$$\sup_{0 \le t \le 1} |T_t P(x)|^2 \le 2(|P(x)|^2 + \int_0^1 |\mathcal{L}T_s P(x)|^2 ds) .$$

2.3.4.
$$\int_{X} \sup_{0 \le t \le 1} |T_{t}P(x)|^{2} d\rho_{2}(x)$$

$$\le 2 \left(\int_{Y} |P(x)|^{2} d\rho_{2}(x) + \int_{1}^{1} ds \int_{Y} |\mathcal{L}T_{s}P(x)|^{2} d\rho_{2}(x) \right) .$$

Now taking $\mathcal{L}P$ as P in 2.3.4. and using 2.3.2 and 2.3.3, we obtain

2.3.5.
$$\int_{\mathbf{v}} \sup_{0 \le t \le 1} |G'(t, x)|^2 d\rho_2(x) \le 4 \int_{\mathbf{v}} |P|^2 d\mu .$$

Take P_n as a approximating sequence of holomorphic polynomials of F in $L^2(X, \mu)$ and $G_n(t, x) = T_t P_n(x)$. By 2.3.4. and 2.3.5, there exist a subset $A \subseteq X$ such that $\rho_2(A) = 1$ and a subsequence n_k such that for $x \in A$ $G'_{n_k}(t, x)$ converge uniformly in $t \in [0, 1]$ and $G_n(t, x)$ converge to $\widetilde{T}_t F(x)$.

Therefore for $x \in A$, $\frac{d}{dt} \widetilde{T}_t F(x)$ exists and

$$\int_{x} \sup_{0 \le t \le 1} \left| \frac{d}{dt} \widetilde{T}_{t} F(x) \right|^{2} d\rho_{2}(x) \le 4 \int_{x} |P|^{2} d\mu.$$

As $\left|\frac{\widetilde{T}_t F - \widetilde{F}}{t}\right| \le \sup_{0 \le t \le 1} \left|\frac{d}{dt} \, \widetilde{T}_t F(x)\right|$ for $0 \le t \le 1$, by Lebesgue dominated theorem, we get (i). (ii) follows from 2.3.2.

- 2.4. Higher order Malliavin derivatives.
- **2.4.1. Theorem.** We have:
- i) $\widetilde{\mathcal{L}}^n F$ exists in $L^2(X, \rho_{2n})$;
- ii) $\int_X |\widetilde{\mathscr{L}}^n F|^2 d\rho_{2n} \leq \int_X |F|^2 d\mu$,

Proof. By induction.

Géométrie et Analyse complexe 46-0, 5^e étage Université de Paris VI 75252 Paris cedex 05

Bibliography

[1] S. Fang and J. Ren, Sur le squelette et les dérivées de Malliavin des fonctions holomorphes sur un espace de Wiener complexe, J. Math. Kyoto Univ., 33-3 (1993).