On derivatives of holomorphic functions on a complex Wiener space

By

Shizan Fang

This note is a complement of the joint work with Professor J. REN (cf. [1]). Let us keep the same notations as in [1]. Recall that a holomorphic function $F \in H^{p}(X, \mu)$ on a complex Wiener space X is defined by the limit in $L^{p}(X, \mu)$ of holomorphic polynomials on X.

1. H-derivatives

1.1. Proposition. Let $F \in H^{p}(X, \mu), h \in H$, then

$$
D_{h} F(x)=\lim _{\varepsilon \rightarrow 0} \frac{F(x+\varepsilon h)-F(x)}{\varepsilon} \text { exists a.e. }
$$

Proof. Let P_{n} be a sequence of holomorphic polynomials such that

$$
F=L^{p}-\lim _{n \rightarrow+\infty} P_{n} .
$$

Define $G_{n}(x, \xi)=P_{n}(x+\xi h)$ and $G(x, \xi)=F(x+\xi h), \xi \in \mathbf{C}$. It is clear that $G_{n}(x, *)$ are holomorphic functions on \mathbf{C}. Let $R>r>0$, by Cauchy formula:

$$
G_{n}(x, \xi)=\frac{1}{2 \pi i} \int_{|\eta|=R} \frac{G_{n}(x, \eta)}{\eta-\xi} d \eta, \quad|\xi|<r
$$

Therefore:

$$
\sup _{|\xi| \leq r}\left|G_{n}(x, \xi)\right| \leq \frac{R}{2 \pi(R-r)} \int_{0}^{2 \pi}\left|G_{n}\left(x, R e^{i \theta}\right)\right| d \theta
$$

Taking the expectation relative to x, we get:

$$
\begin{aligned}
\mathbf{E}\left(\sup _{|\xi| \leq \mid}\left|G_{n}(x, \xi)\right|\right) & \leq \frac{R}{2 \pi(R-r)} \mathbf{E}\left(\int_{0}^{2 \pi}\left|G_{n}\left(x, R e^{i \theta}\right)\right| d \theta\right) \\
& =\frac{R}{2 \pi(R-r)} \int_{0}^{2 \pi} \mathbf{E}\left|G_{n}\left(x, R e^{i \theta}\right)\right| d \theta \\
& =\frac{R}{2 \pi(R-r)} \int_{0}^{2 \pi}\left(\int_{X} P_{n}(x) e^{\left\langle\left(x, R^{*} c^{i n}\right\rangle-R^{2}\| \|\| \| \|_{i} / 4\right.} d \mu(x)\right) d \theta \\
& \leq \frac{R}{R-r}\left\|P_{n}\right\|_{L^{\prime}(X, \mu)} \exp \left\{(q-1) R^{2}\|h\|_{H}^{2} / 4\right\} .
\end{aligned}
$$

It follows that there exists a subsequence n_{k} such that
$G_{n_{k}}(x, \xi)$ converge to $G(x, \xi)$ uniformly in $|\xi| \leq r$ a.e.
So $F(x+\xi h)$ is holomorphic in $|\xi|<r$. In particular, we have:

$$
D_{h} F(x)=\left\{\frac{d}{d \varepsilon} F(x+\varepsilon h)\right\}_{\varepsilon=0} \text { exists. }
$$

It is natural now to ask if $F \in H^{p}(X, \mu)$ belongs to some Sobolev space $W_{p, r}(X)$? In infinite dimensional case, this is false, as shown by the following example.

1.2. Example. Let φ_{k} be a Hilbertian basis of $H^{*(1,0)}$, define:

$$
F(x)=\sum_{k \geq 1} \frac{\left\langle\varphi_{k}, x\right\rangle^{k}}{k \sqrt{k!}} .
$$

Then $F \in H^{2}(X, \mu)$. However let C be the Cauchy operator on X :

$$
C u_{k}=\sqrt{k} u_{k}
$$

where $u_{k}(x)=\frac{\left\langle\varphi_{k}, x\right\rangle^{k}}{\sqrt{k!}}$. We have:

$$
\begin{aligned}
& C F=\sum_{k \geq 1}(1 / \sqrt{k}) u_{k} \\
& \text { and } \int_{X}|C F(x)|^{2} d \mu(x)=\sum_{k} \frac{1}{k}=+\infty .
\end{aligned}
$$

2. Malliavin derivatives

2.1. A family of Borelian probability measures. Introduce first by $\rho_{0}=\mu$,
$\rho_{n}(A)=(2 / \pi) \int_{X} d \rho_{n-1}(x) \int_{\mathbf{D}} \mathbf{1}_{A}(\xi, x) \log \frac{1}{|\xi|} d \sigma(\xi), A \subset X$ Borelian
where \mathbf{D} is unit disc of \mathbf{C} and σ Lebesgue measure on \mathbf{D}. As remarked in [1], the measures introduced here ρ_{n} are singulier to the Wiener measure μ. So given a holomorphic function $F \in H^{\phi}(X, \mu)$, we have to extend its definition.
2.2. Redefinition of a holomorphic function. Let P_{n} be an approximating sequence of holomorphic polynomials of F in $L^{p}(X, \mu)$. By proposition 5.3 of [1], P_{n} is a Cauchy sequence in $L^{p}\left(X, \rho_{k}\right)$ for $0 \leq k \leq n$. So taking $\nu=\frac{\rho_{0}+\cdots+\rho_{n}}{n+1}, P_{n}$ is also a Cauchy sequence in $L^{p}(X, \nu)$. Now let $\widetilde{F}=$ $\operatorname{Lim}_{n \rightarrow+\infty} P_{n}$ in $L^{p}(X, \nu)$. Then \widetilde{F} satisfies the following properties
(i) $\widetilde{F}=F \mu$-a.e. and \widetilde{F} is ρ_{k}-measurable $\left(0 \leq_{k} \leq_{n}\right)$.
2.3. Theorem. Given $F \in H^{2}(X, \mu)$, then
(i) $\widetilde{\mathscr{L}} F=\operatorname{Lim}_{t \rightarrow 0} \frac{\widetilde{T} F-\widetilde{F}}{t}$ exists in $L^{2}\left(X, \rho_{2}\right)$;
(ii) $\int_{X}|\widetilde{\mathscr{L}} F|^{2} d \rho_{2} \leq \int_{X}|F|^{2} d \mu$
where T_{t} is Ornstein-Uhlenbeck semi-group on X.
Proof. Let P be a holomorphic polynomial, we have

$$
T_{t} P(x)=\int_{X} P\left(e^{-t} x+\left(1-e^{-2 t}\right)^{1 / 2} y\right) d \mu(y)=P\left(e^{-t} x\right)
$$

Therefore
2.3.1. $\mathscr{L} P(x)=\operatorname{Lim}_{t \rightarrow 0} \frac{T_{t} P(x)-P(x)}{t}=\operatorname{Lim}_{t \rightarrow 0} \frac{P\left(e^{-t} x\right)-P(x)}{t}$

$$
=\operatorname{Lim}_{\varepsilon \rightarrow 0, \varepsilon>0} \frac{P((1-\varepsilon) x)-P(x)}{\varepsilon}
$$

It follows from proposition 5.4 of [1] that

$$
\int_{X}\left|\mathscr{L}_{P}\right|^{2} d \rho_{1} \leq \int_{X}|P|^{2} d \mu
$$

Now by definition of ρ_{2} and proposition 5.3 of [1], we get
2.3.2. $\quad \int_{X}|\varphi P|^{2} d \rho_{2} \leq \int_{X}|P|^{2} d \mu$.

Replacing P by \mathscr{L}_{P} and integrating the two sides of (5.9) of [1] with respect to ρ_{1}, we obtain

$$
\int_{X}\left|\mathscr{L}^{2} P\right|^{2} d \rho_{2} \leq \int_{X}\left|\mathscr{L}_{P}\right|^{2} d \rho_{1}
$$

So
2.3.3. $\quad \int_{X}\left|\varphi^{2} P\right|^{2} d \rho_{2} \leq \int_{X}|P|^{2} d \mu$.

Put $G(t, x)=T_{t} P(x)$, we have $G^{\prime}(t, x)=\frac{d}{d t} G(t, x)=T_{t} \mathscr{L} P(x)$. We have:

$$
\begin{aligned}
& T_{t} P(x)=P(x)+\int_{0}^{t} \mathscr{L} T_{s} P(x) d s \\
& \sup _{0 \leq 1 \leq 1}\left|T_{t} P(x)\right|^{2} \leq 2\left(|P(x)|^{2}+\int_{0}^{1}\left|\mathscr{L} T_{s} P(x)\right|^{2} d s\right)
\end{aligned}
$$

2.3.4. $\quad \int_{X} \sup _{0 \leq i \leq 1}\left|T_{t} P(x)\right|^{2} d \rho_{2}(x)$

$$
\leq 2\left(\int_{X}|P(x)|^{2} d \rho_{2}(x)+\int_{0}^{1} d s \int_{X}\left|\mathscr{L} T_{s} P(x)\right|^{2} d \rho_{2}(x)\right)
$$

Now taking $\mathscr{L} P$ as P in 2.3.4. and using 2.3.2 and 2.3.3, we obtain
2.3.5. $\quad \int_{X} \sup _{0 \leq \iota \leq 1}\left|G^{\prime}(t, x)\right|^{2} d \rho_{2}(x) \leq 4 \int_{X}|P|^{2} d \mu$.

Take P_{n} as a approximating sequence of holomorphic polynomials of F in $L^{2}(X, \mu)$ and $G_{n}(t, x)=T_{t} P_{n}(x)$. By 2.3.4. and 2.3.5, there exist a subset $A \subset X$ such that $\rho_{2}(A)=1$ and a subsequence n_{k} such that for $x \in A G_{n_{k}}^{\prime}(t, x)$ converge uniformly in $t \in[0,1]$ and $G_{n}(t, x)$ converge to $\widetilde{T}_{t} F(x)$.

Therefore for $x \in A, \frac{d}{d t} \widetilde{T}_{t} F(x)$ exists and

$$
\int_{X} \sup _{0 \leq ı \leq 1}\left|\frac{d}{d t} \widetilde{T}_{t} F(x)\right|^{2} d \rho_{2}(x) \leq 4 \int_{X}|P|^{2} d \mu
$$

As $\left|\frac{\widetilde{T}_{t} F-\widetilde{F}}{t}\right| \leq \sup _{0 \leq ı \leq 1}\left|\frac{d}{d t} \widetilde{T}_{t} F(x)\right|$ for $0 \leq t \leq 1$, by Lebesgue dominated theorem, we get (i). (ii) follows from 2.3.2.

2.4. Higher order Malliavin derivatives.

2.4.1. Theorem. We have:

i) $\widetilde{\mathscr{L}}^{n} F$ exists in $L^{2}\left(X, \rho_{2 n}\right)$;
ii) $\int_{X}\left|\widetilde{\mathscr{L}}^{n} F\right|^{2} d \rho_{2 n} \leq \int_{X}|F|^{2} d \mu$,

Proof. By induction.

Géométrie et Analyse complexe 46-0, 5^{e} étage Université de Paris VI 75252 Paris cedex 05

Bibliography

[1] S. Fang and J. Ren, Sur le squelette et les dérivées de Malliavin des fonctions holomorphes sur un espace de Wiener complexe, J. Math. Kyoto Univ., 33-3 (1993).

