Stationary measures for automaton rules 90 and 150

By

Мипеті Міуамото

This is a continuation of [3]. Let $\Omega = \{0, +1\}^{Z}$. A transformation $\Lambda: \Omega \rightarrow \Omega$ is defined as follows;

 $Ax(i) = x(i-1) + x(i+1) \mod 2$,

where $x \in \Omega$ and $i \in Z$. In [3] Λ was called *one-dimensional life game*. According to the classification of one-dimensional automata by Wolfram [5], this is rule 90. We are interested in the Λ -invariant measures on Ω . For $0 \leq p \leq 1$, let β_p be the distribution of the Bernoulli trials with density p. It is shown in [2,3,4] that $\beta_{1/2}$, the distribution of coin tossing, is Λ -invariant.

Furthermore, let M be the set of translation-invariant mixing measures on Ω and let $\operatorname{Conv}(M)$ be the convex hull of M, i.e., the set of convex combinations of measures in M. If we replace the adjective "mixing" with "ergodic", we have the set $\operatorname{Conv}(E)$ of all translation-invariant measures (the ergodic decomposition theorem). The behaviour of $\Lambda^n P$ as $n \to \infty$ for $P \in \operatorname{Conv}(M)$ is quite different from that for $P \in \operatorname{Conv}(E) \setminus \operatorname{Conv}(M)$. First we see the behaviour for $P \in \operatorname{Conv}(M)$. The following theorem is an improvement of Theorem 3 in [3].

Theorem 1. Assume $P \in \text{Conv}(M)$. Then, $\Lambda^n P$ converges as $n \to \infty$ if and only if P is a convex combination of β_0 , $\beta_{1/2}$ and β_1 .

Collorary (Theorem 1 in [3]). Assume $P \in \text{Conv}(M)$. P is Λ -invariant if and only if P is a convex combination of β_0 and $\beta_{1/2}$.

Remark that $\Lambda^n \beta_p$ does not converge as $n \to \infty$ unless p = 0, 1/2, 1. But Theorem 4 in [3] says that if 0

lim
$$1/N \sum_{n=0}^{N-1} \Lambda^n \beta_p = \beta_{1/2}.$$

It is natural to ask if there are any other Λ -invariant measures outside Conv (M) [1]. The answer is "Yes, there are infinitely many" [4]. Let us show this in more general setting.

Let $n \ge 3$ be an odd integer. A configuration x_n in Ω is defined as follows;

 $x_n (i) = \begin{cases} 0 & \text{if } i = 0 \mod n, \\ 1 & \text{otherwise.} \end{cases}$

Received July 7, 1993

This x_n is periodic in space. Furthermore, x_n is periodic in time, i.e., we have the following lemma (see the proof of Theorem 1 in [4]).

Lemma 2. For each odd $n \ge 3$, there exists $m \ge 1$ such that $\Lambda^m x_n = x_n$.

Set $\nu_n = \sum_{j=0}^{n-1} \theta^j \delta_{xn}/n$, where θ is the translation operator, and set $\mu_n =$

 $\sum_{j=0}^{m-1} \Lambda^j \nu_n / m.$ It is clear that μ_n is Λ - and translation-invariant. We see that $\Lambda x_3 = x_3$, i.e., x_3 is a fixed point of Λ . The measure $\mu_3 = (\delta_{x_3} + \delta_{\theta x_3} + \delta_{\theta^2 x_3}) / 3$

is, therefore, ergodic. But, if $n \ge 5$,

 $E = \{x_n, \theta x_n, \theta^2 x_n, \cdots, \theta^{n-1} x_n\}$

is a translation-invariant set with $0 < \mu_n$ (E) <1. The inequality μ_n (E) <1 follows from $Ax_n \notin E$ and μ_n ($|Ax_n|$) >0. Thus we have

Theorem 2. For each odd $n \ge 3$, μ_n is Λ - and translation-invariant. The measure μ_3 is ergodic, but μ_n $(n \ge 5)$ are not ergodic.

If $n \ge 5$, μ_n is a convex combination of the *ergodic* measures $\Lambda^j \nu_n$ $(0 \le j \le m - 1)$. Thus, the Λ -invariance of $\mu_n \in \text{Conv}(E)$ does not imply the Λ -invariance of its ergodic components. On the contrary, Collorary to Theorem 1 says that the Λ -invariance of a convex combination of *mixing* measures implies the Λ -invariance of its components. In fact, its components must be β_0 and $\beta_{1/2}$.

We have Λ -invariant ergodic measures β_0 , $\beta_{1/2}$ and μ_3 . It is natural to ask if there are any other Λ -invariant ergodic measures. The answer is again "Yes, there are infinitely many". Let $p \ge 2$ be an integer. For $1 \le i \le 2^p$, set $y_p(i) = 1$. For $i \ge 2^p + 1$, define $y_p(i)$ successively as follows: $y_p(i) = \Lambda y_p(i-2^p+1)$.

Lemma 2. 1) y_p can be extended to $\{i \leq 0\}$ so that y_p is periodic in space, i.e., $y_p = \theta^u y_p$ for some $u \geq 1$. 2) $\Lambda y_p = \theta^v y_p$, where $v = 2^p - 1$.

Set $\varepsilon_p = \sum_{j=0}^{u-1} \theta^j \delta_{y_p} / u$. Since y_p is periodic in space, it is clear that $\theta \varepsilon_p = \varepsilon_p$, $\Lambda \varepsilon_p = \sum_{j=0}^{u-1} \theta^{j+v} \delta_{y_p} / u$ $= \varepsilon_p$.

If $E \in \Omega$ is translation-invariant and $\varepsilon_p(E) > 0$, then $\varepsilon_p(E) = 1$. Thus we have

Theorem 3. For each $p \ge 2$, ε_p is Λ -invariant and ergodic.

532

Let us prove Theorem 1 and Lemmata 1, 2. The following lemma plays the key role in the computation of Λ^n .

Lemma 3. For any k it holds that $\Lambda^{2^{k}} x(i) = x(i-2^{k}) + x(i+2^{k}) \mod 2.$

Proof is easy.

To prove Theorem 1 let us introduce the Fourier transform of a probability measure μ on Ω . Let $\xi = (\xi(i); -\infty < i < +\infty)$ be a sequence of 0 and 1 with only finitely many 1's. For $\omega = (\omega(i); -\infty < i < +\infty) \in \Omega$, set $\langle \xi, \omega \rangle = +\infty$

 $\sum_{i=-\infty}^{\infty} \xi(i) \omega(i).$ Denote the Fourier transform of μ by F (μ) or $\hat{\mu}$, i.e.,

F
$$(\mu)$$
 $(\xi) = \hat{\mu}(\xi) = \int_{\varrho}^{\zeta} (-1)^{\langle \xi, \omega \rangle} \mu(\mathrm{d}\omega)$

We have, by Lemma 3,

$$\begin{split} \mathbf{F}\left(\Lambda^{2^{n}}\mu\right)\left(\xi\right) = & \int_{\mathcal{Q}}\left(-1\right)^{\langle\xi,\Lambda^{*}\omega\rangle}\mu\left(\mathrm{d}\omega\right) \\ = & \int_{\mathcal{Q}}\left(-1\right)^{\langle\xi,\,\theta^{-*}\omega\rangle + \langle\xi,\,\theta^{**}\omega\rangle}\mu\left(\mathrm{d}\omega\right) \end{split}$$

If μ is in *M*, i.e., if μ is mixing and translation-invariant, then,

lim F $(\Lambda^{2^n}\mu)(\xi) = \hat{\mu}(\xi)^2$.

By the same argument we have

 $\lim \operatorname{F}\left(\Lambda^{2^{2n+2n}}\mu\right)\left(\xi\right) = \widehat{\mu}\left(\xi\right)^{4} .$

Proof of Theorem 1. Take a probability measure π on M. Set $P(\cdot) = \int_{M} \mu(\cdot) d\pi(\mu) \in \operatorname{Conv}(M)$.

By the above argument we see

$$\lim_{M \to M} F(\Lambda^{2^{n}}P)(\xi) = \int_{M} \lim_{M \to M} F(\Lambda^{2^{n}}\mu)(\xi) d\pi(\mu) = \int_{M} \hat{\mu}(\xi)^{2} d\pi(\mu),$$

$$\lim_{M \to M} F(\Lambda^{2^{2n+2^{n}}}P)(\xi) = \int_{M} \lim_{M \to M} F(\Lambda^{2^{2n+2^{n}}}\mu)(\xi) d\pi(\mu) =$$

$$= \int_{M} \hat{\mu}(\xi)^{4} d\pi(\mu) .$$

Assume $\Lambda^n P$ converges as $n \rightarrow \infty$. Since

 $\lim \mathbf{F} \left(\boldsymbol{\Lambda}^{2^{n}} \boldsymbol{P} \right) \left(\boldsymbol{\xi} \right) = \lim \mathbf{F} \left(\boldsymbol{\Lambda}^{2^{2^{n}+2^{n}}} \boldsymbol{P} \right) \left(\boldsymbol{\xi} \right) \text{ ,}$

we have

$$\int_{M} \left\{ \hat{\mu}(\xi)^{2} - \hat{\mu}(\xi)^{4} \right\} \mathrm{d}\pi(\mu) = 0$$

which implies $\hat{\mu}(\xi) = 0$, ± 1 for a. a. $(\pi)\mu$.

Since $\lim \Lambda^n \beta_0 = \lim \Lambda^n \beta_1 = \beta_0$, we can assume $\pi(\{\beta_0, \beta_1\}) = 0$. We have $\hat{\mu}(\xi) = 0$ for any $\xi \neq \cdots 000 \cdots$ and for a. a. $(\pi) \mu$, which means $\mu = \beta_{1/2}$ for a.a. $(\pi) \mu$, i.e., $P = \beta_{1/2}$. The "only if" part of Theorem 1 is thus proved. The "if" part is clear, because $\beta_{1/2}$ is Λ -invariant.

Proof of Lemma 1. Let us prove Lemma 1 for odd $n \ge 3$. We can write $Ax(i) = \sum_{j \in \{\pm 2\} + i} x(j) \mod 2 ,$ $A^2x(i) = \sum_{j \in \{\pm 2\} + i} x(j) \mod 2 .$ Therefore, $A^3x(i) = A^2Ax(i)$ $= \sum_{j \in \{\pm 2\} + i} Ax(j) \mod 2$ $= \sum_{j \in \{\pm 2\} + i} \{x(j-1) + x(j+1)\} \mod 2$ $= \sum_{j \in \{\pm 2\pm 1\} + i} x(j) \mod 2 .$

Let $m = 2^k - 1 = 2^{k-1} + 2^{k-2} + 2 + 1$, where k will be specified later. Let $S = \{\pm 2^{k-1} \pm 2^{k-2} + 2 \pm 1\}$

$$= \{-2^{k}+1, -2^{k}+3, \cdots, -1, +1, \cdots, 2^{k}-3, 2^{k}-1\}$$

We can easily see by Lemma 3

$$\Lambda^{m}(i) = \sum_{j \in S+i} x(j) \mod 2$$
 .

Since S and x_n are symmetric with respect to 0, it holds that

$$\Lambda^m x_n (0) = \sum_{\substack{j \in S \\ = 0}} x_n (j) \mod 2$$

Next we must show that

 $\begin{array}{l} \Lambda^m x_n(i) = 1 \mod 2 \ (1 \leq i \leq n-1) \\ \text{We consider the pairs } \{-j+2i, j\} \\ \text{Newark that if } j \text{ is in } S+i \text{ then } -j+2i \text{ is } \\ \text{in } S+i \text{ and vice versa. We say that a pair } \{-j+2i, j\} \\ \text{ in } S+i \text{ is positive if } \\ x_n(-j+2i) + x_n \ (j) = 1 \mod 2 \end{array}$

If neither -j+2i nor j is divisible by n, then the pair $\{-j+2i, j\}$ is not positive. It is impossible that both -j+2i and j are divisible by n. So that it is sufficient to consider only pairs $\{-tn+2i, tn\}$ and $\{-tn, tn+2i\}$ with $t \ge 0$. Let $\#_+$ ($\#_-$) be the number of pairs $\{-tn+2i, tn\}$ ($\{-tn, tn+2i\}$) in S+i with t>0, i.e., the number of t such that $0 < tn \le m+i$ ($0 < tn+2i \le m+i$). We separate the case t=0.

In case that *i* is odd, $S+i \in 2Z$. Therefore, |-0n+2i, 0n| = |-0n, 0n+2i| is in S+i. Since the pair |2i, 0| is positive,

 $\Lambda^m x_n \left(i \right) = 1 + \#_+ + \#_- \ \mathrm{mod} \ 2 \ . \label{eq:phi}$ We see that

534

 $\#_{+} - \#_{-}$

= the number of even t which satisfies $m-i\!<\!tn\!\le\!m\!+\!i$. On the other hand we have

Lemma 4. We can choose k so that $m = 2^k - 1$ is divisible by n.

Set q = m/n, i.e., m = nq. Remark that q is odd. The inequality $m - i < tn \le m + i$ is equivalent to -i < n $(t-q) \le i$. Since q is odd but t must be even, it holds $|t-q| \ge 1$, which implies $|n(t-q)| \ge n > i$. Thus the inequality $m - i < tn \le m + i$ has no solution, i.e., $\#_{+} - \#_{-} = 0$. We have

 $\Lambda^{m} x_{n}(i) = 1 + \#_{+} + \#_{-} \mod 2$ = 1 + #_{+} - #_{-} \mod 2 = 1.

In case that *i* is even, $S+i \in 2Z+1$. The pair $\{-0n+2i, 0n\} = \{-0n, 0n + 2i\}$ is not in S+i. Therefore,

 $\Lambda^m x_n(i) = \#_+ + \#_- \mod 2 .$

We have

 $\#_{+} - \#_{-}$

= the number of odd t which satisfies $m - i < tn \leq m + i$.

The inequality $m-i < tn \le m+i$, which is equivalent to $-i < n(t-q) \le i$, has the unique odd solution t=q. Thus $\#_{+}-\#_{-}=1$. Therefore,

$$\begin{array}{l}
A^{m}x_{n}(i) \\
= \#_{+} + \#_{-} \mod 2 \\
= \#_{+} - \#_{-} \mod 2 \\
= 1 .
\end{array}$$

Lemma 1 is thus proved.

Proof of Lemma 4. Let p be a prime and let e be a natural number. Let us regard $Z/p^e Z$ as a group with multiplication. The multiples of p should be taken away, because they are nilpotent. The number of them is p^{e-1} . Therefore, the order of this group is equal to $p^e - p^{e-1} = (p-1) p^{e-1}$. 2 is an element of this group. Therefore, $2^{(p-1)p^{e-1}} = 1$ in $Z/p^e Z$, hence $2^{s(p-1)p^{e-1}} = 1$ in $Z/p^e Z$ for any $s \ge 0$. Thus

 $2^{s(p-1)pe-1}-1$

is divisible by p^e for any $s \ge 0$.

Let $n = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r}$ be the factorization of n into prime factors. Set $k = (p_1 - 1)p_1^{e_1-1} (p_2-1)p_2^{e_2-1} \cdots (p_r-1)p_r^{e_r-1}$. By the above argument $2^k - 1$ is divisible by $p_j^{e_j}$ for $1 \le j \le r$, hence it is divisible by n.

Poof of Lemma 2. First remark that by definition of y_p

- $y_{p}(i) = 1 \ (1 \leq i \leq 2^{p}),$
- $y_{p}(i) = 0 (2^{p} + 1 \le i \le 2^{p+1} 2),$
- $y_{p} (2^{p+1}-1) = y_{p}(2^{p+1}) = 1$.

It is easy to see that for $k \ge 1$ and $i > k 2^{p}$

$$\begin{split} y_{\mathfrak{p}} & (i) = \Lambda^{k} y_{\mathfrak{p}} \ (i-k \ (2^{\mathfrak{p}}-1)) \ . \\ \text{For } k = 2^{\mathfrak{p}-1} \text{ and } i > 2^{2\mathfrak{p}-1}, \text{ we have by Lemma 3} \\ y_{\mathfrak{p}} & (i) = \Lambda^{2^{\mathfrak{p}-1}} y_{\mathfrak{p}} \ (i-2^{\mathfrak{p}-1}(2^{\mathfrak{p}}-1)) \\ &= y_{\mathfrak{p}} (i-2^{\mathfrak{p}-1}(2^{\mathfrak{p}}-1)-2^{\mathfrak{p}-1}) + y_{\mathfrak{p}} \ (i-2^{\mathfrak{p}-1}(2^{\mathfrak{p}}-1)+2^{\mathfrak{p}-1}) \text{ mod } 2 \\ &= y_{\mathfrak{p}} (i-2^{2\mathfrak{p}-1}) + y_{\mathfrak{p}} \ (i-2^{2\mathfrak{p}-1}+2^{\mathfrak{p}}) \text{ mod } 2 \ . \end{split}$$

Using this, we have

$$y_{p} (i+2^{2p-1}) = y_{p} (i) + y_{p} (i+2^{p}) \mod 2$$

=1+0 mod 2 (1 \le i \le 2^{p}-2)
=1.
$$y_{p} (2^{p}-1+2^{2p-1}) = y_{p} (2^{p}-1) + y_{p} (2^{p+1}-1) \mod 2$$

=1+1 mod 2
=0,
$$y_{p} (2^{p}+2^{2p-1}) = y_{p} (2^{p}) + y_{p} (2^{p+1}) \mod 2$$

=1+1 mod 2
=0

Therefore, we can see that for $1 \leq i \leq 2^{p}$

 $y_p(i+2^{2p-1})=y_p(i+2)$,

which implies that $\{y_p (i): i \ge 1\}$ has the period $u = 2^{2p-1} - 2$. It is easy to extend y_p to $\{i \le 0\}$.

The second assertion in Lemma 2 is obvious by definition of y_p .

Analogous arguments are possible also for rule 150:

 $\tilde{A}x(i) = x(i-1) + x(i) + x(i+1) \mod 2$.

As to $\widetilde{\Lambda}$ we have

Lemma 3'. For any k it holds that $\Lambda^{2^{k}}x$ (i) = x $(i-2^{k}) + x$ (i) + x $(i+2^{k}) \mod 2$.

Theorem 1'. Assume $P \in Conv(M)$. The following three conditions are equivalent to each other.

- 1) $\widetilde{\Lambda}^n P$ converges as $n \to \infty$.
- 2) P is $\tilde{\Lambda}$ -invariant.

3) P is a convex combination of β_0 , $\beta_{1/2}$ and β_1 .

Outline of Proof. Take a probability measure π on M. Set

$$P(\cdot) = \int_{M} \mu(\cdot) d\pi(\mu) \in \text{Conv} (M) .$$

Assume $\tilde{\Lambda}^{nP}$ converges as $n \to \infty$. By the same argument as in the proof of Theorem 1, we see

$$\int_{\mathbf{M}} \left\{ \hat{\mu}(\xi)^{3} - \hat{\mu}(\xi)^{9} \right\} \, \mathrm{d}\pi(\mu) = 0$$

Let ξ_0 be a finite sequence of 0 and 1 and let

 $\xi = \cdots 000 \xi_0 0^n \xi_0 000 \cdots$

The above equality holds for this ξ . Since μ is mixing, letting $n \rightarrow \infty$, we have

$$\int_{M} \{ \hat{\mu}(\xi_{0})^{6} - \hat{\mu}(\xi_{0})^{18} \} d\pi(\mu) = 0$$

This implies that P is a convex combination of β_0 , $\beta_{1/2}$ and β_1 .

The convergence of the Cesaro means for $\tilde{\Lambda}^{n}P$ can be proved by the Fourier transformation method [2].

We have infinitely many Λ -invariant measures outside Conv (M). Let $n \ge 5$ be an odd integer. A configuration \tilde{x}_n in Ω is defined as follows;

$$\widetilde{x}_n(i) = \begin{cases} 0 \text{ if } i = 0, \pm 1 \mod n, \\ 1 \text{ otherwise.} \end{cases}$$

Lemma 1'. For each odd $n \ge 5$, there exists $m \ge 1$ such that $\Lambda^m \tilde{x}_n = \tilde{x}_n$.

Proof. By Lemma 4 we can choose k so that $m = 2^{2k} - 1$ is divisible by n. By Lemma 3' we see

$$\begin{split} \widetilde{\Lambda}^{m} \widetilde{x} \left(i \right) = \widetilde{x} \left(i \right) + \sum_{0 < 3h \leq 2^{2k} - 1} \left\{ \widetilde{x} \left(3h - 1 + i \right) + \widetilde{x} \left(3h + i \right) \right\} \\ + \sum_{0 < 3h \leq 2^{2k} - 1} \left\{ \widetilde{x} \left(-3h + i \right) + \widetilde{x} \left(-3h + 1 + i \right) \right\} \mod 2. \end{split}$$

Setting $\widetilde{z}(j) = \widetilde{x}_n(j) + \widetilde{x}_n(j+1) \mod 2$, we have

$$\widetilde{\Lambda}^{m}\widetilde{x}_{n}(i) = \widetilde{x}_{n}(i) + \sum_{0 < 3h \leq 2^{2k-1}} \{\widetilde{z}(3h-1+i) + \widetilde{z}(-3h+i)\} \mod 2.$$

Remark that $\tilde{z}(3h-1+i)=1$ if and only if $3h-1+i=-2,+1 \mod n$ and that $3h-1+i=-2 \mod n$ means $3(h+1)-1+i=+1 \mod n$. Let

 $h_0 = \min \{h; 3h - 1 + i = -2 \mod n, h \ge 0\}$,

 $h_1 = \max \{h; 3h - 1 + i = -2 \mod n, 3h \le 2^{2k-1}\}$.

We have

$$\sum_{0<3h \le 2^{2^{k}-1}} \tilde{z}(3h-1+i) = \sum_{0<3h \le 2^{2^{k}-1}, 3h-1+i=-2,+1 \mod n} \tilde{z}(3h-1+i)$$

= $\tilde{z}(3h_{0}-1+i) + \tilde{z}(3(h_{0}+1)-1+i)$
+ $\sum_{ho
+ $\tilde{z}(3h_{1}-1+i) + \tilde{z}(3(h_{1}+1)-1+i) \mod 2$.$

Note that $m = 2^{2k} - 1 = (1+3)^k - 1$ is a multiple of 3 and that three equalities $h_0=0$, $h_1=2^{2k}-1$ and $i=-1 \mod n$ are mutually equivalent. In case $h_0=0$, the first and the last terms must be omitted. In any case

 $\sum_{\substack{0 < 3h \leq 2^{2k-1} \\ 0 < 3h \leq 2^{2k-1}}} \tilde{z}(3h-1+i) = 0 \mod 2 .$ In the same way we can see $\sum_{\substack{0 < 3h \leq 2^{2k-1} \\ 0 < 3h \leq 2^{2k-1}}} \tilde{z}(-3h+i) = 0 \mod 2 .$ Thus we have $\widetilde{A}^m \tilde{x}_n (i) = \widetilde{x}_n (i) .$

> Division of Mathematics, Faculty of Integrated Human Studies, Kyoto University

References

- [1] R. Durrett, Lecture notes on particle systems and percolation, Wadsworth, 1988.
- [2] D. A. Lind, Applications of ergodic theory and sofic systems to cellular automata, Physica D, 10 (1984), 36-44.
- [3] M. Miyamoto, An equilibrium state for a one-dimensional life game, J. Math. Kyoto Univ., 19 (1979), 525-540.
- [4] S. S. Vallander, One system of automata with local interactions, Multicomponent random systems, Adv. Prob. relat. Top., 6 (1980), 577-587.
- [5] S. Wolfram, Statistical mechanics of cellular automata, Rev. of Modern Phys., 55 (1983), 601-644.