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Stationary measures for automaton rules 90 and 150

By

Munemi MIYAMOTO

This is a continuation of [3 ]. Let Q =  0 ,+ 1  z . A transformation A : ,S2—

Q  is defined as follows;
A x  (i)  = x  (i + x  (i + 1 ) mod 2

w here x  E  Q  a n d  i  E  Z . I n  [ 3 ]  A  w a s c a lle d  one-dimensional life game.
According to the classification of one-dimensional automata by W olfram  [5],
th is  is  ru le  9 0 .  W e a re  interested in  the  A -invariant m easures on  D . F o r 0

let $ p  be the distribution of the B ernoulli trials with density p. It is
shown in  [2 ,3 ,4 ] that 131/2 , the distribution of coin tossing, is A-invariant.

Furthermore, let M be the set of translation-invariant mixing measures on
Q  and le t Cony (M )  be the  convex hull of M, i.e., th e  se t o f convex combina-
tions of measures in M. If we replace the adjective "mixing" with "ergodic", we
have the  se t Cony (E ) o f a ll translation-invariant m easures (the  ergodic de-
com position theorem ). T he  behaviour of An P  as n—“)0 for P  E Cony (M )  is
quite different from  that for P  E Cony (E) Cony (M ) .  F irst w e  see  th e  be-
hav iour fo r  P  E  Cony (M ) .  T h e  fo llow ing  theorem  is a n  improvement of
Theorem 3 in  [3].

Theorem 1. Assume P E Cony (M) . Then, A n P converges as n,—) 00 if
and only if P is a convex combination of /30, )31/2 and Si.

Collorary (Theorem 1  i n  [3 ]) . Assume P E Cony (M ) .  P  is A -  in-
variant if and only if P is a convex combination of So and Sin.

R em ark that A n 19p d o e s  n o t converge as n—> œ unless p = 0 ,1 / 2 ,1 . But
Theorem 4 in  [3 ] says that if 0<p<1

N-1
lim 1/N E A n i3p /

3
112.

n=o
It is  n a tu ra l to  a sk  if  there  a re  any other A-invariant m easures outside

Cony (M )  [1]. T h e  an sw er is  "Yes, the re  a re  infin ite ly  m any" [4 ] . Let us
show this in more general setting.

Let n a - 3  be  a n  o d d  in te g e r . A configuration x n  in  D  is defined a s  fol-
lows;

{ O  if  i = 0 mod n,
x n ( t )  =

otherwise.
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This x n is periodic  in  space. Furthermore, x n  is  period ic  in time, i.e., we have
the following lemma (see the proof of Theorem 1 in  [4]).

Lemma 2. For each odd na . 3, there ex ists m  1 such that Am x n = x n .

m-1

n-1

S e t un =  E
i=0

O & / n , w here  19 i s  the  transla tion  operator, a n d  se t ftn =

E Aiv n /m . I t  is  c le a r  th a t ,un is  A -  and translation-invariant. W e see that
i=o
11x3 = x 3, i.e., .x3 i s  a  fixed point of A .  The measure p3= (5x3+583 - 1- 682x3) /3
is, therefore, ergodic. But, if

ixn , Oxn, 02x,, ........  en - ixn}

is  a  transla tion-invarian t se t w ith  0 < fi n (E ) < 1 .  T h e  inequality /in  (E ) <1
follows from Axn E  and fin ( 1Axn1) >0. Thus we have

Theorem 2. For each  o d d  n  3, g n  is A - and translation-invariant. The
measure t13 is  ergodic, but ti n ( n  5) are not ergodic.

If n  5 , [ e n  is  a  convex combination of the ergodic measures A i vn ( 0 j
—  1). T h u s , t h e  A-invariance o f  tin E  C ony ( E )  d o e s  n o t  im p ly  the
A -invariance  o f  i t s  ergodic com ponents. O n  t h e  c o n tra ry , Collorary to
Theorem 1 says that the A-invariance of a convex combination of m ix ing mea-
sures implies the A-invariance of its components. In fact, its components must
be $o and $1/2.

W e have A -invariant ergodic measures So, ,81/2 and  f13 . It is  na tu ra l to
ask if there are any other A -invariant ergodic measures. The answer is again
"Yes, the re  a re  infinitely many". Let p  2  b e  a n  integer. F o r  1 i  s e t
yp (i) =1. For i 2 '+1 , define  yp (i) successively as follows:

yp (i) =Ayp (i - 2 + 1) .

Lemma 2. 1 ) y p can be ex tended to l i s o  t h a t  yp is periodic in
space, i.e., yp= Ou yp for some u
2) Ayp=0° yp, where v=2P —1.

n-i
Set Ep =  EOldup/u . Since yp is periodic in space, it is clear that

i=o
Osp-=Ep,

u-1

Aep=- Eei±v5y„,.
= E p

If E C Q is translation-invariant and Ep (E) >0, then Ep (E) =1. Thus we have

Theorem 3. For each p 2, Ep is A -inv ariant and ergodic.
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L et us prove Theorem  1 and Lemmata 1, 2. T he  following lemma plays
the key role in the computation of A".

Lemma 3. For any I? it holds that
A 2 k  x (i) =x (i —  2k) +x (i +2 k )  mod 2.

Proof is easy.

To prove Theorem 1 le t us introduce the Fourier transform of a probabil-
ity measure p on D . Let ( (i); — co <i <-1- co) be  a  sequence of 0 and 1
with only finitely many l's. F or co-= (co (i); — co < i<  + c o )  E D, set K .  co) =

,g(i)o) (i) . Denote the Fourier transform of by F (tt) or ,u, i.e.,

F (P) = 2 ( )  = L (-1 )(e ,w ),(d .)  .
We have, by Lemma 3,

F(A 2 ) = A '") (do))
_ f( 1 )+  0 , 0  ( d w )

sa
If g  is in M, i.e., if g  is mixing and translation-invariant, then,

lim F (A 2 n tt) =42() 2  .

By the same argument we have
lirn F (A""

2 fl

11) =Te ( ) 4

Proof of Theorem 1. Take a probability measure rc on M . Set

P ( • ) = f m tt ( • ) d ( g )  E Cony (M ) .

By the above argument we see

lim F (A 2 " p) = f Mhim F (A 2 n p ) () d  t) = f ur l  'd 7T (g)

Urn F (A22n±2nP)
= L

 lim F (A 22 2 )  ( )d r  (g) =

La 4d7C (I1)

Assume A P  converges as n— >00. Since
lim F (A 2 nP) =lirn F(A 2 2 n + 2 "P) ,

we have

fM
2 — 12 ( 0  41 dz (P) = 0 ,

which implies /2() =0, ±1 for a . a . (77.) g.
Since lim !Ingo = lim Ands, =po, we can assume 7r ( iSo, ) = 0 .We have

12 ( ) =0  for a n y  *•••000--•and fo r  a . a . (7r) g, which means p=i31/2 for a.a.
(r) i.e., P = d3112. The "only if" part of Theorem 1 is  th u s  p ro v e d . The "if"
part is clear, because /31/2 is A-invariant.
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Proof of Lemma 1. Let us prove Lemma 1 for odd We can write

A T ( i )  =  E mod 2 ,
j e i ± 1}-Fi

E x ( ; )  mod 2 .
fe4±2}-Fi

Therefore,
A 3  x (i) =A 2Ax (i)

A x (j) mod 2
ie{± 21+ i

E 1x - 1) + x  (i-i-1 )} mod 2
,E,±2},,

x ( j )  mod 2 .
ie{±2±1}-Fi

Let m=2 k — 2k - 1 ±2 k - 2 ... +2+1, where k will be specified later. Let
S =  1+2k-1+.2k-2, +2+11

= 1-2 k +1, —2 k +3,•••,-1,+1,•••, 2 k -3, 2 k -11 .
We can easily see by Lemma 3

Am (i) =  E x ( i )  mod 2 .
jeS + i

Since S  and x n  a re  symmetric with respect to  0, it holds that

Amxn (0) = xn 0.) mod 2
iEs

= 0 .
Next we must show that

A nixn(i) =1 mod 2 (1 1) .
We consider th e  p a irs  1—j+2i, j1. Remark that if j  is in S + i then  —j±2i is
in S + i and vice versa. W e say that a  p a ir  1—j+2i, j1 in S + i is positiv e if

x ( —j +2i) +x n  ( i)  =1  mod 2 .
If neither —j±2i nor j  is divisible by n, then th e  p a ir  1—j+2i, j1  is not posi-
tive . It is  impossible that both  — i  +2 i  and j are divisible by n. So that it is
sufficient to consider only p a ir s  1— tn +2i, tn [ a n d  1— tn, tn + 24  w ith  t a  0.
L et it +  (#  -) be the  number o f  p a irs  1— tn +2i, tn ( i — tn , tn+2 i1 ) in  S + i
with t>0, i.e., the number of t such that 0 <tn  + i  ( 0  <  t n  +2i We
separate the case t = 0.

In case that i is odd, S + i c 2Z. Therefore, 1-0n+2i, Ont = 1-0n, On+
2i1 is  in S + i. Since the pair 12i, 01 is  positive,

flmx (j) 1+ + m o d2 .
We see that
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# + —  -
the number of even t which satisfies m — i< t n in + i  .

On the other hand we have

Lemma 4. W e can choose k so that m=2 k —1 is d iv is ib le  by n.

Set q = m/n, i.e., m = n q .  Remark that q i s  o d d .  T he inequality m—i <tn
+ i  is equivalent to  — i < n  (t —q ) i .  Since q is  odd  bu t t  m ust be even, it
holds It 1, which implies in (t — q) I n  >  i. Thus the  inequality m— i<tn

+ i  has no solution, i.e., + —  - = O .  We have
A" x  (i) =1+ # + # _ mod 2

= 1+ —  _  mod 2
= 1 .

In case that i  is even, S H -i c  2Z + 1 . T h e  p a ir  I—On+2i, 0141 = i—On, On
+ 2 ii  is not in S + i .  Therefore,

ilmxn (i) = # + #  _  mod 2 .
We have

# + —  -
the number of odd t which satisfies m—i <tn +i  .

The inequality m <tn +i ,  w hich is equivalent to —i <n (t —q) i , has
the unique odd solution t = q .  T h u s # + —  # - = 1 .  Therefore,

A" x „ (i)
= # + # _ mod 2
=  # + —  _  mod 2
= 1 .

Lemma 1 is thus proved.

Proof o f Lemma 4. Let p  be a prim e and let e  be  a  n a tu ra l n u m b e r. Let
us regard z / p e  z  as a  group w ith multiplication. The multiples of p  should be
taken away, because they a re  nilpotent. T he num ber of them  is p e — '• There-
fore, the order of this group is equal to p e— p e -1 =  (p 1 )  p e - 1 .  2 is an element
of th is g r o u p . Therefore, 2 (P- 1 ) Pe - 1 = 1 in  Z/pe Z , hence 2s (P- 1 ) P8 -1 = 1 in  Z/peZ
for any s O. T h u s

2s (P- "Pe - 1 - 1
is divisible by pe for any s O.

Let n =p i " pP. —pr e' be the factorization of n  into prime factors. Set k = ( p i

iPi (p2 (pr— i)lorer-1. By the above argument 2k - 1  is divisi-
ble by p i e i  for hence it is divisible by n.

Poof o f Lemma 2. First rem ark that by definition of yp
yp (i) =1 (1 2P),
yP  (i) = 0 (2 P + 1 2P+1— 2) ,

yp (2 P + 1 - 1) =yp (2 P + 1 ) = 1  .
It is easy to see that for k 1 and  i >k 2 '
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yp (i) =  A k yp  (i — k (2P —1)) .
For k=2 P - 1 and i> 2 2P- 1 , we have by Lemma 3

yp  (i) = A 2 1  y p  ( i-2 P - 1 (2P -1))
=yp (2P-1) —2P - 1 ) +yp ( i - 2 1 (2P-1) +2P - 9 m od 2

22P1  ± y p 221,1 -p\z  )  mod 2 .
Using this, we have

YP (i + 2 2 P - 1 ) YP ( i )  + Y p  (i + 2 P )  mod 2
= 1 + 0  m o d  2  ( 1 i 2 - 2 )
= 1 .

yp (2P —1+ 2 2P- 1 ) =yp (2P-1) +yp (2P+ 1 — 1) mod 2
=1+1 m od 2
=0,

yp (2P+2 2P- 1 ) =yp (2P) +yp (2P + 1 )  mod 2
=1+1 mod 2

.
Therefore, we can see that for

yp (i+ 2 2P- 1 ) =yp ,
which implies that lyp (i): i 1 1  has the period u-=2 2P- 1 -2 . I t  is  e a sy  to  e x -
tend yp to 1i. 01.

The second assertion in Lemma 2 is obvious by definition of yp.

Analogous arguments are possible also for rule 150:
Ax (i) = x (i -1) + x (i) + x (i +1) mod 2 .

As to A we have

Lemma 3'. For any k it holds that
A 21' x  ( i )  =1  (i —2 k ) +x  ( i )  +  (i + 2 k ) m od 2 .

Theorem F. A ssume P  E Cony (M )  .  The following three conditions are
equivalent to each other.
1) A T converges as n— >00.

2) P is A -invariant.
3) P is a convex combination of $O, $1/2 and Si.

Outline of Proof. Take a probability measure 7t on M. Set

P ( •  )= • ) d i )(14 E Cony (M ) .

Assume A P  converges as n - - > co . B y  the sam e argument as in the proof of
Theorem  1, w e see

f ( ) 3 - - Ti (0  9 1  d r (P) = 0  .

Let be a finite sequence of 0 and 1 and let
=•••000$)0n .
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The above equality holds for this Since tt is mixing, letting n— >oo,
we have

j. ( 6_ 7 (0 )
l8 1  drc (p) =0 .

This implies that P is  a  convex combination of So, $ 1 / 2  and Si.

The convergence of the  Cesaro m eans for A P  c a n  b e  p ro v e d  b y  the
Fourier transformation method [2].

W e have infinitely m any A -invariant m easures outside C ony (M ) .  Let
be an o d d  in te g e r . A configuration x  in Q is defined as follows;

{ 0 if i = 0, ±1 mod n,

1 otherwise.

Lemma 1'. For each odd n  5, there exists m l su ch  th a t Am.in = 4 .

P r o o f .  By Lemma 4 we can choose k so that m 2 " - 1 is divisible by n.
By Lemma 3' we see

Am.f (i) +  E (3h-1+i) -F.F(3h+i) I
0<3h52 2 k-1

1.,•(-3h+ i) +. -f ( - 3 h +1 +0 1  mod 2.
o<3h622k-i

Setting =:-±" n (i) +1""n (f  +1) mod 2, we have

A i n  (i) =±; (j ) E 1 ri (3h —1+i) +F( —3h +i) I mod 2 .
0<3h62 2 k-1

Remark that 7z- (3h —1 +i) =- 1 if and only if 3h —1+i = —2,-1-1 mod n and that
3h-1+ i=  — 2 mod n means 3  (h +1) -1+i= + 1 mod n. Let

ho = m in  1h; 3h- 1+i-= —2 mod n, h O1 ,
h i =max 1h; 3h -1 + i - 2—2 mod n, 3h 2 2 1 ' ' }

We have

( i )  =

i(3h —1+i)
0<3 h62 2 k-1 0<3h52 2 k -1 , 3 h - 1i- i - 2 , + 1  mod n

=F(3h o —1 +i,) (ho+ 1) _1+ i)

li(3h_1± i)± .-z-0(h± 1)_1+ 01
ho<h< mod n

+ F ( 3 h 1  —1 + ) + 1 (3 (h 1 + 1) 1  + i )  mod 2 .
Note that m =2 2 k - 1 =  (1 +3) k  —  1  is  a multiple of 3 and that three equalities
110 =0, h1=2 2 k - 1  and i = —1 mod n are mutually equivalent. In case h0=0, the
first and the last term s must be omitted. In any case
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E , ( 3 , _ 1 + 0  = 0  mod 2  .
0<3h 62 2 k-1

In the same way we can see

mod 2 .
o<3 22k-i

Thus we have

Am in  (i)
DIVISION OF MATHEMATICS,

FACULTY O F INTEGRATED HUMAN STUDIES,

KYOTO UNIVERSITY
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