Stationary measures for automaton rules 90 and 150

By
Munemi Miyamoto

This is a continuation of [3]. Let $\Omega=\{0,+1\}^{z}$. A transformation $\Lambda: \Omega \rightarrow$ Ω is defined as follows;

$$
\Lambda x(i)=x(i-1)+x(i+1) \bmod 2,
$$

where $x \in \Omega$ and $i \in Z$. In [3] Λ was called one-dimensional life game. According to the classification of one-dimensional automata by Wolfram [5], this is rule 90 . We are interested in the Λ-invariant measures on Ω. For 0 $\leqq p \leqq 1$, let β_{p} be the distribution of the Bernoulli trials with density p. It is shown in $[2,3,4]$ that $\beta_{1 / 2}$, the distribution of coin tossing, is Λ-invariant.

Furthermore, let M be the set of translation-invariant mixing measures on Ω and let Conv (M) be the convex hull of M, i.e., the set of convex combinations of measures in M. If we replace the adjective "mixing" with "ergodic", we have the set Conv (E) of all translation-invariant measures (the ergodic decomposition theorem). The behaviour of $\Lambda^{n} P$ as $n \rightarrow \infty$ for $P \in \operatorname{Conv}(M)$ is quite different from that for $P \in \operatorname{Conv}(E) \backslash \operatorname{Conv}(M)$. First we see the behaviour for $P \in \operatorname{Conv}(M)$. The following theorem is an improvement of Theorem 3 in [3].

Theorem 1. Assume $P \in \operatorname{Conv}(M)$. Then, $\Lambda^{n} P$ converges as $n \rightarrow \infty$ if and only if P is a convex combination of $\beta_{0,}, \beta_{1 / 2}$ and β_{1}.

Collorary (Theorem 1 in [3]). Assume $P \in \operatorname{Conv}(M) . P$ is Λ-in. variant if and only if P is a convex combination of β_{0} and $\beta_{1 / 2}$.

Remark that $\Lambda^{n} \beta_{p}$ does not converge as $n \rightarrow \infty$ unless $p=0,1 / 2,1$. But Theorem 4 in [3] says that if $0<p<1$

$$
\lim 1 / N \sum_{n=0}^{N-1} \Lambda^{n} \beta_{p}=\beta_{1 / 2}
$$

It is natural to ask if there are any other Λ-invariant measures outside Conv (M) [1]. The answer is "Yes, there are infinitely many" [4]. Let us show this in more general setting.

Let $n \geqq 3$ be an odd integer. A configuration x_{n} in Ω is defined as follows;

$$
x_{n}(i)= \begin{cases}0 & \text { if } i=0 \bmod n, \\ 1 & \text { otherwise } .\end{cases}
$$

This x_{n} is periodic in space. Furthermore, x_{n} is periodic in time, i.e., we have the following lemma (see the proof of Theorem 1 in [4]).

Lemma 2. For each odd $n \geqq 3$, there exists $m \geqq 1$ such that $\Lambda^{m} x_{n}=x_{n}$.
Set $\nu_{n}=\sum_{j=0}^{n-1} \theta^{j} \delta_{x n} / n$, where θ is the translation operator, and set $\mu_{n}=$ $\sum_{j=0}^{m-1} \Lambda^{j} \nu_{n} / m$. It is clear that μ_{n} is Λ - and translation-invariant. We see that $\Lambda x_{3}=x_{3}$, i.e., x_{3} is a fixed point of Λ. The measure $\mu_{3}=\left(\delta_{x_{3}}+\delta_{\theta x_{3}}+\delta_{\theta 2 x_{3}}\right) / 3$ is, therefore, ergodic. But, if $n \geqq 5$,

$$
E=\left\{x_{n}, \theta x_{n}, \theta^{2} x_{n}, \cdots \cdots, \theta^{n-1} x_{n}\right\}
$$

is a translation-invariant set with $0<\mu_{n}(E)<1$. The inequality $\mu_{n}(E)<1$ follows from $\Lambda x_{n} \notin E$ and $\mu_{n}\left(\left\{\Lambda x_{n}\right\}\right)>0$. Thus we have

Theorem 2. For each odd $n \geqq 3, \mu_{n}$ is Λ - and translation-invariant. The measure μ_{3} is ergodic, but $\mu_{n}(n \geqq 5)$ are not ergodic.

If $n \geqq 5, \mu_{n}$ is a convex combination of the ergodic measures $\Lambda^{j} \nu_{n}(0 \leqq j \leqq m$ $-1)$. Thus, the Λ-invariance of $\mu_{n} \in \operatorname{Conv}(E)$ does not imply the Λ-invariance of its ergodic components. On the contrary, Collorary to Theorem 1 says that the Λ-invariance of a convex combination of mixing measures implies the Λ-invariance of its components. In fact, its components must be β_{0} and $\beta_{1 / 2}$.

We have Λ-invariant ergodic measures $\beta_{0}, \beta_{1 / 2}$ and μ_{3}. It is natural to ask if there are any other Λ-invariant ergodic measures. The answer is again "Yes, there are infinitely many". Let $p \geqq 2$ be an integer. For $1 \leqq i \leqq 2^{p}$, set $y_{p}(i)=1$. For $i \geqq 2^{p}+1$, define $y_{p}(i)$ successively as follows:

$$
y_{p}(i)=\Lambda y_{p}\left(i-2^{p}+1\right) .
$$

Lemma 2. 1) y_{p} can be extended to $\{i \leqq 0\}$ so that y_{p} is periodic in space, i.e., $y_{p}=\theta^{u} y_{p}$ for some $u \geqq 1$.
2) $\Lambda y_{p}=\theta^{v} y_{p}$, where $v=2^{p}-1$.

Set $\varepsilon_{p}=\sum_{j=0}^{u-1} \theta^{j} \delta_{y_{p}} / u$. Since y_{p} is periodic in space, it is clear that

$$
\theta \varepsilon_{p}=\varepsilon_{p}
$$

$$
\Lambda \varepsilon_{p}=\sum_{j=0}^{u-1} \theta^{j+v} \delta_{y_{p}} / u
$$

$$
=\varepsilon_{p}
$$

If $E \subset \Omega$ is translation-invariant and $\varepsilon_{p}(E)>0$, then $\varepsilon_{p}(E)=1$. Thus we have
Theorem 3. For each $p \geqq 2, \varepsilon_{p}$ is Λ-invariant and ergodic.

Let us prove Theorem 1 and Lemmata 1, 2. The following lemma plays the key role in the computation of Λ^{n}.

Lemma 3. For any k it holds that

$$
\Lambda^{2 k} x(i)=x\left(i-2^{k}\right)+x\left(i+2^{k}\right) \bmod 2 .
$$

Proof is easy.
To prove Theorem 1 let us introduce the Fourier transform of a probability measure μ on Ω. Let $\xi=(\xi(i) ;-\infty<i<+\infty)$ be a sequence of 0 and 1 with only finitely many 1 's. For $\omega=(\omega(i) ;-\infty<i<+\infty) \in \Omega$, set $\langle\xi, \omega\rangle=$ $\sum_{i=-\infty}^{+\infty} \xi(i) \omega(i)$. Denote the Fourier transform of μ by $\mathrm{F}(\mu)$ or $\hat{\mu}$, i.e.,

$$
\mathrm{F}(\mu)(\xi)=\widehat{\mu}(\xi)=\int_{\Omega}(-1)^{\langle\xi, \omega\rangle} \mu(\mathrm{d} \omega)
$$

We have, by Lemma 3,

$$
\begin{aligned}
\mathrm{F}\left(\Lambda^{2^{n}} \mu\right)(\xi) & =\int_{\Omega}(-1)^{\left\langle\xi, \Lambda^{x} \omega\right\rangle} \mu(\mathrm{d} \omega) \\
& =\int_{\Omega}(-1)^{\left\langle\xi, \theta^{-x} \omega\right\rangle+\left\langle\xi, \theta^{2} \omega\right\rangle} \mu(\mathrm{d} \omega) .
\end{aligned}
$$

If μ is in M, i.e., if μ is mixing and translation-invariant, then, $\lim \mathrm{F}\left(\Lambda^{2^{n}} \mu\right)(\xi)=\widehat{\mu}(\xi)^{2}$.
By the same argument we have

$$
\lim \mathrm{F}\left(\Lambda^{2 n+2^{n}} \mu\right)(\xi)=\hat{\mu}(\xi)^{4}
$$

Proof of Theorem 1. Take a probability measure π on M. Set

$$
P(\cdot)=\int_{M} \mu(\cdot) \mathrm{d} \pi(\mu) \in \operatorname{Conv}(M)
$$

By the above argument we see

$$
\begin{aligned}
& \lim \mathrm{F}\left(\Lambda^{2 n} P\right)(\xi)=\int_{M} \lim \mathrm{~F}\left(\Lambda^{2^{n}} \mu\right)(\xi) \mathrm{d} \pi(\mu)=\int_{M} \hat{\mu}(\xi)^{2} \mathrm{~d} \pi(\mu) \\
& \lim \mathrm{F}\left(\Lambda^{\left.22^{2 n}+2^{n} P\right)(\xi)=\int_{M} \lim \mathrm{~F}\left(\Lambda^{2 n+2^{n}} \mu\right)(\xi) \mathrm{d} \pi(\mu)=}\right. \\
& \quad=\int_{M} \hat{\mu}(\xi)^{4} \mathrm{~d} \pi(\mu) .
\end{aligned}
$$

Assume $\Lambda^{n} P$ converges as $n \rightarrow \infty$. Since

$$
\lim \mathrm{F}\left(\Lambda^{2 n} P\right)(\xi)=\lim \mathrm{F}\left(\Lambda^{2 n+2^{n}} P\right)(\xi)
$$

we have

$$
\int_{M}\left\{\hat{\mu}(\xi)^{2}-\hat{\mu}(\xi)^{4}\right\} \mathrm{d} \pi(\mu)=0
$$

which implies $\hat{\mu}(\xi)=0, \pm 1$ for a. a. $(\pi) \mu$.
Since $\lim \Lambda^{n} \beta_{0}=\lim \Lambda^{n} \beta_{1}=\beta_{0}$, we can assume $\pi\left(\left\{\beta_{0}, \beta_{1}\right\}\right)=0$. We have $\hat{\mu}(\xi)=0$ for any $\xi \neq \cdots 000 \cdots$ and for a. a. $(\pi) \mu$, which means $\mu=\beta_{1 / 2}$ for a.a. (π) μ, i.e., $P=\beta_{1 / 2}$. The "only if" part of Theorem 1 is thus proved. The "if" part is clear, because $\beta_{1 / 2}$ is Λ-invariant.

Proof of Lemma 1. Let us prove Lemma 1 for odd $n \geqq 3$. We can write

$$
\begin{aligned}
& \Lambda x(i)=\sum_{j \in\{ \pm 1\}+i} x(j) \bmod 2 \\
& \Lambda^{2} x(i)=\sum_{j \in\{ \pm 2\}+i} x(j) \bmod 2
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Lambda^{3} x(i) & =\Lambda^{2} \Lambda x(i) \\
& =\sum_{j \in\{ \pm 2\}+i} \Lambda x(j) \bmod 2 \\
& =\sum_{j \in\{ \pm 2\}+i}\{x(j-1)+x(j+1)\} \bmod 2 \\
& =\sum_{j \in\{ \pm 2 \pm 1\}+i} x(j) \bmod 2 .
\end{aligned}
$$

Let $m=2^{k}-1=2^{k-1}+2^{k-2} \cdots+2+1$, where k will be specified later. Let

$$
\begin{aligned}
S & =\left\{ \pm 2^{k-1} \pm 2^{k-2} \cdots \pm 2 \pm 1\right\} \\
& =\left\{-2^{k}+1,-2^{k}+3, \cdots,-1,+1, \cdots, 2^{k}-3,2^{k}-1\right\}
\end{aligned}
$$

We can easily see by Lemma 3

$$
\Lambda^{m}(i)=\sum_{j \in S+i} x(j) \bmod 2
$$

Since S and x_{n} are symmetric with respect to 0 , it holds that

$$
\begin{aligned}
\Lambda^{m} x_{n}(0) & =\sum_{j \in S} x_{n}(j) \bmod 2 \\
& =0
\end{aligned}
$$

Next we must show that

$$
\Lambda^{m} x_{n}(i)=1 \bmod 2(1 \leqq i \leqq n-1) .
$$

We consider the pairs $\{-j+2 i, j\}$. Remark that if j is in $S+i$ then $-j+2 i$ is in $S+i$ and vice versa. We say that a pair $\{-j+2 i, j\}$ in $S+i$ is positive if

$$
x_{n}(-j+2 i)+x_{n}(j)=1 \bmod 2 .
$$

If neither $-j+2 i$ nor j is divisible by n, then the pair $\{-j+2 i, j\}$ is not positive. It is impossible that both $-j+2 i$ and j are divisible by n. So that it is sufficient to consider only pairs $\{-t n+2 i, t n\}$ and $\{-t n, t n+2 i\}$ with $t \geqq 0$. Let $\#_{+}\left(\#_{-}\right)$be the number of pairs $\{-t n+2 i, t n\}(\{-t n, t n+2 i\})$ in $S+i$ with $t>0$, i.e., the number of t such that $0<t n \leqq m+i(0<t n+2 i \leqq m+i)$. We separate the case $t=0$.

In case that i is odd, $S+i \subset 2 Z$. Therefore, $\{-0 n+2 i, 0 n\}=\{-0 n, 0 n+$ $2 i\}$ is in $S+i$. Since the pair $\{2 i, 0\}$ is positive,

$$
\Lambda^{m} x_{n}(i)=1+\#_{+}+\#_{-} \bmod 2 .
$$

We see that

$$
\begin{aligned}
& \#_{+}^{+}-\#_{-} \\
& \quad=\text { the number of even } t \text { which satisfies } m-i<t n \leqq m+i .
\end{aligned}
$$

On the other hand we have
Lemma 4. We can choose k so that $m=2^{k}-1$ is divisible by n.
Set $q=m / n$, i.e., $m=n q$. Remark that q is odd. The inequality $m-i<t n \leqq m$ $+i$ is equivalent to $-i<n(t-q) \leqq i$. Since q is odd but t must be even, it holds $|t-q| \geqq 1$, which implies $|n(t-q)| \geqq n>i$. Thus the inequality $m-i<t n$ $\leqq m+i$ has no solution, i.e., $\#_{+}-\#_{-}=0$. We have

$$
\begin{aligned}
\Lambda^{m} x_{n}(i) & =1+\#_{+}+\#_{-} \bmod 2 \\
& =1+\#_{+}-\#_{-} \bmod 2 \\
& =1 .
\end{aligned}
$$

In case that i is even, $S+i \subset 2 Z+1$. The pair $\{-0 n+2 i, 0 n\}=\{-0 n, 0 n$ $+2 i\}$ is not in $S+i$. Therefore,

$$
\Lambda^{m} x_{n}(i)=\#_{+}+\#_{-} \bmod 2 .
$$

We have

$$
\begin{aligned}
& \#_{+}-\#_{-} \\
& \quad=\text { the number of odd } t \text { which satisfies } m-i<t n \leqq m+i .
\end{aligned}
$$

The inequality $m-i<t n \leqq m+i$, which is equivalent to $-i<n(t-q) \leqq i$, has the unique odd solution $t=q$. Thus $\#_{+}-\#_{-}=1$. Therefore,

$$
\begin{aligned}
& \Lambda^{m} x_{n}(i) \\
& \quad=\#_{+}+\#-\bmod 2 \\
& =\#_{+}-\#-\bmod 2 \\
& =1 .
\end{aligned}
$$

Lemma 1 is thus proved.
Proof of Lemma 4. Let p be a prime and let e be a natural number. Let us regard $Z / p^{e} Z$ as a group with multiplication. The multiples of p should be taken away, because they are nilpotent. The number of them is p^{e-1}. Therefore, the order of this group is equal to $p^{e}-p^{e-1}=(p-1) p^{e-1} .2$ is an element of this group. Therefore, $2^{(p-1) p^{e-1}}=1$ in $Z / p^{e} Z$, hence $2^{s(p-1) p^{e-1}}=1$ in $Z / p^{e} Z$ for any $s \geqq 0$. Thus

$$
2^{s(p-1) p^{p-1}}-1
$$

is divisible by p^{e} for any $s \geqq 0$.
Let $n=p_{1}{ }^{e_{1}} p_{2}{ }^{e}{ }^{e} \cdots p_{r}{ }^{e_{r}}$ be the factorization of n into prime factors. Set $k=\left(p_{1}\right.$ $-1) p_{1}^{e_{1}-1}\left(p_{2}-1\right) p_{2}^{e_{2}-1 \cdots}\left(p_{r}-1\right) p_{r}^{e r-1}$. By the above argument $2^{k}-1$ is divisible by $p_{j}{ }^{e f}$ for $1 \leqq j \leqq r$, hence it is divisible by n.

Poof of Lemma 2. First remark that by definition of y_{p}

$$
\begin{aligned}
& y_{p}(i)=1\left(1 \leqq i \leqq 2^{p}\right) \\
& y_{p}(i)=0\left(2^{p}+1 \leqq i \leqq 2^{p+1}-2\right) \\
& y_{p}\left(2^{p+1}-1\right)=y_{p}\left(2^{p+1}\right)=1
\end{aligned}
$$

It is easy to see that for $k \geqq 1$ and $i>k 2^{p}$

$$
y_{p}(i)=\Lambda^{k} y_{p}\left(i-k\left(2^{p}-1\right)\right) .
$$

For $k=2^{p-1}$ and $i>2^{2 p-1}$, we have by Lemma 3

$$
\begin{aligned}
y_{p}(i) & =\Lambda^{2 p-1} y_{p}\left(i-2^{p-1}\left(2^{p}-1\right)\right) \\
& =y_{p}\left(i-2^{p-1}\left(2^{p}-1\right)-2^{p-1}\right)+y_{p}\left(i-2^{p-1}\left(2^{p}-1\right)+2^{p-1}\right) \bmod 2 \\
& =y_{p}\left(i-2^{2 p-1}\right)+y_{p}\left(i-2^{2 p-1}+2^{p}\right) \bmod 2 .
\end{aligned}
$$

Using this, we have

$$
\begin{aligned}
& y_{p}\left(i+2^{2 p-1}\right)= y_{p}(i)+y_{p}\left(i+2^{p}\right) \bmod 2 \\
&=1+0 \bmod 2\left(1 \leqq i \leqq 2^{p}-2\right) \\
&= 1 . \\
& \begin{aligned}
y_{p}\left(2^{p}-1+2^{2 p-1}\right) & =y_{p}\left(2^{p}-1\right)+y_{p}\left(2^{p+1}-1\right) \bmod 2 \\
& =1+1 \bmod 2 \\
& =0, \\
y_{p}\left(2^{p}+2^{2 p-1}\right)= & y_{p}\left(2^{p}\right)+y_{p}\left(2^{p+1}\right) \bmod 2 \\
& =1+1 \bmod 2 \\
& =0 .
\end{aligned}
\end{aligned}
$$

Therefore, we can see that for $1 \leqq i \leqq 2^{p}$

$$
y_{p}\left(i+2^{2 p-1}\right)=y_{p}(i+2),
$$

which implies that $\left\{y_{p}(i): i \geqq 1\right\}$ has the period $u=2^{2 p-1}-2$. It is easy to extend y_{p} to $\{i \leqq 0\}$.

The second assertion in Lemma 2 is obvious by definition of y_{p}.
Analogous arguments are possible also for rule 150:

$$
\tilde{\Lambda} x(i)=x(i-1)+x(i)+x(i+1) \bmod 2 .
$$

As to $\tilde{\Lambda}$ we have
Lemma 3'. For any k it holds that

$$
\Lambda^{2^{k}} x(i)=x\left(i-2^{k}\right)+x(i)+x\left(i+2^{k}\right) \bmod 2 .
$$

Theorem 1'. Assume $P \in \operatorname{Conv}(M)$. The following three conditions are equivalent to each other.

1) $\widetilde{\Lambda}^{n} P$ converges as $n \rightarrow \infty$.
2) P is $\widetilde{\Lambda}$-invariant.
3) P is a convex combination of $\beta_{0}, \beta_{1 / 2}$ and β_{1}.

Outline of Proof. Take a probability measure π on M. Set

$$
P(\cdot)=\int_{M} \mu(\cdot) \mathrm{d} \pi(\mu) \in \operatorname{Conv}(M)
$$

Assume $\widetilde{\Lambda}^{n} P$ converges as $n \rightarrow \infty$. By the same argument as in the proof of Theorem 1, we see

$$
\int_{M}\left\{\hat{\mu}(\xi)^{3}-\hat{\mu}(\xi)^{9}\right\} \mathrm{d} \pi(\mu)=0
$$

Let ξ_{0} be a finite sequence of 0 and 1 and let $\xi=\cdots 000 \xi_{0} 0^{n} \xi_{0} 000 \cdots$.

The above equality holds for this ξ. Since μ is mixing, letting $n \rightarrow \infty$, we have

$$
\int_{M}\left\{\hat{\mu}\left(\xi_{0}\right)^{6}-\hat{\mu}\left(\xi_{0}\right)^{18}\right\} \mathrm{d} \pi(\mu)=0
$$

This implies that P is a convex combination of $\beta_{0}, \beta_{1 / 2}$ and β_{1}.
The convergence of the Cesaro means for $\widetilde{\Lambda}^{n} P$ can be proved by the Fourier transformation method [2].

We have infinitely many $\tilde{\Lambda}$-invariant measures outside Conv (M). Let $n \geqq 5$ be an odd integer. A configuration \widetilde{x}_{n} in Ω is defined as follows;

$$
\widetilde{x}_{n}(i)=\left\{\begin{array}{l}
0 \text { if } i=0, \pm 1 \bmod n \\
1 \text { otherwise }
\end{array}\right.
$$

Lemma 1'. For each odd $n \geqq 5$, there exists $m \geqq 1$ such that $\Lambda^{m} \tilde{x}_{n}=\widetilde{x}_{n}$.
Proof. By Lemma 4 we can choose k so that $m=2^{2 k}-1$ is divisible by n. By Lemma 3' we see

$$
\begin{aligned}
\widetilde{\Lambda}^{m} \tilde{x}(i)=\widetilde{x}(i) & +\sum_{0<3 h \leq 2^{2 k-1}}\{\tilde{x}(3 h-1+i)+\widetilde{x}(3 h+i)\} \\
& +\sum_{0<3 h \leq 2^{2 k-1}}\{\widetilde{x}(-3 h+i)+\widetilde{x}(-3 h+1+i)\} \bmod 2 .
\end{aligned}
$$

Setting $\widetilde{z}(j)=\widetilde{x}_{n}(j)+\widetilde{x}_{n}(j+1) \bmod 2$, we have

$$
\tilde{\Lambda}^{m} \tilde{x}_{n}(i)=\widetilde{x}_{n}(i)+\sum_{0<3 h \leq 22^{2 k-1}}\{\widetilde{z}(3 h-1+i)+\widetilde{z}(-3 h+i)\} \bmod 2
$$

Remark that $\widetilde{\boldsymbol{z}}(3 h-1+i)=1$ if and only if $3 h-1+i=-2,+1 \bmod n$ and that $3 h-1+i=-2 \bmod n$ means $3(h+1)-1+i=+1 \bmod n$. Let

$$
\begin{aligned}
& h_{0}=\min \{h ; 3 h-1+i=-2 \bmod n, h \geqq 0\}, \\
& h_{1}=\max \left\{h ; 3 h-1+i=-2 \bmod n, 3 h \leqq 2^{2 k-1}\right\} .
\end{aligned}
$$

We have

$$
\begin{aligned}
& \sum_{0<3 h \leq 22^{2 k-1}} \tilde{z}(3 h-1+i)=\sum_{0<3 h \leq 22^{2 k-1,},} \tilde{3 h-1+i=-2,+1 \bmod n} \tilde{z}(3 h-1+i) \\
& =\widetilde{z}\left(3 h_{0}-1+i\right)+\widetilde{z}\left(3\left(h_{0}+1\right)-1+i\right) \\
& \left.+\sum_{h_{0}<h<h 1,3 h-1+i=-2 \bmod n} \tilde{z}(3 h-1+i)+\widetilde{z}(3(h+1)-1+i)\right\} \\
& +\widetilde{z}\left(3 h_{1}-1+i\right)+\widetilde{z}\left(3\left(h_{1}+1\right)-1+i\right) \bmod 2
\end{aligned}
$$

Note that $m=2^{2 k}-1=(1+3)^{k}-1$ is a multiple of 3 and that three equalities $h_{0}=0, h_{1}=2^{2 k}-1$ and $i=-1 \bmod n$ are mutually equivalent. In case $h_{0}=0$, the first and the last terms must be omitted. In any case

$$
\sum_{0<3 h \leq 2^{2 k-1}} \tilde{z}(3 h-1+i)=0 \bmod 2 .
$$

In the same way we can see

$$
\sum_{0<3 h \leq 2^{2 k-1}} \tilde{z}(-3 h+i)=0 \bmod 2 .
$$

Thus we have

$$
\tilde{\Lambda}^{m} \tilde{x}_{n}(i)=\tilde{x}_{n}(i)
$$

Division of Mathematics, Faculty of Integrated Human Studies, Kyoto University

References

[1] R. Durrett, Lecture notes on particle systems and percolation, Wadsworth, 1988.
[2] D. A. Lind, Applications of ergodic theory and sofic systems to cellular automata, Physica D, 10 (1984), 36-44.
[3] M. Miyamoto, An equilibrium state for a one-dimensional life game, J. Math. Kyoto Univ., 19 (1979), 525-540.
[4] S. S. Vallander, One system of automata with local interactions, Multicomponent random systems, Adv. Prob. relat. Top., 6 (1980), 577-587.
[5] S. Wolfram, Statistical mechanics of cellular automata, Rev. of Modern Phys. , 55 (1983), 601-644.

