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The approximation of holomorphic function
on Riemann surfaces

By

Yoshikazu SAINOUCHI

Introduction

In the present paper we shall treat the approximation problem of the
holomorphic function on a Riemann surface. According to Gunning and
Narashimhan [1 ] ,

 on an arbitary open Riemann surface, there exists a locally
univalent holomorphic function. The Riemann surface generated by such a
function seems to be an unbranched covering surface over the complex plane.
It is not easy to study such a function on the general open Riemann surface
and so we shall consider a  special open Riemann surface i.e. a compact
Riemann surface punctured by a  p o in t. In  this case  a  locally univalent
holomorphic function has in general an essential singularity at the puncture.
In the following we shall prove the approximation theorem of a holomorphic
function on the punctured surface by meromorphic functions defined on the
compact surface. The proof is performed, with some modifications, by the
same way as Behnke and Stein did in [2 ]. In [2] the approximation problem
has been treated exclusively at the open Riemann surface, on the contrary
here the problem is concerned with the compact Riemann surface.

1. Cauchy kernel

We shall consider a compact Riemann surface R  and denote its genus by
g . Let {A i,  B1 }1,1,...,9 be a canonical homology basis and dw, (i=1, ••-, g) be the
first kind of normal differentials such that f dw i= 8„ and denote the third

A,

kind of normal differential by dllp, q . d l l p , a has a simple pole with residue
I( —1) at p(q), respectively and holomorphic eleswhere and all A-periods
vanish. The B-periods are given by

(1) L i d l 7 p , , = 2  f  d w  ('=1, •—, g).
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Now let f ig =//p , o (s)—fig .g (t)=-X  s dllp, g , then the law  of interchang of
argument and parameter holds (Osgood [3]) :

(2) 1g:4 =11,U .

For fixed t  and g we consider the additive function M:4 of two variables
(s, p)E R x R, then 38H = dHp,,(s) (as ; differential operator with respect to
s ) .  It is seen from (2) that dl7g ,g (s) is a multi-valued function of p and has a
simple pole at s and

ap(dllp, q (s))= f  aposam = a. f  apcilm =oA,
(3) dp(dllp,q(s))=- 9f  ap(my)= a. f dffs,t(p)B, B,

a s ( d w,)= —27ridw.i ( s )  (by (1)).

Let Uo be a parameter neighborhood of g (g—*,z=0) and set dw i =w;-(z)dz,
then there exist g  distinct points Pi, Pg  (P i— z1) in U0 — {q } such that

(4) det1 *0.
We remark that the set {(P1, ••., P ) ;  deti w,"(zi)li,.1,..., 9 =01 is closed and

nowhere dense in R 9  (Farkas and Kra [4].)
Suppose h(P) is a meromorphic function on R  and has pole at g only and

d h * 0  at P i  (i=1, ••-, g ), then it is seen from (4) that the equations

(5) dwi(s)= d i v i ( P i )
i=1 dh(Pi) dc1(s) ( i = 1 > g)

have 1st kind of differentials dci(s) as solution. Let us set

(6) dw (s, p)= dllp,q(s) dllg,q(Pi)
d h ( P  d c i ( s ) ,

i )

then it follows from (3) and (5) that

g . dw,(13,)B,ap(dw(s, p))=-27ridw ,(s)— E{  27rz d h ( p i )  dc1(s)}=0t=i

and so dw(s, p) has the following properties ;
(i) For variable s dw (s, p) is the 3rd kind of differential and has a simple
pole with residue 1  ( -1 )  at P(g), respectively.
(ii) For variable p dw(s, p) is the single valued meromorphic function and
has a simple pole a t  g + 1  distinct points s ,  P i ,  • «, Pg ,  respectively and
holomorphic elsewhere.
dw (s, p) is called the elementary differential in [2 ] (also see :  Behnke und
Sommer [5]).
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2 .  Lemmas

At first we shall state two lemmas.

Lemma 1. Suppose Go an d  G1 are domains (G ocG icR ) and  H (p) is
meromorphic in  G1 and has a pole at poE G1 — Go only and 9(p) is meromor-
phic in  G1 and is holomorphic on au {Po} and

9(1) 0)1> M (P)I 1

Then H(p) is expressed by lim Hi(p) ap(9(p))P (ap : constants), where the
P= 0

convergence is locally  uniform in  Go and Hi(p) is meromorphic in  G1 and is
holomorphic at Po and has the poles at the same points as the poles of  so(p).

P ro o f  Let k be the order of pole at Po of H (P) and set

H (P)(9(Po) —  9(P)) kI M P )  
I I ( s o ( p o ) —  9 ( p ) ) '  ( s o (P 0 ) — so(P))k

then Hi(P)=11(P)(9(P0) —  9(P))' is meromorphic in G1 and is holomorphic at Po
and has the same poles as that of 9(p).
Since

I so(P)/ so(p0)1 <1 ( p E  Go),

we have

1 1 
(9(P0) 9(P)) k  9 (p o r ( 1 9 (P )   )k

9(P0)

ap(so(P))/` (ap :  constants),
P= 0

where the convergence is locally uniform in Go. q. e. d.

Set G=R— U0 and let K  be an arbitrary compact subset of G . Suppose
Go and D are two domains such that KC GoiaDC G and R—D has precisely
one connected component and the boundary 7= ap is a smooth curve and dh
*0 on 7. Then by the residue theorem we have for f(p )E H (G ) and P K

f(P )= 2
1
7(z. f  f(s)dw(s,p)

— 212,i f  f ( s ) c hevl 1%V dh(s).

Lemma 2. The holomorphic function f(p ) can be approximated uniformly
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on K  by the Riemenn sum as follows ; f or any e> 0 there exist a finite number
of points S r ( v = 1 , n) such that

 , t s  \ dw(s,,p) 
27ri dh(S) (h(s,+1)—h(s,))1<e (Sn+1= S1).,=1" v

The lemma is proved by the similar way to that of Saks and Zygmund [6]
did in the complex plane and so we shall omit its proof. It is seen from (6) that
as the function of variable p each term of the Riemann sum has a simple pole
at g+1  distinct points S,, P i , ,  Pg , respectively. Here we shall perform the
translation of pole S, (Polvershiebung), while g points P1,--,P9 are fixed in Uo
— {q}.

3 .  Theorems

Thceorem 1. Suppose f (p )  is  the holomorphic function in  G=R— Uo,
then f(p) can be approxim ated locally  uniform ly  in  G  by  the meromorp hic
functions defined on R as follows ;
For any e >0 and any  compact K c  G there exists a meromorphic function g(P)
such that

V(P) —  g(P)I<e ( p K),

where g(P) has poles at most at properly choiced distinct g+1  points Q, P1,•••,
Pg  in  Uo—{q} only.

Proof. Let Go and D be two domains, K c Go D G ,  as before. Follow-
ing to the lemma 2 there exist a finite number of points S,ey(»= --1,--,n) such
that for any e >0

(7) If(p)— A S O dw
d h

CS
( i f ) (h(S,+1)— h(S,))1< (PEK).

We choose a smooth simple curve y, joinning S, to Q such that y, is contained
in R— D and dh*0 on y, and Pz EE (i=1, -• • , n), where Q is a point in Uo — {q,
P1, PO. Then we can take a finite number of points Su= S,1, S,2, •••, S,m+i
=Q  on y , such that

dw (s ,I, sw o d w ( s , p + i ,  
dh(s,p+i) 7,12k dh(S,p+i)

dw(s p )Because dh(.5) has the pole at s=p  and also it is a continous function

of two variables (s, p)E  y,x Go, thus for any sE 7 , there exists a neighbor-
hood Us of s such that

(8) (v=1, ••., n, •—, m).
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I  dw ( s * , s ' )  

I dh ( s * )
dw (s* , p ) >sup , ,,,,p. a, d k s  ) (s., s 'E  usn 7 ) .

 

Then y, can be covered by such a finite number of neighborhoods and so we
can obtain the desired sequence of points Sup (ti=1, •••, m) on each y,. Let G1
be a domain such that G1 contains S,2 and G ocD cG ic  G  and set

H (p )= f (S u) d w
d

(
h ' ' ' ,1) (h (S u +i) -h (S ) )

dw(Sp2, P) 
9  (P )  = dh(S  v  2)

then H (p) is meromorphic in R  and in G1 it has a pole at S e  G1 —  -6-  o only and
9(p) is meromorphic in R  and is holomorphic over 60U{ S ,}  and by (8) we
have

i  dw ( S
'

,2  S,) 19  ( S  2' )  

1= 1 dh (  S, 2 ) > P2iPo ct i(,;(..12:2>) =P2T,319 ( P)1-

Thus we have by the lemma 1 for a sufficiently large k

(9) I  1   i t s  \  d w ( S ,  P )
( h ( S ,+ i )  h ( S , ) )  gui(P)H E

nI 27ri " dh(S ,) 2m (pE K ),

where g,i(P)=11,1(P)Eh a p t  d w (S u 2 , P )r
p =0  k dh (S ,2 ) /  (an : constants) and Hui(P) is  mer-

dw(S,2, p) omorphic on R  and has the pole at the same points as that of dh(S,2)
Thus, by the same way as before, we get mn functions g ,p (P )  (v=1, •-, n, p
=1 , ..., m ) such that

(10) Ig,p+I(P)-gpp(P)I< 2nEtn (p K, p = 2 , -, n i)

and .9,p(P)=HL ,p(P)Pup[ dw(S9P+1'
 p) 1

dh(S um +i) , where Pup[x] is a polynomial of x  and
H ( p )  is meromorphic on R  and has the pole at the same points as that of
dw(S ,p+ i, p) 

dh(S,p+1)
Finally we shall set

9 ( p ) = i g i i . ( P ) = i  Hu (p)P[ d w (Q ,  P )   1
u=1 v=i 'nd h ( Q )

then g(p) is meromorphic in R  and has poles at 9 +1  points Q, Pi, •••, P, only
and by (7), (9) and (10) we can get

If(P) — g(P)I < 6  (PE K) g .  e . d.
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Now let Mo(R) be a family of function such that it is meromorphic on R
and has pole at q only. The next step is to diminish the number of poles of
approximating function constructed in the theorem 1.

Remarking that g distinct points P1, ••-, Pg  and a point Q may be taken in
an arbitrary neighborhood of q, we get the following

Theorem 2. In the theorem 1 it is possible to take the function belonging
to Mo(R) as the approximating function.

Proof Suppose so(p) is a function belonging to Mo(R) and U (U c U0) is a
neighborhood of q such that for any p'E U — {q}

So(P)i> sp I2 1  (P)i

In the process of construction of div(s, p) we shall choose g points P1, -•-, Pg

which belong to U —  {q} and moreover let Q be in U —{q}, then a approximat-
ing function g(p) has poles, at most, at Q and Pi(i=1, •••, g) only. Let k and

be the order of pole at Q and P i, respectively and set

H(p)=g(p)(p(Q)—  9 , (P))k fli (so(Pi)— so(P))".

Then 1-1(p) is holomorphic at Q and P1(i=1, ••-, g) and has pole at q only. For
any pE G we have

H(p) 
g(P)=

gP))k Tql,(T(P "i) SØ(P))

H(p) 1 

9(Q)k ti i gPir • (1 ç o116))) k ji (1 9
9 8)

3 2
)
.0 "

= H(P) au(So(P)) u (a u  :  constants),

where the convergence is locally uniform in G. q.e.d.

4 .  Special case and application

Suppose H(G) and H(R—{q}) are families of holomophic functions in G
and R —  {q} , respectively. Then considering the restriction to G we have

Mo(R)C H (R { q } ) C  H (G).

The theorem 2 states

Mo(R)=H(G),
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where the topology is that of locally uniform convergence in G. Thus we get
as the corollary

H(R —{q}) = H(G).

This is the theorem of Behnke and Stein in the special case.
Suppose K is a compact set in R—{q} and is Runge type and H(K ) is a

family of function f ( p )  which is continous on K  and holomorphic in the
interior of K, then we get Mo (R )cH(R — { q} )cH(K ) on K.
Acccording to the Merigelyan's theorem

H(R— {q}) = H(K),

where the topology of uniform convergence on K is used. On the other hand

M o(R )=H (R  {q}),

hence we obtain

Mo(R)=H(K).

Thus it is seen that the approximating function in the Merigelyan's theorem
may be chosen from Mo(R) in this special case as well.

We shall consider some applications of the theorem 2.
In the case of the genus g = 0, M0(R)=H(G) shows the Runge's approximation
theorem by polynomial. In the case of g=1, any point on R is not special,
because the 1st kind of differelntial has no zero point on R. We consider the
universal covering surface e-t00} of R and denote a fundamental domain by
the parallelogram

P=Pcui- p w 2; A, gE{O, 1], Im( c )>0} .ah

Suppose G is a simply connected subdomain in P  and the lattices lie in the
exterior of G and f (z ) is a doubly periodic holomorphic function in G, then it
follows from the theorem 2 that f (z ) can be approximated locally uniformly
in G by the doubly periodic meromorphic function g(z) which has poles at the
lattice only. It is easy to see that such a elliptic function g(z) can be expressed
uniquely as follows ;

g(z)=.13,[0(z)]+4z)P2[o(z)],

where p(z) is the Weierstrass p(z) with the fundamental periods co, (i=1 , 2)
and Pi[x ] (i= 1, 2) are polynomials of x .  Thus f (z )  can be approximated
locally uniformly in G by P1[p(z)]+0'(z)P2[0(z)]. Inversely, suppose Go is a
simply connected bounded domain in C and is contained in a parallelogram
Po. then f(z) (f  (z)GH(Go)) can be approximated locally uniformly in Go by
Pi[00(z)]+P ro(Z)P2[00(z)], where Po(z) is the Weierstrass p-function which has
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Po as the fundamental period parallelogram.
Now we shall return to the locally univalent holomorphic function F (p )

stated in the introduction ([1], Kusunoki and Sainouchi [7], Ripoll [8 1). Here
we shall consider F (p )  on the punctured surface R —{q}, then q is the isolated
singular point of F (P ) .  It is clear that q  is not removable. Since deg(dF)=
2 g -2 , if F (p ) has the pole at q, then g=- 0 . Thus if g 1, then q is the essential
singular point, hence according to the Picard theorem F (p )  assumes all finite
values, with the exception of one at most, an infinite number of times. Let
{Gn171=0,1,— be a canonical exhaution of R—{q} such that G n i - i C  G. (n= 1 , 2,

U  Gn=R—{q} and R— G n  is connected and has q  as an interior point. Then
n=o

by the theorem 2 we can get the sequence of meromorphic functions {gn(p)} as
follows ;  Let e = E  en (en >0), then for any en

n=1

1F(P) —  .972(P)1<  En, gn(P)E Mo(R) (P E

Therefore it is seen that F (p )  is approximated by the sequence {gn(P)} locally
uniformly in R —{q} :

F (A = lim  gn (p ).
n

Since d F *  0 in R —{a}, it may be assumed that d gn * 0  on Gn_i and so the zeros
of d gn  lie in the exterior of e n -1 . Therefore, geometrically speaking, the
covering surface RF generated by F (P ) can be approximated by the covering
surface 12,„ generated by g ( p )  as follows ;  if n  increases, then the number of
sheets of R o i increases and so the number of branch points or its branching
order increases as well, nevertheless the projection of image of { p E R  : d g (p )
=01 mapped by g ( p )  approches to the point at infinity.

A t last we state the general form of theorem 2. The proof can be
obtained, with slight modification, by the same way as before.

Theorem 3. Suppose G is a su b d om a in  of a compact Riemann surface R
and R— -6  has n  connected components Ul, ••• , Un and each component has an
interior point, then f ( p )  ( f ( p ) H (G )) can be approximated locally uniformly
in G by the m erom o rp h ic  functions on R, where each m erom o rp  hic function has
poles at m ost at n  points Q i(Q ,E U i, i= 1 , ••• , n ) only.
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