A remark on homomorphisms between generalized Verma modules

By

Akihiko Gyoja

1. Let g be a complex simple Lie algebra, \mathfrak{p}_s a parabolic subalgebra, and \mathfrak{p}_s the set of (isomorphism classes of) simple \mathfrak{p}_s -modules of finite dimension. For $E \in \mathfrak{p}_s$, put $M_s(E) = U(\mathfrak{g}) \otimes_{U(\mathfrak{p}_s)} E$, where U(-) denotes the enveloping algebra.

In many cases, it is known that

(A) dim Hom_s($M_s(E), M_s(F)$) ≤ 1 for $E, F \in \mathfrak{p}_s$

([7], [1],...). Based on these results, it was once conjectured that (A) is always valid. But R.S.Irving [3, 9.6] produced an example that

dim Hom_{θ}($M_s(E)$, $M_s(F)$)=2, g= D_4 ,

and this conjecture has been negatively settled. See also [4].

Recently, the author encountered a curious phenomenon. Generalizing [6], we can show a relation between

(1) irreducible factors of *b*-functions of semi-invariants, and

(2) intertwining operators between generalized Verma medules.

Thus it would be natural to expect that the dimensions of these Hom spaces should be related with the multiplicities of the irreducible factors of the b-functions. Curiously, it turned out that the dimension of these Hom spaces do not play any role concerning this point. To explain this phenomenon, arises the following question.

(B) Is $\text{Hom}_{\mathfrak{g}}(M_{\mathfrak{s}}(E), M_{\mathfrak{s}}(F))$ irreducible in some sense?

In this note, we take up example of Irving [3] and give an affirmative answer to (B) in this case.

2. Fix a Cartan subalgebra \mathfrak{h} of a complex simple Lie algebra \mathfrak{g} , a root basis $\{a_i\}$, and a root vector X_i for each a_i . Take the root vector Y_i for the root $-a_i$ so that $a_i([X_i, Y_i])=2$. Let Γ be the stabilizer of $(\mathfrak{h}, \{a_i\}, \{X_i\})$ in Aut(\mathfrak{g}). Then Aut(\mathfrak{g}) is a semidirect product of Γ and the inner automorphism

Received September 14, 1993

Revised June 3, 1994

group of g. Let S be a Γ -stable subset of $\{\alpha_i\}$, \mathfrak{p}_s the corresponding parabolic subalgebra, and $\mathfrak{p}_{s,\Gamma}$ the set of $E \in \mathfrak{p}_s$ whose highest weight is Γ -invariant.

Lemma. Any $E \in \mathfrak{p}_{s,\Gamma}$ has a unique Γ -module structure such that a highest weight vector is Γ -invariant and $\gamma(ue) = \gamma(u)\gamma e (\gamma \in \Gamma, u \in U(\mathfrak{p}_s), e \in E)$.

Proof. Let e_0 be a highest weight vector. It suffices to prove that $\gamma(u)e_0$ ($\gamma \in \Gamma$, $u \in U(\mathfrak{p}_s)$) depends only on ue_0 , or equivalently, that the annihilator of e_0 in $U(\mathfrak{p}_s)$ is Γ -stable. The latter can be proved using the explicit description of the annihilator [2, 7.2.7(iii)].

For $E \in \mathfrak{p}_{s,\Gamma}$, define the Γ -module structure of $M_s(E)$ by $\gamma(u \otimes e) = \gamma(u) \otimes \gamma e$ ($\gamma \in \Gamma$, $u \in U(\mathfrak{g})$, $e \in E$). For $E, F \in \mathfrak{p}_{s,\Gamma}$, define the Γ -module structure of $H := \operatorname{Homg}(M_s(E), M_s(F))$ by $\gamma(h)(m) = \gamma(h(\gamma^{-1}m))$ ($\gamma \in \Gamma$, $h \in H$, $m \in M_s(E)$).

3. Let g be the complex simple Lie algebra of type D_4 , $\{a_i\}_{0 \le i \le 3}$ be the simple roots where a_0 is Γ -invariant, $\{\pi_i\}$ the fundamental weights, and $\{s_i\}$ the simple reflections. Put $x = s_0$, $y = s_0 s_1 s_2 s_3 s_0$, $\lambda_n = x \cdot (-n\pi_0 - \rho)$, and $\mu_n = y \cdot (-n\pi_0 - \rho)$ $(n=1,2,\cdots)$. Here $w \cdot v = w(v+\rho) - \rho$ with $\rho = \sum \pi_i$. (Note that $\lambda_n = (n-1)\pi_0 - (n+1)(\pi_1 + \pi_2 + \pi_3)$ and $\mu_n = (2n-1)\pi_0 - (n+1)(\pi_1 + \pi_2 + \pi_3)$.) Let $S = \{a_0\}$, E_n (resp. F_n) be the simple \mathfrak{p}_s -module whose highest weight is λ_n (resp. μ_n), and e_n (resp. f_n) its highest weight vector. In the present case, $\Gamma \simeq \mathfrak{S}_3$. Take an element $\delta \in \Gamma$ of order 3, put $\omega : = \exp(2\pi\sqrt{-1}/3)$, and

$$u_1: = \sum_{i=0}^{2} \omega^i \delta^{-i} (Y_{10203} - 2Y_{10230} - Y_{12030}),$$

where $Y_{ijklm} := Y_i Y_j Y_k Y_l Y_m$. Using the relations $Y_0^2 f_1 = 0$, $[Y_0, [Y_0, Y_1]] = 0$, $[[Y_0, Y_1], [Y_0, Y_2]] = 0$ and their Γ -conjugates, we can show that $u_1 \otimes f_1$ is of weight λ_1 , is annihilated by $\{X_i\}$, $\delta(u_1 \otimes f_1) = \omega(u_1 \otimes f_1)$, and the weight space $M_s(F_1)^{\lambda_1}$ is spanned by the 14 elements $Y_{ijklm} \otimes f_1$ with $(ijklm) \in \{(01023), (01203), (02301), (03102), (01230), (10203), (20301), (30102), (10230), (20310), (30120), (10230), (20310), (30120), (12030), (23010), (31020)\}$. Since dim $M_s(F_1)^{\lambda_1} = 14$, these elements are linearly independent, and hence $u_1 \otimes f_1 \neq 0$. Define a homomorphism h_1 : $M_s(E_1) \rightarrow M_s(F_1)$ so that $h_1(1 \otimes e_1) = u_1 \otimes f_1$. Then $h_1 \neq 0$ and $\delta(h_1) = \omega h_1$. By [5, 1.17], $M_s(E_1)$ is simple, and hence h_1 is injective. By [5, 2.11 and 2.25], we get

$$M_{S}(E_{n}) \simeq T_{-\pi_{0}-\rho}^{-n\pi_{0}-\rho}M_{S}(E_{1}) = (M_{S}(E_{1}) \otimes V(-(n-1)\pi_{0}))_{-n\pi_{0}-\rho}$$

and a similar relation for F_n . (See [5] for the definitions of $T_{\lambda}^{\lambda'}$, $V(\lambda' - \lambda)$, and ()_{λ'}.) Then $h_1 \otimes$ (identity) induces an injective homomorphism $h_n \in \text{Hom}_{\mathfrak{s}}$ ($M_{\mathfrak{s}}(E_n), M_{\mathfrak{s}}(F_n)$) = : H_n such that

$$\delta(h_n) = \omega h_n.$$

Here we have applied the lemma in §2 to $V(-(n-1)\pi_0)$. Since dim $H_n=2$

[3, 9.6], the existence of such $h_n \in H_n \setminus \{0\}$ implies the irreducibility of the Γ -module H_n .

4. Define $h'_n \in H_n$ in the same way as h_n using ω^{-1} instead of ω . Then $H_n = Ch_n \oplus Ch'_n$. Put $N := M_s(E_1) \otimes V(-(n-1)\pi_0)$, and $N' := M_s(F_1) \otimes V(-(n-1)\pi_0)$. Then $h \rightarrow h \otimes (\text{identity})$ gives an injection $H_1 \rightarrow \text{Hom}_s(N, N')$. Decomposing $N = \bigoplus_{\nu} N_{\nu}$ and $N' = \bigoplus_{\nu} N'_{\nu}$ according to the central character, we get a projection $\text{Hom}_s(N, N') \rightarrow H_n$. Composing these mappings, we get a linear isomorphism $\varphi : H_1 \rightarrow H_n$ such that $\varphi(h_1) = h_n$ and $\varphi(h'_1) = h'_n$. Calculating the Γ -action on h_1 , h'_1 , h_n and h'_n , we can show that φ is Γ -equivariant. In other words, the Γ -action on H_n can be also defined from the Γ -action on H_1 , identifying H_1 and H_n by φ . Thus we can define the Γ -action on H_n without applying the lemma in § 2 to $V(-(n-1)\pi_0)$. This remark enables us to apply the argument in § 3 to the example of Irving-Shelton [4, 5.3], which includes the example of Irving [3, 9.6] as a special case.

5. Let us consider the general case. As for the candidates for the group acting on the Hom space, the outer automorphism group of g is too small. In fact, starting from the example of Irving [3, 9.6], and using the transitivity of the induction [2, 5.1.11 and 5.1.12], we get examples such that dim Hom ≥ 2 and such that the Dynkin diagram of g is connected and strictly larger than that of D_4 . Then the outer automorphism group of g is $\mathbf{Z}/2\mathbf{Z}$ or $\{0\}$, which can not act on the Hom space whose dimension is ≥ 2 .

DEPARTMENT OF FUNDAMENTAL SCIENCES, FACULTY OF INTEGRATED HUMAN STUDIES, KYOTO UNIVERSITY.

References

- B. D. Boe, D. H. Collingwood, A comparison theorem for the structure of induced representations, J. Algebra, 94 (1985), 511-545.
- [2] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974.
- [3] R. S. Irving, Projective modules in the category Os: self-duality, Trans. AMS, 291 (1985), 701-732.
- [4] R. S. Irving, B. Shelton, Loewy series and simple projective modules in the category Os, Pacific J. Math., 132 (1988), 319-342.
- [5] J. C. Jantzen, Moduln mit einem höchsten Gewicht, Lecture Notes in Math., 750 (1979), Springer.
- [6] M. Kashiwara, The universal Verma module and the b-function, Advanced Studies in Pure Math., 6 (1985), 67-81.
- [7] J. Lepowsky, Uniqueness of embeddings of certain induced modules, Proc. AMS, 56 (1976), 55-58.