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Equivalence-singularity dichotomy for the
Wiener measures on path groups

and loop groups
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1. Introduction

In  th is paper, we will show  a  dichotomy between the  equivalence and the
singularity for the W iener measure on  path groups and loop groups under their
group transform ations. It is a  natural extention of the following well-known fact
fo r the  abstract Wiener space : the W iener measure is equivalent to its shifted
m easure by a n  element o f  Cameron-Martin subspace, a n d  singular by other
elements (see an excellent re v ie w  [6 ].)  A s  fo r  path  groups, th e  criterion for
equ iva lence  is  know n  w h ich  w e  he re  ca ll t h e  fin ite  energy  condition (see
Albeverio-1-10egh-Krohn [1] and Shigekaw a [8]). A s for loop groups, the finite
energy condition also gives a  sufficient condition for the equivalence (Malliavin-
M alliav in  [7 ]). W e w ill show  th a t th is  condition also gives th e  criterion for
equivalence in  th e  c a se  o f  lo o p  g ro u p s . T o  show  the  dichotom y, we give a
simple proof of the ergodicity for the Wiener measures on  path groups and loop
groups under the actions of finite energy paths and lo o p s . This was first proved
by  G ross [3 ], by  using  th e  Ito-Wiener multiple integral expansion and of the
support theo rem . In  th is paper, we will give a  proof based on the notion of
quasi-homeomorphism and quasi-sure analysis.

The organization of this paper is as fo llow s. In section 2, we show ergodicity
on pa th  g roups. Section 3 is devoted to show the ergodicity on loop  g roups. In
section 4, we show the equivalence-singularity dichotomy.

2. Ergodicity on path groups

In  this section, we will prove the ergodicity on path groups under the action
of finite energy paths. For the proof, we shall define the gradient operator which
w as first introduced by G ross [2]. C om paring this w ith H -derivative on the
Wiener space, we will obtain ergodicity.

L et G  be  a  d-dimensional compact connected L ie group a n d  g  b e  its  Lie
algebra. Suppose w e a re  given a n  Ad (G) invariant inner p roduc t (  , ) g . W e
s h a ll  f ix  a n  o r th o n o rm a l b a s is  P l a Id

a,= 1 o f  g  w ith  respec t to  th is  in n e r
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product. For g e G, (A dg)) denotes the components of Adg : g g w ith respect
to  the basis {A Œ} Denote by PG the path group:

(2.1) PG := {y e C( [0, 1] G); y(0) = el

where e  is the identity of G . We denote by L k the left multiplication in PG by
k. Let I  b e  the unique strong solution t o  the following stochastic differential
equation:

d

{  dy , =  E A Ge(ye) . dff:
a = 1

where o stands for the Fisk-Stratonovich symmetric integral.
D enote by W d the d-dimensional Wiener space, i.e.

(2.3) Wd := {B e C ([0, 1] Rd ); Bo = 01

with the standard Wiener measure m . Let t t  be  the image measure of m  b y  I.
I is a measure theoretical isomorphism from (W d , m) to (PG, 1.1) ([8, Lemma 3.2]).

Let K  be  the set of paths of finite energy :

(2.4) K := t
and SI kk ePG ;

ol t
-

k = (k e) is absolutely continuous w.r.t. t

We shall frequently use such matrix notation Ice-  k, for ease of reading instead
of (L k,- 1) k .  Let H  be the set of g valued finite energy paths:

h = (he) is absolutely continuous w.r.t. t
(2.5) H:= {he C([0, 1] 11);

a n d  Ih, d t  <  rio , h o  =  0

H  is  a Hilbert space with the inner product :

(2.6) (a, b)11 := j (6„
Jo

H  is usually called the Cameron-M artin subspace. Let C ,(P G )  b e  the set of
cylindrical functions :

(2.7) (PG ):= F : P G  R
There exists f  e C"(G") such that

CY { —■ ;

F(y) = f (y ,„  ,y )  n = 1 ,

W e denote by the set of functions F  on PG  which satisfy following
conditions.

(1) F  is in LP (PG, i t )  for any p >  I.
(2) For any h e H, e F ( e y )  is an LP (PG, ,u) valued differentiable function.

(3) The derivative 
d

F(et h y)1, = ,  is continuous in h. In other words, there
de d

exists FFE n p > , LP (PG, it; H) such that (I7 F, h)„ = —  F(ey)1, = 0 .

de

(2.2)
7o = e,

d t <  co
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For later use, we note the following fact.

Proposition 2.1. L et k be a path of finite energy. Then, the measures ii
 pt are equivalent and its  Radon-Nikodym derivative

(2.8) L„-1
( Y )

= exp (Ady,- k i ) i d B i t — 1 f  I k t - l kt19
2 dt}

t , i - i  0 2  0

is  in  9 ,  where y = 1(B) and lc,'  = Ed„, (kt
- 1 k,),IVŒ. Moreover, f o r any  h E H,

the LP (PG, it) valued function gl—.1e .t, is differentiable and its derivative j h  is

d 11
h: e a ,  = 0 =  E (AdYt- Vidid/3 .1.

de o

P ro o f . See [7, Theorem 2.3.1] and  [3, Corollary 3.6].

Following [3] , we shall define the gradient o p e ra to r . F o r this, we need the
following.

Proposition 2.2. The operator V which sends F e .g to V F is a closable operator
f rom  L 2  (PG, g ) to  L 2  (PG, 11; H).

P ro o f . I t  i s  s u f f ic ie n t  to  sh o w  t h a t  th e  a d jo in t  operator is densely
defined . Let F, q  E g  and  h E H .  Then,

(2.9) (17F, (,9 h)L 2 (P G ,  H ) =  (V F (Y ) h)H(P(y)dy

I( d F (e y ) )
clE

(19 (7) citt
= 0

 

d
= f F(e' h y)cp(y)d,u

de

d
=  F(y)cp(e-chy).1e.h(y)dy

de

= — f F(y)(V(P(7), h)H +  fRY)q)(Y).in(y)dy.

This shows that

(2.10) Dom (V*) D 0  H , V* (4) 0 h) =  — (V (I), h)n +

The proof is complete.

W e denote the  closure o f V  a lso  by  V  and  ca ll it  th e  g rad ien t. T o  show
the ergodicity, we shall characterize K-invariant functions.

E  = 0

E = 0
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Definition 2.3. (1) L e t  F  be a bounded B orel m easurable function on  PG,
and y  be a probability measure on PG . W e call F a K-invariant function
(with respect to y ) if  f o r every ke K,

(2.11) F(ky) = F(y) v-a.e.

(2) A  probability  m easure y  on PG is called ergodic under the action o f  K
if  every  K -invariant function is a constant function v-a.e.

Clearly, the K-invariant function with respect to  t t  is  in  g ,  and

(2.12) PF =  O.

Let D be the H-derivative on  IV. Following [3, Theorem  3.14], the relation
between D  and V  is

(2.13) F e Dom (V ) if and only if F o  I e Dom (D) and

(2.14)( V F ,  V = (D(F . D(F o

(2.14) allows us to  use some known facts on the W iener space.

Theorem 2.4. y  is ergodic under the action o f  K.

P ro o f . C om bin ing  (2 .12 ), (2 .13 ) w ith  (2 .14 ), w e  ob ta in  tha t, i f  F  is
K-invariant,

(2.15) D (F . 1)=0.

It is well-known that this implies

(2.16) F o  J = const. m-a.e.

So, the proof is completed.

3. Ergodicity on Loop groups

In  the  previous section, we have shown ergodicity o n  p a th  g ro u p s . In  this
section, w e shall turn to  loop groups. F irst, w e review  the quasi-sure analysis
(see , e .g . [5 ]). Let X  be a  Polish space, and m  be  a Borel probability measure
o n  X .  Suppose th a t  a  strongly continuous contraction semigroup (T,),, 0 o n
L2  (X , m ) is  g iven . W e  assume fu rther tha t the sem igroup is sym m etric and
M arkovian . T hen , b y  the in terpolation th e o re m , (T , o c a n  b e  d e f in e d  on
L" (X, m ) a s  a  strongly continuous contraction semigroup for p >  1 .  For r >  0,
p  > 1, set

F ( —
r )  Jo
I 00  L - 1

t 2 e - `7;dt

2

and define a B anach space (Y';,p, 11,,p) by
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p  : =  (LP (X, m)) and

= 11 f  II p  f o r  u = fe L P (X , m)

where 11 f  II p  denotes the  LP-norm of f . T h e n , th e  (r, p)-capacity Cr ,p  is defined
as fo llo w s: For an  open  se t G c  X,

Cr ,p (G ):=  inf ue3r'r,p, u 1 m-a.e. o n  GI

and for an  arbitrary set B  c  X,

C,, p (B ):=  inf fC r ,p (G ); G  is  open and G D BI

We note that if 3 r  p  n C ,,(X ) is dense in ";,.  we can take a  quasi-continuous
modification w ith respect t o  C,.,p  f o r  any feg;,., p . For l e  n r ,p  , p  we denote
by f  one  o f its quasi-continuous modification with respect to  a ll Cr ,p .

In  th e  c a se  o f  th e  p a th  group, w e  ta k e  L :=  — V*17  a s  t h e  generator of
(2.14) show s th a t  L  can  be  iden tif ied  w ith  the Ornstein-Uhlenbeck

operator on Wd . In particular, the (r, p)-capacity associated with L is tight ([10]).
Let n be the map from PG  to  G defined by it(y) = y(1). W e denote by QG

the  based loop group ir - 1 (e). Following [4, C hapter 5.9], we know that m  is
non-degenerate in  the  sense of Malliavin (see also [7], 3.1). So, w e can take a
family of measures
f e n r , p d œ r , p ,

(3.1) (y) jp(g)dg (y)dti g

(3.2) the  function g i-  f  1(y)d11g is continuous

where dg  is  the  Haar measure o n  G  and p(g)dg is  the distribution of r .  Now,
we begin with a  localization of quasi-invariance. This w as show n in  [7], but
our statement is slightly different.

Lemma 3.1. L et k  be  a path  o f  f in ite  energy . Then, mg an d  , Uk(1)- °  Lk '

are equivalent.

P ro o f . Let f  be in  Ce7,,(PG) and yo be in C ( G ) .  Noting that AG n r , p

we obtain

(3.3) ff 11cY/49 ° n1kY41(c1Y) = (Y) (rP ° 1r111 .41101dY)

= (g )p (g)dg if(Y ):1k(Y)11
9 (dY)•

O n the  other hand,

(3.4) (ky)cp n(ky),u(dy) =  (p(k(1)g)p(g)dg f (ky) pg(dy)

(11g) geG  on  PG supported on (n - 1 (g))g E G  which satisfies, for any
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=I 9 (g )P (g )p (k (1 ) -  

g) 
dg i f  (kY)Ph(1)- g(C11')•

p (g)

Since (3.3) equals to (3.4) for any gc C '  ( G ) ,  we obtain

k (1)
-(3.5) (Y) jk(Y)/(g(dy) = P( g) (ky)it" , ) _ ,g (dy) for a. a. g e G.

P(g)

By the continuity condition (3.2), (3.5) holds for a ll g e G .  This shows that

(3.6) lik (1 )- 19 L k  •

The proof is complete.

To show ergodicity, we take a measurable map s from G to PG which satisfies

(3.7) o s = idG  and

(3.8) s (G ) c  K.

The existence of such  s  is  c lea r from  the  loca l triviality o f the  f ib re  bundle
(PG, iv ,  G ) .  F or instance , in  the  neighborhood U  o f  e ,  w e can  take  a s  s  the
unique geodesic from e  fo the point of U .  We shall fix such s. Define the map
f :  PG —■ QG by

f(y):= s(y(1)) -  'Y.

L et A  be a  subset of Q G , and  we define A as

A := U  s(g)A .
geG

F or ease of reading, we set

Ag  : = s(g)A

X 9 := n ' ( g ) .

Lemma 3.2. Let k  be in PG and A and Â be as above. Then

(kA A 2) n X„ = k A k ( 1 ) -  I g  A Ag

where A  denotes the symmetric dif ference of sets.

Pro o f . W e first show that

(3.9) (kÂ)' n x g = (kA k ( o _ n x g .

In fact, the complement of left hand side is

(3.10) ((kÂ)' n X g y = (kii)u (X g )̀

=  (U  kA h)U ( U  X 1)
I.G,i#q
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= (kA k o r  i g )U ( U
leG ,I*g

=  (kA k o ) - i g ) U Xcg .

In the same way, we obtain

(3.11) 2`n X g =  Acg n Xg .

Combining (3.10) with (3.11), we have

(3.12) n 2)c n X g = ((kÂ)cu Xg

= ((k,i)c n X g ) u (Âe n X g )

= ((kAk(i)- n Xg )u(Acg n X 9 )

= ((kAka)-- U /Icy )) n X g .

Then, we have

(3.13) (k2 A 2)n X g = {(ki g)n(lc:"4-  n 2 ) 1  X g

= {(kÂ u Â) n Xg } n {(C4-  n 71)c n X g }

{(k2 u 2)n X9 }  n {(kAkor , g n A g yn X 9 1

= {(k A k (1) - A g d  n {(kA k ( l ) _ g n Ade n Xg }

= (kAk o )  19 u Ag )n(kAk ( 1 ) - ig n A gy

= kAku)1 g
 L\ Ag .

The proof is complete.

Now, we will show the ergodicity. W e set K 0 :=  K ng2G.

Theorem 3.3. kte  i s  ergodic under the action of K,.

P ro o f .  First, we note that, w ith  the same notation in Lemma 3.3, if A  is
a K 0 -invariant set with respect to  Pe , then A is K-invariant with respect to i .  I n
fact, since ttg is supported  on X g , we have for any keK,

(3.14) p(kA A  2) = f itg (k2 A Â)p(g)dg

=  p 9 ((k2 A Â) n X g )p(g)dg

= j p g (kA k o r  i g  A Ag )p(g)dg

=  p 9 (ks(k(1) - 1 g)A A s(g)A)p(g)dg

=  p g (s(g)(s(g) -  ks(k(1) -  g )A  A A)) p(g)dg.
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Since s(g)eK, by Lemma 3.1 and the asum ption on A , w e have

(3.15) p(k;4' A = 0.

Then by Theorem 2.4, we have

(3.16) p(Â) = 0  or I .

If we assume p(;I) = 0,

(3.17) 0 = p (i )

=  p g (;47)p(g)dg

=  p  g (;" n X 9 )p (g) dg

=  p g (Adp(g)dy.

So we obtain

(3.18) 12q(Ag) = 0 for a.a. g.

Again by Lemma 3.1, we have

(3.19) ite(A) = 0.

B y th e  sam e argument, w e obtain pe (A )=  1  assum ing p(;4) = 1. T he  proof is
complete.

4. Equivalence-Singularity dichotomy

In  this section, we will show the equivalence-singularity dichotomy.
A s fo r  th e  equivalence o n  path  groups, w e know  Proposition 2.1 in one

direction, and the inverse was shown i n  [ 8 ] .  W e shall restate it as follows:

Theorem 4.1. L et k be in P G .  Then, p ,  L k' is  equ iv alen t to  y  if  and  only
if  k is in K .

As for loop groups, Lemma 3.1 corresponds to  Proposition 2.1. So, we shall
show  the inverse  of L em m a 3 .1 . F o r 0  <  t <  1 , w e  d en o te  b y  F , th e  a-field

s ; s < t].

Theorem 4.2. L e t k  b e  in  Q G . Then, y e
,  L k

- 1  is  equ iv alen t to  pe  i f  an d
only  if  k is  in  K o .

P ro o f . W e only have to  show only if part.
Suppose that p e 4 1 a n d  pe a re  equivalent. Since p e l ,i  p i,t ,  we obtain

p o 4 1 1,, — p1,5,1 . By Theorem 4.1, we have that k is absolutely continuous on
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[0 ,1 ]  and

(4.1) 2 I k t
- ' fc,1 dt < co.

Since P e is invariant under the transformation (Ty),= y,_„ we obtain P e —pe L k
- 1

T - 1 . N oting that TL , = LT(k) T , we have

(4.2) P e P e  ° T(1k).

So, we obtain by the same argument fo r  k , k  is absolutely continuous o n  [1, 1]
and

(4.3) 1kt- 1  fc,1,2 dt < co.
2

Combining (4.1) and (4.3), w e have

(4.4)
JO It i g

< co.

Remark 4.3. S o f a r  we have considered the le f t ac tio n . B y  the symmetry
of  the  measures y  an d  y e under the transformation w e can replace left
by right.

Now, we recall a  wel-known fact about ergodic m easures. Let (Q, denote
a  measurable space, and (Tc,)„e „  denote a  family of measurable isomorphisms on
(Q, ,4). Let P 1 , P 2  be two measures on  (Q, Al which are quasi-invariant under
( T a)eA  •

F a c t . I f  P ,  and P 2  are both ergodic under (T,) Œ EA , then  P, and P 2  are either
equivalent or singular.

F or the  case  th a t Q  is  a  vector space a n d  (TŒLE A  a r e  shifts, th e  proof is
given in  [ 9 ] .  O ne  can  show  the  general case w ith m inor m odifications. We
shall apply this fact to p  and Il e . Here, we restate our results.

Theorem 4.4. L e t y  be  the W iener measure on the p ath  g ro u p  PG . Then,
f o r k e PG,

(1) yo is equivalent to y  i f  and only  i f  ke K.
(2) p o  L,-, 1 is singular to  y  if  an d  only  if  ke Kc .

P ro o f . By Theorem 2.5 a n d  Remark 4.3, w e can apply the  fact above to
the case P, = p , P 2  =  p o Lk

- 1  a n d  (R,), E K . So, p o  Lk—  1  is e ither equivalent or
singular to y. W e have already shown the criterion for equivalence in  Theorem
4.1. The proof is complete.

F or the  loop group, we have, by the same proof, the following.

Theorem 4.5. L et y e b e  the pinned W iener measure on the based loop group
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Q G . Then, for keS2G,
(1) g e ,  IV  is equiv alent to  y e i f  and only  if  k eK 0 .
(2) y e o IV  is singular to  [ t e  i f  an d  only  if  k e K .
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