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Asymptotic estimates for the distribution of additive
functionals of Brownian motion by the Wiener-Hopf

factorization method
By

Yasuki Isozmu

1. Introduction

In[4], we studied the supremum process of the  integral of Brownian mo-
tion  a n d  obtained th e  following estimates: L e t b (t) b e  th e  o n e  dimensional
Brownian motion starting at 0. For r> 0 , A > 0 , a > 0  and a E R, let

Pra (A) = P b (u)du r - Fat for all 0  t ,L 1 1

and

(1.2) Praa= 0 b (u )d u rd -at -l- crt2 for all 0 t< 0 0 }.

Then it holds

(1.3) Pra (A) —  C (r, a) A - 1 1 4  as A t

and

(1.4) Praa— C2(r, a) a 1/2 a s  a l  0

with positive constants Ci (r, a ), i =1, 2, which can be given explicitly (see
[4]). This is  a  refinement of Sinai's estimates in  [9].

These asymptotics follow systematically from the theorem in  [4]on a  two
dimensional process called the Kolmogorov diffusion (cf. [5])

Y (t) =y+ b (t), X (t)=x+ f t Y (u) du = x - Pyt+  b  (u ) du.0
Let T be the first hitting time to the positive y-axis

(1.6) T i n f 0 ; X (t) =0, Y (t) 0} .

We denote by E (x ,y ) the expectation for the diffusion sta rting  a t (x, y) e
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Theorem ([4]). For a __0, 6 _ ._0 and (x, y) e II 2 with x_0,

(1.7) 1—E(x,y)(exp[—aa2T—baY(T)]) — C (a, b; x, y),Vti as a 1 O.

O ur proof in  [4 ]  w as based on a form ula obtained by McKean[6] while
Sinai's method was based on an extension of the fluctuation theory of Sparre
Andersen for sums of i. i. d. random variables. So it may be a natural question
to  a sk  if  th e  above estim ates (1 .3 )  a n d  ( 1 .4 )  (more generally th e  estimate
(1 .7 )  )  could be recovered by a fluctuation theory for sums of i. i. d. random
variables and Levy processes. The p resen t paper is  a n  attem pt to this prob-
lem: The fluctuation theory  w e use  i s  a  ve rsion  o f the  Wiener-Hopf decom-
position obtained by Rogozin[7]for Levy processes as the continuous time ana-
logue of Spitzer's identity in  [8]for sums of i. i. d. random variables. However
w e need  a  generalization o f  th e  Spitzer - Rogozin iden tity  to  the  case  o f two
dimensional Levy processes (T h . 1). Although we could not yet succeed to re-
cover the estim ates (1 .3 ) a n d  (1 .4) by this method, we can obtain some spe-
cial cases and furthermore, we can deduce a  weaker form o f  (1 .3) for a  class
of odd additive functionals of Brownian motion including the integral of Brow-
nian motion (Th.3) .

2 .  The main theorems

L e t (Tr, V  be  a  time homogeneous Levy process, i. e . , a  cadlag process
with stationary independent increments, with ro=-0 a n d  1,-=.0. Then the law of
this process is determined by the characteristic exponent 0 (,(2, 17) defined by

(2.1) E[eiurt+inct] ,e-t0(11,77), p, r)E R.

Set

(2 . 2) t.=
 s u p

 s ,  t =  i n f  s
05.35t 05.351-

and define for a_.- 0

(2.3) 0+ (a, 11 , 77) = (6+0  (g, 0)) fo -  dtE[e - crt+ rt-Fined,

(2.4) 0-(a, fi, 77) = (a+ 0 (tc, 0)) fo -  dtE[Camriart -f i qt],

W e assume that Re0 (ii, 77) > 0  if  1/21+1171>0. T hen  w e have the following
generalization o f the  Wiener-Hopf decomposition theorem which we call the
Spitzer-Rogozin identity in continuous time (cf. [7]) :
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Theorem 1.

(2.5) 0+ (a, g, 77) = exp  f  - d t E [e -ar+ita t ( e inet-n) ; t > 0 ]),
0 t

(2.6) 0- (a, g, n ) = e x p  f  - d t E [e -at+ila t ( e in t-
)

i\
0 t

and

(2.7)0 +  (cf, g, )7)0_ (0-, t t , n)  ,   6 + 0 (It, 0) 
a+çb ( t, 72) •

The proof will be given in Section 3.
Let b (t) be the one dimensional Brownian motion w ith b (0) =0. Let L t be

the local tim e at 0: 0 f t( b  ( u ) )  du and r t  be the right con-2s 0
tinuous inverse of L t : r t = inf{u>0; Lu >t}. For we set

(2.8)s g n  ( b  ( u ) )  •  lb (u)la du
o

where
1 x > 0 ,

sgnx= { - 1 x<0,
0  x = 0 .

It is  w e ll know n  tha t ert ,  V  is  a  two dimensional Lévy process with T o =  0
a n d  0 =0.

A s an application of Theorem 1 to  th is particu lar case together w ith the
overshoot argument in the fluctuation theo ry  (cf. Bingham[2]) , we obtain the
following

Theorem 2. Let e r =  0 (4 =  inf It 0 ; }for r> 0. Then we have for
a-FIL>0, 0

A/a+ AWL C (a) (2.9) 1—E[Cae(r)-fire(r)- e(r) r 2(a
1

+2) as r 1 0,

where

0+ (cr, j2)

21 + 214+2) (a+2) 1 2(aa+2)1' ( a+21 ) I s i n  )2  (a + 2 ) (2.10) C (a) -= r  (
\ 2 (a +  2) )

The proof will be given in Section 4.
Theorem 2  can be used to  obtain som e estim ates o f  th e  law  of additive

functionals of Brownian m otion as sta ted  in Introduction. For this, we intro-
duce the following two dimensional diffusion process (X (t) , Y (t) ) :
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Y (t) = y+ b (t) ,
(2.11)

X (t) = x+J 
o
 sgn (Y (u)) • 117  (u)ladu.

The law of th is diffusion is denoted by P(x,y) as usual. Let

T = inf 0 ; X (t) = 0 ) ,

(2.12) inf {t 0 ; Y (t) = 0),

= X (r ) .

T hen  it is  easy  to  see  tha t under  P ( o) w i t h  r >  0, (T  r o O r ,  r + X ( T ±
'M O T )) is equally distributed a s  (Ter, er= .' , w here et i s  the  usual shift
operator on the path space. Hence, by the strong Markov property, we have

1—E[e - grecr) - 2 e(r)] = 1— E c_r ,w [e-  T + T Oo T — r — AX (T+TOoBT)]

= 1 — e- 2 rE(—r,o) [e—"TG(Y ; A, tt)]
where

(2.13) G (y; A, 14 =E(o,y)Le - "T ° - 2 x 9.

It can be proved that G (y; A, 14 is the unique bounded solution of

(2.14) G" (y; A, 14=2 (tt+ ilyc)G (y; A, it)
o n  [0, 0 0 )  w ith the condition G (0; A, ,u) =1 . By the  scaling property of b (t) ,
we deduce easily fo r  any c > 0 the  following equivalence in  law  as 8 dimen-
sional processes:

b Lt \
1 L— Vc2t

1 ,
— i■c 2 t

rt
d

1
2 rct

1
c a - F 2 c t

(P, 72) 0±(a,,a, 72) co
 ( i/ c 2 ,

 n / c a+2) 0± (0./ c ,  te/c 2,  r i l c a+2 )\ Or
_Cl  e  (c .+ 2 r )

—

c
2 re(ca+ 2r)

Hence, we have

(2.15) E[e - " '( r ) -Àwr)] = E [Cra 2+2 /1Te(1)

and

(2.16) G (c y ,. c -(2+a)2 ,  c -2/4 (y; A, 14.
Then by Theorem 2. we obtain
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Corollary 1. For each and .1>_0

211 — E c-r ,c o [ e ' T  G ( Y  (T ) ; A, p)1=1—E(-1,0)[e-ra+214T G (1, a+2 y (T) ; A,  

p )

(2g) 1/4

In particular, the estim ate (1.4) =follows

+ (0, i ipf

 w

, i2e)s

t 1:

Corollary

rz( :a1+2) as r O.

Corollary 2. If P raa is defined by (1.2), then

3 5/624/3F(i)

(2 . 17) PrOa
3  r 1/61/ 0, as a 1 0 or r  0.

Remark. T his result w as obtained in [4] and the general results for
P ra a  with a * 0  can be reproduced from Prou by using the technique developed
there.
Proof. The lemma in  [4]asserts that

(2.18) PrOcr = 1 — E(-r,0)[e 2a
2T-2a Y (T )] _F o f  _Nm) as a 1. O.

where these T , Y (T) are defined with a=1.
On the other hand if a=1, A 0, G  (y; 0, p ) equals to e - .  Replacing p

by 2 and r  by rcr3 , w e obtain by the scaling property o f  (X  ( t ) ,  Y ( t ) )  as a 1 0
or r  0

35/624/3W )

-2r 2 /3a 2 T-2r 1/3 crY(T)' i/2C (1) (ra 3) 1/61—E(-1,o)[e , v  ,

.I T .r

because 0 + (a, p, 0) =1.

A s for the estim ate  (1 .3 ) , w e obtain the follow ing result w hich is a  gener-
alization of Sinai's estim ate in  [9] t o  a  c lass of odd  additive functionals of
Brownian motion b  (t); W e could not yet refine it in the precise form a s  (1. 3),
however. Let, for r>0, A > 0 and

P1,g)  (A) =13 (- r,o)[T>A]

=  P  [ f  sgn (b (a )) • lb (u )  a d u r  for all t Al

so that P ,1
0
.) (A ) equals to Pro(A) defined by (1.1).

Theorem 3.
_  2  .mg) (A) >-<r2(a1-F2)A â as A  • r a+2—•00,

that is, there exist positive constants c i a ' c r  such that
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cia) r2(a1+2 )A  "<1 3 )  (A) <crr2(a1+2)A  1/4

provided that A  • r- a2+2 is large enough.

The proof will be given in section 5.

3 .  Proof of Theorem 1

W e prove theorem 1 by an approximation of the Lévy process by random
walks. F o r a  random walk, Spitzer's method ([8 ]) can be easily m odified to
cover the  two dimensional case. The approximation of the Lévy process by
random walks can be obtained along the line proposed in  [7]. W e should note
that Theorem 1 can also be proved by the method of Greenwood- Pitman[3].

In  [8], Spitzer proved the following

Theorem 4  (Spitzer) . Let x =  (x i, •••, x n) be an arbitrary n - sequence of
real numbers, and en be the n - th  symmetric group. For aeSn, we define

(3.1) S(ax) = max (Exo ),
0 5 k 5 n  1-1

where the summation over empty set is considered to be O. For T E  en which is rep-
resented as a product of cyclic permutations on mutually disjoint sets:

(a i (r)) (a2(r))••• (a, (r )),

we define

(3.2) T (-ix) = ( x k ) + .
k .a ,(, )

For any fixed x, the two sets [S  ( a x )  cfe en an d  [T  ( T x )  TEen  of  n! numbers are
identical to each other.

From this theorem it is obvious that for any sequence of pairs of two real
numbers

(t, x) = ((ti ,  x i) , (t2, x2) , ( t , x ) ) ,

the two sets R i  to, S  (ax )  )1 ,e „ and R i  tv , T  (rx ))1 , E spi a re  identical sets.

As a prototype of Theorem 1, we need the following

Theorem 5. L et (t i , x i), i =  1, 2, ••• be two dimensional i .  i .  d. random
variables. If we define

-1---k=-trE t2± — ± tk ,

Sk ='X 1 +X 2 +•• • ± Xk, S 0 = 0 ,
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çbk (ti, 17) =E {e '" ?r‘+ ǹ s t̀ i S =  max (0, Sk)

then it holds

(3 . 3)

Furthermore

(3.4)

E[e i" -4 -÷ in m a x 05k5n Sk1 = h 1 ( b i  (tt, 77)  ) k i

k1i-2k2+.••+5k)+—+nkn=n5 = 1 k 5 !.1j
;ciao

sn E[eiP1-7c+i77maxosk sk]sn =exp
n=0 n= 1 n

Proof. Spitzer p roved  (3 .3 )  a n d  (3 .4 ) in  the  case 11= 0  by using Theorem  4
and

(3 . 5) E[einT(Tx)]= H (E[e i l7 4 1) )",
5=1

for r e S n w hich contains ki (0 1 z 5 n )  cyclic permutations of length j, j 1,
2, •••, n. In our case, we need what we noted after Theorem 4 and

(3.6) E[ei",-2+I7T(rx)]=  f t  ( oi(g, 71))ki.
j=1

We denote in the following

0+ (s, ,u, 71) : = (1— sE[e"' T1] ) snE[ei" e " s 2 ], Sn=  m ax S ic.
n=0 06k5n

g, 77) : = (1 — sE[e i '  ) E snE[e e " -4 ], S n =  m in  Sk.
n=0 05k5n

Using (3 .4) and the Taylor expansion of log( 1 _
1

x

)  

we obtain

.0 e n
(3 . 7) 0 +  (s, g, 72) = e x p  E E[eia -4; (e i ns n — 1 ); Sn>0 ] ,

n=1 n

(3.8)
s n

(s, 4t.t, n )= e x p  E — E[et" rn

n
(e 1);

n=1 
Sn<0]

and

1— sE [en' 71] (3.9) 0+ (s, g, 7)) (s, tt,
—sE[eil`

To proceed to the continuous time process (Tr, V ,  we set V*, Sn =
and s=e - "̀  in the above. We will show that the both sides o f  (3. 7) converge
to those o f  (2. 5) when N  tends to infinity. The left hand side converges to  0 +

(a, 1,t, 72) from the fac t tha t (Tr, V  has no fixed time of discontinuity

0+ (e - " N , tt, 72)



= (1—e-a/NE[ei#])Ew e -
a n / N  E k +  i n m a x

n=0

= N  ( I — C
a/N- 170(g, O))r _ 7 7 1_[Nt] + i n m a x) dte-

a [ N  t l/ N  E  e
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0  5 IcS[m]0

(a +  0 (II, 0 )) f  C u tE [e r t± i72-e

This convergence holds for Im17 0. For the right hand side o f  (3.7),
–an /N

exp 
r

z  e 
E{e 1(ei01-1) • >01)' Nn=1

(  .
N  _ , I f k 7 4 1  L i )  , A , ; „ . .  [N t] +1  (  , . . . / . [ N  f1 + 1 .= e x p  f  dt e " - - - - - ELe' N  e'"Ç  N 1) , [n r1- 1>010 [N d  +1

;If ,u=0, this is proved by Rogozin([7]) to  converge to f e-attlt 
t

>0]for any n, ' my) In our situation,

 –a (EN t1+1)/E eipp [Ntr  (e  2 e iNd+1 (3.10) N  — 1 ) ;  [Ntplr-F1 >
[Nd + l e

forÂ dominated by

eiN
e
-a([Ntli-1)/Nr•[ ; ,[Nt1+1  >0] ,

[N ]  + 1 r, e 
[NN+1

- 1

w hich is positive and converges pointwise to  an  integrable function as N—•00,

together with their integral by f o d t. Moreover (3.10) converges pointwise to

E [ iefirt (e- " 1 - 1 ) ;t> 0 ].

Hence it follows that the integral o f  (3.10) tends to

r -   C a t  dt E  port (e t - 1 ) ; t>01,J 0 t
w hich establishes (2 .5 ) fo r  ri =i2, 0. Continuity and  analyticity o f  both
sides complete the proof. (2.7) can be proved either by taking lim it in  (3.9)
o r by the formula of the Frullani integral applied to the  product o f  (2.5) and
(2.6).

4. Proof of Theorem 2

Let vt =LT 1 and be defined by (2.8). Then 0(41, 0) = f2T t. Most of ex-
plic it computations involving th e  properties o f  Brownian motion is  d o n e  in
Lemma 3.

CO
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 - l _ e -Gi-Fin)r

dn f - dtE[e - u t - "r i+ i "e il =  f :  di? 271. (.1 -Fir))
95+ (0 ., ip, 77) 

cr-F u- C O 27r (2 +in)
1._ e -u+ wr
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Lemma 1. If cr- l- g> 0  and /1 0,

—at—art—AC(4.1)1 — E [e 're ( r) - '1 re(r) - Â e(r)] = 04_
6
( a

+
,
 V
ii.1

2
,
11

0 )  f 0- dtE[e ;  t <r].

Proof. It is sufficient to prove the following identity:

95
+ (cr,

4 t ,
i 2 )

  = f - dtE[e - ct - #T1 - " t;Grd-s u

0+ (a ii 1:
2 ) [ -09(r)-urE e e(r) e(r)].

By (2.3) and the strong Markov property o f  (Tt,

° 4 - ( 6 ,  i t t ' 1 :2 ) = i  - duE[e - " - ' r u- 2 c u]o
e

=  E R f
( r )

 +  
0 ( r )

) e - " - "ru-Â clidul

E

0 0

-= f  du e - a "- "r u- A e uiCei,< r}  + E  f d t e - +[ a(0(r) 0—gr(e(r)+t)— 2 e(e(r) i-t)
0 0

= f-
du E[e - " - "Tu-A c ti; i‘ <r]

-
+E[e - " ( r ) - " ° ( r ) -A e(r)E [f d t

= f  du  E[e - " - "r u- 2 u; °+ (a, i t e ' i i i ) E[e ecr) - 2 4 i(r)].

We proceed to obtain the asymptotics for the right hand side o f  (4.1).

Lemma 2. I f  o- 0, a + > 0  and 2>0,

f(4.2)(4.2) 72 27 ( (2 + in )  0+ (c7, ill, )7) = (a+ ) f o d t E [ e ' t - P r t- Àc f; t <r],

Proof. We have
f  

A  
d

2r(ii +i
A 1 _  e —GI-Fin)r

(4 .3 )d t E  [ e - at - "rt ± i nN
— n) o

A  1 _ e - -F in ) r  _

= Î  dtE[e-a t—ter dy,
f_ A 2 7 c  

(2

(.1 - Fin) e  t

If A tends to infinity, the left hand side converges to

because (4.10) given below assures that the absolute value of the integrand is
dominated by
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1 2 ( a 1constInl +2) as1 171 - - - ' ,

2  0+ (a, itt, n) 
,0-1-,v4t

w hich is integrable outside [ — A , A ]. The right hand side of (4 .3 ) also con-
verges to

fo-
 
dtE[e - ut - grt— l et; t <r]

because the inverse Fourier transform

e i n x dJ-A 2r GI

converges boundedly to e -
l r  •  '(O r) (x) .

The next lemma is the key to explicit computations.

Lemma 3. Let 0= 
4  ( a + 2 )
.  Then we have as 1121— oe,

(4.4) 0+ (a, i tt, 72) V a+ 12P
e

iB(sgnn)
1 

i/ c 0  (a) 11712 (a+2 )

for Gr Oand ,c1 0 uniformly on any compact set, where

r (a+ 2) a a+2 
( 4 . 5 ) Co (a) =  a + 1

2a+2sin (2(:+2) ) r ( a +1 2) 2

Proof. F irs t w e  o b ta in  the asym ptotics for the absolute value, and then we
prove the existence of the limit of arg0+ (a , ill, 7)).

d  /

It is obvious that lrt, =  kr 1, — s) , and hence for any nER

(P, 72) = (tt, — 7)), Im,tt o,

(4.6) 0+ (0- , n) 0_ (a, 17), 0.

Then by (2.7),

a+ ,/ 2tt
10+ (cr, itt, )7)1 =1  0 . ± n )   ,

Let M (t)  be the local martingale

1F(bt) exp ( — F '( 0 )  L 1 _ f t ( te - Finb`sr )libs>olds)
0

where F (x ) is  the unique bounded solution of F" (x ) = (2,c1±2i17x") F (x ) on
[0, co) w ith the condition F (0) =1. Stopping M (t)  a t r t and a t 0, respectively,
we obtain

E { F ( b )  e x p (0) Lri —  tat+  — 0 7 f r t (q )  a  dis)] = F (0) .

Hence
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E {exp — pz- t+  — in f  ( 1 4 )  advt)]=e
0

where vt
+ i s  the tim e spent by b (t) i n  (0, 0 0 )  until the  stopping time

r is defined analogously:
rt rt

(4  . 7 ) ,-+ — fL t libs>04S, Dr- =
f o

 los<olds.0

Because th e  tw o dim ensional processes (vif , Ibu V 0 H u ) a n d  (Tr,

J o

r t 
lb.A0lad24) are independent and identically distributed, it holds

rt (r (0 )+ P (0 ) )  —  tR e r  (0 )E[exp sgn (b.)1buadvt)] =e —e
o

and hence

(4.8)ç ! '  ( i i i ,  72) = 
—ReF '(0).

The limiting property of F  (0) can be computed by using some knowledge on
the Bessel functions (Abramowitz-Stegun[1]). Let K  and /„ be the usual mod-
ified Bessel functions

K (z ) I — v(Z) (Z )  

2 sin vrc

and

/)) (Z) (—Z \ v  ( 2 2 / 4 )  k

2/ k to k T (V + k + 1 )

2  Then w (z) = Ka+1 2 ( a + 2 z
a + 2 )2  is, up to a multiple constant, a unique bound-

ed solution to w" (z) z a w  (z ) o n  [0, 0 0 ) .  Hence if  U (z ) =w ( ( 2 0  a l+ 2  z ) ,  then
U(x)F (x ) f o r  (tt, 77) = (0, 1) is  g iven  by  u ( o )  . W e note the following asymptotic

for

rt, and

(
2  a + 2  

W Z )  =z 1  ( 2 — /.Za+2 a+ 2 2sin r  
a+2

7  1  
(a+ 2z

a +

2

2 

2)  a +1 

1  )(  1  a + 2  a + 2

a+2 z  

a-k3 
\ a+ 2/

r (  a+1\
\a+21

7E 1\+ 2  a+2 a+2) 
1  a + 2 ,

1  

a  

2 sin  7 r (   a+1) a+3)
a + 2  ' ` a + 2 1 \a+2 )

From this F  (0 ) =  U  (0 ) U  (0) for 7)) = (0, 1) can be computed as
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(a+ 2) aa+2F( a
a

+
+ 2

1 )1 711 F ' (0) = — 2 +a2 e 2(a+2) .
F  ( a l-Lk2)

Thus it holds as 1771 '  0 0 ,
(7:te, 7 7) = 1771a 1+2( i 1 771 a2+2)p, sgnn) —I )71al+2 (/) (0, ± 1) = CO (a) 17)1.1-2

where

7r (a-1-2) a-cf-2 
JT 

(4 . 9) Co (a ) := (0, ±1) = — Re F  (0 )  =  a + 1

2a+2sin 2 (a + 2 )  r ( a + 2
1  )2 .

Hence

(4.10) 10+ (a, 7)) I—
ad-.N/2/1

1 a s  1771 °°•
Co (a) 1771 a+2

arg 0 + (a, 4e , n) is  the imaginary part of the exponent in  the  right hand of
(2.5)

re_
' i - firt0

 t  
EL sin (77V- )arg0 + (a, =it tx )

f -cftE
:9=sgn (77) [e- "d2risin  n Ita+%

_  sgn (n) - d u
Jo

e__rE L  aca/170a-11-2-tutalniia2+2risin(uii-)]
a+2 u

and, as 1771" 0 0 , this converges to

s g n  (12)o '
c u sin> 0 1a+2 1

—  sgn ( n) E[ 7r >0 1 = rs g n  ( 7 7 )
a+2 2 ' 14  ( a + 2 )  •

The convergence above follows by the repeated use of the fact that for x >0,

Î f ( t ) s i n t  
dt 

 < f ( 0 )t

 

r-sint dt 
i x t

   

for any positive decreasing function f  ( t )  ,  and that the  in teg ra l r -s in td t.
x t

is

continuous and vanishes as x 0 0
.

Proof of Theorem 2. From  (4.4) , it follows that the left hand side
of (4.2) behaves as r 1 0,



We have thus obtained (2. 9) with

C (a) = 1 2 (a+2)
',IC° (a) r i

\ 12 (a+2 )
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ro i— e - ( 2 4 - i7 7 ) 7 .
r  0 . ,  1 — e - u '" ) r. 1 )

j  _fir) 27r (2 + in ) 0+ (a, itt, 77) = j o o d (rn) a r  (i± i7,1) 0+ (a, IX  7  • rn

=  -  dx 1 — e -f  n t - i x 1
-- 27r (r,l-Fix) 0+ (a, ix  T,x)

11 a+ Al2te  2(a1+2)1 — e- i - 1  —
f _ 0

-

 0 2rix i/Co(a)
dx . r 1x12(cr+2)eia(sghx)

Va.+ 4/2/..t 1 2  (a + 2 )  rva+2) •
N/C0 (a)

r(2 (a1-1-2)

f - dx Ix 1
1 \2(r.+2) ei e ( sg" ) — 2 (a  ±  2) /  (

2 (a+  2 )  )
H ere th e  identity 27rix
obtained by using r (z) r (1— z) =  r  a n d  t h e  following integrals for v >sin rz

—  1 : f - ?s in  xdx = r (1 + p) cos (v7r/2) and  f  - ?cos xdx = —  r (1 +0
sin  (.r/2).
Hence

9
— E[e - a e ( r ) - # r  e(r) - 2 e e(rd =

a +  ̂ / f
95+ (a, ill, i/l) 0  

dtE [e - a i - trr t- 2 t; t < r ]1 

1 r
00

—e )r 
0+ (a, i,u, --un 2z(A ±in) P± ift, 77)

1 \/a+ / , i2  ( a + 2 )  
0+ (o- , i2 )  .IC0 (a) .1-,(

\ 2 (a+2) )

21±2(aa++12) (a+ 2 )' 2(aa+2) s  n  (2 (ar+ 2) ) r ( a +1 2 )

r r( 2 ( +  2)))

5. Proof of Theorem 3

Lemma 4. Let S and T be non - negative random variables and assume
that

P [T ± S > A ]— c i  A 'and P[S>A1— c 2A - '  as A t

with 0< v< 1 and 0<c2<c i . Then
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(5 .1 ) (  ito.,-1-1) itcp+D) v+i .. —A  v < P [T >  A] < c ,,A ' as A  t  0 0 .■c1 —c2

Proof. We set

[.P T>A1 urn inf =k
A '

Then for any 6 > 0, there exists Ao such that

P[S>A]P [ T + S > A ]  <C 2 +6  and > ci— s for all A >A0
A [A '

and for infinitely many large B,

P [T ›B ]  <k±E.

We choose B large enough to satisfy > A  T h e nE )1/(v+i) 0-
j _

C2 E  1

(C1
—  6

)  ( A  B )  '< P [T H
-
S > A ± B i

<P [S>A 1
-
4
-
-P[T>B1

G (c 2 -1- E)A
- '± (k+e) B .

Hence

(k
-
F E )B '> E) F — (c2 +E) A .

The last term is maximized when we set A =B c2-r-E
 1 )_ u / ( 1)to  yield

k + 6 > { ( c 1 -
6)1/(v+i)_ (c,2+6)1/(p+D

W e intend to apply this lemma with (T, ,5) = (T, T
°
 o  OT) . If we se t a =

0, A= 0 in  Theorem 2 , it follows
2  – ral-2 0 ( T+ To oer)] — (2g) 1/4r2(cr1+2) C.'"  (a) as r  1 0.

We rewrite this using the Tauberian theorem,
21m A –1/4

(5 . 13)-1,0) [ (T T ° 0 OT) > A ]  (C a) as A  t o e .

r ( )
On the other hand, we can extract T° o  OT :

(5 .3 ) 1 — E(-1,o) [e-r a-1-211 (T O O  T  ) ]  
=

1 —
 E ( -1 ,0 ) [G ( T )  :  0, pr22)

=1 —E(_1,0) r Ur a-F2Y  (T)] .

T he asymptotic behavior of the last term  can be obtained by the Taube-
rian  theorem and Corollary 1:

1 —E(-1,0) [e
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Lemma 5. As r  0, it holds

(5.4) 1— E ( - 1 ,( ) [G  (ra+zY  (T) ; A, 0)] 2 (a+ 2) (121r) 
2(a1+ 2)

r ( 2 (a l+ 2) )

and hence

(5. 5)

1
21 2(a+2)

1  /

a+2.r( 1 ) s i n 7r
a + 2  2  (a+2) 1_ E ( _i o [e -  2a ra+2Y(T)1 (2g) 1/41,1/2(a+2)

,F t . r i  1 •
\ 2 (a+ 2) )

The proof is given at the end of th is  section. F ro m  ( 5 .5 )  a n d  (5 .3 )  we
know

2114A  -1 /4

P (-1 ,0 )  [  (T
°
 o  T) >A]

21  2 (a+ 2 ) (a + 2 ) 1+ a1+2r( 1 ) si n7
r

a + 2  — 2  (a+ 2 )
r (  1  

\ 2 (a +  2) )
3)

_ 2" 4 A 4a + 2 
(5  . 6 )

c  
( a \ s i n  7 r  

) 2 2 (a+ 2)

Comparing ( 5 .2 )  a n d  ( 5 .6 )  explicitly, w e can apply Lem m a 4  and  thereby
complete the proof of Theorem 3 with

2  5

(a) —  4/5 4/5) 5/4

71. ) c
5 ) 4 91/ 4

, _  ,
2
—   2 " a C  a  1

2 2  ( a + 2 )
1 C, (3 )  (  )

+ 2

sin  (a) —

r  -
4

, \C (a) .C L 

\4)

Remark. For a= 1, Pra (A ) —C(r, a) A - 1 1 4  has been obtained in  [4].
It amounts

P,0 (A) -O.7182  • • • A " 4 ,

while our Theorem 3 asserts only

O. 1231-• • A -1/4 <Pi 0 (A)G1.972••• • A - 1 / 1  fo r  all large A.

Proof of Lemma 5. From  (4 .4 ),

95+ (a, 4i 7:2) a+  2It2 ( a
i+ 2 ) as 2--•00.

,/C0 (a)
Hence if we make g 1 0  in Corollary 1, we get the asymptotic (5 .4 ) . F o r  (5 .5 ),
we must compute

(5.7) h•m
 Pc-i 0) [Y (T) >A] ' A- 1 / 2

Once C is explicitly obtained, we readily obtain
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(5.8) 1—E(-1,0) [e r1 )/(a+2) y ( TN I (2g) 42 (a1+2) /4 )  c .

Tocompute C explicitly, we note that G (y; 2, 0) is a  bounded solution to
G" (y) = 22y" G (y ) on [0, 0 0 )  and hence G (y; ,  0) w (y) /w  (0) where

2  a + 2
(z )  = K a-±-2(cr- F2 z -2 - - - )* By (5.4) we deduce that

J.- - 1 1 /  ( Y ) P[ra-li-2Y (T) >y]oly—
(a+1 2 )  )(r)2(a1+2),

) /11 (0) 2

and hence

(5 . 9) w ( Y )   -1/2_, 2  (a+ 2 ) 2 wy ay —  , , 2(a1+2) .

r(I j2 (a+2)
As we obtained in Section 4,

(a+2) « 14-2r ( a +
1

2 )
w =  7 r  (a+ 2) a l+2 _

it 
2
r

( aa +
+

21 )22sin
a +

Finally we integrate—w' (y) y -1/2:

(y) .3r1 /2dy
o

f 1  
d -Y" 2 I lv l 'a+2(a+2-Y 2 )

2   a + 2

•  y l l f '  a L ( a +
2

2ya r=
)

o

a2  a + 2
and by the change of variable C= 

a + 2
y  2  so that dC=yTdy, this is equal to

1 
—I d (a +  2) CK al+2 (C)

a
1
-s-2 (C)

1 -

Note that (z) +K ' (z) = (z ) and K ( z )  =  f0 c1.1 •
tv-1

e -
1-(2+1/2) 2

the above further equals to

f d 1 (C)
a+2 - -

=f C O  • 2 al+2 2P L C V- 1 ( 2 + 1 " )

0 0 2
i   _i

= f
a

w ail 
2  + 2  

=
r  

02 2 + 1 i t  2sin 
2 (a + 2 )

From (5.9) we obtain
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7r 2 (a+ 2) i ( a  + 2) a l+21.( 1 )a+ 2  
C =  / \ 2 2(a+2) •

.  T r 1 2
2sin 2 (a + 2) rk2 (a+2 ) )

and hence

, 1 , ..-,,,,  1 \  :  r  2 -  2 (e r- Ti-2  k a i-L )— a + 2
r(  1  

n  \  1   I n  \  1   1 a ± 2 ;
s in  2 (a+ 2) 

(Ltt) 4r2(a+2)EG) C—  (Lip 4r2(a+2) .
,/Tr 

r ( 1 \ (a + 2 )  )
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