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Characterization of harmonic functions
with singularity in hyperplane

By

Soon- Yeong CHUNG

1. Introduction

A  real valued function u (x ) defined on an open subset D  of W  is called
harmonic in  Q if it is twice differentiable and satisfies the Laplace equation

a: a: a:
=      u  (x) = 0 ,  x  Q.ax 2

1
 a x 2 2 ax 2 n

W e denote by E (x) th e  fundamental solution of the Laplace operator d.
That is,

—C2log x  ,  n=2

Cnix12 - n , n > 2 .

Throughout this paper, for every point x c  W  we write x = (x' ,x") , e
Rn', x "  e Rn", n =n '± n"w here n'and W are natural numbers. Moreover, by N o

we denote the set of nonnegative integers.
In this paper w e characterize the harmonic functions near their singular-

ities. In fact, it is w ell know n that if u is harmonic and positive in the deleted
unit ball U  \  101 then u can be written as

u (x) =y (x) a E  (x ) ,  x E U  \  I ol
for some constant a  0 and  a  harmonic function y (x ) in  U. T his is, so called,
Bôcher's theorem. More generalized decomposition theorem with no  positivity
condition was given i n  [CKL] a n d  [AM U.] . These theorems eventually de-
scribe that every harmonic function with singularities can be expressed as the
sum of derivatives of E (x) modulo harmonic function in the whole domain.

In  this paper w e give a  characterization of harmonic functions u in  SAK
where D  is  an open set and K -= K' X 101, K ' is  a compact subset of Rn', Rn =

X Rn", as follows:
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(2.11) u (x) =, (x) E f8 (x') * osx„E (x , ,x"), x E D \ K
Emr

where y is  a  harmonic function in D and ffi are analytic functionals in IV' with
support in K '. T his result refines the  decomposition theorem i n  [A B M .] . In
addition to  th is  re su lt w e  g ive  a  characterization o f  harmonic function with
some restrictive grow th near K . In fact, it is  p roved  tha t if  a  harmonic func-
tion u (x) satisfies

lu  (4 1  C [d (x,K)] n e a r  K

for some C > 0 and M > 0  then the infinite sum in  (2.11) above can be reduced
to the finite sum with the distributions f fi supported by K '. Moreover, especial-
ly if u (x) satisfies the more restrictive condition

lu (x) I C[c/ (x,K) ] 2 - n f o r  n>2,

and

lu (x)C  I logd (x,K) I f o r  n = 2

near K  then u (x) can be written in a much simpler form

u (x) =y (x) +g 0 (x') * E (x',x") , x  E Q\K.

Throughout th is paper every  theory  can be developed by virtue of the
generalized function theory without appealing to the general potential theory,
such as, the maximum principle, the mean value theorm, etc. Basically we de-
pend on the Sato hyperfunction theory o r sometimes on the Schwartz distribu-
tion theory. This is another point of this paper.

2 . A review on hyperfunctions and main theorems

A t firs t w e  g ive  a  b rie f  introduction to  hyperfunctions. S e e  [H ,S] for
more details.

A s usual the strong dual g'of the  space of C- functions in  IV is called the
space of (Schw artz) distributions w ith compact support. Similarly the  strong
d u a l . 'o f  t h e  space g i o f  analytic  functions is called th e  space o f  analytic
functionals. Here it is precisely given as follows:

Definition 2.1. Let K  be a compact subset of W. Then we denote by
(K ) th e  space of continuous linear functionals u on  the  space s i  of entire

functions such that for every complex neighborhood o.) of K

(2.1) lu (o) I _<cwsuplo (z) I, q5 4.
Zeal

We call the element of ar (K ) an analytic functional with support in K. For an
open set Q  we denote by sir (D ) the set of all analytic functionals whose sup-
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ports are compact subsets of Q.

The following theorem characterizes the analytic functionals with support
in a hyperplane.

Theorem 2.2. Let u E 4 '  (R n ) with support in K= X {0}where K'is a
compact subset of Rn'. Then there exists a  sequence of analytic functionals us in
Rn'with support in K'such that

(2 . 2) Eus0503)(x").
tIeNr

In other words,

(2 . 3) u (0) =  E .B(aB.x„,b(x , ,o)), OGA1.
sEN

have Ills R114 Eel si r),Moreover, we p  f o r every E> 0  where denotes the
operator norm in  (2 . 1) and K= {z' EC n id (ijC) < E}.

Proof. Let 0(x ) be an entire function. Expanding 0 in Taylor series with
respect to x"variable we may write

(2.5) (x) E as x- xi) x"s

pE m

For each SE W  and 0 (x') E  (CI') we define

(2 . 6) us  (0) =u (0 (.0 x"13/ 13!) .
Then for every E>0 there exists a constant CE > 0  such that

lus (0)1= lu (0 (x')x"8 /i31) I

CE sup10 (Z)z" Rig l
Ve la
IV, I GE

sup
Ida z,)1,

ce "F
eEKt

which means that

lIus IK;< ces1131/S!

fo r  each 13 and  th a t ufi belongs to  4 ' (R n ')  w ith  suppo rt in  K '. Then using
(2 .5) and the continuity of u  we can obtain

u(q5) = E u  (ag„0(x',o) x"s)

gENg-
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= E u (X ',0)

fieNg"

= E [u,06(4)(x-)] (0),
PENg

which completes the proof.

R em ark. (i) In fact, every u of the form  (2.2) defines an analytic func-
tiona l w ith  su p p o rt in  K  =  K ' X  {0 } , w h ic h  is  th e  c o n v e rse  o f  th e  above
theorem.

( ii)  For the  d istributions it is w ell know n that every  distribution in Rn
with support in K= K' X {0} can written as a finite sum

(2 . 7) EU 405 (13) ,

1015N

where u5 are  d istribu tions in  R n 'w ith  support in  K '. T h is  fact w ill be used
also later.

Now we define a hyperfunction in a bounded open subset D of Rn.

Definition 2.3. ( i)  The space B (Q ) of hyperfunctions in D is defined
by

B(Q ) = sf (Q) / (0 Q )  .

(ii)  For u (Q) the support of the c la s s  it  of u in B (Q ) is defined by

s u p p  =S2 n suppu.

For the notions of hyperfunctions on more general open set w e  re fe r  to  [H]
an d  [K ] .

The followings a re  the  basic  properties of hyperfunctions, which will be
very helpful later.

Theorem 2.4. [ S ]  ,  Lemma 121, Theorems 122, 141) . L et Q  be an
open subset of and Q1c..0 be open.
(i) For every u E B (Qi) there exists trE B (Q) which extends u.
(ii) T he space (Q )  of  S chw artz  distributions in D is continuously imbedded

into B(Q)
(iii) For an elliptic partial differential operator p ( a) with constant coefficients, if u

E  B (Q) and p ( a) u = 0 in  Q then u is analytic. In other words, every elliptic
partial differential operator with constant coefficents is analytic-hypoelliptic in
the category of hypelfunctions.

We are now in a position to state and prove the main theorem of this pap-



Harmonic functions with singularity 203

er.

Theorem 2.5. Let D be an open subset of R n and K=K' X  {0) c Q for a
compact subset K'of . If u is a harmonic function in S2\K then there exist a har-
monic function v (x) in D and fg E .521r (Rn ')  such that

(2.8) u (x) =y (x) Eh(x) * a s„E(x',x-) , xE SAK,
gem"

where * denotes the convolution product with respect to x'variable. The coefficients

satisfy that h E 4' (K') and Ills k  CE els 1/13!. Moreover, the expression (2.8) is un-
iquely determined.

Proof. F or a  bounded open subset Q0 w ith K C  Q ,  c  w e assume for a
moment th a t  (2 .8) holds for xE,Q 0\K. Since

Eh * ar3.,„E(x',x-)

is harmonic in  R "\K  we can extend y (x) harmonically to Q via (2.8) .There-
fore, we may assume tha t D is a bounded open set.

Since u (x) is real analytic  in  D \K  we may regard i t  as a distribution in
D\K. Then by virtue of Theorem 2.4 (i) , (ii) there exists a EB  (D ) which is
an extension of u. Since u  is harmonic we obtain

d 'a = 0  i n  Q\K,

which implies that Lk is a hyperfunction supported by K. Then we can write

dft=w1+w2,

for some w iE sr (D ) and w2E4' (a,Q) .
Since

(suppwi) fl Q=suppdacK

we have supp wi CK U Q .  Since K n as2 = o (or using the decomposition 4'(K1
U K2) =4' (K1) +4' (K2) given in  [H , Theorem 9 .1 .8 ])  we may write

da =Wj  -1-w2

for some wiEszr (K ) and w 2 E  (a s2) . Then in view of Theorem 2 .2  there are

.f$E (K') Withlfri&  CEe 1131/13! for each ,8 such that wi=EsEm -fsOcV ) (x'').

If we define

(2.9) = E h* 513.,E ,x ") E B (D)
ReNr

then since fti (x ') has compact support and E (x) belongs to B (Q) it is easy to
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see y EB (Q) . Also,

d v =  —  E d ( f s *

= A ft—  E d ( [f$0 5  ( x " ) ]  * E  (x' ,x"))
ReNg-

= A4—  E f805($) (x-)
sENB.

= dirt —w i = w 2 E A' (aD) .

T hus w e  have A y  0  as a  hyperfunction  in  Q . Applying Theorem 2.4
(iii) w e can  see  that y  is  a  harmonic function. Moreover, since each term in
(2 .9 )  is exactly C -  functions in SAK we can obtain that in Q\K

u, (x) =tit (x) =y (x) E (x , ) * a8r„E (x)
REN r

Finally, to prove the uniqueness of the expression (2.8) we suppose that

u (x) =v (x) Ef  (.6 * a5.x„E (x)
Ng"

(x) (x) E gs (x') * as .v„E (x)
Rem'

for some harmonic functions y (x) , w (x) in Q and h, gB EA' (K') with

'Volk Esievia.

Then applying the Laplace operator d  we get

E(f - g ) 05(8 ) (x") =0.
PENT'

Applying an entire function q5 (x) = O(x') X "  a s  a  te s t  function of both sides we
obtain fs=gs for every )3, so that y (x) = w (x) . This completes the proof.

In the above theorem if K  is noncompact subset of Q then we obtain a  lit-
tle different conclusion w hen Q  is  a  bounded open subset. B u t fo r arbitrary
open subset Q it may not be true.

Theorem 2.6. L et Q  be a  bounded open subset of  Rn and Q' = Q f l {x' =
0). If u  is  a  harmonic function in  Q \Q 'then exist a  harmonic function y (x) in  Q
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and fBE szi' (Rn') such that

u (x) =v (x) E, (x) *as.,„E(x ',x "), xe DV%
gem'

and
fR E (SY) a n d  VRIITPE C6E1/3713,

where Q' denotes the closure of Q' in  W .

Proof. Let tit b e  a  hyperfunctional extension of u to  Q. T hen  as in  the
proof of Theorem 2.5 we may write

A f t =w 1 +w 2

for some E  (SY) and w2esT (as-2). Then similar argument as before gives
the conclusion.

But, in general, if D is not bounded then we cannot expect to get express-
ion  (2.8). For example, consider Q=R 2 and

{  y  y

—y y >0.

Then u (x, y )  is harm onic in  R2 \ gwhere Q' = ,0) Ix e = R X {0} .
Then a calculation gives

(x, y) = a
ax

2u2 +  aay
2 14

2 =  25 (y) i n  R2 .

On the other hand, if u (x, y )  can be written a s  in  (2.8) then we have

00

du (x, y) = (x) 0 5 ( i ) (Y).
i=o

Comparing these relations we obtain

fo (x) = 2, f; (x) = 0  f o r  j=1, 2,•••,

Then it follows that

u (x, y) =fo (x) * E (x, y)

= — 2C2 f log i x 2 + y2 dx.

But the last integral does not converge, which leads a contradiction.
In fact, for the Laplace operator d  we use only the ellipticity in the proof

of Theorem 2.5. Therefore, w e can state a  sim ilar resu lt fo r  an  elliptic oper-

u (x, y) =
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ator with constant coefficients as follows:

Corollary 2.7. Let P (D) be an elliptic partial differential operator with
constant coefficients. If D is an open subset of Rn and K = K' X {0} for a compact
subset K'of Rw  then every solution u(x) of P (D)u=0 in  ,Q\K can be written as

(x) =v (x) E fp (.6  *  3( x ' , x ”)  ,  x e  ,Q\K
/3E/sir

f or some solution v (x) of  P (D) y (x) = 0 in  D and fs (x') e A ' (R n ')  withilfslIK
/ g where F (x) is a fundamental solution of the partial differential operator

P (D)

In particular, if K = {0} c D we can easily obtain the following corllary
which has already been proved in  [CKL] .

Corollary 2.8. Let u be harmonic in .(2\ {0} . Then there exist a harmonic
function v in  Q and constants aa  such that

(2.10) (x) =v (x) E aaaaE (x), x ED\ {0}
aElsir

and

latri celal/ a ! for every E> 0.

F o r a  harmonic function with some restrictive growth near the singular
set K we can give a much simpler characterization. In fact, for those harmonic
functions in D\K the infinite sum in  (2.8) o r  (2.10) can be reduced to a  fi-
nite sum.

Theorem 2.9. Let u be a harmonic function in  ,Q\K, K = X {0}where
K'is a compact subset of Rw . If  there exist some constants M> 0 and C> 0 such that

(2.11)l u  ( x ) I  - C [ d  ( x ,  K ) ] -111

near K then there exist a harmonic function v (x) in  ,Q\K and a finite number of
distributions go supported by K'such that

(2.12) (x) =v (x) E go *  as x„E(x ', x") , xE S2\K
IBISN

for some N> 0.

P ro o f  In view of the growth (2.11) near K we can extend u (x) to be a
distribution tit defined in  the whole of D. Using the structure theorem (2.7)
given in  Remark ( i i ) we can proceed the proof similarly as in  the  proof of
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Theorem 2.5.

In fact, the constant N in the sum o f  (2.12) inform us how badly the  har-
monic function u (x) behaves near K . Hence, if  a  harmonic function u (x ) has
more restrictive growth than (2.11) it can be written in  a  much simpler from
than (2.12).

Theorem 2.10. L et Q be an  open subset of  Rn and  K = K' X {0} c Q
where K'is a compact subset of  Rn'. Then every harmonic function in  .Q\K with

(2.13) [d (x, K) ] 2 - n  f o r  n>2

or

lu (x) I d (x, K) I f o r  n=2

near K, can be represented as

(2.14) u (x) =v (x) + g o * E (x' ,x") , x e  ,Q\K

for some harmonic function v(x) and distributions g o supported by K'.

Proof. The rate of growth near K allows us to consider u (x ) as a  locally
integrable function in Q. By virtue of Theorem 2.7 we may write

(2.15) u (x) =v (x) E g (x') * 0 8
 x„E (x' ,x") , x  E s2\K

ISIsN

where go are  d istributions supported by K'. If 2 then we have done it. So
we assume that N>2. If we take

J(x) = E g o  (x') * (x) , x E Q \ K
1815N

then J(x)=u (x) —v (x) can be considered as a  locally integrable function in Q.
Thus we may assume that J(x) is a distribution in D.

Define

J  ( )  =  f 2 J (x) dq)(x) dx, E (S2)

Then it follows that for some constant CI depending only on J,

(2.16) IL (0) I _<Cjsupid0 (x)

and in the sense of distribution

(2.17) (0) = (d/ (x), ( x ) )

= E g (x ') * a8( x )  ,  9 5  ( x ) )
18IsN
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=  E  ( - 1 ) 1 / 3 1  (g (x') ,as x „q5 (x' ,0)
1,91sN

for every 0E C °0 (Q).
Especially, choose a point xo= (x'o,0) E  Q and  a  function 0e C - 0 with its

su p p o rt in  a  ba ll in  centered at xo and  0 (xo) = 1. Applying 0 (x',kx") , fo r k
large enough, to (2.16) a n d  (2.17) we obtain

E (-0 1 ,3 1 (g 1 3 (x , ),afi," 0 (x , ,0 ))
1$1sN

C.fle2sup
xeD

v  a  2
 (x)
uxa  2

j=1

 

Letting k--• co w e have gs (x ') = 0 for every p with1[31> 2. Thus we may
write

aE  
" 

+ En  g a 2 E  , e )  (x) = g o (x) *E (x' *,x ") +Eg 1 (x') *ax ; ax" i ax"
.J=1 i,J=1

where go,g; and gi; are distributions with support in K '. But since each deriva-
tive of E (x',x'') goes to infinity more rapidly than E (x' ,x'') as x"—•0 and
K'it follows that for x 'EK '

(2.19) igi (x ,) .  aE ,  ,  ,  „ aE * a x „,/ E  ,x ) = 'x") /E (x ',x"))

goes to infinity as x"--+0 and x 'EK '. Similarly, we can see also

I
g u ( x ,)  *  a2aEx„( 

goes to infinity more rap id ly  th an  (2.19) a s  x"—*0 and x' E  K . Therefore it
must be true that g ,=0  for j=1,2,•••,n and g i1=0 for i,j=1,2,—,n.

This completes the proof.

Finally we add a  well known decomposition theorem which is very useful
in  the  harmonic function theory. W e prove it in  a  much easier way based on
the hyperfunction theory.

Theorem 2.11. L et Q be an open subset of R" and K  be a compact subset
of Q. Then if  u(x ) is harmonic in  SA K then u has a unique decompostition of the
form

(2 . 20) u=y-Ftv,

where y is harmonic in  D and w is harmonic in  R "\K . Here w is such that

w (x) =w o * E (x)

E ,x -) = ( x ' —  E  ,x -))
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for some Wo E  (K) and that lim w (x) =0 for n> 2, Hill [w (x) —c log IA =0 for

some constant c, for n=2.

Proof. H ere w e m ay also assume th a t S2 is bounded. Let tit be  a  hyper-
functional extension of u on D. Then dü is  a  hyperfunction w ith support in K.
Here we can express A f t =w o

- Fwi for some wo E szr (K ) and wi E  (ÔD). Tak-
ing w=w o * E (x) and v = i i — tv  we can easily obtain the  results. In fact, since
/Po is  an analytic functional with support in K it follows taht for n >2,

lw (x) I = Iwo (E(x — C))
1 

CEsup,
cEKE IX CI

as x—. 0 0 .
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