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Characterization of harmonic functions
with singularity in hyperplane

By

Soon-Yeong CHUNG

1. Introduction

A real valued function u (x) defined on an open subset £ of R” is called
harmonic in & if it is twice differentiable and satisfies the Laplace equation

2 2 2
Au=<a + 0 4+ 4 0 )u(x)=0, 1€ Q.

or%  0Ox% ox%,

We denote by E (x) the fundamental solution of the Laplace operator 4.
That is,

—Cilog | x|, n=2

E@x) =
Calz|?™", n>2.

Throughout this paper, for every point x € R* we write x= (x'x"), 1" €
R”, " €R", n=n"+n"where n’and n"are natural numbers. Moreover, by Ny
we denote the set of nonnegative integers.

In this paper we characterize the harmonic functions near their singular-
ities. In fact, it is well known that if # is harmonic and positive in the deleted
unit ball U \ {0} then u can be written as

wx)=vkx)+aE@k), x€U \ 0}

for some constant a=>0 and a harmonic function v (¥) in U. This is, so calléd,
Bécher’s theorem. More generalized decomposition theorem with no positivity
condition was given in [CKL] and [ABR1] . These theorems eventually de-
scribe that every harmonic function with singularities can be expressed as the
sum of derivatives of E (x) modulo harmonic function in the whole domain.

In this paper we give a characterization of harmonic functions u in 2\K
where £ is an open set and K=K X {0}, K’ is a compact subset of R”, R*=
R” XR", as follows:
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(2.11) W@ =)+ ) fol) ¥PLE(K), rEO\K

BENI

where v is a harmonic function in £ and fg are analytic functionals in R" with
support in K'. This result refines the decomposition theorem in [ABR1] . In
addition to this result we give a characterization of harmonic function with
some restrictive growth near K. In fact, it is proved that if a harmonic func-
tion u (x) satisfies

lu ()| <Cld (x,K)]™ near K

for some C>0 and M >0 then the infinite sum in (2.11) above can be reduced
to the finite sum with the distributions fz supported by K’. Moreover, especial-
ly if u (x) satisfies the more restrictive condition

lu(x)|<Cld (£, K)1*" for n>2,
and
lu (x)|<C |logd (x,K)| for n=2
near K then u (x) can be written in a much simpler form
u(x) =v(x) +go(r) ¥E('x"), 1EQ\K.

Throughout this paper every theory can be developed by virtue of the
generalized function theory without appealing to the general potential theory,
such as, the maximum principle, the mean value theorm, etc. Basically we de-
pend on the Sato hyperfunction theory or sometimes on the Schwartz distribu-
tion theory. This is another point of this paper.

2. A review on hyperfunctions and main theorems

At first we give a brief introduction to hyperfunctions. See [H,S] for
more details.

As usual the strong dual §'of the space of C*functions in R” is called the
space of (Schwartz) distributions with compact support. Similarly the strong
dual &'of the space 4 of analytic functions is called the space of analytic
functionals. Here it is precisely given as follows:

Definition 2.1. Let K be a compact subset of R”. Then we denote by
4’ (K) the space of continuous linear functionals u on the space & of entire
functions such that for every complex neighborhood w of K
(2.1) lu ()| <Cusuplg ()|, €.

zZeEw

We call the element of &’ (K) an analytic functional with support in K. For an
open set 2 we denote by 4’ (£2) the set of all analytic functionals whose sup-
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ports are compact subsets of £.

The following theorem characterizes the analytic functionals with support
in a hyperplane.

Theorem 2.2. Let ue o’ (R*) with support in K=K X {0}where K'is a
compact subset of R™. Then there exists a sequence of analytic functionals ug in
R™with support in K'such that

2.2) u= Y us®3% ().
BeNT
In other words,
(2.3) w(@)= ) us(0%rp (0), pEd.
BENY
lk, < Cee'®'/B for every €> 0 where
operator norm in (2.1) and K.={z'€C”|d (' K') <e}.

Movreover, we have ||u5 |Ké denotes the

Proof. Let ¢(x) be an entire function. Expanding ¢ in Taylor series with
respect to x”variable we may write

(2.5) Blx)= ) 0% (x 0)x"/B.
peNy

For each BEN2Z” and ¢ (x") E4 (C”) we define

(2.6) ug (@) =u(p &) x"8/BY).

Then for every >0 there exists a constant C: >0 such that

lug (9) | =u (¢ (x)x"2/B8) |

<C.sup|e(z')z"8/B

z7eK!
|z7|<€

SC;%SUPMS (Z,) Iy

2’€K¢
which means that

lusli, < Cce'/ B

for each B and that us belongs to &’ (R™) with support in K. Then using
(2.5) and the continuity of # we can obtain

u(p)= Z u (08¢ (x',0)x"%) /B!

BENY
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= Y s (009 60)

BENY

= Y w®5% "1 (g),

BENY

which completes the proof.

Remark. (i) In fact, every u of the form (2.2) defines an analytic func-
tional ‘with support in K = K’ X {0}, which is the converse of the above
theorem.

(ii) For the distributions it is well known that every distribution in R”
with support in K=K’ X {0}can written as a finite sum

(2.7) u=Y us®3%,

|I8lsN

where ug are distributions in R with support in K'. This fact will be used
also later.

Now we define a hyperfunction in a bounded open subset £ of R”.

Definition 2.3. (i) The space B(£2) of hyperfunctions in £2 is defined
by

B(Q)=d4'(Q)/4 (59).

(i) For u €4’ (2) the support of the class # of u in B(2) is defined by
supp4 =8N suppu.

For the notions of hyperfunctions on more general open set we refer to [H]
and [K] .

The followings are the basic properties of hyperfunctions, which will be
very helpful later.

Theorem 2.4. ([S] , Lemma 121, Theorems 122, 141) . Let 2 be an
open subset of R"* and 2,82 be open.

(i) For every u €B(8,) there exists ®€B(Q) which extends u.

(ii) The space D' (82) of Schwartz distributions in 2 is continuously imbedded
into B(R2)

(iii) For an elliptic partial differential operator p (d) with constant coefficients, if u
€B(2) and p(0)u=0 in O then u is analytic. In other words, every elliptic
partial differential operator with constant coefficents is analytic-hypoelliptic in
the category of hyperfunctions.

We are now in a position to state and prove the main theorem of this pap-
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er.

Theorem 2.5. Let Q be an open subset of R" and K=K X {0} C Q for a
compact subset K'of R™. If u is a harmonic function in Q\K then there exist a har-
monic function v (x) in Q2 and fEA' (R") such that

(2.8) u(x) =v )+ Zfs(x) *9°,E(x'x"), 1€0Q\K,
BENY
where % denotes the convolution product with respect to x'variable. The coefficients

satisfy that s €A’ (K') and|fslk; <Cee'®'/B. Moreover, the expression (2.8) is un-
iquely determined.

Proof. For a bounded open subset £, with K C £, C £ we assume for a
moment that (2.8) holds for x € Q,\K. Since

Z fB % aﬁan (x',x")
BENT
is harmonic in R”\K we can extend v (x) harmonically to £ via (2.8) .There-
fore, we may assume that £ is a bounded open set.
Since u (x) is real analytic in 2\K we may regard it as a distribution in
Q\K. Then by virtue of Theorem 2.4 (i), (ii) there exists @ € B (£2) which is
an extension of u. Since u# is harmonic we obtain

Ai=0 in Q\K,
which implies that 4# is a hyperfunction supported by K. Then we can write

Aa=w1+w2,

for some w1 €A’ (?2) and w.€4' (09).
Since

(suppwr) N Q=suppdi CK

we have supp wiCK U38. Since K N 92=¢ (or using the decomposition &’ (K,
UK,) =’ (K,) +4’ (K;) given in [H, Theorem 9.1.8]) we may write

A =w;tw,

for some w1 €4’ (K) and w, €4’ (02). Then in view of Theorem 2.2 there are
feed’ (K') withlfsll. <Cee'®'/B! for each B such that w1 = 2genyfs®3® (x”).

If we define

2.9) v=i— Z % 0°E (v 1) €B(Q)

BENT

then since fs (x") has compact support and E (¥) belongs to B () it is easy to
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see vEB (). Also,

Av=An— Z A(fg % 0, FE (' x” )

BENT

—ta— ). A(1®5% )1 *EK.))

BENT
= Ai— Zfﬁ@a(ﬁ) ")
BENY
=Ai—w,=w, €A’ (O.Q)

Thus we have Av =0 as a hyperfunction in £2. Applying Theorem 2.4
(iii) we can see that v is a harmonic function. Moreover, since each term in
(2.9) is exactly C* functions in £2\K we can obtain that in 2\K

Wl =i () =0 + ), fs &) %3 ()
BENY

Finally, to prove the uniqueness of the expression (2.8) we suppose that

ux) =v )+ Zfa (x') % 0°2E (x)

fENE
u(x) =wk)+ Z gs(x") % 0%,.E (x)
BENY
for some harmonic functions v (x), w(x) in 2 and f5, gs €A’ (K’) with

llfﬁlK;SCeslﬁl/Bl, "gB"ld <C.e'®/B
Then applying the Laplace operator 4 we get

Y (a—e) ®09 (") =0

BENY

Applying an entire function ¢ (x) =¢ (x") x"# as a test function of both sides we
obtain fs=g5 for every B, so that v (x) =w(x). This completes the proof.

In the above theorem if K is noncompact subset of £ then we obtain a lit-
tle different conclusion when £ is a bounded open subset. But for arbitrary
open subset £ it may not be true.

Theorem 2.6. Let Q be a bounded open subset of R and Q' =02 N {x'=
0}. If u is a harmonic function in Q\Q'then exist a harmonic function v (x) in Q
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and fs€4’ (R") such that

W@ =v()+ ) o) KPLEES), €O\

BENY
and

f€4' (2) and |felz.<Cet®/B
where 2 denotes the closure of 2 in R”.
Proof. Let % be a hyperfunctional extension of u to £. Then as in the
proof of Theorem 2.5 we may write

Ain=w,tw;

for some w1 €A’ (Q) and w, €4’ (9Q). Then similar argument as before gives
the conclusion.

But, in general, if £ is not bounded then we cannot expect to get express-
ion (2.8). For example, consider 2=R? and

y =20,

u(z, y) =
—y 3>0.

Then u (r, y) is harmonic in R2\ 2 where 2 = {(x,0) xeR} =R X {0}.
Then a calculation gives

0% , 0%u

Au (x, y) =§+_6‘?=25 (») in R
On the other hand, if u (x, ) can be written as in (2.8) then we have
o0
Ml )= ;) @39 ().
j=0

Comparing these relations we obtain
folx) =2, f;(x) =0 for j=1,2,;.
Then it follows that
u(x, y) =folx) *¥E (x, y)
=—2€zflog 1+ dx.
But the last integral does not converge, which leads a contradiction.

In fact, for the Laplace operator 4 we use only the ellipticity in the proof
of Theorem 2.5. Therefore, we can state a similar result for an elliptic oper-
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ator with constant coefficients as follows:

Corollary 2.7. Let P (D) be an elliptic partial differential operator with
constant coefficients. If 2 is an open subset of R” and K =K' X {0} for a compact
subset K'of R” then every solution u (x) of P(D)u=0 in Q\K can be written as

ulx) =v )+ Zfa (") *0%..F(x'x"), x€0Q\K

BENY

for some solution v (x) of P (D)v (x) =0 in Q and f5 &') € A" (R") with|fslx

<C:e"'/B where F (x) is a fundamental solution of the partial differential operator
P(D).

In particular, if K= {0} C 2 we can easily obtain the following corllary
which has already been proved in [CKL] .

Corollary 2.8. Let u be harmonic in Q\{0}. Then there exist a harmonic
function v in Q and constants aq such that

(2.10) u(kx)=vx)+ Z a.0%E (), »€Q\{0}

and

laol LCee''/at for every €>0.

For a harmonic function with some restrictive growth near the singular
set K we can give a much simpler characterization. In fact, for those harmonic
functions in 2\K the infinite sum in (2.8) or (2.10) can be reduced to a fi-
nite sum.

Theorem 2.9.  Let u be a harmonic function in Q\K, K=K’ X {0} where
K'is a compact subset of R”. If there exist some constants M>0 and C>0 such that

(2.11) : e (x) | <Cld (x, K)]7¥

near K then there exist a harmonic function v (x) in Q\K and a finite number of
distributions gg supported by K'such that

(2.12) u(x) =v(x) + Z gs¥%08E(x, "), x€EQ\K

I18lsN
for some N >0.

Proof. In view of the growth (2.11) near K we can extend u (x) to be a
distribution # defined in the whole of £2. Using the structure theorem (2.7)
given in Remark (ii) we can proceed the proof similarly as in the proof of
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Theorem 2.5.

In fact, the constant N in the sum of (2.12) inform us how badly the har-
monic function u (x) behaves near K. Hence, if a harmonic function u (x) has
more restrictive growth than (2.11) it can be written in a much simpler from
than (2.12).

Theorem 2.10.  Let 2 be an open subset of R* and K=K X {0} C Q
where K'is a compact subset of R”. Then every harmonic function in Q\K with

(2.13) lu(x)|<C [d & K)]** for n>2
or

lu (x)|<Cllog d (x, K)| for n=2
near K, can be represented as

(2.14) uw(x)=v()+go*EW "), xE2\K

for some harmonic function v (x) and distributions go supported by K'.

Proof. The rate of growth near K allows us to consider u (¥) as a locally
integrable function in £. By virtue of Theorem 2.7 we may write

(2.15) u () =v () + Zgﬂoc') %%, E(s"), 1€Q\K

|BISN

where gg are distributions supported by K’. If N< 2 then we have done it. So
we assume that N>2. If we take

)= ) £s() % 5EG), x€Q\K

1BISN

then J (x) =u (x) —v (x) can be considered as a locally integrable function in £.
Thus we may assume that /(x) is a distribution in £.
Define

1@ =] 10 4p@ar, peci(@).
Then it follows that for some constant C; depending only on J,
(2.16) (@) <Crsupldg ()|

and in the sense of distribution

(2.17) ()= (4] (x), $(x))

= (A Z g5(x") ¥ 0% E(x), ¢ (x) )

1BISN
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= ) (—1)¥ (g () 0506 (.0)
|BISN
for every ¢E€EC%(Q).

Especially, choose a point xo= (x'0,0) € 2 and a function ¢ € C*, with its
support in a ball in centered at x and ¢ (xo) =1. Applying ¢ (x"kx"), for k
large enough, to (2.16) and (2.17) we obtain

n 82
(®)].
reQ ;axzqu )

Z (—k) ! (ga (),0%" ¢ (x',O))

|18lsN

<Cjk*sup

Letting k— 0 we have gz (x') =0 for every 8 with|8|>2. Thus we may
write

’ // 2 , ”
J(x) =go(x) *E ")+Zg, OE +E afj(xa ”)
i0x j

i,j=1

where go,g; and g;; are distributions with support in K. But since each deriva-
tive of E (+'x”) goes to infinity more rapidly than E (' x”) as +"—0 and ' €
K'it follows that for s" €K’

’ ( ’ ”) roonN aE (x/_ ° ,x”) o
219 [ow) x5 p ) = (o, B U2 p )
goes to infinity as ”"—0 and " €K’. Similarly, we can see also
a E( ‘x” ron 62 ( - X ) r
[gij( )* a”ta " ]/E( ) (i)'y x” /E( )

goes to infinity more rapidly than (2.19) as x”—0 and z’ € K. Therefore it
must be true that g;=0 for j=1,2,-*n and g;;=0 for i,/ =12, n
This completes the proof.

Finally we add a well known decomposition theorem which is very useful
in the harmonic function theory. We prove it in a much easier way based on
the hyperfunction theory.

Theorem 2.11. Let 82 be an open subset of R” and K be a compact subset
of Q. Then if u (x) is harmonic in Q\K then u has a unique decompostition of the
form

(2.20) u=v+uw,
where v is harmonic in £ and w is harmonic in R"\K. Here w is such that

w(x) =wo*E (x)
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for some woE A’ (K) and that lim w (x) =0 for n>2, lim[w (x) —c log |x|]] =0 for

T—oo

some constant ¢, for n=2.

Proof. Here we may also assume that £ is bounded. Let # be a hyper-
functional extension of # on £. Then A4 is a hyperfunction with support in K.
Here we can express A =wo+w, for some wo€E A’ (K) and w, €4’ (092). Tak-
ing w=wo % E (x) and v=# —w we can easily obtain the results. In fact, since
wo is an analytic functional with support in K it follows taht for n>2,

lw (x) | = |we (E (x—0))|

<Cesup 0

1
teke [x— "2

as x—> 0,
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