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Character formula for
representations of local quaternion

algebras (wildly ramified case)

By

Tetsuya TAKAHASHI

Introduction

Let F  be a p-adic local field and D be a quaternion division algebra over
F. The character of an irreducible admissible representation of the multiplica-
tive group D x  o f D w as studied in  EGG] and [HSY]. Especially in  [HSY] the
character formula is explicit and simple. But it has been dealt only the case p
± 2, w hat w e call, tamely ramified case. By Jacquet-Langlands correspondence
( [JL]) between representations of D ' and discrete series representations of
GL2 (F), the character foumula for Dx gives the character formula for GL2 (F)
on the set of elliptic regular elements. The computation of character of the rep-
resentation o f  GL2 a n d  re la ted  gourps h a s  b e e n  th e  object o f  much study
([SS] , [Sb], [Sali,  [ T i ,  [S a i] ) . Except [Sai] , it has been also assumed p *  2.
Tunnel and Saito show s ( [T] , [S a il))  the character of the representation is
expressed by e-factor of the base change lift of the representation of GL2 (F)
to quadratic extensions (including the case p = 2 in [ S a i l ) .  B u t it is not easy
to compute the  s-factor of the base change lift when p = 2. H ere w e do not
treat the base change lift. Our tactics is the same a s  [HSY], but the wild rami-
fication brings u s many difficulties. W e proceed a s  follows. In section 1, we
trea t the construction of the representation of D x . The set of the representa-
tions w ith even conductor is param eterized by the set of the regular charac-
ters of unramified quadratic extension of F  and their characters and complete-
ly calculated ( [HSY] Corollary 1 .7 ). Therefore we treat only the representa-
t io n  w ith  o d d  c o n d u c to r .  T h e  c o n stru c tio n  o f  th e se  re p re se n ta tio n  is
well-known, but w e need a  slight modification to compute the character com-
pletely. We define a  parameter for the representation, which is called 'generic
data'. I t  is  a  trip le  (K , 0 , r)  consisting of a ramified quadratic extension K  of
F, a quasi-character of 0 of I f '  and an element r  of K  which satisfy some con-
ditions in Definition 1.1. W e note if the Swan conductor tx  of K  is 0, i.e. p *  2,
the param eter r  i s  dispensable since  0  determ ines r . W e associate a n  irre-
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ducible representation 7rA  of D ' w ith the generic data A =  (K, 0, . Unfortu-
nately the isomorphism class of K  is not an invariant of the equivalent class of
rn , bu t the  Sw an conductor tic is  s t ill  an  invarian t o f the  representation. In
any way, zit is induced from  a  one-dimensional representation o f a  subgroup
H.

Section 2 is devoted to give the decomposition o f 7TA  as l e  module. It fol-
lows from Theorem A  in  [H] that each quasi-character of l e  appears at most
once in the restriction of 7r4 to IC. W e use this repeatedly. In addition we use
Mackey's theorem on induced representation and some knowledge on the local
quaternion algebra. Proposition 2 .8  is  the m ain resu lt of th is  section. In sec-
tion 3 and 4, we assume F/Q2 is  unramified. In section 3 we compute the char-
acter of 7rA  on If x . The result of section 2  (Corollary 2 .9  a n d  (2 .14)) reduces
our w ork very m uch. Since w e treat the  wildly ramified case, w e m ust fulfill
the case by case analysis according to the relation of the conductor of the rep-
resentation rA  and the Swan conductor of K . Theorem 3 .7  and Theorem 3.14
are  character form ulas for JrA on le . W e note we can remove the  assumption
F/Q 2 unramified, b u t th e  calculation becomes much m ore complicated a n d  it
takes m uch space only to state the  character formula. W e sketch the calcula-
tion for the general case in Appendix A. The character of irA outside IC is tre-
a ted  in  section 4. Since there  exist more ram ified quadratic extensions of F
than tamely ramified case, it becomes more complicated. The fact that the sup-
port of the character is included in  a  neighborhood of the  conjugacy class of
If x  plays an essential role. Theorem 4 .6  is  a  character formula for 7 I4  outside
the conjugacy class of K x .

The main part of th is article was written during m y stay in Université de
P aris X I (O rsay). T he  author w ould like to  express h is sincere  gratitude to
Professor G. Henniart for his kind hospitality.

Notation

Let F  be a  finite extension of Q2. W e denote by OF, PF, UJF, kF and vF the
maximal o rder of F ,  the maximal ideal of F, a  p rim e element of PF, th e  re-
sidue  fie ld  o f F  a n d  th e  valuation o f F  norm alized by VF (d iF ) =  1 . F o r a
quasi-character 0 of we denote the exponent of its conductor by f (0 ) . For
convenience, we regard  1 - FPF as 6 ';. W e set q  be the  number of elements in
kF .  Let D be  a quaternion division algebra over F ,  a n d  D , P D , 6 D , k D  and vi)
the maximal order of D, the maximal ideal of OD, a prime element of PD , the re-
sidue field of D  and the valuation of D  normalized by VD  (65D) =1. We denote
by Nr, T r the reduced norm, and the reduced trace respectively. For x ED, we
denote by .f the element obtained by canonical involution. For x E R , le t  [x] de-
note the greatest integer

W e fix an additive character 0  of F  whose conductor is P F  i.e. (,b (P F) =-
{1} and 0 (OF) *{1}. Moreover we assume 0 (x +x 2 ) = 1 for x F. For an ex-
tension K  of F , let n i c ,  trK  b e  the  norm and trace from K  to  F . We denote by
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OK, OD, the  character (,botrK of K, and the  character 0 0 Tr of D  respectively.
F o r  a n  irreducible adm issible representation Jr o f  D x  , th e  conductor f  (7r)
more exactly, the  exponent of the conductor of IT is defined to be the minimal

integer v such that 7r (1 +PLS- 1 ) = {1} and IT (1 +p 2 ) I l l  H e r e  w e  u n d e r -

stand that 1 + P S =  OL and f (70=1 if ('d) = {1). W e call Jr m inimal if f (7r)
e q u a ls  to  th e  m in im u m  o f f  ( ir  (noN r)) w h e re  n ru n s  th ro u g h  the
quasi-characters of r .  Let G be a totally disconnected, locally compact group.
We denote by d the  se t o f (equivalence classes of) irreducible admissible rep-
resentations of G. For closed subgroup H of G and a representation p of H, we

denote  by  Ind  p  the  induced representation of p  to  G. F o r a  representation IT
of G, we denote by irlit the restriction of  it  to H.

1. Construction of the representation

At first we remark that it suffices to calculate the character for the repre-
sentation of D x  w ith  minimal conductor. T he  character o f the  representation
w ith an  even minimal conductor is com pletely calculated by [HSY, Corollary
1.7] when the residual characteristic of F is  an odd prime. In fact the charac-
te r formula holds for the even residual characteristic case. Therefore we shall
only treat the representation with an odd conductor, which becomes automati-
cally minimal.

Definition 1.1. A  tr ip le  (K, 0, y) is called a generic data of level 2m
if the following conditions hold:

(1) K is  a  ramified quadratic extension of F in D. Let t = tK be the Swan
conductor of K/F i.e. t =dx/F —  1 where c/K/F is  the  exponent of the
different. Then

(2) E

(3)
 

If m> t, 0 is  a  quasi-character of I C  such  that the  exponent o f its
conductor is 2m — t i.e. 0  (1 ± P ir l= and  0 (1 -1 -P r ' 1 ) *  ID.
A n d  0 (1 + x )  = (T X ) fo r  x e  p  p n - t+1)/21 

I f  m = t, 0  is  a
quasi-character of IC  w hich is trivial on 1+Pr.

Remark. F o r  a  quadratic  extension K  of F, the  S w an  conductor tx
._2vF  (2) and tif is even if and only if tK = 2vF  (2). If tic is odd, tK=2vF (trx(i)x)

1.
L e t  A  =  (K , 0 , 7 - )  b e  a  g en e ric  d a t a  o f  le v e l 2m. W e  d e f in e  a

quasi-character Or o f  1-FP bn  by 07 (1 =  (rx) for x  P  V. W e set H =K x

( 1 + P )  and P 0,r (k (14 x)) = 0 (k) (x) for k E l e  and x EPSi. Then Pe,r is  an

extension of Or to H. We set rtA=Ind x Pea..

Proposition 1.2. For any generic data A  of level 2m, 7rA  is  an irreduci-
ble representation of D x  w ith  f (rA) = 2m + 1. Conversely for a positive integer m,
every irreducible representation IT of  D x  w ith f (r) = 2m +1 can be w ritten in the
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form z i t for some generic data A of level 2m.

Proof. Let TC be an  irreducible representation of D x  w ith  f (Tr) = 2 m + 1  for
a positive integer m . Since 1 V / 1  - 1 -P r i  is  abelian, 1 1  decomposes into
one-dimensional representations. Therefore thare exists an  element Ti e  Pkni
— P t '  such that irli-EPT contains On where On (1+X) = OD (r ix ) for x E P .
(Recall that the conductor of 0  is PF.) It follows from [KZ, 5 .2 ] that the nor-
malizer H  of 071 in  D x  i s  F (Ti) x (1 - P3)O. L e t K1=F (Ti) a n d  t i be the Swan
conductor o f Ki/F. A ny  extension of (,b,, to  H  is  w r it te n  in  th e  form  pehri
where e l  i s  a  quasi-character of Ki< with the property that e l  (1+x)
x ) for xEPIcni and Pel,ri is defined on H by tool,ri (k (1+ x )) 0 1 (k ) On (1 ±x) for
k K i `  and x e P 3 . F irst w e  assume m >t i . Then f  (6) = 2m — t1. W e need the
following lemma to find a generic data A satisfying irA =Ind li;Po.r.

Lemma 1.3. Let K  be a quadratic extension of F in D  and t  be the Swan
conductor of K /F. Then there exists ED which satisf ies the following conditions:

(1) - 1 - .x .=ff for x eK .
(2) 1+P—  (1±13 1H- P15") a n d  2 E F x

(3) D =K  V f .
(4) = Ix E DITr (xy) =0 for all yEK} .

Proof. By Skolem-Noether theorem , there  ex ists sa tisfy ing  (1). Since the
t-th  ramification group of K/F is  non-triv ia l and  the  (t — 1) - th  is  trivial,
sa tisfies (2 ), if necessary, by multiplying an  appropriate element of IC . Then
(3) is obvious. The last part follows from (W 22 n i c  (x) EF for x eK.

W e continue the proof of Proposition 1.1 . Let 7/ be an extension of 0,, to
(1 ± p  k i2m - tc- 1)/2]) (1  p  » 1)the group D  defined by

( (1+x) (1+y)) =  (1 + x ) On (1+y) On  (1 — xy)

E p  2m -t,-1) /fo r  x and y  E P 3  . T h en  th e re  ex is ts  a  character IC o f  1 ±
-,- o ] rfrz.p  142m-t,-1)/2] +P V/1 bn such that el. = iC on 1+P t n ±p D Let

be  the  element which satisfies the conditions (1) - (4) in  Lemma 1 .3  for Ki.
Then there exists an element T2 ePkTm- `1 such that

K (1 + X )  = 0 (Tr (T2 (1 + ) x)) for x E  p 2 M - t/- 1 2] ± p .nit

lc?", -1) /2]since T2(1 ) E P - ni and 0(T r (r2 (1 x)) =0 (Tr (r2x)) for x pe

Put r= ri+ r2 (1+), K =F (r) and t=tx. Then O n= Or  a s  a  character of 1+
P 'D' i  and H=Ki` (1 - 1- P 3 )=K x (1±13 11) since ri r mod P m .  W e need to show
tK , = ti c . Take 6.41 b e  a prim e element of K1 . T hen  there exists a prime element

(15K of K  such that ci5K, mod PD'i + 1 . Since Tr (P ir l ) =- P )i n + 2 ) / 2 1  and  m  >  + 1 , we
have trxi (d)x,) =- tric((i)x) mod P kt -E- 3 ) / .  It implies tx-i = tic from  the remark be-
low the Definition 1 .1 . It is obvious that w e can take B E V  satisfying po,r=

(1+
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Pehri on H. Then 0(1+x ) =OK (Tx) for x
+ p p m - t - 1 ) / 2 1  

since 1 +P IZ m - t 1 - 1 )/ 2 1

+p in; = +ppM-1-1)/2] +p m .»- Therefore (K , 6, r) is  a generic data of level 2m

and 7rIH contains po,r . By Clifford theory, Ina; toe,r is irreducible. Therefore r
= I n d ;  po,r . Now we assume m t i .  A s in the above case, r = IndW pa, r ,  for
some quasi-character 0 of K .  If m = ti, (F (ri) , 0, T i)  is a generic data of level
2m. Therefore we can assume m <h . If T E PPm  satisfies r= . n. m od PI', then
Or = Or , on 1 + P l; and l a  (1 - i- P r) =F ( r) x ( 1 +1 3 r) .  Therefore we have only
to show there exists an element re r i+ P ir m  such that the Swan conductor of
F (r) /F  is m. Since Tr (Pirm) = PP -m )/ 2 1  and vF (Tr (TO ) = vF (trKI (TO ) = [ (1 —
2m+ti)/2], we can take an element 5E/3 1,- "i such that vF (Tr (7-1+5)) = [(2-
m)/2] .  Put r = Ti +5. Then the Swan conductor of F (r)  /F is m . Hence our
proposition.

Remark. If K /F is tamely ramified, TrA is determined by 0 alone. But
in our case 0 does not determine O r . Therefore we need to use a parameter r.

Corollary 1.4. Let it = itA  for a generic data A = (K , 0 , r) of level 2m.
Then the Swan conductor tif of K is an invariant of the equivalent class of the rep-
resentation it, that is, if irA—rn , for a generic data IV= (K ', 0', 71, then tx=tr.

Proof. A t first assume m> tK. In order to  TrA— it is necessary that
there exists an element g  in Dx  such that g (Kx (1+ Pr) ) = K X  (1+ Pr) .
Since g (le (1+ P V)) g - 1 = e x g - i ( i+ p ir) )  we have tK=tecg-, =tK , by the same
argument to show tic=tK  in the proof of Proposition 1.2. Now assume m=tK. If
m>tK , , we get tK =tic<m  by the above argument. Therefore tie=m .

The next lemma is useful to compute the character of i t  when tK=m.

Lemma 1.5. Let r = TrA for A =  (K , 0, r), f  (r)  = 2m + 1 and tx =m .
Take a quasi-character 00 of IC  such that 00(1+ x ) = K  (Tx) for x  

e n t + 1 ) / 2 1 .

Then there exists a quasi-character 17 of Fx such that rn = (7) ()NO OrA , where A'
= (K, 0 ,  r) .

Proof. Since 0(1 + x) 0 0 (1 + x) = (rx ) for x = P tx , 0 and 00 are tri-
vial on 1+ P lc. It is easy to see the kernel of the norm map from Ifx  to Fx  is
contained in 1+Pk. Thus 0 and 00 factor through the norm map i.e. 0= n'c'nx,
00= noonK for some i)f , no E r . T h e n  po,r =  (070)01\10 ON°, as a  character
of IC  (1  +p ) .  By virtue of the fact

In d  (a 0 TIH) = ( I n d  a )  O r  for 1- Ô  and a  Efi,

we get our lemma.
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2. Decomposition of irn as IC-module

We fix a generic data A= (K, 0, r) of level 2m and abbreviate t=tK, p=
Pe.r and r =rn. When m = t, we may a s su m e  (1 +x) = (T X ) for x EPIP+ 1 )/21

from Lemma 1.5. Let be as in  Lemma 1.2. In this section we determine the
decomposition of Ir as Kx-module.

By Mackey decomposition,

(2.1) rir = e
a EK" \DVII

where pa (x) = p (a - l xa) for x EaHa - 1  n Ifx and H=Ifx ( 1 - F P  .

First w e shall give a  complete system of representatives of the double
coset Kx\Dx/H.

Lemma 2.1. 1+ WEH for PEK is equivalent to vic(S) m — t if m > t
and equivalent to I3EK —  ( 1+PK) if m t.

Proof. Let o3K be a prime element o f  K  and = 1 +'& k .  By Lemma 1.2,
we have OD

=
 O K  e and P7) = P7 It follow s that 1 + "S E  H is

equivalent to Since 1+W= (1+ 'cii f
ic i3 (1+13) - 1 ) (1+13), 1+W belongs

to H if and only if vK (S(1+19) - 1 ) Hence our lemma follows.

We prepare some notations to describe the double coset ICADVH. Set

(2 . 2) la= {1+ (i)7(13 I $E Ù 1\/  (1+Pr' - `))
for 0< m—t,

(2.3) L=  { 1+ j3 I SE M I+  ( p — p ' ) /  (1± P r + 2 " - f )

for 0_<_tt<t and

(2.4) 11+w I sEvivi+po/ ( 1 -F p r i l

where elf=Ker n lc.

Lemma 2.2. A complete system of representatives of the double coset IC \
D'/H is given by the set

J.) m  tU (
a=1
U ((Iv) .

(1 =0 (7=1

Proof. First assume m > t, t h e n  €1/. It is obvious that we can take rep-
resentatives of the form 1 - FW, SE ex  o r  (1 -i- W), ,3 1'1‘. For a l= 1 ±a .,

a2 =  +  2 )  SzePic and aEK,

aVaa2=Nr (a i)+  (da - 1 —  2 131132) ) a.
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Then vic ( d a  — . 2/814,-,/42) = 0 and vic (V (132 er-a -1 )._ O. By Lemma 2.1,
aTl aa2CH. Hence we have

Dx/H= ( (1 H- OR-) X K x )/H U( (1 ± F'1() xK x )/H (disjoint)

M oreover normalizes IC. Hence it is enough to show ( 6 J )  U( mU f/ a) is  a
u=0 a=

complete system of representatives of the double coset l e \  ( (1 xKx)/H.
For a l=  1 ± a2=1+JS, P i e e K  and aElfx, we have

(2.5) ai l aa2 =Nr (a i ) - 1  (1—

If vic(i3i) >0, it follows from Lemma 2.1 that aTl aaz is contained in H for some
aE.Kx if and only if

-cr1,32 (mod p v ) ,

for a l c OK , because Ok= { a ' a  c K'<}. L e t vK (so = 0 and vx (Pk — 1 ) ' I L
Then

(2.6) vic (Nr (1 ± =
{2,u o te<t.

Since 1 Vi3432da - 1 =Nr (1 + a . )  + 2i31(i31- 132da- 1 ), we get by Lemma
2.1 that af l aaz is contained in H for some aEKx is equivalent to

131=- a l l32 (mod p r2 "-)

for a l  E eic if it < t and equivalent to

(m od Pr"),

for a l c Ojc if ri t. Hence we get our lemma when m >t. For the case m =t, we
can take representatives of the form 1 + a PECK  s in c e  E H . For the rest of
the proof, it follows by the same argument for the case m>t.

Next we determine aHa- 1  fl K>< f o r  th e  representatives of Kx\Dx/H in
Lemma 2.2.

Lemma 2.3. For aEI a  or we have

IF' ( 1 + 1 1 ' 2 0  i f  0<o- <m - 2t
K X

(2.7) a H a -ln ic=
i f  n i - 2 t o - <m—t

and for a J-„, we have

Fx  (1  p  r + 2 0 - 2 0  •i f  2,tt> 2t — m
(2.8) aHa-lnKx =

Kx i f  2,u 2t—m.

(1(32cla-l—po ) a.

t
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Proof. Let a  = l+ eS E I,. Assume a E l e  belongs to aHa - 1  n K.. It is ob-
vious that Fx caHa - 1  f l K . Therefore we may assume vK (a ) = 0 or 1. Since Nr
(a) EH, a - l aa EH if and only if a— V CinK  (/S) + w (a—a) EH. If vK (a) =1, vK
(a —  VanK (s)) = 1 and vif (Ce—  a) = t+1. Therefore by Lemma 2.1, a - l aa EH
if and only if cr. m— 2t. If vK (a) = 0, vK (a — VanK(P)) =0. By Lemma 2.1,
a - l aa E H if and only if  re — a E P r ' t .  T his is equivalent to a E  e; (1 +
p r ,_2t, .) Therefore we get our assertion for the case a e Ia . For a E V g , it  is
easy to see aHa - 1  n IC = (ea)H (ea) - 1  n Kx for a E/0. For a eJ., it follows from
the proof of the case a e i,  and (2.6).

Let a E l .,  and a'= ea . Then pa' (x) = pa (.f) for xeaH a - 1  n IC . Therefore it
suffices to consider pa for a E  1 +  (dic.

Lemma 2.4. For a 1+ /3, 13E 0 K and a E a lI c r i n Kx ,

(2.9) pap-1(a), p( 1+  W± e 2nx(S)  0  d a -1 \)
1—  Vn IC (9)

) .

If a e l ,  and aEFx (1 +13
17- a± [ ( 1 - 3 " 2 ' )  or a EL and a E Fx (i+ p p+2#+[(1-30 /21) ,

then we have

(2.10)
11, K (/ ` -3 )

Pa to- 1  (a) = Or(
2

(1 f f a - 1 ) )  .
1 —  2 1 1 , if (S)

Proof. By direct calculation, we can show

a - l aaa - l = (1+ a - 1 ) - Yr (1 + a - 1 )  a -
1

-

= (1+a-1) - 1 (1+a (a -1 )a - 1 )
= 1+ ti - 1  (a (a —1) a ' — (a - 1))

1—  W  = 1 + W(1— aa - 1 ) .
1—  2111( (13)

Therefore we have the first statement of our lemma. It follows from the
definition o f the  generic da ta  tha t p (1 ± x) = Or  ( x )  fo r x E  p i.-t+ 1)/2I ±

pb(2m-4-1+1)/2]. S in c e  E 1 + Pb, we see 1—W 
W E P l c + P r  for a E/0. and

1— Vnic (/S)
1- W   w E p v i ±p15211+t for a EL. Thus we hevei _  2 n i c (p )

 

I
2nic OS)

\ i _ v r t  K (0) ( 1  if Tea -  1)Pap-1(a) = (Pr

 

since Tr (W (1 — 6a - ')) = 0.
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Corollary 2.5. Let the notation be as in  Lemma 2.4. Then for a E
pap — 1. .s triv ial on F' (1+P

2 m - 2 a - 2 t \
K )  and non-triv ial on r ( 1 +  p rz a- 2 t - i)  i f  0 .

2<m t; for a C I , p ap - 1  i s  trivial an F>< (1 ± p 1 1 + 2 0 - 2
 f)  and non-triv ial on F x  (1

+p yr +214-2t-i) .

Proof. This follows from Lemma 2.4. and the facts

y 2nic (P)  _  1  +  20 - -  2m for 1 ± W E / a

vic (1 v n i c  ( 1 3 )  — 1- 2p- 2m for 1-i-WEJ,

and vK (1 — aa- 1 ) = 2i +1 -f-t for a e l "  
( i + P r l )  F x  ( 1 + 4 + 2 )

Since we use the next fact repeatedly, we state it as a lemma.

Lemma 2.6. (1) The norm map nK from  IC  to  F x  in d u ce s  a bijection
from  OKVOk (1+ P k ) to e ;/ 1 + P iF i f  0 <i t .  When i > t, the image of the in-
duced map equals to n I C ( 0 ; )  /1 - 1- - P [Fi + t + 1 ) / 2 1  and it is index  2 in 0;11+14

i+t+1)/21

(2) T h e  map /3 (S)
1

14j (s) in d u c e s  a bijection from  ek lek  (1+ Pk) to

ITFV1+P :F for 0 <i t .  W h en  i > t, it induces a bijection from  eV  e k ( l+P k )  to
n lc (0 1) /1+ p[p+ t+i)/2]

Proof. The first part of this lemma is well-known (cf. [Se, Chap. V]). The
rest of the lemma follows from the first part and the bijectivity of the map

from N/1+P iF to itself.

Here we introduce some notation. Set U_1=-1C, U i=r ( 1 + P k ) for
and Ut =Ui — Ui+ 1. We note Fx  (1±Pil) =Fx  (1+Pi1 + 1 ) . For let X (i, j) be
the set of all characters of Ui that are trivial on Ili. Put X* (i, j) =X  (i, j)  — x
(i, j — 1) . For i=  — 1, we set x (j) =X  ( - 1, j), X * (i) = X*  ( - 1 ,  j ) .  We define
submodules M , and Na of rIK by

(2.11) M u= es Ind ,Igo-mrpa p- 1

aeh

and

(2.12) Mu= IED Ind5;a-nrcpap- 1 .
aef,,

It follows from Corollary 2.5 that

(2.13) M a c  e N uc



1
dim M X * (m— a— t) = q m ' t (q - 1)

1
* *  (m +  t )

dim N , =  -
q ' t (q - 2)

(2.15)

and

(2.16)
= q " + " - t ( q - 1 )  g ±  0 ,

,u=0.

160 Tetsuya Takahashi

and we see from (2.1) and Lemma 2.2

(2.14) rlio= (ee e) ( me t ma) e &® Nf i )

where T9 (x) = O (Y) and Mni_r is  a  triv ia l character of IC .  By virtue of Lemma
2.6, it is easy to see that

F ro m  [H, T h . A] , each quasi-character of 1 0  appears a t m ost once in
Thus we see that half number of characters in X* (m a t ) (resp. X* (m + g -

t )  for p>0) appear in M,(resp. N , for g >0).
To determ ine w hich characters in  X* (m — t )  (resp. X* (m + g —  t) )

appear in M,(resp. , w e start w ith the next lemma.

Lemma 2.7. Let al, az E  (reSP. a1 , az and put a i =1+J3 1, az = 1
+ W2. For 0 ( m  —a—t, t+1) (resP. min (m + 2g— t, t +1 )) , p `V - 1

= p̀ v- 1  on  U m - a - t - i  ( r e S P .  Um+20-t-i) if  and only if  nx(131) f l• I f  (i32) mod 1 + P iF
(multiplicative equivalence).

Proof. W e give th e  proof only fo r the  case  ai, az I .  T he  other case  is

proved in  th e  same w ay. Put ci =  — ±Vnic (A ) ( h a ' )  for i = 1, 2. It is
1 —  Vnx (Si)

easy to see that for a e a jH ai i fl K x

( p -1.) (p ap -9 -1 ( a ,) p ( 1 +  ( c i — c2) (1 - H2) - 1 ) •

Moreover if vD(c1 — c2) rn,z„ we can see

P(1+ (c1— c2) (1+ c2) = Or(( 1—  2 nif (130 1 —  2 nK 032)

2n ic (pi) (S 2 ) ( a

2/1K  (i(31)—  2 / / . / C  ( i 3 2 )We get from Lemma 2.6 that mod P i
F  i s  equiva-

1—  VTIK ( al) 1 — VTIK 032)
lent to nx (IC (i32) mod P .  Thus we can get our lemma by induction on i.

Proposition 2.8. Let the notation be as above.
( 1 )  For u < m - 2 t ,

ma.= ED In c if .--2 ,x ,
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and

M Iu q m - a - 2 t
X  •

x E r  (m -a-2 t ,  m -a- t )

(2) For m - 2t a<m —  t,

m,i,,0= e X.
x EX* (0, m -u - t)

(3) For g > and g* 0, t,

Na = Inc1K+2u-2t-1 X9
X e  N

and

Um+2,,-2t = e 2 t ED X  •
X EX * (m +2/1- 2t, m -htt - t)

(4) For 1.e t — i n  and /100, t,

Nalua = ED X.
xEr(o.m+p-t)

(5) For g =0 >

N o =  e
xENoF-

and
N O IU m -2t = en - 2 t E D X

X EX* (m 21  rn - t)
X lrm-*2

where 2 is a character of L I , '  defined by A (a) = q5 (1 —  h a ') .

( 6 )  For ,u=0

NoIu0X
X E X* (0, m -t)

XI
where A is as in (5).

(7) For a=t,
Ntlum_i= ED Indfl-ix•

xENflu„,_,

Proof. (1 ) Let ao= 1 ± Wo be any elem ent of /, fo r  a <m — 2t. It follows
from Lemma 2.6 and Lemma 2.7 that

{ aEI a lpa p- 1  = p'°p - 1  o n  Um - 0- 2e} faE/c113 - P0 mod 1±Picd

nif (1 + P ) /nx (1 +P ra - 0
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1
2

(i±p [p (m -a+ t)/21) .

From the definition of Mo- and [H, Th. A] , each character of Um-a-2t appears
IKx/Fx ( 1 I+ p r - 2t)-2t )̀ X  1(1 + P tF)/ (1+P [1(m-a+t)/291-, (I m- 7-2t times or does not
appear. Therefore we have

q M  - 2 t
X •MCI Um -0-2f

X E  X
* (m- a- 2t,m- a- t)

But it follows from (2 .1 5 ) that the dimensions of both sides equal to q' t (q
— 1) . Hence the second statement o f  (1 )  follows. By the  same argument as
above, we have

M  U m -0 -2 ,1
C  2 q M- Cf - 2t -1 ED X.

x

In th is case, the multiplicity 2qm- a - 2 t - 1  equals to  IV/ (Um-a-21-1.) I. By using
[H, Th. A ] again, the first statement follows. F o r  (2 ) ,  (3 ) ,  ( 4 )  and  (7 ), they
are proved in the same way. As for (5 ) and  (6) , from the same argument for
the proof o f  (1 ), it suffices to say that Nolum_l does not contain A. For a =1 +
W E /3 and a E Um_i, we have

p ap i(a) = Or( 2 n , i ( (
2 ($)

(1 Cra- 1 )) .
1—  2 nic(13)

From Lemma 2 .6 , the correspondence

2nic 03) 
1— 21,11‘ (13)

induces the bijection from OA (ek` — (1 + P F ) ) / 1  +P K  to  (0; — (1+ PF)) /1+
PF. Therefore A is not contained in Nol um-i.

We recall
m-i

Kx = (..1 Um  (disjoint).

A s a corollary of the above proposition, we can compute the trace of M a  and
N , on a ll  U  but one i.

Corollary 2.9. Let the notation be as in Proposition 2.8. In addition we
put

(2.17) (x, a)  =1 + Vnif (x ) ( 1  C ra - 1 )
1—  2 1/tif (x)

(1) If o- <m - 2t,



 

Character formula 163

tr M  (a) =

2 q m -0-2t-i ( a )  for a e U _ - 2 t _ 1

for a e

qm - u - t - 1  ( q - 1 )  f o r  a e LIZ_,_ t

0 otherwise

   

where

P a  (a) = p  (0  (x , a)) .
x .,iy ov eK (i+p)

(2 )  If m - 2t a<m - t,

tr MG, (a) =

PG, (a) for a e
m -a -t-1 for a e

m -o -t -1 1 ) for a e U Z -(7 -t

o otherwise

 

where

P  (a) = E P (0(x, a)) .
x.oykok, ti +pro-

(3 )  If t— S  <0 ,

I 
2q m-2t-iQ 0 (a )

tr No (a) = qm  t  1  (1 +07 (1 —  d a l  )

q m-r-i (ti 2 )

where

for a G Ut-2t-1

for a e
for a e
otherwise

Qo (a) = P ( ( x ,  a )) .
E( i  +Pi() ) (1+PV)

(4 )  If t - --1121 0,I Qo

— 

(a)

tr N o (a) = qm - f -

q M - t -1 (q  2 )
1 (1 +Or (1 — -dal )

where

for a E U* 1

for a E U Z - t- i

for aE
otherwise

Q 0 (a) = p  (0  (x , a)) .
' e  ( 6 1 -  (1+P))/1+PW -



1 2q 1, - , t, (y  a ) for acUZ+2u-21-1

tr N ,(a)=
q

m +g-t-1

0

m + - t - 1 for a  U*

for a E Vin+g-t

otherwise
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( 5 )  If ,ti> t —  a n d  0 <tt<t,

where
Q g(a)= p(0 (x ,a)) .

xe ((1 -En)-  (1+pr ))iok(1+ir.)

(6) If ,ti _t —
ni t and 0< p< t,

tr N ,(a)=

Q (a)

(q, 1 )

o

for a c  U i

for ac U :+,- t - i

for a c
otherwise

 

where

Q „(a)= p (0(x ,a)) .
((i+n)-(i-Fiv ))/1-kpr.- ,

(7) For tt =t,

qm - 1 Q t (a ) fo r a E U:-1
tr Art (a) = { q m for a c

0 otherwise

where

Qt (a) = P(0(x ,a)).
.E  ( 1 ± P k )  ( 1 1 - fr ))/ek (1±Pr)

Proof. This follows easily from Proposition 2.8, Lemma 2.4 and the fact

Indff:ri= -4  0 (  ED X)

where 72 is a  character of U, a n d  is any xcharacter of Ifx whose restriction to
U, coincides TT

3. Character formula of n'A  on IC  when F is unramified over Q2
In  th is  section w e assume F  is  unramified over Q2. By this assumption,

the Swan conductor t = t1 ( ._2. Therefore the  calculation of the  character of i t
becomes much easier. First we treat the case t = 1. In th is  case we can choose
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a prime element ciiK of OK such that rric(65K) = -1 1 K (u5K) mod P .  Set (.15F=nic (05K).
From  (2 .14) and Corollary 2.9 , we have

Corollary 3.1. Let the notation be as in Corollary 2.9.
(1) When t=1 and m> 2,

0 (a) (1 ±P m _2 (a)) ± 0 (CO (1 ±Pm- z (d ) )  if a E
2qi (0 (a) P._ 3_i (a) ± 0 (a) Pm_s_i (C) ) if  a E

for O i <m - 3

tr (a) =- 2qm- 3  0 (a) Qo (a)
0

em
-

1 ( a )  (1+ Q (a ))
qtn 1 (q  +  1)

i f  a E UZ-3
if  a E UZ-2
if  a E
if  a E Um  .

(2) When t=1 and m=2,

tr (a) =

0(a) (1 +Q (a) ) (d) if  a E U1.( 1
o if  a E tit
q 0 (a) (1 +Qi (a) ) if a e
q(q+1) if  a E U2 .

 

(3) When t=1 and m=1,

0(a) if  a E
tr (a) = 0(a)

q+1
(1+ Qi (a) ) if aELIt

if aELI i .

Proof. It follows from direct caluculation. W e only remark we use

0 (a) = 0 (a) OK (r (a — )) f o r  a E U:-2

and 0 (C) = 0 (a) for a E Um-i.

Thus our remaining task is to compute Pa (a) and (4 (a) in Corollary 2.9.
For convenience, we set

(3.1) B  = (W i tri c  (r(1 — a 1)) f o r  a E UZ—cr-3

First we calculate P, (a) for 0 < a < m -2  and a E 3.

Lemma 3.2. For a E

Pa  (a) = — g -h (cact2 a v

where aa  E OK is determined uniquely modulo PK by cd, .1=3,1 mod PF and
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h (x , a) = _nxir (x ) ( 1  Era- 1 )  )  0(1+ 1 LlK
n

(: )(x ) (1 E ra - 1 ) )

(3. 2)
2

X 
çbr (1 - 11,K (X )  ( 1  C r a - 1 )  +(1—nXK(X)

( 1

If o*m — 4, we have

h (05aa,
ohs, (aa)  (1 C  ur-1)k r 1 — dick K  (a a)

Proof. W e first rem ark that vp (0  (x, a)) = 2m — a - 4  for ctE UZ_a_3 and x
E P - P '  From the definition of Pa  (a), we have

Pa  (a) = p (0 (x, a))
xeZe"K/61(1+Pi)

= E p (0 (xy, a))
x eco'keVi+p,, y e  1+PK/Mr (l+n)

= p (0 (x, a))

p (  1  6 1 —  1 ) ± VVIK (X )  01K 61) 1 )   ( 1  tra -1 )  .
yel+Pdek(l+Pi) 1 — ( X)

The last equality holds from the fact that
— +  21/1( (x)-(xy, a )  0 (x, a) + (1 a a - 1

)

1—  V I I I (  (x)nK (Y)

— — 1) + e 2nx (x ) (nit (y) — 1) (1 a a - 1 ) mod Kerp.
1 —  N I<  (x)nx (Y )

By Lemma 2 .4  and the fact

C (1 aa-1))= 2m — 1+2 (m —2— a) —1
1 4 (1 — 2nic (x)

(1 m ' ) (Y 1 )

 1 —  211,ic (x)

we get

Pu (a)= p (0 (x , a)) E (riK (x) (nx (v) — 1) (1 —  cm') ) .
x.akevi+p,f ye 1+PdVir (11- Pic)

By Lemma 2.6, y i- 11( (y) — 1 induces an  isomorphism from 1+PK /01(1+Pic)
to (flic (1 +Px) — 1)/P 2F and the la tter group is index 2 in  PF/14. Thus there
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exists a unique aaE OK mod PK such that the map

Y Or(07.MK (aa) (i/K (y) —1) (1 — CYce- 1 ) )

is a trivial character of 1-1-Pja k (1 ± P 2K).
Therefore

Pa(a)  = 1P ( Ï
( ° 5 6;( a a' a ) )

In fact nx (1-i-ciiK0 —1 = (y2 +y) for y  OK. By the assumption 0 (x2 +x) =1

for x  OF, we have nx(aa) = (tric(05V
1r (1 — da - 1 ) ) ) - 1 . From  the definition of

P (0 (074a a, a )) , we have

p (0 (Cilcaa , a)) =  41+

= 0 1 +

)

_  c t)-(ifcciad_ 2
(1) c. fo l i c  (a a )  ( 1  a c r -1)

1— 2(i)(knir (a a)

)Oka a  + VoWn.K (aa)  ( 1 d a -1)
1 — VnK (aa)

— 1) caiaax — ( 1  'era ') )
1— 2c-b̀Pnif (aa)

x  or —  (057caa 2 (i-jktic (aa) ) (1 — a ')  ( 1) Oficaa (1 — Cra- ') 
(1 — 2cii nic (aa)) 2

=  — h (Z a a , a)

since ( PT (  ( V — 1) OYMK (aa) ( 1 d a - 1 ) )  =  — 1 by virtue of 2  E (1 ± P F )  nK (1
+ P K )  and nK (aa ) -=- cd, mod PF. When a n t - 4,

(h  ( 0 5 a a ,  a )  = d . ,   ciik ix (a a )  ( 1  da - 1 )
v j 1— catix(aa)

since vD(0(64aa, a ) )  rit. Hence our lemma.
Next we treat Pm.-2 (a ) for creU *-1.

Lemma 3.3. (1 )  For aE

Pm-2(a) -= G m - 2  (1 — Cra- 1 ) — 1

where
(3.3) Gm - 2 (z) =0 (1 — Or (d)r- 2 zx +ciVFn- 2  + n K (z)) x2 ) .

xekF

(2) For z = 1— da- 1 , 1—  ad - 1
,  Gm- 2 (z) EZ [A/ - 1 ]  and 1G (z)1=
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Proof. (1) Form the definition of Pm-2 and the fact VD (0 (x, a )) = m — 1
for x e n - 2 , we have

Pm-2(a) = E p (1 + x + V n ic  ( x )  ( i  _ a 1 ) )
X  E Bk̀ /1 +Pr, 2111( (x)

= p(1+ (— x - 1 - Vn i r  (x)) (1 —  Cra- 9 )
x e corzekli +PK

E  p (1+  ( — M - 2 x + 2 drFz - 274(x ))  (1 —c - ')) — 1.
\seel C/ Pk

Since p (1 + = 0 (1 + x) r ( — x +x 2 )  for x e P r i , we get the first half of the
lemma.

4
(2) Since p (1 03r-(— 2 x Var 2n K  (x ) ) ( 1 a a -

)
1, =1, G .-2  (1— d

ez r  /—EA / 1]. As for the absolute value of Gm-2(1 — Cra- 1 ) , it follows from
the following standard calculation. For z E P i — Pi,

Gm-2 (z) Gm-2 (z ) =  E  (1 — t h r 2zx ) Or (d11 -  2 2X ± nic (2)) x 2 )

0(1 ± CiYin  Z X  + Cal n  4  Z2  X2 ) r  02 - 2  zy — 2 (z+nrc (z ) )y 2 )

= E 0 ( 1 —  CiirK4 - 2 Z  (X  Y ))  cl (W IT - 2 Z (X Y ) )
x‘yEk,

Or (6 7P - 2  (z±nx(z ))
y )  2 )  

'' I '  ( ' ' '
- 2 m  - 4  2  2 )

Pr ki-uK Z  X  j

=  E  (1— ciR - 2Z14) (617-2Z14+ 0 1 - 2  (Z±nK (z) ) u2)
u e k p

E  (cam-2z2x2)
xE k ,= q

Next we caluculate Qo (a) . First w e treat the case m> 2. We define a sub-
group OF of kF defined by

(3.4) = (x+x 2 1xckF)

Lemma 3.4. For CrE U:--3,

=
— g -  (h (da , a) +h (a';,, a ) )  if Ba  mod Pp E

Q  (a) { 2
0 otherwise

w h ere  B a  as i n  (3 .1) and , a r
a' C O K  are defined by the condition 

i _n K
n

(
K
a

(
a' a) a, )

n x  (aai and 1_14
 (at')

 m o d  P p  are solutions of X 2 +X —  (B a  mod PF ) =0.mod Pp.
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Proof. If IkFl =2, then X 2 H-X— (Ba  mod PF) has no solution over kF and Qo
(a) = 0 since Jo= 0. Therefore we may assume lkF I > 2. A s in  the  calculation
for Pa  (a) , we get

Qo (a) = p (0 (x, a)) E C ,(x ),a ) (Y)
y El+psekS E  In -  + PO /1±PX

E p (0 (x, a ))
xe15 - (1-1-PK)/1+PK

E ((i° (x) (n•x(Y) — 1 ) (1 — d a l )
y Ei+pso(i+pir)

E p (0(x, a ))
xeolc-

1
— E (So (x) (1)F (Y 2  + . 0  ( 1 —  Era- 1 )) •2y E k ,

H ere yo (x) =  x
2

x 2

s i n c e  nK induces th e  map x x 2 o n  kF b y  the
1—x2 ( 1— x2

) 2

X
2

identification of 12K w ith kF. By the fact that the map x induces a  bi-
1 x— 2

jection from kF—  (0, 1) to itself,

E ((,0 (x) (y2 +y) (1 — Era') ) = l
q  i f  

B a  
m o d  P F  E

y E k , 0  otherwise.

Thus we get our lemma.

Next we treat (20 (a ) when m=2.

Lemma 3.5. (1 )  For aE U*-1 ,

Q0 (a) = Go (1 — Cra- 1 ) — 1 — 0 (1 + 1—  Cra- 1 )

where

(3 . 5) Go (z) =- E  0 (1+ (x x 2 ) z) 0 (1-1- x2z) Or ((x z+ ((x ± x2 ) z)

(2) G 0 (1 —Era - 1 )  E Z [V -1 ] and  1G0(1 — Cra- 9)1=14 •
Proof. If  IkFl= 2, then Qo (a) = 0 and Go (1 — da - 1 ) -= 1 + 0 (1+1 —  a ' ) .

Since (0 (1+1— Cra-1 ) ) 4 = 1, IGo(1 a 1) / .  Thus our lemma holds. W e
assume IkFl >2. From the definition of Qo and 0, we have

Qo (a) = p (0 (x,a)
(e.1-(i+po)/i+px

and for x E Vif (1 +PK) ,
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p (0 (x ,a)) = 41+ x  2 n i c  ( x )  (1 Cm- 9 )0  ((— x  ± n K  ( x ) )  x  (1 d a - 1
)

VV1K (X)
r vnic (x ) ) 2

= 61( 1 + 1 K (x) (1 h a -1 ))0 (1+  1
1:1_1‘

n
(: )(x ) (1 d a -1 ) )

2
Or (1 _ n

X
ic ( x ) ( 1  d a - 1 )

 ± (1 4 K (X) 
(1  d a - 1 )

2  

Since 1 — nic (x) ---- 1—x 2 m od P , + _ m od P i and x l-  
1 1 x  

in-'
x x

1 — x 1— x2 1 x
duces a bijection from kF —  {0, 1) to itself, we get

Qo (a) = 0 (1+ (x+x 2) (1 — )  0 (1 +x2 (1— da - 1 ) )
xek,-{0,1}

çbr ( (x +x 2) (1 — Cm') + ( (x +x 2 ) (1_ d a -9 ) 2) •

Hence we get the f irs t h a lf  of our lemma. G o (1  —  a -
1 )  E Z [ V- 1] follows

from  0 (1 —  ha -
1) 4 = 1. The absolute value can be calculated in the same way

for Gm-2(1 —  Cra-
1)  when m >2.

The last term  w e must calculate is Qi (a ) for a E
holds for all m

Lemma 3.6. For ae

1—  Era- 1   )
Q I (a) =

(i)F (x2 -i-x+b)

The next lemma

where b kF  —

Proof. This follows from the following direct calculation:

Qi (a) = p (0 (x, a ))
X E  1 ± P dei(l+ P i)

an K (X )  /„ era-1))
1,,,(x) enx (1+PK)/ (l +pi) 1  —  21,1.1( x)

1 , 2 + w
-
F (x 2+ x ) )

(1 d a -1 )—‘) (Pr(1— V (1+ 65F (x 2 ± x ) )

1 , 1  
= (Pr (1 erce -1 )) .

2 ,ek , (1 —  2 . — . Ci)p• (X2+ 4

F r o m  2 -  1) / (6' F  mod P F Er , we get our lemma.
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Now we can state the character formula for t = 1.

Theorem 3.7. Let A =  (K , 0, r) be a generic data of level 2m and 7=
irn• (See section 1 for the definition of generic data and r i i . )  Assume t = tic =1.
Take a prime element (i)K of OK and a prime element ci)F satisfying tric (05K) =nic
(65K) and ci)-  F=nx(d).K). Let 16,' be an index 2 subgroup of kF defined by k°

F = {x2 +
xix EkF} and take bECF such that (1) mod P F )  kF —k°F .

(1) ym  >2 , then

0 (a) Gm-2(1 —  Cra - 1 ) (C) Gm-2(1 —  crEe- 1 )
if aE U j

—44 + 1 (0 (a) h (o5r - i - 3 aa , a) + O (a) h ( 6 in - i - 3 a , ,  a))
if aE U r for 0 _ i m - 3

—qm-
20 (a ) (h (aa, a) +h  (ct;',, a ))

if a E UZ-3 and B a  mod PFEk °F
0 if a E U,t_3 and B a  mod PFErk°F
0 if aE U :-2

q m _i ( ±  1 9  ( a ) E or (  1—  cra  ))
F (X2 +x+b)

if a E U:1-1
qm- 1  (0 -1 ) if a E Um

tr 7C (a) =

where B a =  0 + 1  trx (r(1—  da -
1) )  for a E aa E OK is determined uniquely

modulo PK by a«---.13 1 mod PK, h (x, a) as in (3.2), 4 , e 0 K are defined by the
nx (a«)n x  (a«) condition , mod PF, mod PF are solutions of X2 + X —  (Ba1— nic(aa) 1—nic(aa-)

mod PK) =0, 07(1 + X ) = (11K (TX)) for x E l l  and Gm- 2 as in (3.3). Gm-2 (1—

a 1 ) ,  Gm -2(1 —  ad- 1 ) belong to Z[V — 1 ] and their absolute value is 4.
(2) If m=2,

0(a) —  0 (a — a) +  (a) G0(1 — a ' ) i f  aEU!1
0 if a E

q0 (a ) (1+ E 1—  da -
1 

x .k , ( 6 5 F  (x2 ±x±b)
q(q+ 1)

if a E  -

if aE  Um

tr Tr (a) =

where Go as in  (3.5) and Go (1 —  d a - 1 )  satisfies Go(1 —  d a - 1 ) E Z  [1 - 1 ]  and
iGo(1 —Era- 1 ) I =4 .

(3) If m=1,



172 Tetsuya Takahashi

0(a)

xtr (a ) =1 ( a ) ( 1 +  ç b r (  1 — d a - 1Ek, \63F(x2 -1- x+b) //
q-1-1

i f  aEU! i

i f  aEU:

i f  aELIi .

Now we assume t = t -
K = 2. In this case we can choose a prime element (151

of 19 K such that ca E F  and 6.4 = 2  mod Pi. Set 6:)F=n (0-4 ). As in the case t =
1, we have from (2.14) and Corollary 2.9

Corollary 3.8. Let the notation be as in Corollary 2.9.
(1)

 
When t 2 and m>4,

 

0(a) (1+P m _3(a) +Pm - 4 (a ))
+0(d) (1±P m _3 (d) +Pm-4 (a) )

2qi (0 (a)Pm _4_,(a) + 0 (a) P m - 4 - t  (d))

2qm- 5 0 (a) Q0 (a )
0

2qm- 3 61 (a) Qi(a)
0
qm - l e (a )  (1 +Q2 (a) )
gm' (q+1)

i f  aEU! i

i f  aEUt
fo r  0 . i <m - 5
i f  aEUZ_5
i f  aEU:-4
i f  aEU 3

i f  aEUZ-2
i f  aEUZ-i
i f  aEUm .

tr (a ) =

  

(2) When t= 2 and m=4,

0(a) (1+13 1(a) +Qo (a))
+19 (6) (1 +P i  ( -a))

0
2q0 (a) Qi (a)
0
e() (a) (1 + Q 2 (a) )
q3 ±  1)

(3) When t= 2 and m=3,
0 (a ) (1+Q o (a)) + 0 (a)
2 0 (a) Q I (a)

tr Tr (a) = 0
q2 0 (a) (1 ±Q2 (a) )
q2 +  1 )

(4) When t 2 and m=2,

tr 7r (a ) =

i f  aELI! i

i f  a E
i f  aELIt
i f  aELI I'
i f  aEU:
i f  aEU 4 .

i f  aELI! i

i f  aEUÔ
i f  aEUt
i f  aEUr
i f  aEU 3 .
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) (a) (1±Qi (a) )

tr Tr (a) =  qo  0 (a) (1+ Q2 (a))
q(q+1)

if  a E
if  a e LIOk

if  a E
if  a E 112
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As in the case t=1, we set

(3.6) Ba= 4 +2 trx (r (1 —  da - 1 ) )  for E

We first calculate Pa  (a ) for o-<m - 4 and a e U :_ a _5 .

Lemma 3.9. (1 )  For 6r<m — 4 and a e ,

P  (a) = — f h (6:4 a a , G o (a)

where a a  E OK is determ ined uniquely modulo PK by a m./3' mod PK, h (x,a) as in
(3.2). The Gauss sum part Go is defin ed  by

(3.7)G  0 (a) = E th ) a) (1 + Co"Kx)
A E

where
2

(3.8) (x) VLK (X )  ±  n i f ( x )  
1—  nx(x) 1— nic (x)

and

(3 . 9) Tex,a) (Y) = Or(x ( (nic (y) —1) (1_ a
1)—  1 ) n K  (1 — Car l ) )).

If a*m — 6, we have

,, aknic (a a )   (1 c r .h (d)ka a , a) = yr ( 1 _ (mic  (aa)
a -1 ) )

(2) The Gauss sum G o (a ) belongs to Z [ 1  — i] an d  its absolu te value is

P roof. (1) By the argument as in Lemma 3 .2 , we can show

P, (a) = E  p (0 (6.4a x , a))2
,Ei+Px/I+Pir

where a a  E OK is defined uniquely modulo Pic by (4= (tr lc (64+2 T (1 — a a  1) ) ) 1

mod Pic. For x E N — P r  and y  1 +PK, we have

(xy, a) (x, a)
• — — 1) ± Vnif (x) K(y) — 1) (1

1—  Vnic (x)
Cra-1)

▪ VTIK (x) ( —  (Y - 1 ) ± Vrt.K (x) ) (nic (y) — 1)  ( i  c y a _1)

(1— Vnif (x)) 2
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mod 1+14- 2 + p r i  (multiplicative equivalence).

Therefore we get from Lemma 2.4 that

p (0 (cbla a x , a)) = p (0 (057raa, a))
X or  (go (61cr a a) (nic (x) — 1) (1 —  da - 1 ))

x or( t K (6 7C a a) 

(1 —  2 n i f  (05ir a a) ) 2  ( x  1 )  n K  ( 1
 — CYcr

-
1 )

= p (0 (Cdaa, a)) C,p(6)1..). (x)

for x E  +PK. As in the proof of Lemma 3.2, we can show p (65kaa , a)) = —
h (Q a a , a) . If cr*m —6, then VD (4)(aa, a)) — 1. Thus

nx (a a) h ( a ,  a) = O r ( i  rt K  (a a )  (1 Cra - 1 ) ) .

(2) Since vic(2) =2, we have vic (2 V p(ca“ ,‘) , a )  (X ) )  =  2m-3 for x e 1.+P K  and a
E Thus gr(ço(0- ) a)(x) 2 1 for some x E  +PK and gr(oc.x...) a)(x) 4 = 1 for
any x e 1 +P K . Hence G  (a) E Z . As for the absolute value of Ga (a) , it
follows from the following standard calculation:

Go (a) Go (a) = E (p (ciiin„,), a ) (X ) (yo (670,,) , a) (y)
1+ P / 1 + P

= E (go (05kaa) (nit (x) — nx (y)) ( l  — h a '))
xyEl-FP,d1+I3

Or ( — y) n lc (1 — Cra-1 )) .

Put x=1±6.0, y = 1 + (i)Kb for a, b kF , then

flic (X) (y) — &lc (05x) (a b) F n (6:4) (a2 —  b2)
— tr K  (6.4) (a b) n  lc (05x) (a b) 2 ± 2 nK (03.0 b (a — b).

Hence we get

G a  (a) Ga (a) =  E a) (1+05e) E (2nK (dieb) )
ce lcF belcF

=  q .

Next we calculate the term P m_ 4 (a) .

Lemma 3.10. For ae U  -* 1,

P . - 4  (a ) = — qh (64 -4 cia , a )  i f  a E  TU:
{

0 otherw ise

w h ere aaEoF is  d e fin ed  b y  the condition

(r (1 —  a 1) ) (nK (1 — a 1 ) trx (To) lc)) mod PF.
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Proof. From Corollary 2.9 (2), we have

p a  (a) E p (0 (x, a))
xEd,voivi+pi

p (0 (x, a)) E Cv(x),a) (y)
xeci,r̀OV1 ±Px yE1+Px/1-1-Pi

where

(3.10) C z  ( Y )  =  r  (  (nK(y) — 1) (1 — a ' )  - EnK(1 — (xa - 1 ) (y — 1))) .

If ae rU i , then vF (trif (T (1 — acr- 1 )) ) 5 — 2m and

3frup(x),a) (Y) = Or (0 (x) (flic (1 — Cra- 1 ) (y — 1))

for all y E 1+ PK. Therefore the  map y '—' ( ),a) (Y) is a non-triv ia l character
of 1+P K/1+ Pi. Hence Pm -4(a) =0  if a E TU1. Now we assume aE ru:. Then

C4,(x),a)(1+60) =0 (nx (x) (6Ftric (r (1— aa- 9) y2 H. nK (1 — da - 1 )trx(rcb ic)Y))

for y E kF . Since go. (x) (05 FtrK (r (1— cy a - 1 ) ) )  0 0 mod Pp,C ç o ( x ) , a )  ( Y )  is  a
non-trivial character of 1+PK/1+Pi if and only if

flic(X) 6 F trx  (r (1— da - 1 ) ) (nif (1 —  da - ) &lc (To5K)) - 2
 

mod P 3 .

This implies our lemma.

Now we shall calculate Pm -3(a) for a E U -* I.

Lemma 3.11.
— 1  if aErUÔ

Pm - 3 (a) ={ q — 1 if a E rU i

0 otherwise.

Proof. Since vD(0 (x, a )) 2 m - 4, we have

0 (x, a )  =  r ( i x ) (1 C ra - 1 ) ) .

Thus it follows from Lemma 2.6 that

P, (a ) = E rtK  (x)  /1 _  _ ■
çb r(1 —11K  (x) ace

i 
)x EciR - VV1 +PR.

E ( t r  (r (1 — da- 1 ) ) x)
x ECU - WV]. d- P,

= (tr (7- (1 — acr- 1 )(741 - 3 )x) —1
X E OF/PF
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={

—1 if vF (trK (r (1 — Cra- 1 ) ) ) = m + 3

q —1 if v F (tric (T (1—  Cra-1 ) ) )  — m - 4
0 otherwise.

Since vF (trK(r a-um - 9)) = -m + 3 is equivalent to aEri.10
* , we get our lem-

ma.

N ext w e treat th e  term s Qa (a) . M ost of them  can be calculated by the
same way as in the case t=1.

Lemma 3.12. ( I )  For m> 4 and aEU:_ 5,

Qo (a) =  2
-q- (h (da , G o (da , a) +h (d:,, a) Go (aa , a ) )  if Ba  mod PF k°

F

0 otherwise.

n i f ( d  ) n ic(a a -) where aa, acr e ex are defined by the condition c,' „ mod PF,1 — nK laa) 1— nK(aa-)
mod PF are solutions of X2 + X —  (B a  mod PF) =0, h (x, a) as in (3 .2 ) and

Go (z, a) =
x —1)E 0 (1 +

1 — nx lz I
z ( 

/  \  ( 1  ace - 1
)

x e 1 +PK/1 d- Pi

(
z (x - 1)  (., ,_. 1 \  m .

V T  1 _ n K  (z ) ■-i- Gra-  )  Y''' (0(z), a) (x) .

For z=aa, a ,  Go(z, a) EZ[,/ — 1] and IG0(z, a)l=
(2) For m> 2 and a E UZ-3,

Qi (a) =
2
 ( a  a)

(3) For a E

1—  Cea- 1  

Q 2(a) E
r ekF (i)F (X 2 F X  ± b)

where b e kF - 16'

Proof. (1) Except the  assertion  about G auss sum G o (z, a ) , it follows
from the same argument in the proof of Lemma 3.4. W ith respect to the Gauss
sum G o (z, a), we can show the statement by the usual calculation as above.

(2) It follow s easily from  the  definition o f Q1 (a ) and o u r  routine cal-
culation. We remark this holds including the case m

(3) We can show this by the same way as the proof of Lemma 3.6.

Thus we have only to calculate Q0 (a) fo r  m=3, 4 and Q1 (a) fo r  m=2.

(3.11)
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Lemma 3.13. ( 1 )  For m=4 and aeU l`i,

Qo (a) =  {  2 (h (4 , a) - F h(da  a ) )  if  a e rU*0 and o ii iBa  mod PF E  k (F/

O otherwise

Wa) nic (a'a')where
1 — ni c  (4) 1 — nx laa

, are solutions of X2 + X —  (65i 1B a  mod PF) =0.

(2) For m=3 and a e  tit,

{

- 1—  0 (trx (r(1—acci)))
Qo (a) =  q — 1— 0 (trK  ( r (1 —  da - 9 ) )

0

(3) For m=2 and a ELI,

if  a E  TU0
*

if  aE rU i

otherwise.

Q i ( a )  =  
—1 if  a E 71.10*

q—  1  if  a E

Proof. By combining the arguments in the calculation of Pa  (a) when cr m
— 4 and  in  the  calculation of Qo (a ) when m >4, w e get the  f irs t  part of this
lemma.

For m=3 and ae U_*1, we have as in the calculation of Pm -3 (a)  that

Q0 (a) z or(  n i c ( x )  
1 — 14K k

da-1 ))
x )(i+P))/i+p,c

xe (0'; -  (1+PM/1+P; 
cp,.(

1 —
x

x  
(1 d a - 1 ) )

=(
(trK(T(1—acr - 1 ))x ))—  (1+0(trK(7-(1—era - 1 )))

. E 0F IP F

Therefore we get the second part.
For m=2 and ae U1,

Q i  ( a ) z or( 2 74K (x)  (1 e r a - 1 ) )
(1+ p„) - (H-P)vi+ \ 1—  Vnic(x)

since vic (0 (x, a )) = i m _ j .  It follow s from  V e1+P 2
F  a n d  nic (x) el+PF

that

(2 (a) = (Pr( -
I
 _n1

K ( X )

 (1 Cra - 1 )).
E  (  ( 1 +PO (1±* V i



178 Tetsuya Takahashi

Since nif induces a bijection from ( (1 +PK) — ( 1 + P ic))/ 1 + P i  to P ' — CF/CF,
we have

QI (a) =  E  (14 (1 — da- 1 ) )
ye / 4 —  (0)

1- 1 if  a e rU t
q — 1 if  aErU i .

Now we can state the character formula of 7  when t = 2.

Theorem 3.14. Let A= (K, 0, 7-)  be a generic data of  level 2m and r =
r i t. (See section 1 for the definition of generic data and 71-4.) A ssume t = tx = 2.
Take a prime element cf3x of tdK such that E F  and 6:4=-----2  mod P. S et ci)F=nif
(05K). Let k°

F  be an index 2 subgroup of kF defined by lecF = {x2+ xlx ekF} and take
b e  F such that b mod PF ek F -14.

(1) If m >4, then

q (0 (a) + 0 (a)) if  a E
— q (h ((b7 -4aa , a) +h (Ce - 4  aa, a) )

if  a E  rte
—g i+1 (0(a) h (ci) r i - 5 aa , a) G m -i-5  (a)

+ 0 (a) h (ciir i - 5  aa, G m -i-5  (a) )
if  aE Ut for O i m - 5

- -g- (h ( a ' a) Go (da , a) ± h (aa
-  , a)Go (da', a))2

if  a E  U Z -5  and B a  mod PFE V F

0 if  a e UZ-5 and B a  mod PF EE k°F

0 if  a E  - 4

—qm- 2  0 (a) h (aa , a)
if  ae 1 4 ,3

0 if  aEUZ-2

qm- 1  0 (a) (1+ E  (,b7 1 — a '
.r.kF

(
 a5F (x2 + x + b)

if  ae U t- i
qm - 1 (q+1) if  ae U , n

tr (a) =

where Ba  = cie 2 trx (y (1 —  a 1 ) ) f or a E U:- a a  E  K is determined uniquely
modulo PK  by



nic (a«) 
1 
—

nic (a«)
(3 .7 ), (3 .1 1 ).

(2) If m=4,

are solutions of X 2 + X — (Ba  m od PF ) = 0 and Gi (z) as inmod PF

w h e r e  aa, E  O K  are  defined b y  the condition
1— nif (aa')

m od  PF and
f f

a a
nK(a fa)

q@ (a)
0
— 90 (a) h (aa,
0

q2 0 (a ) (1 +  E

q2 (q +1)

Or o5F  (x2 + x+ b)

if  a e TUi

if  a E  TU:
i f  a e
if  a e U t

if  a E

if  ae U3 .

tr 7/ (a) =
(  1—  raa - 1

  ) )
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ca- mtrx (r (1 —  Cxa- 1 )) (nic (1 —  aa - 1 ) trx (T0 -4 )) - 2  mod Pic

if  a E rUo*

13-,;1 mod Plc

if  ae _5 ,

h (x, a)  as  in  (3.2), niC(aa')  aa, aa E OK are defin ed  by the condition , mod PF1—
nK(aa'

q(0(a) +ow) i f  a erU i
— (h ( a '  a) + h (d, , a ) )2

if  a e TU: and
0 if  a e TU: and
0 i f  aeU ô
— (a) h (aa , a) if a  e
0 i f  a eL li

q3 0 ( a )  (1+
e ia - 1  

 E
,Ek, ((.6F  (x2 ±x+b)

i f  a e l l
e (q+ 1 ) i f  a e U 4

tr (a) =

0 3 i iB a  mod PFEk °F
mod PF EE k

°
F

nK (aa- ) , mod PF are solutions of X2 +X— (o5PBa mod PF) = 0 and other nota-1 — n (a,;)
tions are as in (1).

(3) If m=3,

(4) If m=2,
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q0 (a ) if  aE rU i
i f  aErU jk U

trz (a) -.- q 0 (a )(1 ±1q(q+1)

( 1— Cm' ) ) i f  a E

i f  aEU2.

Or ctiE (x2 +x+b)

4. Character formula outside the conjugacy class of V

W e use the same notations as above. We note w e fix a  generic data A (K,
0, r) and denote simply irn b y  r .  As in section 3, w e assume F  is  unramified
over Q 2. First w e define a  kind of distance between V  and other elliptic tori.
We denote by 0(X) the conjugacy class of X in D '.

Definition 4.1. For x, y  ED and X , Y CD, we set

d (x, y ) —vD (x — y) — min (vD (x) , V D (Y) )

and d (X, Y ) = min {d (x, y) Ix E X, y C  .  Let E be a  quadratic extension of F.
We define

d (0 (E)) =d (0 (Ex —Fx (1+ PE)) , K >< F > (1+ PE))

and
d (E) =d (Ex  , —F )< (1+PE)) •

It is easy to see that if E/F is ramified,

(4.1) d (0 (E)) =min{d (xg , y) IvE (x) = 1, vE(y) =1, gE M
and if E/F is unramified,
(4 . 2) d (0 (E)) = min {c/ (xg , Y) IVE (x) = 0, V K (y) =0, gE D 1 .

Lemma 4.2. Let a, b EK and E is  a quadratic extension of F in D.

(1) d (a+eb, K)=vE(b)+t — vp (a ± el)) • (t- = tic)
(2) If  E is  unramified, d (E) -= 0.
(3) If  0 (Ex ) * 0  (V ) ,  d (E)

Proof. (1) Since a +  = a  + — 1) 6, a+ b is one of the closest elements
of 10 to a+ V). Thus d (a+ =vp(-1 ) +14 (b ) — VD (a+ eb) .

(2) When E is unramified, 19 E *F ' (1+  PE) . For x E V E -  Fx (1+ PE) , d (x,
= 0.

(3) It suffices to show that if vp(ad - b) =1 and d (a+ b, K )>2t, there
exists x EK such  tha t (1+ .x) - 1  (a + eli) (1+ ex) E K. By the direct calculation,
we have

(1+ex) 1 (a+ b) (1+ (a — Vnic (b)d ± (xT) — 7b) ) 
- e elc) =

1— e2nE(S)
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+ (_ 2 2 + (ã —  a) x 44) 
1— Vnic(13)

It can belong to K  if and only i f  (7—a) 2 L IV n K  (b) E K X 2 .  T h e  assumption d (a
+ b ,  K )>2 t and vic (a d- b) =1 implies Vic (b) (a) > t and  vic (a) =1. Then
vic (-Ft —a)=4 +1  and vic (71K (b) ) > 2 (t+1 ) . Therefore (Ti —a) 2 -4Vn ic (b) EK ' 2 (1
+ PIP). Since 1+Pk+ 1 OEKx2 , we get our lemma.

The support of x„ is relatively small on
 E x .  We may assume d (0 (E)) d

(E), if necessary, replacing it with its conjugate.

Lemma 4.3. Let E  be a quadratic extension of F satisfying d (E) =d (0
(E)). S et d=d(E).

(1) If  E /F is unramified, x,r (x) = 0 for x  F x  (1+n) .
(2) If  E /F is ramified and d *0, x ,r (x) =0 for x (= F "  

± p i m - 2 ( i ) .

(3) If  E /F is ram if ied  and d =0 , x ,(x ) =0 f o r x  Fx  (1+Pim - 1 ).

Proof. By the definition of r,

X7r (x) = P (g - i xg)
geD"/K"(1+PS)

It follows from the definition of d (E) that 0 (x ) does not intersect If x  (1+ PT)
if x f$F" (1+ ( P r d r1E )). Thus we may assume m— d vE(x - 1). Set r=vp(x -

. Then we have

p  ( ( 1  0 - 1 g - l x g (1+0) .[(2m-r)/21X  it (X )  -= q 1  
gED"/Kx (1+Pf,")

Set g - l x g =l+ h. Since (1 - Fk) - 1 g - i x g  (1 +k )=- 1+hk — kh mod Pr, p  ((l+k )
- 1 g - 1 x g  (1 + k ))  = (Tr (Th —  hT)k). Moreover h E .11  and h EE PrK +154.4( +1 . Thus
the  map k ( I )  (Tr (Th k )  is  a non-trivial character of ppm+l-r)/21/p2Dm-r

if r<2m — 1. Therefore xr ( X )  = 0.

Corollary 4.4. If  E is unramified quadratic extension,

0(c) x=c(1+k)E.Fx(1H - P'En).

When E  is ramified, we have only to calculate x , on F x  (1+ Pim - 2d) _ px

(1+ Pr i - d )  and Fx (1+ Pim _ ' x  ( 1 +p " )  when d = 0 .

Lemma 4.5. Let E  be a ramified quadratic extension of F and x E Fx  (1
+ P ) — Fx (1 +p'). T hen x  can be w ritten in the form  x=c (1+a) (1 +b) where
c e F x  , a E FI — Pk. + 1 , b E n ± d . Here we set r=0 if  x EE x  — F x  (14 - PE).

(1) If  r. -_2m — d, then X n (X )  = 6  (c) X it (1 + a )  .
(2) If  2m —  2d r < 2m — d , then x r  (x) =0(c)(Pr (b) X n (1 ± a) .

(4.3) (x) =
 { o x (1 4-PEn)
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(3) If d =0  and r= 2m- 1, then x  can be written in the form x =c  ( 1 +a+
,a, (1+b))w here  c  FE x , a  epyr - t- i_pyr - t, b G Pic and

x. (x) = 64(c) Or (a) (1 ± Or ( c1-1) — a b — 6 5 1 < a ) Y  ) )
y Ek, cbtx(y2+y-F5)

A 2 - 1
where 5 =  - t  •

Proof. When r_ 2m— d, x= c (1 +a) m od K ent. Thus X r (x) = (0 X r (1+a).
Next we treat the case 2m—  2d .r<m — d . As in the proof of Lemma 4.3, we
can show

(x) = (c) E p (1 +g - l bg)
gEovit-o-f-pr- r- °

p (1 + h - I g - l agh)
hEr o+pir- -)/K.0+11)

and the last sum is proportional to

p ((l+ k ) - 1 g - l x g (1+0) .
hEK x (1 -4- P r ' - ') / r ( 1 - FPLI) kEpepr

Put a'= (gh) -
l agh. If we have

p ((1 +k ) - 1 g - l x g ( l+k ) ) = 0(Tr(ra' — a'r)k).
hen/PY kEPg/n°

It follows from the same argument as in the proof of Lemma 4.3 that this sum
is 0 if gh EPIC (1+Pr - r - d ). It implies

r (x ) =  (c ) (T  r p (h - 1  (1+ a) h)
h EK xU V (1+n)

On the other hand,

x  O.  +a) = E p (1 ±h - lr l a gh)
gED V IC(1+Pir' - d ) h e r  (1+P )/K"(1+PE)

p (1+ h - l ah)
h e r  (i+Pir - ' - ')/V(1+PT)

Therefore we get X r (x) = 0 (c) (,b (Tr (rb)) X r (1 + a) . Now we assume r <m.
Since (1 +k) _ 1 ( 1  + a ')  (1 +k) = (1 + a ')  (1 + (1 + a ' )  (a'k — ka')) and 1 + (1 +
a l  (a'k — ka') E  +  p  (  ( 1 +  k )  -

1 (1 + a ')  (1 +k )) = 0 unless a' a mod 13S .
When a' — a EPT) ,

E  p ((1+ k) --1 (l + a ') (1+k) )
k E

= (1 +4 -1 k a')
k E ran"
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= 0 (Tr (Ta' — a'r) k)

k en/Pr

=0

if gh EE Ifx (1+ PR"' - d ) . Therefore we can show xir =  ( C ) 0 (Tr (Tb)) x  (1
+a)  by the same way for the case Finally we assume d =0 and r=2m -

1. It follows from Lemma 2.2 that the set { 1} U {1 ± 1(3119E 1 +PV1 - 1- P 1)
gives a complete system of representatives of Dx/Ifx (1+PD). It implies x e r
(1 +pr-i) can be written in the form x =c (1 +a ± (1± 1 ))) w h ere  c e Fx , a

k beP iK and for this x

Xn (x) =qm - '0 (c ) (1+ E p ((1 ± 0 ) - i (1 ± a ± a (1 + b )) (1 + 0 ))) .
1±Pkil +Pr

Since

(1 ± 0 ) - 1 (1± a± a(1+ b ))  (1+/3) =1+a+ 2 i
'
l
l f

( 3 )  ( a  6 7 )1 — (13)

+
 ( /3—abiS) 
1—  Vnif ($)

+  (V f part)

and
Vni r (i3)  (a a )  + (ab 13 — ab /3)  _ ab — ab +— 2 n(11- 1K ) (137  (3- 1)

1—  2 ril< (13) 1—  2n1I(a)

i

we have

p ( (1 +  0 )  (1 +  a +  clb ) (1+  0 )) =  r  (a+ _ ( 8 - 1) — a (P- 1)  )
1 — (S)

Therefore by replacing /3 =1 ± A y , we get

Xit (x) = e n - 1 0 (C) (1+ (Pr (a) E 
( a b  a b  +  (F t—  a ) A Y  

y ek 63. (Y2 ±  ±  5 ) )) .

Now we can state the main result of this section.

Theorem 4.6. L et A =  (K, 8, r)  be a generic data of  level 2m (cf. De-
f inition 1.1) , Tr =  rrA the irreducible representation of  D ' associated with A  (cf.
Proposition 1.2) . S et t = tic take prime elements ciiF and o.31c such that tric(05K)
nK(c5K)=6 F  mod n w hen t=1  an d  652F= — 6F=.-- 2 mod P2F when t=2. Let E be
a  quadratic extension of F  in  D  satisfying d (0  (E )) =d  (E ) (cf. Definition 4.1)
and set d=d (E).

(1) If  E/F is unramified,

mod p_,,
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x . ( x )

{0 x x'$F (1 - F P'En)

n (c) x = c (1+ a) ,cE r ,a E  P 'En

(2) If  E/F is ramified and d> 0,

0 x i$Fx (1 H- Pim - 2 d )
6(c) Or (b) X i t  (I. +a) x=c(1±a ) (1+ 0 , c

a EP'K — F1+ 1 , b E T V

X r(x )= for 2m —  2d r < 2m — d

(c) Xir (1+ a) x = c (l+ a ) (1 + 0 , cEF x  ,

a G P'E" , b P 'D' d

for 2m — d . r

where X i r  x ) for xE IC  as in  Theorem 3.7 and Theorem 3.14.
If  E is ramified and d= 0,

0 x EEFx (1 ±Pim - 1 )

(c ) ±  or (a )  E  o r (b— ab+  ((li ca —ci4 a ) y ) )
yEkF OF (y2 -Fy -I- 5)

x=c(1-4-a-t- a (1 + 6 ) ) ,c  Fe x , a  e p p - t- i b E  plc

en 0 (c) x = c (1  ±  , c eF x ,aeP im

2 1
where 5=

ciirK

Remark. The above theorem holds without the assumption F is unramified
over Q2. But we give the character formula of r  on I f '  only when F is unrami-
fied over Q2. Therefore we state it under the assumption F/Q2 is unramified.

Appendix A. Calculation for general case

Here we show how to compute P, (a) and Q, (a) i n  Corollary 2 .9  without
the assumption F/Q2 unramified. This amounts to the character formula for  i t
= irA. W e use the same notation as in Section 3. Since we have already calcu-
lated the character when t=t K =1, we may and do assume t =tK >1. W e devide
the calculation into 7 parts according to Corollary 2.9.

W e start w ith the calculation of P, (a) .
Proposition A. 1. Let the notation be as above and assum e 0 <a<m —

2t and a e .
(1) When t is odd,

Pu (a) = (1 +21 )/2 h (a , a)

(3)
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where aa c Mr is defined uniquely modulo P r t + 1 ) 1 2  by  the condition that W(cpc“.),a)
is trivial on Id - P e w ' and h, yo, T are as in ( 3 . 2 ) ,  ( 3 . 8 ) ,  ( 3 . 9 )  respectively.
(2) When t is even,

P, (a) = — g t

2
h (a a) G  (a)

where aa  E P(k is defined uniquely modulo P7± u 2  by  the condition that a )  is
trivial on 1+Pk + 2 ) 1 2  and

(A.1) Ga (a) = Cv(aa), a) (x).
El+pp/I+FT"

The absolute value of Ga  (a) is '71/2 and Ga  (a ) belongs to Z

Proof. From th e  same argum ent in  the  proof o f Lemma 3 .2  and  Lemma
3.9, we have

Pa  (a) =1 p (0 (x, a)) E Tup(x), a) (y)
/1+Pk

where ao eF f is determined uniquely mod P r  such that the  map

Y '/-'r  K (a 0) (n K (y) — 1) (1 — Era- 1 ) )

is a trivial character of 1 ± P ia l c (1±PV 1 )  and T.  is a s  in  (3 .9).
F or x E nK (ao) (1 + P F ) ,  th e  map y  F4  Cv(x), a ) (y ) is  a  character o f  1 +

K / 1
±p

Therefore

C v (x ),  a) (y) = 0
y e i+p)t-)"/I+Pk

unless ?Viv(x), a is a trivial character of 1 - 1- P e l ) / 2 .

Lemma A.2. There exists a unique element x E nK (ao) (1 - - 1- PF) /1 +
PP + 1 ) / 2 1  such that C x ,a ) is a trivial character of 1+13 k

t + 2 ) / 2 1

.

Proof. For y E  +P t
i r l  and x=nx (ao) +xi, x i E P ,

Cx,a) (y)  =  r((n K (ao) +xi) ( (nK (y) —1) (1 — da - 1 ) — 1) n K  (1 —  da - 1 ) ) )

r (n  (a0) ( (nK(y) —1) (1— da - 1 ) + (y — 1) n K  (1 —  da - 1 ) ) )

x Or (xi(nK(y) — 1) (1 —  da - 1 )) .

Since xi i ( X 1  (nK (y) — 1) (1 — da - 1) ) )  induces a bijection from /3 7(± '
/PV 2 t o  (1 + P tK-

1/1+PW , there exists a unique element xi E P P - 1/P7 2 such
that grc,,,(,.°)+,, a) is trivial on 1 +P tK- 1 .  By repeating this process for y  1 +Pk, i
= t — 2 , •  •  •  , [ ( t + 2 ) / 2 ] ,  we can show that there exists a unique element xE
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p rF1  p  [( t  +1 )  /  2 1  such that TG,„(“0)+„,,) is trivial on 1+Pk
t+ 2 )/ 2 I

Since go induces a bijection from a o (1 ±PK)/1 ±Pk t +1 )/ 21 to  nK(ao) (1 - FPF)
/1 +p[p+1)721, it follows from the above lemma that

{ q 2 P ( 0 ( a a ,  a)) if t  odd
(A .2) P a  (a) = 

3 T' t / 2 E p(0 (aax , a )) if t  even
x. (i+pr )/1+Pii"'

where a a
 E  Pk is defined uniquely modulo P r ( i+ 1 )/ 2 1  b y  the condition that

a) is trivial on 1±Pk t+ 2 )/ 2 1 .
The rest of the lemma is also proved by the  same way a s  in  Lemma 3 .2

and Lemma 3.9 .

Let the notation be as above and assume m — 2t a

if aE

i f  aErUm-a-t
0 otherwise.

(2) If t odd and a<m —  (3 t+1 )/2 ,

Pa(a)
—q(t-1)/2h (aa , Ga  (a) i f  aE  TU,P-m+zt

=
0 otherwise

where aa  C  PI is defined uniquely modulo P rn i - a - ( 3 t - 1 ) / 2 )  b y  the condition
a) is trivial on 1 +P r-

u
-

( 3 t
-

1 2  a n d

G a(a)= —a (x - 1) e (1 + a  / \  ( 1  d a - 1 ) )1 — 11K ka a )E l  + P r -  ' ' /Y 1 +

aa  (x — 1) 
çb r l — ni<(aa ) (1

a _ 1 ) )  e ( ) .
 ( x )

Ga  (a) satisfies Ga  (a) Z  — 1 ] and IGa (a) I = 4 .
(3) If t odd and u<m —  (3t+1) /2,

Pa  (a) 
= {  t i ct-ivz (G ,  (a ) 1)

0

where

(A.4)

Ga (a ) = 61(1 ( 1 _ c ra -I■ -on-ot+i)/2)coic x j ft p r ( 1 - - c r a - 1 )  0.-4m -(3t+i) /2)
x

)

t E k ,

(t+1)/2

Proposition A.3.
<m—t and a E U* 1.

(1) If

{

( I n t - c r - t - 1

pa  (a) =  q m-cy-t-i (q, 1 )

(A . 3)

i f  a E 711:-ni+2t

otherwise.
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Or ( ( (1 — da - 1 ) +nx (1— da-1) ) nK  (051cm-(3r+1.)/2)) x 2))

and G  (a) Z [A/- 1], 'Go (a) = s4.

(4) If  t even and cr<m — t,

Pu  (a ) = f lc q u 2 h (a a , a) if a E  rU:-m+2t
otherwise

where aa e py.,  is defined uniquely modulo P7f+ ( m - a - 3 " ) b y  the condition that
a) is trivial on 1 +p r- - 3 0 2 .

Proof. In th is case, VD ( (X, a)) = 2a +tt for ae 1./!1 and xE /1 — /I + 1 . First
3we assume
2

t. Then

0(x, a) =Or(ir_LKn(:)(x) (1 Cra - 9 )

for a e  U i  and x  Plc —  PV. Thus it follows from Lemma 2 .6  and the argu-
ment in the proof of Lemma 3 .11  that

P, (a) = (Pr k
n if (x )  

 1 — n a
K (X)

Cr -1 ) )
xed411V1+Fre- - ,

= Or (trx (r (1 —Era- 1 ) 0- )x)
x E  / P 1 - ° '

E  O r (trx (r (1 —aa - 1 ) 6P- 1 )x)
E PFi l r -°

if vF (trx (r (1 —  C m ') ) ) = — a
qn20 . 1 1) if v F  (tri c  (r — e-xce- 1 ))) -
0 otherwise.

Since vF (trx (7 (1 —  cra- 1 ))) = — a is equivalent to a e TU t i - a- t- 1, we get
the first part of the lemma.

N ext w e treat the case t  odd and a <m — 3t/2. By the same argument in
the case O.< a<m - 2t, we get

P, (a) = E p (0 (x, a))
E61,0;,/ +

OK (AO (X) (1 — Cra- i )y).

Hence

q' -m+2t p (4)(x, a)) if a E rUcr—m+2t

Pu ( a)  =  o
.Eokevi +pp--

otherwise

since v F (tr K (r (1 — aa- 1) ) ) a+ 3t —2m +1 is equivalent to a E r r i-a -m + 2 ,. Now
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assume vF (tric (7 (1 — a a - 1 ) ) ) 3t — 2m +1, then
P(a) _qa-m+21 p (0(x , a))

T.  (40(x), a) (Y)
y E l  - F P V - ' - . ) ' a /1 + Fr-zo-un

Let us assume u*ni—  (3t+1)/2. Since ?Ir- (o(x),a ) (y) = ((P  (x) (1 — da - 1 ) (y -

1 ) )  for y  e  1  + picm-2u-3t-1 and a E  TU a-m+2t+ i, the  map y Yr(v(x),a) (y) is  a
non-trivial character of 1+ P r  

0 .- 3 t - 1 ) / 2 / 1 + p r - 2 a - 3 f / 2
 when a E ylia- m+2t+1. It

follows Pa  (a) = 0 unless a E rU:-nz+2t. Therefore we may assume a e YU :-m+21.
Then

yr(9(x),a) (1 + cant-2E-3t-ly )  =  ( 0  (x )  (nic ( a in -2a -3 t-1  ) tric (7- (1 — )  y 2 )

X 0 ( 0  (X) (nK (1 —  aa - 1 ) t r  ( a rT - 2 ° .y ) )

for yEkF. Since yo (x)nx (
0 ) 1 1 n - 2 a - 3 t - 1  

trK (r (1 C r a - 1 )  )  * 0  mod PF, there exists
a unique ao e n —  P k ' mod /4+1  sa tisfy ing Twa.),a) (y) = 1 fo r all y E  1 ±
p m -2a-3t_1 By applying the argument in the proof of Lemma A .2 to this case,
we have

P (a )  = l a-m+2t q m-a-(3t-1)/2 p (0 (aa x, a))
+pro-(3 e-on

where aa E n  is defined uniquely modulo Plc± ( m- c - ( 3 t - 1 ) / 2 )  b y  the condition that
.) is trivial on 1+Pr -

cr - (3 t - 1 )/ 2 .  
Thus we get

Pa (a) =
0

(f-i)/2 _
P ( a u , a)) Go (a) if a E rUâ-m-Fzt

otherwise.

In this expression, we can prove Go (a) E Z [,/ - 1 ]  and 'Go (a) I = 4,4  by the
same way as above and we can show p (0 (aa, a )) = — h (aa, a) .  (See (3.2)
for the definition of h (aa, .)

When a=m —  (3t+1)/2, it is proved by the same way as Lemma 3.3.
3When t is even and a<m - -

2
t
'  

the calculation of Pa (a) for m -2 t .a < m
— t is easier since Gauss sum Go (a) does not appear. We omit the proof.

Next we treat the term Qo (a) .

Proposition A.4. Let the notation be as above and assume t — m/ 2 <0
and aE U !i.

If t odd,

Qo (a) =
ufivz

{  0
4 2 (h(a a , a) ±h(aa, a)) if A a  mod PK EVF

otherwise

and if t even,
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Q0 (a ) = {

t/,,  2

( h  ( a ,  a) G o (a, aa ) (4, a) Go (a, 4)) if A a  mod PKEI4

0 otherwise

nK  (aa) nK (aa where are solutions of X2 +  X  A a  = 0 and A a E  O K  is  de-1 n K  (aa) 1 — nK (a«)
termined uniquely modulo PP + 1 ) /  2 1  by the condition CA.a) (A a ((nK (x) (1 — Ce

(y— l)n K  (1 —  Cea- ') )) =1  for all 
y  E  p k t + 2 ) / 2 1  a n d

—Go (z, a ) = zE 0(1+  , ,

1)  (1 Cra- 1 ) )
— 11K lzx E  + P r ii  + P l+ ' "

(A.5)
(z  (x - 1) \ (1 C ra - 1 ) ) C 0 (z),a)(x) .Or

lZ

The absolute value of Go (aa ,  a ) and  Go (a«, a )  i s  q1 / 2 and they belong to Z
[/ _11.

Proof. First we assume IkFl

Q0 (a)  = E p (0(x ,  a )) E C (x ),.) (3))
x.0),-(i+PKV1+K yEld-Pk/ek (1 +PP )

E p (0 (x, a ))
x E rn -  +p„vi +p;,

E Or (CIO (X) (nK(Y) — 1) (1 —  Cra- 1 ) )
y + Pk/ V), (1+ PP)

E p (0 (x ,a))
xetv;,— (i+p„)/i+ps,

1
E  ((,0 (x)nK (C) (y2 +y) (1 — ã a ' ) )

y E k r

where C be an  element of Pk satisfying tric (C) (C ) mod P V . A s in the
proof of Lemma 3.4, we have

( C )  6 , 2  + y )  ( 1
—

 Cra - ' ) )  =  
q  if ao mod PKEOF

E ((,0 (x) nx
y E lo 0  otherwise

where a« e  K  is determined uniquely modulo PK  by the condition Or (nic (C) (1
— da - 1 ) ao (y2 +y)) =1 for all y E V F  and OF a s  in  (3 .4). Assume X2 H- X — a o is
reducible and let X 2 - 1- X ±a 0 =  (X - Fdo) (X±do'). Then

Qo (a ) = - q -2 ( p (0 (x, a)) -I- p ( ( x ,  a ) ) )  .
E4(i+ p.)/1+ .,E,(1A-PK)/1±Pk

Hence we have the lemma by the same way as in the calculation P a  (a) .

>2. As in the calculation for Pg  (a) , we get
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If IkFl =2, then Qo (a) =0 since Jo=0. On the other hand, X 2 + X + A a  has
no solution over kF. Therefore the formula holds including the case ikF1=2.

Proposition A.5. Let the notation be as above and assume t — m/2 <0
and aeI.P-1'1.

(1) If

— e-t-1(1+0(trK (r(1— da-1)))) if crerU t-t-i
Q0 (a) = (q— (1+0 (trK (r (1 —  da - 9 ) ) ) if a e rU m _t

0 otherwise.

(2) If t odd and m —  (3t - 1) /2 > 0,

Q0 (a)
(h (aa , a)Go(aa, a) +h (a, a) Go (da, a))

if a E TII2 a n d  A a  mod PK EOF

otherwise

nx(aa ) n ic (ai)  where 1— nK(aa) 1—nx(aa' )  
are solutions of X2 + X —  Aa =0, A a EOK is deter-

mined uniquely modulo P r (3 t + 1 )  /  2  

by the condition 111.- (Aa. a ) (Y ) —  1 for all y e 1 +
11 - ( 3 ' 1 )/ 2  and

EGo (z, a) = 0(1+  z  (1
E

(A . 6)
,  z  — 1)-  _ 1 \  m r

N aa ((a (z), a) CO .\ 1 — nK (z)

The absolute value of Go(z, a) is q 1/2 and Go(z, a ) belongs to Z [1 - 1] when z=
ac„, aa .

(3) If t odd and m= (3t+1) /2,

Q0 (a) =
 ei (t-1)/2 (G o / a \) 0 (1+1 Cra - 1 ) ) if aErL1 - 1)/2

0 otherwise

where

(A . 7)

Go (a) = E 0(1+  (x+x 2 ) (1—aa - 1 ) )  (1 +.X2 aa-1)
x e k p

0„,((x+x 2 ) (1—da - 9+ ((x+X 2 ) da-9 )

and Go (a) Ez 'Go (a) l= 4 .
(4) If t even and m — t> 0 ,
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n t / 2

{

— (h (aa , a) +h (4 , a))2

Qo (a) = if  aE rU _. and A a  mod PK e k °F

0 otherwise

n K  (a a)n i c  (4 ) where ,  are solutions of X2 + X —  Aa= 0, Aa E C K  is deter-1— nK(aa) 1 — nic (aa'
3

mined uniquely modulo P r i t by the condition W(A,,, a) (y) =1 for all y E 1 +13 71-

3

Proof. This is proved by combining the arguments in the Proposition A.3,
Proposition A .4, Lemma 3 .5  and Lemma 3.13. We omit the detail.

Now we start the  calculation of Q, (a) . T his is much more complicated
than the case 2. We set

(x)  )3 (nK lY1 ) 1 ) 2 (1)(A . E  a) (Y) = VI-4)(x), a) (Y) Or(( 
—  V n i r  (x )

and define a subset S, of U + 2 1 1 -2 t  -1  by

(A.9) Sg =
 l a e +214-2t-1 I E (x, a)11+PV+2'''' =  1 for some x C a° (1 +Pi+1 )

when ilg t and

(A.10) S.= {a e  UZ+2„-2,1 E (x, a)l).+Pk"-zu")"' =  1 for some x  e  ao (1+11+9 }
when zig_.>_t.

Proposition A.6. Let the notation be as above and assume g> t ,0

<g<t and a E UL2a--2t - 1.

(1) If  t odd and

_ (t+i)/2 (h  (( l a ,

Q„ (a) = I q
tO

a) + h (4, a ) )  if a e  Su

otherwise

where aa , a  E 1 +py, are determined by the condition that E (an, a) (y)  
=

1 for all y
E  + p r i )/ 2 .

(2) If  t even and 4g<t,
— q 1 2  (h (aa , a) Gf l (aa , a) +h  (4, a) G, (4, a)) if  a E  Sa

Q„(a)=
0 otherwise

where aa, aa' c 1 +Plc are determined by the condition that E ( a  a) (y)  = 1  for all y
E 1d -P r 2 "  and
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, E —z (x -1 ) 0(1+ CrG (z , a) = a-1))1—nK(z) (1

(A .11) ,  Z (x - 1)tpr \ 1 _ T I K  (z ) ( 1  da - 1 ) )  E ( ), a ) (x).

For Z = aa,

[A/= 7 .].

(3) If  4 p >t and 2 +t= 2 mod 3,

,

1 - 4
(2t-z)+2)/3 h (a a , a )  if a E

Q  (a )=  
0 otherwise

where aa  E  1  +Pk  are determined by the condition that E  a) (Y) = 1 for all y  E
± peu-F iv3 .

(4) If  iltt >t  and 2,u+t 2 mod 3, we have

{ —g
(2 t- 2 0+2 )/3 h (c t a , a)Hg (a) if a  E

Q„ (a) =
0 otherwise

where aa e 1 +py, are determined by the condition that E (a,., a ) (Y ) = 1 for all y  E
1 +Pkt + 2 # ± 3 ) 1 3 ]  and

(A.12) H0(a) E
XE +P(t+2a)/31/1-FP,I(t+2v+3)/31

—a" (x
- 1) 

(9(1+
cr

1 —nK  (aa) (1 a-1 ) )

(

a a (x - 1 )  
 1 — 71K (a a) (1 a c r - 9 )  E (oa.), a) (x)

( (

2 1,tK (a a ) 
7 1 2nic(aa)

) 4  ( n K ( x )  — 1 ) 3  ( 1 — d a - 9 ) .

Unfortunately we cannot call H, (a ) Gauss sum since the  absolute value of H,
(a ) is not q112.

Proof. By repeating the routine calculation, we have

Q, (a) = q p (0 (x, a ))
xeao(1+Pk+1)/1+Pi

where ao E  1 + P - 1 + P '  is determ ined by the condition Or (q) (ao) ( (nx (y) —
1) (1 — da - 1 ))) =  1  fo r all y  E 1 + Pk. L et E (r, a )  be  a s  in  (A.8). When i
m ax [ (t+ 2) /2] , [ (t+2/1-1-3)/3)1,

p(0(xy, a )) = p (0(x, a )) E(X, a)(Y)

XE1-1-Pt 2 /1-1-PT -2 )/2

, the absolute value of  G„ (z, a ) is  q1/2 and  G, (z , a )  belongs to Z
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for y E 1 ± P iK and the map 1+ y 1-* Ex,  a )  (y ) is a  character of 1 +P i
K  for x  E

ao (1 + P 1) .Thus if  4,te t (resp. 4a> t), the  map 1+y 1 - * E (x, a) (y) i s  a char-
acter of 1+Pk

t+ 2 )/ 2 1
(resp. 1+Pk t + 2 3 3) )  for x e  a o (1 + P r )  .

The next lemma is an analogue of Lemma A.2.

Lemma A.7. (1) Where 4 _ <t an d  a E  S„, there exist two elements x
E a o (1 +PV-

1) /1+Pk t+ 1 )/ 2 3  such that E Cr, a) is  a  triv ial character of  1 ±Pkt -F2 2).
(See (A . 9) for Sa .)
(2) When zitt >t an d  a C  S,, there exist a unique element x E  a ( ) (1 + W I ) /1+
nt +20 +1)/31 such that E ( x , a )  is  a  trivial character of  1±Pk t+ 2 " 3" 1.  (See (A.10)
for Sa .)

Proof. For y  e  1 + P '  and x=a oxi , x 1 E  1 +P 1 ,
;74 (x , a) (y) = (,1),((p o xi) ((nK(y) - 1) ( 1 - a 1) - 1) n K (1 -  da - 1 ) ) )

x 04( 2n1‘ (c te lx 1 )( n i f ( y )  - 1) 2 (1 - Cra- 1 ) )
1-  V II I (  (aaxi)

(Pr ((P (ao) ( (nic (Y) - 1) (1 - Cra - 1
) ( y- 1)14(1 -  aa - 1 ) ) )

X 04( 2 n ( a )

) 3 (nK (y) - 1) 2 (11 - VnK (a 0)

because
2n K  (a ox 1) 2  . =  2 n K  (CIO)  ) 2

mod P e + 2 . It implies E Cr, a) (3)) =1 - Vrtic (aoxi) \ 1-  2nK(ao)
1 for all y  G 1+P 1 b y  the assumption a  E  Su . For y  E  1+P 2 and x=aoxi,

E

E' (x, a) (y) =Or (40 (ao) ( (nic (y) —1) (1— a )  +  - 1) ni< (1 - da - 1 ) ))

x 04( 2 n
2
K
n

(
K
a °

( a
)

 0 ) ) 3 (n.K (y) —1) 2 (1 da - 9

21,11c(ao) x Or \ 1 - Vnic (ao) ( 1 1 1 (  ( x l )  1 ) 2  (n (y) - 1 )  ( 1 -  -6 a - 1 ) )

because

2n ( a x ) ) 2(  2 1 1 ,1 (  (a o)  ) 2

1 V n ic  (aoxi) \  1  - 27/1c' (ao)

± (  2 1 1 , 1 c ( c l o )   ) 4  

(nK (X i) — 1) 2 mod P i 211+4 .\ 1 -  2ni(- (a0)
Since the map

// 2 1/1((ao)  14

x i P  7A  1 - Vnic (ao) ) (14  ( x 1 )  2 (14K (y)
 — 1 )

 ( 1  6 a - 1 )  )



ço (ao,01 - 1 ) x,) =
1 _  2 1 1 . i c (aox (ii-i))

( a o (a- 1)) ) 2
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induces a bijection from 1-1-Pi+1/1 + /1+2 to  (1 - FP 2/1+PP) A
, there exists a

unique element X1 E 1 +Pk+ 1 /1 + pyr+ 2  such that E (ezox,a) is trivial on 1 +P 2
.

By repeating this procedure, we get our lemma for the case 4/1>t. For the case
zitt t, we have there exists a unique element x(1 1 - 1 ) e 1 +Pr/1 +Pif such that
E (a a r ( -1), a) is trivial on 1 +P 2 1. For y e 1+PK

- 2  and x =a 0x(g- 1 ) x„, x„ E  1+

(aar, a) (aar(-1 ),a )

(acoc (u-i))

1 —  2n.E( (aox(" - 1 ) )
(a001-1))

(1)7
A  1 27.1.K ox (11-1))

because

)2  (n lf (X I I )  
— 1) (nx (y) (1—aa-1))

) 4  (nx(x ii) 1)2 (nx(y) —1) (1—da - 1 ) )

+ (
zn ir (aox (u-i)) \  2

1 2 K (a o x ' 1 ) )

) (rtic( ) — 1)x, 

n

2

i t

n

(

K

a

( a o ( 1
"

-

)

1)
)

)4(n
K  ( X ` ' )

 — 1) 2 MOd P F

Since the map x (y 1 -* Or (X (11K (y) — 1) (1 — da - ' )  )  induces a bijection
from OF /P F  t o  (1 ± Pk- 2 '11 -I- Pk-2 # + 1 ) 

A  

, there exist tw o x,'s satisfying E
caoxo-Dx.a) (y) =  1 for all y  E 1 +Pk- 2 " by the assumption a E S .  F o r  [(t +2)
/2] +1 <t — 2,u, we can show by the same way as in  the proof of Lemma
A.2 that if x " ' " - 1 )  E  1  + pr/1+1= - satisfies E (a o x (t-i-g-1) , a )  ( y )  = 1  for all y
E 1 +Pk, there exists a unique element xt - ' "  E  1+ P ti f/ 1 ± P " + 1  such that

E ( a 0 x ( t - i - g - D x : - i - m a ) (y)

 =
1  for all y E  1 + P V . Hence our lemma.

By the above lemma and our routine calculation, we get our proposition.

The next term is Q, (a) for a E  U 1 when  1 .t t - 1 1  and  0<k t<t. We set2
(A.13)

S ( 1 ,  g )
=

" {a e E (x, a)11+14 (,?m+41 ,--3 t+1 ) /211  for some x  e  ao (l +PI(+ 1 ) }
when 2m- 3t>0 and
(A . 14)
S(_ i ,„)= ta E E  a)11-Fpu,im+6,<-3.)/31 = 1  for some x  E  ao (1 ±Pic+)
when 2m -3 t0 .



all y  E 1-1-ppn+ 4 11 - 3 t+1 ) / 2  
and

(A . 15)

G„(z, a) = E
Xe 1.4-Ppm+ 411 - 3 1 - 1 ) / 2/1-Fq m. 4 14 - 3 t +1 ) / 2

0(
— z(x —1) 1+ (1  da - 1 ) )1— nK (z)
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Proposition A.8. Let the notation as above and assume 1.2 t — ii i - , 0<te

<t and a E U ,.

2 1(1) If 1.i t - - -n i+ —3 3'
_ q m-Fa-t-i

Q g  (a ) = { q (m+a-r-i) (61 1 )

o

if  a E  rU 4 ,_ r_l
if  a E  rUm+a -t

otherwise.

2 1(2) If  IL> t — m +  ,  2m —  3t > 0 and t even,

—qt/2 (h (a a , a) +h (ci,;,, a )  i f a E  S (-1 , a)
(4 (a) =

0 otherwise
where aa, ctc ," E  1 + P i  are determined by the condition that E (a., a) (y) =1 for all y
E  1  ± pkm+0-3t) /2 .

(3) If  p> t — l n i+ ,  2 m - 3t>0 and t odd,

{ — q
( 1 - 1 ) / 2  ( h  

(
a a ,  

a) Ga (ci a , a) + h (4 , a) Ga (cia' , a ) )  if a E  Sc-i, a)
Qa (a) =

0 otherwise
where aa ,  cic,' E  1  +Pi are determined by the condition th a t E (a,,, a) (y ) = 1 for

d . t  z  ( x 1) (1) 
W r \ 1 — n K (z) ‘' r x a  1 ) E  (9(z),a) (x ) .

For z= a a, aa', the absolute value of Ga (z , a) is q1/2 and G a  (z, a ) belongs to
Z[..,/ — 1].

(4) If p> t — m+ 1

'
 2 m -3 t0  and m  0  0 mod 3,3 3

—em/3h (a
a , a )  if  a E  S ) - 1, a)

Qa (a) =
0 otherwise

where aa  E  1+11 are determined by the condition th a t E (aa ,a) (y) = 1 for all y
E  i± p 2 n + 6 1 1 -3 0 / 3 .

(5) If g> t— * m + , 2m- 3t 0 and m  0  0 mod 3,
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— e n /  3Ih (au, a) H„ (au, a )  if a E  Sc-i, /.1)
Qu (a) =

0 otherwise

where ac, E 1 ± Pi are determined by the condition that E caa, a) (Y) =1 for all y E
1 + pi2m + 6/4-3t+ 2)/31 a n d

(A.16)

H, (a) = 0 (1 +  -
1
-__a an

(: Fa a
l? (1  crce - 1 ) )

x . 1+pi 2m+6,3w3, i1-l-p(2m+6a-3t.2)/33

A  (  au 1) 
\ 1  — nK  (ace) 

(1 aa 1) )  E (v(a.),a) (X)

° r ( ( 1 - 2 1 ; 12:4 (la‹ a( )a ,
) .  4 (nic (x) — 1) 3 (1 - 1 )  ) .

2 1Proof First w e assume - - m + —

' Since3 3

Qa (a) = p (0 (x, a))
XE ( )1 +Pip – (1+1+ 1 ))i1±pr +2, , ,

(trx (r (1 — aa'))ço (x) (nIf (Y) — 1)) ,
y e l+Pr 2 4 - t- 1  /1 +Pr 2 g- t

a E  r U i is necessary for Q u  (a) *  O. Next we consider y E  1 ±  pr2g-t-2  , then
we get a e TU 2 is necessary for (4 (a ) *  O. Repeating this procedure, we get

nx(x)

0

Or( 1  _ n ic  (x )  ( 1  Era') )  )  if a E  rU m + u-t-iE
Qg  (a) =  { xe(u+pip-a+prwii-przu-t

otherwise.

Since the map x i—  1  _n  K
n

(: )
( x )  induces a bijection from  ( (1 +11) — (1 4-Pk+ 1))/1

± p r 2 g - t  t o  0 . )- 1 0 V 1 + p r i i - t ,

if a E
if a E  rU m+ u-t

0 otherwise.
2 1Now we assume p> t - -
3

m + —' As above we get3

Q„ (a) = p (0 (x, a))
x e )-(1+Pt-1)/1+P1m*-4ti-3t

(trk (y (1 —  da - 1 ) )  (x ) y )
yeppn,01-3;rp;n+2#-I

we have

q m+a-t-1

Q, (a) =len± " - f- 1  —  1 )

Hence we have



2 t-m -2 g E p (0 (x, a)) if  a E T U 2 t-m -2 14
t 

q

Q1, (a) = X E  ((l+ Pk) —  (1+ 4+ 1 ))/1+ 11M + 4p-3t

otherwise.
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3Applying the calculation for Po- (a ) when cr<m - -

2
t and for Q, (a ) when

we get our proposition.

The last pa rt is Qt (a) . It is easily calculated by the same way as the case
(See Lemma 3.6.)

Proposition A.9. Let the notation as avove. For a E

Q t (a) E  or  (

1 - 6 a - 1

xek , \C (X 2 + X ± b)

where b E kF — 14 and C be an element of  Pk such that trK(C) (C) mod P
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