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Character formula for
representations of local quaternion
algebras (wildly ramified case)

By

Tetsuya TAKAHASHI

Introduction

Let F be a p-adic local field and D be a quaternion division algebra over
F. The character of an irreducible admissible representation of the multiplica-
tive group D* of D was studied in [GG] and [HSY]. Especially in [HSY] the
character formula is explicit and simple. But it has been dealt only the case p
#2, what we call, tamely ramified case. By Jacquet-Langlands correspondence
([JL]) between representations of D* and discrete series representations of
GL: (F), the character foumula for D* gives the character formula for GL; (F)
on the set of elliptic regular elements. The computation of character of the rep-
resentation of GL. and related gourps has been the object of much study
([Ss], [Sh], [Sal], [T], [Sail). Except [Sai], it has been also assumed p# 2.
Tunnel and Saito shows ([T], [Sai]) the character of the representation is
expressed by e-factor of the base change lift of the representation of GL; (F)
to quadratic extensions (including the case p=2 in [Sai]). But it is not easy
to compute the e-factor of the base change lift when p = 2. Here we do not
treat the base change lift. Our tactics is the same as [HSY], but the wild rami-
fication brings us many difficulties. We proceed as follows. In section 1, we
treat the construction of the representation of D*. The set of the representa-
tions with even conductor is parameterized by the set of the regular charac-
ters of unramified quadratic extension of F' and their characters and complete-
ly calculated ([HSY] Corollary 1.7). Therefore we treat only the representa-
tion with odd conductor. The construction of these representation is
well-known, but we need a slight modification to compute the character com-
pletely. We define a parameter for the representation, which is called ‘generic
data’. It is a triple (K, 6, 7) consisting of a ramified quadratic extension K of
F, a quasi-character of & of K* and an element 7 of K which satisfy some con-
- ditions in Definition 1.1. We note if the Swan conductor tx of K is 0, i.e. pF2,
the parameter 7 is dispensable since # determines 7. We associate an irre-
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ducible representation 74 of D* with the generic data A= (K, 6, 7). Unfortu-
nately the isomorphism class of K is not an invariant of the equivalent class of
74, but the Swan conductor tx is still an invariant of the representation. In
any way, T4 is induced from a one-dimensional representation of a subgroup
H.

Section 2 is devoted to give the decomposition of 74 as K* module. It fol-
lows from Theorem A in [H] that each quasi-character of K* appears at most
once in the restriction of w4 to K*. We use this repeatedly. In addition we use
Mackey’s theorem on induced representation and some knowledge on the local
quaternion algebra. Proposition 2.8 is the main result of this section. In sec-
tion 3 and 4, we assume F/Qz is unramified. In section 3 we compute the char-
acter of 74 on K*. The result of section 2 (Corollary 2.9 and (2.14)) reduces
our work very much. Since we treat the wildly ramified case, we must fulfill
the case by case analysis according to the relation of the conductor of the rep-
resentation 74 and the Swan conductor of K. Theorem 3.7 and Theorem 3.14
are character formulas for w4 on K*. We note we can remove the assumption
F/Q: unramified, but the calculation becomes much more complicated and it
takes much space only to state the character formula. We sketch the calcula-
tion for the general case in Appendix A. The character of ms outside K™ is tre-
ated in section 4. Since there exist more ramified quadratic extensions of F
than tamely ramified case, it becomes more complicated. The fact that the sup-
port of the character is included in a neighborhood of the conjugacy class of
K™ plays an essential role. Theorem 4.6 is a character formula for w4 outside
the conjugacy class of K*.

The main part of this article was written during my stay in Université de
Paris XI (Orsay). The author would like to express his sincere gratitude to
Professor G. Henniart for his kind hospitality.

Notation

Let F be a finite extension of Q.. We denote by Or, Pr, @r, kr and vr the
maximal order of F, the maximal ideal of Of, a prime element of Pr, the re-
sidue field of F and the valuation of F normalized by vr (@r) = 1. For a
quasi-character 6 of F*, we denote the exponent of its conductor by f(6). For

convenience, we regard 1+ P} as Of. We set ¢ be the number of elements in
kr. Let D be a quaternion division algebra over F, and Op, Pp, @p, kp and vp
the maximal order of D, the maximal ideal of Op, a prime element of Pp, the re-
sidue field of D and the valuation of D normalized by vp (@p) =1. We denote
by Nr, Tr the reduced norm, and the reduced trace respectively. For x €D, we
denote by % the element obtained by canonical involution. For x ER, let [x] de-
note the greatest integer <x.

We fix an additive character ¢ of F whose conductor is Pr ie. ¢ (Pp) =
{1} and ¢ (OF) #{1}. Moreover we assume ¢ (x+x%) =1 for x €0p. For an ex-
tension K of F, let ng, trx be the norm and trace from K to F. We denote by
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¢x, ¢p, the character ¢otrg of K, and the character ¢OoTr of D respectively.
For an irreducible admissible representation 7 of D*, the conductor f (n),
more exactly, the exponent of the conductor of 7 is defined to be the minimal
integer v such that 7 (1+P%!) = {1} and = (1 +P% % # {1}. Here we under-
stand that 1+P%=03 and f(x) =1 if 7(03) ={1}. We call & minimal if f (1)
equals to the minimum of f (x ® (noNr)) where 7 runs through the
quasi-characters of F*. Let G be a totally disconnected, locally compact group.
We denote by G the set of (equivalence classes of) irreducible admissible rep-
resentations of G. For closed subgroup H of G and a representation p of H, we

denote by Ind§ o the induced representation of p to G. For a representation 7
of G, we denote by 7|y the restriction of 7 to H.

1. Construction of the representation

At first we remark that it suffices to calculate the character for the repre-
sentation of D* with minimal conductor. The character of the representation
with an even minimal conductor is completely calculated by [HSY, Corollary
1.7] when the residual characteristic of F is an odd prime. In fact the charac-
ter formula holds for the even residual characteristic case. Therefore we shall
only treat the representation with an odd conductor, which becomes automati-
cally minimal.

Definition 1.1. A triple (K, 6, 7) is called a generic data of level 2m

if the following conditions hold:
(1) K is a ramified quadratic extension of F in D. Let t=tx be the Swan
conductor of K/F i.e. t=dg/r— 1 where dg/r is the exponent of the

different. Then m =¢.

(2) 7y € Pk™—P§™

(3) If m>t, 6 is a quasi-character of K* such that the exponent of its
conductor is 2m—t ie. 0(1+P#*) ={1} and (1 +PZ ") +{1}.
And 6 (1 +2x) = ¢ (1x) for x EP JEmmtADA e =t § s a
quasi-character of K* which is trivial on 1+P¥.

Remark. For a quadratic extension K of F, the Swan conductor tx
<2vr(2) and tx is even if and only if tx=2vr (2). If tx is odd, tx = 2vr (trdx)
—1.

Let A = (K, 6, 7) be a generic data of level 2m. We define a
quasi-character ¢y of 1+P% by ¢, (1+x) =¢p(rx) for xEPF. We set H=K*
(1+P%) and s, (k(1+x)) =60 (k) ¢, (x) for FEK* and x EPF. Then ps; is an
extension of ¢, to H. We set m4=Ind%" s,

Proposition 1.2. For any generic data A of level 2m, Ta is an irreduci-

ble representation of D™ with f (ms) =2m + 1. Conversely for a positive integer m,
every irreducible representation T of D* with (1) =2m +1 can be written in the
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form T for some generic data A of level 2m.

Proof. Let 7 be an irreducible representation of D* with f () =2m+1 for
a positive integer m. Since 1+P%/1+P¥" is abelian, 7|i+p5 decomposes into
one-dimensional representations. Therefore thare exists an element 7, € P;™
—P%™ such that 7|i+rs contains ¢y, where ¢y, (1+1) =¢p (i) for xEPE.
(Recall that the conductor of ¢ is Pr.) It follows from [KZ, 5.2] that the nor-
malizer H of ¢y, in D* is F(71) *(1+P%). Let K;=F (1) and t; be the Swan
conductor of Ki/F. Any extension of ¢, to H is written in the form s,
where 6, is a quasi-character of Ki with the property that 6, (1+x) =¢,, (1+
x) for x€PF, and Po,,n, is defined on H by pg,r, (k(1+1)) =6, (k) ¢y, (1+x) for
EEKY and xEPY. First we assume m>t,. Then f(6) =2m —t,. We need the
following lemma to find a generic data A satisfying 74 =Ind% 04,

Lemma 1.3. Let K be a quadratic extension of F in D and t be the Swan
conductor of K/F. Then there exists EED which satisfies the following conditions:

(1) & %&=xfor xEK.

(2) €€14+pPhH— (1+PLk+PL?Y) and E2EF™.
(3) D=K®EK.

(4) EK={x€D|Tr(xy) =0 for all yEK}.

Proof. By Skolem-Noether theorem, there exists & satisfying (1). Since the
t-th ramification group of K/F is non-trivial and the (t—1) -th is trivial, &
satisfies (2), if necessary, by multiplying an appropriate element of K*. Then

(3) is obvious. The last part follows from (&x)2=&%k(x) EF for xEK.

We continue the proof of Proposition 1.1. Let n be an extension of ¢,, to
the group (1+PE>~70/2) (1+P%) defined by

n ((1 +x) (1 +y)) = ¢71 (1+x) ¢’71 (1 +y) (pTl (1 _xy)

for x €EP K792 and y € P %. Then there exists a character £ of 1+

Pp—n~V/A4+PE/14+PF such that 6;° ¢ =1 ®k on 1+PF"~""V/A+PY Let §
be the element which satisfies the conditions (1) - (4) in Lemma 1.3 for K;.
Then there exists an element 7:€Pk;™ " such that

k(14+2) =¢(Tr(r2(1+8)x)) forx EP;[((IZ'"_"_I)/Z] +py

since 72(1+&) €P5™ and ¢ (Tr (1, (14+8)2)) =@ (Tr (yx)) for xEPLI V7,
Put y=11+7.(1+&), K=F(y) and t=tx. Then ¢, = ¢, as a character of 1+
P%and H=K; (1+P%) =K*(1+P%) since 71=7 mod P5™. We need to show
tk, = tg. Take g, be a prime element of K;. Then there exists a prime element
@k of K such that @x, mod P§*%. Since Tr (P2*Y) =P ™22 and m>t,+1, we
have trx, (@x,) =trg (@x) mod P F4*9/2_ 1t implies tx, =tk from the remark be-
low the Definition 1.1. It is obvious that we can take 6 € K™ satisfying pg,, =
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Osur on H. Then 0(1+x) = ¢ (7x) for xE1+PE™ 7V since 14+ pi2m 7072
+pp=1+4+p@EmtVA 4 pm Therefore (K, 6, 1) is a generic data of level 2m
and 7|y contains ps,. By Clifford theory, Ind%" 04 is irreducible. Therefore 7
=Ind¥ ps, Now we assume m <t;. As in the above case, 7 = Ind¥" s, for
some quasi-character 6 of KI. If m=t,, (F(r1), 6, 71) is a generic data of level
2m. Therefore we can assume m <t;. If yEP 52" satisfies y=7; mod Py ™, then
¢r=¢n on 1+P% and KX 1+P%)=F(y)*(1+PF). Therefore we have only
to show there exists an element Y€ 7,+P} ™ such that the Swan conductor of
F(y)/F is m. Since Tr (P5™) =P{2=™/3 and v (Tr (11)) =vr (trg, (1)) =[AQA—
2m~+1)/2], we can take an element € P} ™ such that ve (Tr (1, +0)) =[(2—

m)/2]. Put y=17,+0. Then the Swan conductor of F (y) /F is m. Hence our
proposition.

Remark. If K/F is tamely ramified, 4 is determined by @ alone. But
in our case @ does not determine ¢,. Therefore we need to use a parameter 7.

Corollary 1.4. Let m=m, for a generic data A= (K, 6, 7) of level 2m.
Then the Swan conductor tg of K is an invariant of the equivalent class of the rep-
resentation T, that is, if Ta~Tx for a generic data A'= (K’, 6’, 1°), then tx=tx.

Proof. At first assume m > tx. In order to 4~ 74, it is necessary that

there exists an element g in Dx such that g (K* (1+P%)) g '=K>* (1+P%).

Since g (K*(1+P%)) g™ “1(14+P%)), we have tk =t =tx by the same
argument to show tx=tg in the proof of Proposition 1.2. Now assume m =tg. If
m>tx, we get txk=tx <m by the above argument. Therefore tx =m.

The next lemma is useful to compute the character of m when tx=m.

Lemma 1.5. Let m=my for A= (K, 6, 7), f(r) =2m+1 and tx=m
Take a quasi-character 8y of K* such that 6, (1 +x) = ¢k (yx) for x EP[““)/Z]

Then there exists a quasi-character 1) of F* such that ma= (noNr) ® my where A’
= (K, 60, 7).

Proof. Since 6(1+x) =6,(1+x) =g (yx) for x EPE=P%, 6 and 6, are tri-
vial on 1+ Pk. It is easy to see the kernel of the norm map from K* to F* is
contained in 14+Pk%. Thus 6 and 6 factor through the norm map i.e. 6=1n"ong,
6o =noong for some 7’, noef". Then pg,= ((9'ns*) ©Nr) ® s, as a character
of K*(1+P%). By virtue of the fact

Ind§ (6®1ly) = (Ind§ 0) ® for 7 €G and ¢ €H,

we get our lemma.
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2. Decomposition of 7, as K*-module

We fix a generic data A= (K, 6, 7) of level 2m and abbreviate t=tg, p=

06 and T=m,. When m=t¢, we may assume 6 (1+x) = ¢k (yx) for x € PEt+V72
from Lemma 1.5. Let £ be as in Lemma 1.2. In this section we determine the
decomposition of w as K*-module.

By Mackey decomposition,

(2.1) mle= @ Ind&-ax0%
aEK\D*/H
where 0% (x) =0 (¢ 'xa) for x€EaHa*NK* and H=K* (1+P}).

First we shall give a complete system of representatives of the double
coset K*\D*/H.

Lemma 2.1. 1+EBEH for BEK is equivalent to vg (B) =m —t if m>t
and equivalent to BEK— (1+Pg) if m=t.

Proof. Let @k be a prime element of Ox and £=1+ & @k By Lemma 1.2,
we have Op = 0x ® £'0g and P} =P%® £'P§. 1t follows that 1+ &BEH is
equivalent to BEPY. Since 1+&B= (1+&wkB(1+pB) 1) (1+8), 1+£&B belongs
to H if and only if vg (8(1+8) ') 2m. Hence our lemma follows.

We prepare some notations to describe the double coset K*\D*/H. Set

(2.2) L={1+¢£a%8| BEOK\O¥/ 1+P} ")}

for 0<o<m—t,

(2.3) Jo={1+8B] BEOI\1+ (P& —PK™) / (1+PF**))
for 0<u<t and

2.4) Ji=(1+E8| BEOI\(1+PY) / (1+PE*))

where Ok=Ker n,.

Lemma 2.2. A complete system of representatives of the double coset K*\

D*/H is given by the set
(9o o)
#=0 o=1 o=1

Proof. First assume m>t, then §€ H. It is obvious that we can take rep-
resentatives of the form 1+&B, BE Ok or £(1+EB), BEPk. For a1=1+EpB;, B
E0k, a,=E(1+EBy), B2E Pk and a €K,

ar'aa;=Nr (a1) 1 (E2(B— Braa™) +E(@a ' —E2BiB2) ) .
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Then vx (@a™ — £2B,8;) =0 and vk (E2 (B — B1) @a™') = 0. By Lemma 2.1,
ai'aa,; € H. Hence we have

D*/H= ((14+£€0k) XK*)/H UE((1+EPx) XK*)/H (disjoint).

t m—t
Moreover & normalizes K*. Hence it is enough to show <U]u>U<UIa> is a
u=0 o=1

complete system of representatives of the double coset K*\ ((1+&0k) XK*)/H.
For a1=1+&B,, a;=1+&B,, BiE0k and a EK*, we have

(25) aflaaz= Nr ((11) -t (1 - 525—1‘826_(“—1+& (,Bcha'l _,Bl) ) a.

If vx (B1) >0, it follows from Lemma 2.1 that ai'aa, is contained in H for some
a€K™ if and only if

Bi=a'f, (mod P%™Y),

for a' € Ok, because Ok = {@a la€K*}. Let vk (B1) =0 and vx (B1—1) = p.
Then

2u 0<u<t

(2.6) vg(Nr (14+&B1)) = .

Since 1—&2B,B,aa~t=Nr (1+&B;) +£%B, (B — Ba™"), we get by Lemma
2.1 that ai'aa, is contained in H for some a €K* is equivalent to

Bi=a'B,  (mod PE*™Y),
for a' €0k if u<t and equivalent to
Bi=a'B; (mod PE*Y),

for a' € Ok if u=t. Hence we get our lemma when m >t. For the case m=t, we
can take representatives of the form 1+&B, BE Ok since £EH. For the rest of
the proof, it follows by the same argument for the case m >¢.

Next we determine aHa '(\K* for the representatives of K*\D*/H in
Lemma 2.2.
Lemma 2.3. For a€ 1, or Ely, we have
F*Q+Pg %) if 0<o<m—2t
(2.7)  aHa'NK*= [ (PR of "
K~ if m—2t<o<m—t

and for a €], we have

F*(1+Ppp+a=2) if 2u>2t—m
K if 2u<2t—m.

(2.8) aHa 'NK*=
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Proof. Let a=1+E&BEI, Assume a €EK* belongs to aHa ' N K*. It is ob-
vious that F*CaHa ' N K*. Therefore we may assume vg (&) =0 or 1. Since Nr
(a) €EH, a'aa €H if and only if a—&2amx(B) +EB(@—a) €EH. If v (@) =1, vk
(a—E&%ang (B)) =1 and v (@—a) =t+1. Therefore by Lemma 2.1, a laa EH
if and only if 62m — 2¢t. If vg (@) =0, v (@ — E%@nk (B)) =0. By Lemma 2.1,
a'aa €H if and only if @ — a € P§~°'. This is equivalent to a € 05 (1 +
PZ=°72") . Therefore we get our assertion for the case a €I,. For a € £, it is

easy to see aHa 'NK*= (&a)H (&a) 'NK™ for a €I, For a €], it follows from
the proof of the case a €I, and (2.6).

Let a €1, and a’=&a. Then p* (x) =p° (¥) for xEaHa ' NK*. Therefore it
suffices to consider p® for a €1+ &0k.

Lemma 2.4. For a=1+E&B, BE Ok and a€SaHa *NK*,

(2.9) 0%~ (a) =p<1+ lff'—;i—z”('g& (l—cTa‘l)).

If a€1, and a €EF* (1+PR-o+I=302) oy g €], and a EF* (1+pgrautia-sn/a)
then we have

a1 — §2n1((§) =1
(2.10) oo™ @) ¢’<1—82nx(ﬁ) (1—aa )>.

Proof. By direct calculation, we can show

alaaa™ = (1+a—1)ta(l4+a—1)a!
=(14a—1)'Q+ae—1)a™?)
=l+a Y al@e—1at—(@—1))

Therefore we have the first statement of our lemma. It follows from the
definition of the generic data that o (1 +x) = ¢, (x) for x € PfZ—1tD/2 4

PR#n*t*0/2 Since EE1+P)h, we see %S:E%Sﬁepg+1>g“ for a €1, and
— &y
ﬁEBEPE”+PB““ for a €J,. Thus we heve
— &y

SZ"K (@) (I—CYCY_I)

R PN

since Tr(§B(1—aa™")) =0.
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Corollary 2.5. Let the notation be as in Lemma 2.4. Then for a € I,
0°07 Y is trivial on F* (1+P¥ %) and non-trivial on F* (1+P¥ 7% Y if o
<m—t; for a €1, 0% is trivial on F* (1 +P¥"**7%) and non-trivial on F* (1
+Pi’m+2u—2t—l) .

Proof. This follows from Lemma 2.4. and the facts

VK( €% (B) )z l1+20—2m for 1+£B€EI,
1— &%k (B) 1—2u—2m for 1+EBE],

and vk (1—@a™!) =2i+1+¢ for a€F* (1+PE*) —F*(1+PF*?).
Since we use the next fact repeatedly, we state it as a lemma.

Lemma 2.6. (1) The norm map ng from K* to F* induces a bijection
from Og/0k (1+Pk) to O%/1+ Pk if 0<i<t. When i>t, the image of the in-
duced map equals to ng (OF) /1+Py V" and it is index 2 in OF/1+PF++07

2,
(2) The map B+ l—gg—zx(‘% induces a bijection from Og/0% (1+Pk) to
— &%y
O%/1+PF for 0<i<t. When i>t, it induces a bijection from O%/0k (1+Pk) to
"K(@I)é) /1+P;fi+t+l)/2]'

Proof. The first part of this lemma is well-known (cf. [Se, Chap. V]). The
rest of the lemma follows from the first part and the bijectivity of the map

&%

—
x 1—E&%

from OF/1+Pk to itself.

Here we introduce some notation. Set U_;=K*, U;=F*(1+P¥) for i=>0,
and Uf=U;—Ujs+1. We note F*(1+P¥) =F* (1+P¥*). For i<j. let X (3, j) be
the set of all characters of U; that are trivial on Uj. Put X* (3, j) =X, j) =X
(i, 7—1). For i=—1, we set X(j) =X (—1,7), X*() =X*(—1, j). We define
submodules M, and N, of 71'|x by

(2.11) My= @ Ind%-nk-0%0?
acl,

and

(2.12) M,= @ Ind%u-nx0%07!.
aeju

It follows from Corollary 2.5 that
(2.13) M<c @& x NS D

XEX*(m—a—1) XEX*m+pu—t)
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and we see from (2.1) and Lemma 2.2
) m—t t
(2.14) nl,(x=<0@0)® D M|)0600 | DN,
=1 ©#=0

where 6 (x) =6 () and M,_, is a trivial character of K*. By virtue of Lemma
2.6, it is easy to see that

(2.15) dim MU=%X* (m—o-_t)’:qm—a-t(q_l)

and

(2.16) dim N, = EX*(’”JW—t)’:q'”*”"(q—l) §#0,
) =

q" ' (qg—2) ©=0.

From [H, Th. A], each quasi-character of K* appears at most once in 7|k~
Thus we see that half number of characters in X* (m —o—t) (resp. X* m+u—
t) for £>0) appear in M, (resp. N, for £>0).

To determine which characters in X* (m — o —1t) (resp. X* m +pu—1))
appear in M, (resp. N,), we start with the next lemma.

Lemma 2.7. Let a1, a; €1, (resp. ay, a2 €J,) and put a;=1+EBy, a,=1
+E&B,. For 0<i<min (m—o—t, t+1) (resp. u<i<min(m+2u—t, t+1)), p"p*
= 007" on Um-o-1-i (resp. Um+au-1-i) if and only if ng (B1) =ng(Bz) mod 14 Pk

(multiplicative equivalence) .

Proof. We give the proof only for the case ai, az € Is. The other case is
—E&Bi+ &k (Bi) (
1—&%k (.Bz)

proved in the same way. Put ¢; = aa™l) fori=1, 2. It is

easy to see that for a€a;Ha;' NK*

(0™ (p=p™") Ha) =p 1+ (c1—c2) (1 +c2) 7).

Moreover if vp(ci—c2) =m, we can see

plttm e <o (£ - EB o) )

Enk(B)  _ _ Enx(Bs)
1— 52"1( (.31) 1— 52"1( (ﬁz)

lent to ng (,Bl) =ng (,82) mod P%. Thus we can get our lemma by induction on 1.

We get from Lemma 2.6 that mod P% is equiva-

Proposition 2.8. Let the notation be as above.
(1) For o<m—2t,

Mgs= @ Ind’é;_a-z:-lx,

X EMolvmes-ums
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and
— —0-2t
MUlUm-a-zl_qm 7 @ X-
XEX*(m—0o—2t, m—a—t)

(2) Form—2t<o<m—t,
Maon: @ X-

XEX* (0, m—a—t)
(3) For u>t—% and u#0, t,

N,= 8% Ind{(lxm«fzu—zt-l e

X EN,,| Umsaeat-1
and

—  m+ou—2t

Nﬂ'Um+Zu-21_q @ X

XEX* (m+2pu—2t, m+pu—1t)

(4) For ySt—% and p#0, t,

Nulvoz @ X

XEX* 0. m+pu—t)

(5) For u=0>t—"2-,

No= @ Ind’tg:n—zr—1Xy

XEN| vmeaims
and
— m—2t
NOl Um-22—4 @ X
XEX*(m—2t, m—1t)
Xlu».-x*l

where A is a character of Up-, defined by A(a) =¢, (1—aa™?).

(6) For y=0<t—75,
Nolv,= &
XEX¥ (0, m—1t)
ll"m-l*l

where A is as in (5).
(7) For u=t,
Nlomo= @ Indf, .x.

XEerer-:
Proof. (1) Let ap=1++ &By be any element of I for ¢ <m — 2¢t. It follows
from Lemma 2.6 and Lemma 2.7 that

{a€1lp%0  '=p"p~" on Um—o—2:} {a€L|B=Bo mod 1+Pk}

ng(1+Pk) /nxg(1+PE ")
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(1 +P;:)/ (1 +P}§m—a+t)/21) )

Do

From the definition of M, and [H, Th. A], each character of Um—os—2: appears
|K*/F*(1+Pg-o2)| X |(14+P})/ (1 4P fm-0+0/2) | = gm=0-2 times or does not
appear. Therefore we have

MalUm-a-ucqm_a_m @ X.

XEX*(m—0—2t, m—0—1t)

But it follows from (2.15) that the dimensions of both sides equal to " °~* (g
—1). Hence the second statement of (1) follows. By the same argument as
above, we have

U”"H-Zt-lC qu—a—z,_l @ x‘

X EMolumo-ans

In this case, the multiplicity 2q equals to |[K*/ (Um-o-2:-1) |. By using
[H, Th. A] again, the first statement follows. For (2), (3), (4) and (7), they
are proved in the same way. As for (5) and (6), from the same argument for
the proof of (1), it suffices to say that No|um-, does not contain A. For a=1+
EBEJo and @€ Up-1, we have

*nx (B)
o a) = Eng (1—aa™) ) .
p p ¢T(1_$ZnK(ﬁ)
From Lemma 2.6, the correspondence

B — §2nK (@)
1— SZ”K (.3)
induces the bijection from Ok\ (05— (14+Pg)) /1+Px to (O3 — (1+Pg)) /1+
Pr. Therefore A is not contained in Noltm-r.

We recall

Mo

m—o—2t—1

m—1

K* :< U U;") U Un (disjoint) .

i=-1

As a corollary of the above proposition, we can compute the trace of My and
N, on all U¥ but one .

Corollary 2.9. Let the notation be as in Proposition 2.8. In addition we
put

(2.17) Ol @) =1+ —&FEMx&) 1z,
1—§2nx(x)

(1) If 6<m—2t,
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qu—a—zl—lpa (a) fo'r ae U;‘:;—o‘—Zl—l

—  m—-0—t—1 = sk
tr Mo(a) = q for a€Up g1y
""" g—1)  for a€Up-o-
0 otherwise
where
Py (a) = > 0@k, a)).

1€@%0%/0x 1+P)

2) Ifm—2<g<m—t,

Pg-(a) fm’ aEUfl
—_ m—=0—t—1 = £3
tr My (@) = q Jor a€Up o121
qm_a_‘_l (‘I—l) for a€EUp-o-:
0 otherwise
where
Pila)= X 0Dk a)).

T E@% 0% /1+PF

(3) Ift—% <0,

29" 271Q, () for a€U¥_,_,
—m—t—1 =1 sk
trNo(a)= q (1+¢'7(1 ao )) fOV QEUm_t_l
""" g—2) for a€E U,
0 otherwise
where
Qo(a)= 2 p(@(x, a))

€ (05— (1+Px)) /0 (1+P§")

(4) If =520,

QO (a) fOT ae Ufl
tr No(a) = —¢" (149, (0—aa™) for a€EUS--
"t g—2) for @€ U%_,
0 otherwise
wheve
Qla) = = 0P, ).

1€ (03— (1+Py))/1+ PR~



164 Tetsuya Takahashi
5) If u>t—% and 0<p<t,

2q"H71Q, (@) for a € Upiau-2i—1

_m+u—t—1 %
or AE Upyp—i—
tr N, (@) = q f mu—t—1
qmﬂlnt_l (q—l) for C(EU;';,.W-;
0 otherwise
whevre
Qula) = > 0(Dxa)).
x€((1+Pg)— (1+P* ) /Ok (1 +RBH)
m

6) If u<t— o and 0<u<t,

Qu(a) for a€U*
— mtu—t—1 = £ 3 e
tr Nu(a) — q Jor a€Umyp—t-1
qmﬂl_t_l (q—l) for an:l;l+u—t
0 otherwise
whevre
Qula) = > 0(®(x,a)).
€ ((1+Pg) — (1+P4 ) /1+Pprwt
(7) For u=t,
" 'Q (@) for a€EUnm-y
tr Ne(a) = | g7 for aE U,
0 otherwise
where
Qi (o) = > 0 (D).

€ ((1+P) — (1+P*)) /0, (1 +P+)
Proof. This follows easily from Proposition 2.8, Lemma 2.4 and the fact
Ind§?n=r7®( D x)
XEX ()

where 7 is a character of U; and 7 is any character of K* whose restriction to
U; coincides 7.

3. Character formula of 7, on K* when F is unramified over Q.

In this section we assume F is unramified over Q. By this assumption,
the Swan conductor t =tx <2. Therefore the calculation of the character of @
becomes much easier. First we treat the case +=1. In this case we can choose
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a prime element @x of Ok such that trx (@x) =ng (Dx) mod P%. Set @r=ng (Gx).
From (2.14) and Corollary 2.9, we have

Corollary 3.1. Let the notation be as in Corollary 2.9.
(1) When t=1 and m>2,
(

- 6(a) (1+Pu_s(a)) (1+Pu-2(@) if acU*,

+6 (@)
Zqi (0(&) Pu—s—i (a) +6 (a!) Ppsi (Et’)) if @€ U;k
for 0<i<m—3
tr 7 () =4 24"7%0 (@) Qo (a) if a€EU% s
0 if a€EUnm_»
"0 () (1+Q () if a€E U,
g™ (g +1) if a€E Uy .

(2) When t=1 and m=2,

6(a) (1+Q, () +6(a) if aEU¥,

tr T(a) = 0 if a€US
q6(a) (1+Q: (@) if a€UF
q(g+1) ifa€U;.

(3) When t=1and m=1,

6(a) if a€EU*,
tr () =1 0@ 1+Q (@) if a€U¥
q+1 1:f a€elU,.

Proof. It follows from direct caluculation. We only remark we use
6@ =0(a) Px(rla—a))  for a€Us-,
and 6 (@) =6(a) for € Up-1.

Thus our remaining task is to compute P, (a) and Q,(a) in Corollary 2.9.
For convenience, we set

(3.1) Ba=aftrx(y(1—aa™)) for a€Uk_o_s
First we calculate P, () for 0<o<m—2 and a€ Uk _,_;.

Lemma 3.2. For a€U¥_o_s,
Pa' (a) = Zh ((Z)g{aa,a)

where aq € Ok is determined uniquely modulo Pk by a% = Bz' mod Pr and
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h(x, ) =0(1+ m (1—c‘m“)>0<l+ % (l—c‘ra‘l)>
(3.2)

1

¢T(m(l—&a‘ ) +<1—_;7;y(1—&a“)> )

If oFm—4, we have

h ((Z)?{da, CY) = ¢r<% (1 —&a‘l) ) .

Proof. We first remark that vp (P (x, @) =2m—0—4 for a€EU}_4_3 and
€Pg—P§*'. From the definition of Py (), we have

Ps(a) = 2 o0k a)

xE@%0%/ 0k (1+P%)

= 2 > 0(D(xy, @)

x€E@%0%/1+Px  yE1+Px/Ok(1+Pf)

= 2 @k a)

r€E@%0%/1+Py

= =& (p—1) +E%k(x) k) —1) __
> p<1+ =g () (1—aa )).

The last equality holds from the fact that

_ ——&x-'-&zn[( (x)
Oy, )=0(x, ) + 1— &g () nk (y)

—& (=1 +&%gl) () —1) o _
- 1— &%k (x)ng () (1~aa™

yE1+Py/Ok(1+Pk)

(1—aa™)

mod Kerp.

By Lemma 2.4 and the fact

vK<—‘fx—<1—aa-l);5ﬂL”(1—aa—l)>=2m—1+z<m—z—a) -1
1— &%k (x) 1—E%k (x)
>2m—1,

we get

Pil@)= 2 0@k @) 2 k() (k) —1) 1—aa™)).

xE@%0%/1+Px yE1+Px/0x(1+P})

By Lemma 2.6, y—nk (y) —1 induces an isomorphism from 1+Px/0% (1+P%)
to (ng (1+Pg) —1)/P% and the latter group is index 2 in Pr/P%. Thus there
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exists a unique ao €0k mod Pk such that the map
3+ & @k (aa) (06 6) —1) (1—aa™) )

is a trivial character of 1+Pk/0x(1+P%).
Therefore

P () =%p (0 (dfaq, a)).

In fact ng (1+dgy) —1=dr (*+y) for y € Ok. By the assumption ¢ (x*+x) =1
for x € Of, we have ng (aq) = (trx (@F'y (1 —a@a™))) ~'. From the definition of
0 (D (@faq, ), we have

0 (0 (Gas, ) =p(1+ —Cdeg s ditiae) (1—aa-l>)
1- Ezwg‘"K (aa)

— dfaq+E2dfnk (aq) =1
0<1+ I et (a) (1—aa ))

y ¢,(& (l_m_l))

1- 52(57«%1( (aa)

‘o ( — (@fiaqtE g 10) (1~ 8a™) (E—1) dfa, (1—Ga™) )
’ (1— &t (aa)

= —h (cbi?aa, a)

since ¢, ((62—1) @§ng (aa) (1—aa™)) =—1 by virtue of £2€ (1+Pr) —nk (1
+Px) and ng (aq) =a? mod Pr. When 0<m—4,

h ((Dg{aa. a) :¢7(% (]._C-Ya'_l)>

since vp (D (D%aq, @)) =m. Hence our lemma.
Next we treat Py _z(a) for a€U¥,.

Lemma 3.3. (1) For a€U¥,,

Pu—2 (a) =Gm-2 (l_aa_l) —1
whetre
B.3)  Gpal)= = 01— %) oy (OF 2zx+@p 2 (z4nk (2)) 2).

TELF

(2) Forz=1—aa™, 1—aa ™!, Gu—2(2) €EZ[V—1] and |Gm—2 (2)|=Vq.



168 Tetsuya Takahashi

Proof. (1) Form the definition of Pm_z and the fact vp (@ (x, @) =m —1
for t EPZ2 we have

Pusl)= 2 p(1+ ;f—f—g—_z—e% (l—c‘ra“)>
= T {1+ (—&+En) 1—aa)

xE@F0F/1+Px

xEa@%*? Ox/1+Px

=l 2 o0+ (—Eufa+E0F k() 1—aa™)) -1

xre€0K/Pg

Since p (1+ &) =0 (1+x) ¢, (—x+1?) for x EPF!, we get the first half of the
lemma.

(2) Since p(l + (o i+ EaF gk (x)) 1—aa™) )4= 1, Gm-2(1—a

a™Y) €Z [/—1]. As for the absolute value of Gu_z(1—aa™"), it follows from
the following standard calculation. For zEPk—P%,

Cm-2(2)Gm-2(z) = 2 0(1— ¥ %2x) ¢y (@F 22x+dF 2 (z+nk(2) ) x?)

xyEkr
0 (1+aF 2ex+aF 2% O, (—aF 22y — dF 2 (z+nk (2) )y?)

= 2 0(1—af2%2(x—y)) g, (0 %2 (x—y))

1y Ekp

Oy (@F 2 (ztng (2)) (x—y)?) ¢, (OF 2%>
= 3 01— oF %u) ¢, (0F 2au+ a2 2 (z+nk (z) ) ud)

UEkF
2 ¢y (@ 22%P)
1Ekp

:q'

Next we caluculate Qo (@) . First we treat the case m >2. We define a sub-
group k¢ of kr defined by

(3.4) k= {x+r1*x Ekr}.
Lemma 3.4. For a€ U} _,

_q , . . 0
h(aaq, +h (aa, Ba d PFrE€EE
04 () = 2 (h(aq, @) +h(aa, @) if B« mod PrEkEY

0 otherwise

nk (az)

where By as i (3.1) and aga, ag € Ok are defined by the condition -
1—ng(aa)

mod Pr and —nK(a“—),, mod Pr are solutions of X>+X— (B, mod Pr) =0.
1—ng (aa)
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Proof. If |kr|=2, then X?+X— (Ba mod Pr) has no solution over kr and Qo
() =0 since Jo=¢. Therefore we may assume |kr|>2. As in the calculation
for P, (), we get
Qo) = > (D, a)) > Voo )

xE€0%— (1+Pg) /1+Px yE1+Py/Ok (1+P%)

= = o(D(x, )

1E€0%— (1+Pg)/1+Px

2 $r(@ () x(y) —1) 1—aa™))

yE1+Pe/O%(1+P%)

= % 00 a))

x€0%— (1+Px) /1+Px

32 61 (p () @ (7 +) (1—aa™).

yEkr

2

2 \2
Here ¢ (x) =ﬁ+ <1 2 2) since ng induces the map x 1% on kr by the
—x —x

2

identification of kg with kr. By the fact that the map x — lx induces a bi-

_xZ
jection from kr— {0, 1} to itself,
q if B, mod PrEEk}

0 otherwise.

> ¢, (0 () wr (2 +y) Q—aa™)) = I

yEkr

Thus we get our lemma.

Next we treat Qo (@) when m=2.
Lemma 3.5. (1) For a€U*,,
Q (@) =Go(1—aa™) —1—60(1+1—aa™)
where

(3.5) Golz) = 2 01+ (x+29)2) (1 +1%) ¢, (x+2) z+ (x+x)2)?).

ZEkp

2) Go(l—aa™)€Z[/=1] and |Go(1—aa™))|=4q .

Proof. If |kp|=2, then Qo (@) =0 and Go(1—aa™) =1+0(1Q+1—aa™).
Since (f(1+1—aa™V))*=1, |Go(l—a@a™")|=+2. Thus our lemma holds. We
assume |kr|>2. From the definition of Qo and @, we have

Qo) = z 0 (D(x,a))

x€ (0% — (1+Px))/1+Px

and for x€E0§— (1+Py),
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_ —x+E%mx ) - (=x+nx(®)x ; _ — 12
p(@(x,a))—ﬁ(l-i— I—&n, () (1—aa )>¢T(—(1—82nx(x))2(1 aa ))

¢’<1——_1:FH Q1—aa™)+ (m (1 —c‘va“)) ) .

x P x 2 x
—x+ - 1_xzmod P% and A

duces a bijection from kr— {0, 1} to itself, we get

Q)= 2 600+ G+s) (1—aa™))0(1+x21—aa™))

xE€kp— (0,1}

¢, ((x+2?) Ql—aa™) + (x+x?) 1—aa™))?).

Since 1 —ng (x) =1—x% mod P% 1 p in-

Hence we get the first half of our lemma. Go (1 —aa™') €Z [/—1] follows
from 6 (1—aa ) *=1. The absolute value can be calculated in the same way
for Gm-2(1—aa™) when m>2.

The last term we must calculate is Q; (o) for ¢ € Uk_,. The next lemma
holds for all m =1.

Lemma 3.6. For a€EU%_,,

_ l—aa™
(e _,épgbr(a“)p (*+x+b) >

where bE kr— kY.
Proof. This follows from the following direct calculation:

Qi (@) = 2z @k o)

1E€1+Pyx/0%(1+P%)

= Z ¢T<M_(1_aa—l)>

ng(x) Eng(1+Pg)/ (1+P%) 1- San (x)

1 £0+ar&®+a) o __
_2x§F¢’<1—52(1+@F(x2+x)) 1-aa )>

_1 1 o
_2‘§’¢T<1_52_@p(x2+x) (1~aa l)>'

From (£2—1)/d@r mod Pr<Ek%, we get our lemma.
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Now we can state the character formula for t=1.

Theorem 3.7. Let A= (K, 6, 7) be a generic data of level 2m and T=
Ta. (See section 1 for the definition of gemeric data and Ts.) Assume t=tg=1.
Take a prime element @k of Ok and a prime element @ satisfying trg (Dx) =nx
(k) and @r=nxg(@k). Let k% be an index 2 subgroup of kr defined by kp= {x*+
x|x Ekr} and take bEOF such that (b mod Pr) Ekp—FkY.

(1) Ifm>2, then

0(a)Gp-(1—aa™)+60(a)Gp_(1—aa™)
if aEUY,
—¢" (B(a)h (@F 30, a) +0(@) h (@F " as @))
if a€UF for 0<i<m—3
—q" %0 (a) (h(aq, @) th(aq, a))
if ®€ Upi—3 and Bq mod PrE kY

trr(@)=14 0 if ® € Upy—3 and By mod Ppeky
0 if a€EUN_,
1—aa™
mi(14+6(a) T ¢ —5 25—
1 ( ( )xEkF¢T<(Z)F (x2+x+b) ))
if A€ U;l:,_l

" g+1) S aEUn

\

where Ba=@F" trg (y 1—aa™)) for a E Ui—o-3, aa € Ok is determined uniquely
modulo Px by a2 =Bz' mod Pk, h (x, a) as in (3.2), a,, ax € Ok are defined by the
—Bxi8a) (a“), mod Pp, — K dal__ (a“),, mod Pr are solutions of X>+ X — (Ba
1_111( (aa) ]-_nK (aa)

mod Px) =0, ¢, 1+x) =¢ (tre (yx)) for xEP¥ and G-z as in (3.3). Gm-2(1—

aa™), Gm-z2(1—aa™) belong to Z[/—1] and their absolute value is /q.
@) Ifm=2,

condition

(@) —6(a—a)+6(a)Go(1—aa™) if a€EUY,
0 if a€ UF
tr 7(a) =1 1—aa™! . U*
q6(a) (1 +x§kr¢r(~———(blf et D) )) if a€US_,
q(g+1) if A€ Up

where Go as n (3.5) and Go(1—aa™) satisfies Go(1—aa™) €Z[V/—1] and
IGo (1—&a‘1)|=ﬁ.
(3) Ifm=1,
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0(a)
1—a -1
=] 01 20515 )
gt+1

Now we assume ¢t =tg=2. In this case we can choose a prime element @x

if a€U*,
if dEUF

if a€U,.

of Ok such that @} € F and @%=2 mod P%. Set wr=n (@k). As in the case t=

1, we have from (2.14) and Corollary 2.9

Corollary 3.8. Let the notation be as in Corollary 2.9.
(1) When t=2 and m >4,

( e(a) (1 +Pm—3 (CY) +Pm—4 (a))
+6(@) (14+Pp-3(@) +Pp-s (@)
24" (6(@) Pp—g—i (@) +6(@) Pm—s-i (@)

2¢™ %6 (@) Qo (@)
tr m(a) =9y 0

2¢™%0 () Q: (@)

0

¢" 0 (o) (1+Qq(a))
| qm—l (q+ 1)

(2) When t=2 and m =4,

( O(a) 1+P;(a) +Qo ()
+6(a) 1+pPi(a))

0

tr w(a) =] 2¢6(a)Q:(a)

0

¢*0(a) (11Q; ()

[ ¢*(g+1)

(3) When t=2 and m=3,
6(a) 1+Qo(a)) +0 ()
26(a) Q1 (@)
tr t(a)=1 O
¢°0(a) (1+Q:(a))
¢ (g+1)

(4) When t=2 and m=2,

if a€EUY,

if a€EUF

for 0<i<m—5
if a€ U _s

if A€EUnpm_4

if A€ U3

if a €U,

if a€EURN_,

if a€Up .

if aEUY,

if aEUF
if a€EUF
if a€EUF
if a€EUS
if a€EU,.

if aEU*,
if aEUF
if a€UY
if a€UF
1;f a<Us;.
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6(a) (1+Qi(a)) if a€U¥,

_]1 0 if a € UF
7@ =) 0(a) (140, () At
q(g+1) if a€U,.

As in the case t=1, we set
(3.6) Bi=wit trk(r(l—aa™)) for a€Uk_ss
We first calculate Py(a) for 0<m—4 and a € U¥_,_s.

Lemma 3.9. (1) For o<m—4 and a€Up_s_s,
Pa(a) = _% h (a—)i‘(aa, a') Go (a)

where aq € O is determined uniquely modulo Px by a2=Bz' mod Pk, h (x,@) as in
(3.2). The Gauss sum part Go is defined by

3.7) Go(@) = Z Wytgton. (1+Bxs)
where F
)
and

3.9 Tuw®) = () =) 1—aa™) + hG—Dne(1-aa))).

If 0Fm—6, we have

h (@54, @) =¢,<—‘”"’*1’;K—(“a)—<1—aa-l) )
— &g (aq)

(2) The Gauss sum Go(ax) belongs to Z[/—1] and its absolute value is v/q.

Proof. (1) By the argument as in Lemma 3.2, we can show

Pa(a) ='% > p(Q(d)g{aaxy a))
YE1+Px/1+P%
where aq €0 is defined uniquely modulo Px by a4 = (trx (0§ *r(1—aa™))) !
mod Pg. For x EP%—P%*™ and yE1+Pg, we have

Oy, ) =0 (x, )
L =8 0=1) + 8% () (k) —1) (
1_52"1((16)
Engx(x) (—&x—E (=1 +E%xe () e —1) . _ _,
* (1—Enr () ? (1=&a™)

l1—aa™)




174 Tetsuya Takahashi

mod 1+P¥2+P%" (multiplicative equivalence).

Therefore we get from Lemma 2.4 that

0 (@ (@fanr, a)) =p (P (@faq, @))
X ¢, (¢ (@Faq) (g (x) —1) Q1—aa™))

Ean((Dg(aa) _ S
x‘/”((l—szm(d»%aa))z(" Dnx (1~ e )>

=p (d) (d’i‘(aay a)) Ui (@t @) (x)

for x €1+ Px. As in the proof of Lemma 3.2, we can show 0 (@ (@%aqs, @)) = —
h(@%aq, ). If 6Fm—6, then vp(D(aq, a)) =m—1. Thus

h (aa. a) = ¢r<_n5&g)_)(1 _C_Ya'_l) > .

1—nk (aq

(2) Since vx(2) =2, we have vg CUp(at00). 0 (¥)) =2m—3 for xE1+Px and
EU¥_g_3. Thus Tipamen). ox) 2# 1 for some x €E1+Px and iptagan, o(x)*=1 for
any 1 €1+ Px. Hence Go(a) EZ[V/—1]. As for the absolute value of Go (@), it
follows from the following standard calculation:

Gola)Gola) = 2 Uipatan). 0 1) Tiptata. @ ()

ryE1+Pr/1+P

= 2 ¢:(¢(@faa) (g (x) =k () (1—aa™))

1y E1+Px/1+Pk
O (—p)nxQ—aa™)).
Put x=1+dga, y=1+ @gb for a,b Ekp, then

nx (x) —ng (y) =trg (@x) (@a—b) +ng(dx) (@®—b?)
=lrg ((Z)K) (a—b) +nK ((DK) (a—b) 2+21’LK (a')K) b (a—b) .

Hence we get

Go(a) Go (a) = Zk w((o(aifma), a) (1 +(DKC) bzk (/)7* (2%1( ((DKCb) )

-—q'
Next we calculate the term Pp_s(a).
Lemma 3.10. For a€EU¥*,,

—gh (@O *aa, @) if a€E YU

otherwise

Pu-s(@) =

where aq € OF is defined by the condition
at=a@F "trg(r(1—aa™)) (g 1 —aa™") trg (ywg) ) 2 mod Pr.
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Proof. From Corollary 2.9 (2), we have

Pola)= =X 0@k )

xedF0%/1+Pk

= > 0 (d) (x, a) ) 2 Vo, (Y)

r€@F*O%/1+Px yel+Pg/1+P;

where
(3.10) ¥ ) =¢r (2 (k) —1) QA—aa™) +ng(1—aa™) (y—1))).
If a€7U,, then vr(trg (y(1—aa™))) 25—2m and

Cow.aw @) =¢,(px) mx(1—aa™?) (y—1))

for all y €1+ Pg. Therefore the map ¥ = ¥om . (v) is a non-trivial character
of 1+Px/1+P%. Hence Pp—q(a) =0 if a€7U,. Now we assume a € yU¢. Then

Vow.m (1+dxy) =¢ g (x) (@rtrg (y A—aa™))y? +nx (1 —aa™) trg (yik) y) )

for y € kr. Since ¢ (x) (@rtrx (y 1 —@a™))) #0 mod Pr, y T (v) is a
non-trivial character of 1+Pg/1+P% if and only if

nx (x) =dptrg (y(1—aa™)) g (1—aa™) trg (y@x)) > mod PE-3.

This implies our lemma.

Now we shall calculate P,,_3(a) for a € U¥,.

Lemma 3.11.

-1 ifasyU%
Pm—3(a)= q—l ifaErUl
0 otherwise.

Proof. Since vp (® (x, @) ) =2m—4, we have
(k) o
O (x, a) ¢T(1 — (1—aa )).
Thus it follows from Lemma 2.6 that

Pole)= X ¢T<—M(l“&a“)>

@0}/ 1+Px 1—ng (x)
= > ¢l(rl—aa™))x)

redf0%/1+Pr

= 2 ¢nx(yU—aa)ap)x) —1

xE05/Pr



176 Tetsuya Takahashi

—1 if vp(trx(r(l—c‘ta'l)))=—m+3
= q_]- if Up(tTK(T(l_C_Ya_l)))Z_M'i"‘l
0 otherwise.
Since vr (trg (y (1—@a™))) = —m—+3 is equivalent to € YU, we get our lem-

ma.

Next we treat the terms @, (@) . Most of them can be calculated by the
same way as in the case t=1.

Lemma 3.12. (1) Form>4 and a€Uj_s,

%(h (am, @) Golan, @) +hlay, @)Golay, @) if Bo mod PrEkY
Qo (a') =

0 otherwise.

ng (aq) ng (aa)
1—ng(aq) 1—ng (aq)
mod Pr are solutions of X*+X— (By mod Pr) =0, h(x, @) as in (3.2) and

whete aa, aqg € Ok are defined by the condition mod Pr,

_ —z2(x—1) . _
Golz. @ _xe1+§/1+3%0(1+ 1=nx () (-aa ))
(3.11)

('b’(l —ng %)) (1 ao l)>w(¢(z), @) (x)

For 2=ayn, aw, Golz, @) EZ[V/—1) and |Go(z, @)|=vq
(2) Form>2and a€ U,

Q@ =—2n(eq a).
(3) For a€Up_,

_ l1—aa™
< (@) _ng(pr(a-)p (x®*+x+b) >

where b € kp— kY.

Proof. (1) Except the assertion about Gauss sum Gy (z, @), it follows
from the same argument in the proof of Lemma 3.4. With respect to the Gauss
sum Go(z, @), we can show the statement by the usual calculation as above.

(2) It follows easily from the definition of @, (@) and our routine cal-
culation. We remark this holds including the case m =3.

(3) We can show this by the same way as the proof of Lemma 3.6.

Thus we have only to calculate Qo (@) for m=3, 4 and Q, (@) for m=2.
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Lemma 3.13. (1) For m=4 and a€U%,,

—%(h (ag, @) +h (@l @) if a€7U% and &F'Ba mod PrE kY
Qo (a’) =

0 otherwise

where —X (a) nx (g ) are solutions of X*+X— (&®f'B, mod Pr) =0.

1—ng(aq)  1—nglae)

(2) Form=3and a€ UF,

—1—¢t(rQ—aa™))) if a€qU*
Q@) =) g—1—¢ (trx(rQ1—aa™))) if a€yU,

0 otherwise.
(3) For m=2 and a€U¥,

-1  ifa€rUs*

Ql(a)=[ .
q¢—1 if a€eyU;.

Proof. By combining the arguments in the calculation of P, () when o=m
—4 and in the calculation of Qo (@) when m >4, we get the first part of this
lemma.

For m=3 and @€ U¥,, we have as in the calculation of P,_3(a) that

— Nk (x) =1
%la) xe(UE—(l§Px))/l+PK¢T<1 —nx (x) (1~aa ))
- 2 <lix (l—Em'l))

xe (0F— (1+P)) /1+P;

=( gI/P ¢ (re(r(1—aa™))x) )— (1+¢ g (y(1—aa™)))

Therefore we get the second part.
For m=2 and a€U%,,

— §2”K(x) = -1
%le) xe((l+Px)—§+Bf))/l+n?(pr<l_gan(x) (1-aa )>

since v (@ (x, @) =1=m—%, It follows from £2€1+P% and ng(x) €1+ Pp

that
Q= T gfimipa-aa).

xe ((1+Pg) — (1+8))/1+ P
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Since ng induces a bijection from ((1+Px) — (14+P%))/1+P% to PF*—0r/ Ok,
we have

— A 1_— -1
(e yek§(0)¢7(2( o ))
=[—1 if a€yUE

q—1 if asyU,.

Now we can state the character formula of 7 when t=2.

Theorem 3.14. Let A= (K, 6, 1) be a generic data of level 2m and T=
ma. (See section 1 for the definition of gemeric data and Ta.) Assume t =tx=2.

Take a prime element @k of Ok such that @ €F and @%=2 mod P%. Set &r=ng
(@x). Let K be an index 2 subgroup of kr defined by k3= {x*+x|x Ekr} and take

bEOr such that b mod PrEkr—k.
(1) Ifm>4, then

[ q(6(a) +0(@) if a€rUs
—q (W (@OF *aa, a) +h(OF* aa @)
if a€ U
—¢""1 (6(a) h (¥ " %aa, @) Gm-i—s (@)
+60@)h(0F"° aa @) Gm-i—s(@))
if a€UF for 05i<m—5
—%(h (aa, @) Go(aa, @) +h(aa, @)Golaa, a))
if ®€ Upi—s and By mod PrEky

tr t(a) =1 0 if ®€ Up—s and Bq mod PrEkp
if A€ Up-s
—¢" 20 () h (@, @)
if *€Unm-3
0 if € Um—2
I et
if a€EUR-
[ " (g+D) if € Upn

where Bo= % trg (y 1—aa™)) for a EUp_o-s, aa € Ok is determined uniquely
modulo Pk by
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@OF ™try (T (1 —c'ra“) ) (nx (1 —c‘ra'l) trg (Td)x) ) ~2 mod Pk

if a€yUF
ak =
Bz! mod Px
if a€Up-o-s5,
hx, @) as in (3.2), an, az €0k are defined by the condition ME'),) mod Pr,
Nk \Qq
La"),, mod Pr are solutions of X*+ X — (B, mod Pr) =0 and G; (2) as in
1—nk(aa)
(3.7), (3.11).
(2) Ifm=4,
q(0(a) +6(@) if a€ylh
— %(h (am, @) +h(an, @)
if a€ U and @r'Ba mod PrEky
0 if a€ U and @F'Ba mod Pr € kS
0 if a€ U
—q0(@)h(ae, @) if a€EUT
trr(a)=4 0 if a EUS
qse(a) 1+ Z(pT __tﬂ
2E€kr d)p (x2+x+b)
if a€UT
¢ g+1) if a€U,
where an an € Ox are defined by the condition La“), mod Pr and
1—ng (aa)
#(a&)”)_ mod Pr are solutions of X2+X— (&@7'Ba mod Pr) =0 and other nota-
T Ng\Qa
tions are as in (1).
(3) Ifm=3,
- q0(a) if a€ 71U,
0 if a€rU
—q0(a)h(aq, @) if a€EUF
0 if a€UF
tr m(a) =1 1 / !
l—aa™
20(a) |1+ 22 —_— if a€U¥
1 ()< cehr ¢<QFQL+r+w>> Jacl;
[ 2 (g+1) if € Us.

4) Ifm=2,
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q0 () if €U,

0 if a€yUFU U
tror (o) = 4 ] 1+ _l-aa™t e [Tk

I (a)< Z P\ G at) Facly

q(g+1) if a€U;.

4. Character formula outside the conjugacy class of K*

We use the same notations as above. We note we fix a generic data A (K,
6, v) and denote simply w4 by 7. As in section 3, we assume F is unramified
over Q.. First we define a kind of distance between K™ and other elliptic tori.
We denote by O(X) the conjugacy class of X in D*.

Definition 4.1. Forx, y €D and X, YCD, we set
d (x, ) =vp (x—y) —min (vp (x), vo (»))

and d (X, Y) =minf{d (x, y) [t €X, yEY}. Let E be a quadratic extension of F.
We define

d(O(E))=d(OE*—F*(1+Pg)), K*—F*(1+Pg))

and
d(E)=d (E*, K*—F*(1+Pg)) .

It is easy to see that if E/F is ramified,

(4.1) d (0 (E)) =minfd (&%, y) lve (x) =1, vk (y) =1, g€ED*}
and if E/F is unramified,
(4.2) d (O (E)) =min{d (+*, y) lve (x) =0, vk (y) =0, g€ED*}.

Lemma 4.2. Let a, bEK and E is a quadratic extension of F in D.

(1) d (a+§b, K) =vk (b) +t—uvp (a+€b) (t:tK)
(2) If E is unramified, d (E) =0.
(3) IfO(EX)#0(K™),d(E) <2t

Proof. (1) Since a+& =a+b+ (E—1)b, a+b is one of the closest elements
of K* to a+&b. Thus d (a+&b, K) =vp(E—1) +vk(b) —vp (a+Eb).

(2) When E is unramified, Oz #F*(1+Pg). For x€0g—F* (1+Pg), d (,
K) =0.

(3) It suffices to show that if vp (@+&b) =1 and d (a+ &b, K) > 2t, there
exists x €K such that (1+&) ' (a+&b) (1+ &) EK. By the direct calculation,
we have

4 _ (a—&%xk(b)a+&*(xb—xb))
(1+6&) '(a+6&b) (1+&) I~ & (B)
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+ E(—E&%x*+ @—a)x+b)
2,
1—5 Nk (B)
It can belong to K if and only if (@—a)2—4&%k(b) EK**. The assumption d (a
+&b, K) >2t and vk (a+&b) =1 implies vk (b) —vk (a) >t and vx (@) =1. Then
vg(@—a) =t+1 and vg (ng (b)) >2(t+1). Therefore (@—a)?—4E%x (b)) €EK**(1
+P¢Y). Since 1+PECK*®, we get our lemma.

The support of X is relatively small on E*. We may assume d (O (E)) =d
(E), if necessary, replacing it with its conjugate.

Lemma 4.3. Let E be a quadratic extension of F satisfying d (E) =d (O
(E)). Set d=d (E).

(1) If E/F is unramified, xr(x) =0 for x&€F>* (1+P%).

(2) If E/F is ramified and d #0, xr(x) =0 for x EF* (1+Pp§—2).

(3) If E/F is ramified and d =0, x(x) =0 for x&F* (1+P§ ).

Proof. By the definition of =,
er(x) = > p(g‘lxg).

geD*/K* (1+P%)

It follows from the definition of d (E) that O (x) does not intersect K* (14 P%)

if x&EF* (14 (PF9NE)). Thus we may assume m—d <vg(x—1). Set r=vp (x—
1). Then we have

te@) == S S (R g g (148)).
q gED*/K*(1+PF) kePhm*1=r/a/pgn=r

Set g7 xg=1+h. Since (1+k) ‘g xg (1+k) =1+hk—kh mod P¥", o ((1+k)

1g7g (1+k)) = ¢ (Tr (yh—h7y) k). Moreover h € P} and h & Px+Pp *. Thus

the map £+ ¢ (Tr (yh—h7)k) is a non-trivial character of PR¥m*+1-7/2 /pgm=r

if r<2m—1. Therefore xr(x) =0.

Corollary 4.4. If E is unramified quadratic extension,

0 t&EF* (1+PF)

(43) X (x) =
() x=c(1+kr) EF*(1+Py).

When E is ramified, we have only to calculate x, on F* (14 P¥ %) —F*
(14+Pg-9) and F*Q+P¥-1) —F*(1+P¥*) when d =0.

Lemma 4.5. Let E be a ramified quadratic extension of F and x €F* (1
+P;) —F*(1+Ps*). Then x can be written in the form x=c (1+a) (1+b) where
cEF*, aEPx—Px*, bEPH. Here we set r=0if xEE*—F* (1+Pg).

(1) Ifr=2m—d, then xz(x) =6(c) x»(1+a).

(2) If2m—2d<r<2m—d, then X (x) =0(c) P, (b) x=(1+a).
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(3) Ifd=0 and r=2m—1, then x can be written in the form x=c(1+a+
&a (1+0b) ) where cEF*, a EPY*~ ' —P¥~! b EPY and

. ab—ab+ (Gfa — Gha)y
Xn (x) 0( )¢r (a) (1 +y§f/)r< a-);((yz+y+5) ))

where 0

_&-1
@F

Proof. When r=2m —d, x=c (1+a) mod Kerm. Thus x. () =6(c) x.(1+a).
Next we treat the case 2m —2d <r<mw —d. As in the proof of Lemma 4.3, we
can show

Xz (&) =01(c) > o(1+g7lbg)

£eD*/K*(1+pPP-"-¢)

> o(1+n"‘g lagh)

heK*(1+Pg-"-4)/K* (1+PF)
and the last sum is proportional to

> 2 o((Q+k) e g (1+4k)).

hek*(1+pm ") /Kk*(1+P}) kER/PY

Put a’= (gh) “‘agh. If r=m, we have
2 p((I+r)gug(l+k)= 2 ¢(Tr(ra’—a'r)k).
kER/PY kEP)/PE

It follows from the same argument as in the proof of Lemma 4.3 that this sum
is 0 if gh €K (1+PF"~"=9) . It implies

Xz &) =6(c)P(Tryd) > o r(14+a)h).

hEK*(1+PY-"=4 ) /K* (1+PY)

On the other hand,

Xz (1+a) = > > o0 +h~'gagh)
geD*/K*(1+P3-7-9) hek* (1+PE-"-9) /K*(1+P%)
= > o(1+htah)

heK*(1+P3 =) /K*(1+P})
Therefore we get x» (x) =6 (c) ¢ (Tr (1b)) x» (1 +4a). Now we assume r <m.
Since (1+k)'(1+a") Q+k) =1+a) A+ 1+a) ' (@k—ka’)) and 1+ 1+
a’) Ha'k—ka') €E1+PE, 0 ((1+k) 1 (1+a’) (1+k)) =0 unless ' =a mod P%.
When a'—a €EP%,

2 o(Q+r) 1 A+a) 1+k)
kePB/PE"

= > ¢,((1+a")%a'k— (1+a’) ka’)

kEPB/PR
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= 2 ¢(Tr(ya’—a'7)k)
keP?/PF"

=0

if gh €K* (1+P¥-7-9) . Therefore we can show xr &) =80 (c) ¢ (Tr (b)) x (1
+a) by the same way for the case r=m. Finally we assume d =0 and r=2m—

1. 1t follows from Lemma 2.2 that the set {1} U {1+ &B|B€ 1+ Pk/1 + P&

gives a complete system of representatives of D*/K* (1+Pp). It implies x € F*
(14 P%1) can be written in the form x=c (14+a+& (14b)) where cEF*, a
EPY--1—pF~! bEPk and for this x

Xz () =¢"10(c) <1+ 2 p((Q+Ep) ' (1+at&a(1+)) (1+§B))).

Bel+Pk/1+PK"

Since
(1+£8) 7 (1+a+Ea (1+D)) (1+£) =1+a+1—5%4%(a—6)
n &? (a_bé—ab_g)
1— &%k (B)
+ (€K part)
and
Enk(B) (& (abB=abP) _ ab=ab+a(8=1) —a(B=1)
1— &%k (B) 1— &g (B) 1—&%x(B)
we have mod PE"™",
0((1+E8) -1 (1+a+Eab) (1+88) =g, <a+‘5‘“”+‘7(‘9‘1) —a(f=1) )
1_52”1( (B)

Therefore by replacing =1+ wky, we get

=000 (oo 2o ()

Now we can state the main result of this section.

Theorem 4.6. Let A= (K, 8, 1) be a generic data of level 2m (cf. De-
finition 1.1), T =14 the irreducible representation of D* associated with A (cf.
Proposition 1.2) . Set t =tk take prime elements @ and @k such that trx (Ox) =
ng (@0x) = @ mod P} when t=1 and &= —@r=2 mod P} when t=2. Let E be
a quadratic extension of F in D satisfying d (O (E)) =d (E) (¢f. Definition 4.1)
and set d=d (E).

(1) If E/F is unramified,
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0 x&EF*(1+PE)
q"0(c) x=c(1+a), cEF*, aEPE.

(2) If E/F is vamified and d >0,

(0 xEF* (1+pgr—24)

6(c) Py (b) xz (1+a) x=c(l+a) (1+b), cEF*,
a€PE—PF, bEPG
for 2m—2d <r<2m—d

0(c) x=(1+a) x=c(1+a) Q+b), cEF*,
a€PE, bEPR

L for 2m—d <r

where Xz (x) for x€EK* as in Theorem 3.7 and Theorem 3.14.
(3) If E is ramified and d =0,

Xn'(x) =

A

Xrt(x)

(0 rEF*(14+P3 1Y)
6(c) (1+¢, @ % ¢T<“_” —abt @““"""“)y)
Kele) = =\ GO yTo)
x=c(l+a+8& (1+b)), cEF*, aEPF' 1 —PF~' bEPK
L ¢™0(c) r=c(1+a), cEF*, a EP¥
2__
where 5=E = 1.
wWrF

Remark. The above theorem holds without the assumption F is unramified
over Q,. But we give the character formula of 7 on K* only when F is unrami-
fied over Q.. Therefore we state it under the assumption F/Q, is unramified.

Appendix A. Calculation for general case

Here we show how to compute P, (@) and Q, (@) in Corollary 2.9 without
the assumption F/Q, unramified. This amounts to the character formula for 7
=m,. We use the same notation as in Section 3. Since we have already calcu-
lated the character when t=¢tx=1, we may and do assume t=tx>1. We devide
the calculation into 7 parts according to Corollary 2.9.

We start with the calculation of Py(a).

Proposition A. 1. Let the notation be as above and assume 0<o<m —
2t and d€UN_5_5-1.
(1) When tis odd,

(t+1)/72

Py(a) =— 2 h(aq, )
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where aq € P§ is defined uniquely modulo PE*“*V’2 by the condition that Uiy, @

is trivial on 1+P§*Y"2 and h, ¢, Ware as in (3.2), (3.8), (3.9) respectively.
(2)  When t is even,

t/2

Po(@) = —=Lh (aa, @) Go (@)

where aq € P% is defined uniquely modulo PE*'"? by the condition that ¥iew). o is
trivial on 1+P¢+?72 and

(A.1) Go(a) = 2 Vv, o ().

T E1+P¥? /14 P22
The absolute value of Go(@) is ¢% and Go (@) belongs to Z[y/=T].

Proof. From the same argument in the proof of Lemma 3.2 and Lemma
3.9, we have

Pa(a) =1 > p(Q(x. a)) 2 Vow, o (y)

1€ag(1+Py) /14 P2/ yE1+PY/2) [14P4

where ao€P{ is determined uniquely mod Pg*' such that the map
y—¢r (ng (ao) (g () —1) (1—aa™))
is a trivial character of 1+Pk/O%(1+P%¥') and ¥is as in (3.9).
For x € ng (ao) (1 +Pr), the map y = Ty, o (¥) is a character of 1+
P§2/14pPY

Therefore

2 Vo, @ (y) =0

YE1+PY /1P

unless Yw), o« is a trivial character of 1+Pg+V"2,

Lemma A.2. There exists a unique element x € ng (ao) (1+Pg) /1+

PEH*V2 syeh that Wizw is a trivial character of 1+ Pg!272.

Proof. For yE1+P4 ! and x=ng (ao) +x1, x, EPFH,
w(za)(y ¢r< "K(ao) +x1 ("K()’) _1) (l—c_m'l)+(y—1)nK(1—c_m‘1))>
=y(nsao) (ux ) =1) (1—=aa™) + G—Dnx 1—aa™)))
X,y (ng(y) —1) 1—aa™)).

Since 21 = (y = ¢, (x1 (ug (y) —1) (I1—@a™))) induces a bijection from P+
/P%*%to (1+Pk!/1+Pk)", there exists a unique element x; €EPFH/P§*2 such

that o) +0, @ is trivial on 1+Pk?. By repeating this process for yE1+Pj, i
=t—2,+ + +, [(t+2)/2], we can show that there exists a unique element x €
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P+ /Pgrle+/2l syeh that Wi+ is trivial on 1+PgH272

Since ¢ induces a bijection from ao (1+Pg) /1+PE+Y72 to ng (ae) (1+Pp)
/1+PgH+Y/2 it follows from the above lemma that

(t+1)/2

92—p(¢>(aa, a)) if t odd
(AZ) Py (a) = 12
92— > 0 (D(agr, @) if t even

x€ (1+PF2 ) /1+P¢*!

where aq € P% is defined uniquely modulo PZ*“*P/% by the condition that

Ui, o is trivial on 1+ PEH*272,
The rest of the lemma is also proved by the same way as in Lemma 3.2
and Lemma 3.9.

Proposition A.3. Let the notation be as above and assume m — 2t <0
<m—t and a EU¥,

1 I UZm—%t,

—gm-ot-1 if A€ yUm-g-1-1
Py (a/) = qm—a—t—l (q—]_) if aE< TUm—a—t
0 otherwise.

(2) Iftodd and o<m— (3t+1)/2,

—q" V2% (aq, a)Go (@) if d€E UL maar

0 otherwise

Ps () =[

where aq € PE is defined uniquely modulo Pgt™ o=S=V/2 by the condition
Uit o is trivial on 1+PEo-S=V"2 guq

(A.3) _ e (1) N
Gola) = b) o(1+2eE1) (g4

(a) xel+P,l,{_,-m+n/y1 +P';r_a_‘3’-“/2 < 1 _”K (aa ( ) )
%(%(1—5@-1) )¥iot. @).

Go(a) satisfies Go () €Z[/—1] and |G+ ()| =q.
(3) Iftodd and o<m— (3t+1)/2,
" V" (Go(a) —1) if AETUE mya

0 otherwise.

Py(a) = [
where

(A.4)
Ga (a) — Z 0 (1 —_ (1 _a,a—l) CD;(m_(st+l)/2x) ¢)T< (1 _aa—l) cl-)}(m—(3t+l)/2)x>

xEkr
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¢’T< ( (1 _aa,—l) +nK (1 _aa,—l) )nK ((akm—(31+l)/2))x2) )

and Gq(@) €Z[J/=T], |Go(a)|=Vq.
(4) If t even and 0<m—%t,

— —th (aa- a) 1f ac TUt;k—m+2t
Ps() { 0 otherwise

where ag € P§ is defined uniquely modulo PET™ 7%/ by the condition that
VUit ) i trivial on 1+Pgo7312

Proof. In this case, vp (D (x, a)) =20+t for a € U*, and 1 EPF—P%*™. First
we assume O'Zm—%t. Then

O(r, ) = 72255 (1—-aa)

for « € U*, and x € P — P§*'. Thus it follows from Lemma 2.6 and the argu-
ment in the proof of Lemma 3.11 that

P@= T ¢({%%50-aa)

<€ GYOF/1+PF~" n (x

= 2 ¢ lrx(y(l—aa™) d%)x)

x€0,/Pp-o
- 2 ¢t (r(1—aa™) @) 1)
xEPy/R !
—g" if vr (trx (r(1—aa™))) =—o
=1 4" gD if v (tre (y (1 —@a™))) 21—0
0 otherwise.
Since vr (trg (y (1—a@a™))) = — o is equivalent to @ € yU*,_s_;_;, we get

the first part of the lemma.

Next we treat the case t odd and o0 <m — 3t/2. By the same argument in
the case 0<o<m—2¢, we get

Py(a) = 2z o0k a)

Y€ @YO%/1+ PR
(o) Q—aa™)y).
yE Rt [pp-o=t
Hence

qa—m+2t > 0 (@ (x' a) ) if a€7rUg—m2t
P, (a,) — T E@F0%/1+ P2

0 otherwise

since vp (trg (y (1 —@a™))) 20+3t—2m~+1 is equivalent to @€ yUg—m+2. Now
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assume vr (trg (y(1—aa™))) = 0+3t—2m+1, then
Py (@) =g~ Z o(D(x, @)

€ @%0%/1+ Py

Z w(:p(z). a) (y) .

yEl +ppoo-G-12 /] 4 pgm20-3172

Let us assume oFm— (3t+1)/2. Since Towrm @) = ¢, (@ @)ng(1—aa™) (y—
1)) for y€1+ P23 and a € 7Us-m+2z+1, the map y = Tuma () is a
non-trivial character of 1+Pg o~ ®"V/2/1+pg-20-32 when a € tUs-m+2t41. It
follows Py (@) =0 unless @ € YU m+2. Therefore we may assume &€ yUs mar.
Then

Fiowr,m 1+ @R 2773 Yy) = (@ () (ax (@R~ trg (r A —a™) ) y?)
X ¢ (@) x(1—aa™) trx (y@F~2°7%1)y))

for y Ekr. Since ¢ (¥) ng (@F 2 ) trg (y(1—aa™)) =0 mod P, there exists
a unique ao € P% — PE*! mod PE*' satisfying @)oo () =1 for all yE1+
P¥r~20-3-1 By applying the argument in the proof of Lemma A.2 to this case,
we have

Pa (a) :qo—m+2t qm—a—(st—l)/z Z 0 (Q)(aaxy Ct'))

Y€1+ ppo-61+1/2/] 4 pp-o-Bt-172

where aq € P% is defined uniquely modulo Pgt™=9=®=1/2 by the condition that
Uion). o is trivial on 1+PF7~%=D2 Thus we get

7“7 V20 (D (aa, @) Gola) if a€7Usmszt
Ps(a) =

0 otherwise.

In this expression, we can prove Go(a) €Z[V/—1] and |G, (@) |= g by the
same way as above and we can show 0 (® (e, @) = —h (aq, @). (See (3.2)
for the definition of & (aa, @).)

When o=m— (3t+1)/2, it is proved by the same way as Lemma 3.3.

. 3
When ¢ is even and o<m — ot the calculation of Py (@) for m—2t<o<m
—t is easier since Gauss sum Go(a) does not appear. We omit the proof.
Next we treat the term Qo (a).

Proposition A.4. Let the notation be as above and assume t —m/2 <0
and a€U%,.

If t odd,
t+1)/2
Q@ =] ~ Tz (e @) thian @) i Aamod PxEHb
’ 0 otherwise

and 1if t even,
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5 (h(aa, @) Gola, aa) *h(aa, a)Gole, aa)) if A mod PxEkk
Qol@) =

otherwise

n (aq) nx(aq) . .
+X—Aa= e
where 1 g (ag) R are solutions of X*+X—Aa=0 and A, E 0k is de
termined uniquely modulo PE'*V'? by the condition Wi, (Aa (g (x) —1) (1 —a
N+ G—Dng(1—aa™™))) =1 forall yEPE+?? ¢

nd
_ (x—1) -
Golaa=_ = oI 0a)
(A.5)
gbr(IZ(xn %Z)) 1- aa_l)>ar(w(z),a)(x)-

The absolute value of Go (aa, @) and Go (am @) is q
[vV—1].

and they belong to Z

Proof. First we assume |kp| >2. As in the calculation for P, (), we get

Qo (CY) = 2 0 (d) (x. a) ) > w(w(z),a) (y)
x€0%— (1+Pg)/1+Pk yE1+PL/Ok(1+P% )
= > (P, @)
x€0%— (1+Px)/1+P§
> G- (@ (x) mk(y) —1) Q—aa™))
yE1+PK/Ok(1+PRY
> 0(0(x,a))

x€0%— (1+Px) /1+Pk

Z Or (@ ()ng (C) GP+y) 1—aa™))
yEkF
where C be an element of Pk satisfying trx (C) =ng (C) mod P&'. As in the
proof of Lemma 3.4, we have
_ if ap mod Px €k}
T ¢ (@@nk(C) (P4y) Q—aat))={ "M
yEke 0 otherwise

where aq €0k is determined uniquely modulo Px by the condition ¢, g (C) (1
_aa,—l) ao <y2+y)) —_

=1 for all yEOF and k¥ as in (3.4). Assume X2+ X —a, is
reducible and let X2+ X+ao= (X+ao) (X+ag). Then

Qo(a'):'%( ’ 2 0(D(x, )+ 2

1€ao(1+Px)/1+Pk

0 (D (x, a))).

x€a5(1+Px) /1+P
Hence we have the lemma by the same way as in the calculation P, (a)
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If |kr|=2, then Qo () =0 since Jo=¢. On the other hand, X*+ X+ A, has
no solution over kr. Therefore the formula holds including the case |kl =2.

Proposition A.5. Let the notation be as above and assume t —m/2 <0

and a€EU¥*,.

W IFm—3t=0,
if a€rUm_121
if € TUm—:
otherwise.

—g" 1+ ¢ g (yQ—aa™))))
Qola) =1 ¢ " g— Q+¢Urx(y(1—aa™))))
0

(2) Iftodd and m— (3t—1)/2>0,

t-1/2

—4—— (h (aa, @) Go(aa, @) +h(az a)Gola, @))

2
Qo) = if € US_y and A, mod Px k%
0 otherwise
where —& (a,) g (0a) are solutions of X2+ X—Aa=0, Aa € O is deter-
1—ng (aa) ’ 1—ng (a;) @ P e

mined uniquely modulo PE~°*V"% by the condition g o (y) =1 for all yE1+

P;(n—(St—l)/Z and

6(1 +1M(1—c‘m*))

Go (z, a) = Z 1—ng (Z)

K E 14 PRD [] 4 py-ctsis

(A.6)
(251 1207 ) Wi, o ).

The absolute value of Go(z, @) is "% and Go (z, ) belongs to Z[/—1] when z=

Aq, Aq.

(3) Iftodd and m= (3t+1)/2,

¢ V2(Gola) —1—60(1+1—aa™)) if a€E7UE 1

otherwise

Qo) = [
0

where
Gola) =200+ G+ 1—aa™))0(Q+22(1—aa™))

x€kp

(A.7)
Oy (x+2?) (1—aa™) + (+2») Q1—aa™))?)

and Go(@) €Z[/=T1,1Go (@) |= V.
(4) If t even and m—%t>0,
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t/2

—12-— (h (aa, @) t+h(aa @)
Qo) = if @€ yUsb—m and Aq mod PxEky
0 otherwise
nx (aq) nk (aa)
—nk(@a) " 1—ng(al)

mined uniquely modulo P}’("%‘ by the condition T, () =1 for all yE1 +pp-3t,

where are solutions of X2+ X—Aa=0, Aq € Ok is deter-

Proof. This is proved by combining the arguments in the Proposition A.3,
Proposition A.4, Lemma 3.5 and Lemma 3.13. We omit the detail.

Now we start the calculation of Q, (a). This is much more complicated
than the case t<2. We set

(A.8) B o) =Pow, o ®) ¢r<<£?2%>3 k() —1)2(Q1—aa™) )

and define a subset S, of Ujis24—2:-1 by

(A.9) S,={a€Ukis-2-1|Ew wlitpp==1 for some xEao(1+P§)}

when 4u<t and

(A.10) Su={a € Uptm-2-1l B, wli+pprmon=1 for some x € ao(1+P§™)}
when 4p 2>t

Proposition A.6. Let the notation be as above and assume u>t—%,0
<ﬂ<t and a € U;lr;+2u—2t—1-

(1) Iftodd and 4u<t,

—q"*V 2 (R (aq, a) +h(ae, @) ifa €S,
Qu (a) = [

otherwise

where aq, aq € 1+ P4 are determined by the condition that E g, o () =1 for all y
= ].+P;(t+l)/2,
(2) If t even and 4u<t,

—q"*(h (aa, @) G, (aq, @) thiae, @)Gulaa, @) ifa €S,
Qula) = I

0 otherwise

where aq, az € 1+ Pk are determined by the condition that = . o (y) =1 for all y
€ 1+P{?"2 gnd
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= = o(1+725 N 0-aa)
TE14+PY2 /14+PYD/2
(a.11) (ﬁr(l_(n;%(l_aa-l)>5w(z),m (x).

For z=aq, aa, the absolute value of G, (2, @) is ¢V’ and G, (z, ) belongs to Z

[vV/—1].
(3) Ifd4u>t and 2u+t=2 mod 3,

_q(2t—2u+2)/3 h (aa, a) Uc a € Sg

Qu(a) =[
0 otherwise
where ag € 1+ Pk are determined by the condition that E ., o (y) =1 forall y €

1+P}(t+2u+l)/3.
(4) If 4u>t and 2u+t#2 mod 3, we have

— (2!—2ﬂ+2)/3h (aa’ a)Hu (a) 'lf a € Sll

Qu (@) :[ !
0

otherwise

where aq € 1+ Pk are determined by the condition that B g, o (y) =1 forall y €
1+P[(!+2u+3)/3] and

(412 H@= I o1+ 725~ (1-aa)

n
TE1+Pt+20/31/14 Pl(t+2443)/3] K (aa)

o225 (1- 307 ) B g, o )

1—nk(a

¢’r<<%>4(nx (x) —1)3(1—&a“)>.

Unfortunately we cannot call H, (@) Gauss sum since the absolute value of H,
(@) is not ¢'2

Proof. By repeating the routine calculation, we have

Qu(a) =q > 0(@kx, a))

xeao(1+Pit)) /14 P}

where ap € 1+P¢—1+P§* is determined by the condition ¢, (¢ (ao) ((x (y) —
1) Q—aa™)))=1 for all y € 1+ Pk Let E 4 o be as in (A.8). When i >
max [(t+2)/2], [(t+21+3)/3)],

0@y, a)=p(Dk, @) B ()
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for y € 1+ Pk and the map 1+y = E 4 o () is a character of 1+ Pk for x €
ao (1+P¢*) Thus if 4 > ¢t (resp. 4u>t), the map 1+y — B o o () is a char-

acter of 1-+P{"*?/2 (resp. 1+PE*#+973) for x € a0 (1+PE).
The next lemma is an analogue of Lemma A.2.

Lemma A.7. (1) Where 4u<t and a € S,, there exist two elements x
€ ao(1+PE) /1+PE*Y such that B , o is a trivial character of 1+ P§+272),
(See (A.9) for S,.)

(2) When 4u>t and a € S, there exist a unique element x € ao(1+P41) /1+
P2V gych that B o, o 1S a trivial character of 1+ PgH+2e+3/31 (Sep (A .10)
for S,.)

Proof Fory € 1+Pg! and x=awy, x; € 1+P4H,

Ewaol)=¢ (¢ aoxl) (k) —1) I—aa™)+G—Dng(1—aa™)))

x g ((-Emxlasn) )6, ) —1)2(1-aa )

1— &%k (agr1)
=¢, (@ (ao) (ng(y) —1) 1—aa™) + G—1D)ng(1—aa™)))

([P () ~1)2 1)

&%k (aor1) )2 _< E%ng (ag) )2 w2 e e e _
b < = d Pg®*% 1t implies E (, =
ecause 1= e, (aor) 1= En, (a0 mod Px implies E &, o ()

1 for all y € 1+ Pk by the assumption a € S,. For y € 1+ P2 and x=aey,
X1 S 1+Pﬁ+1,

Ewo®) =¢ (0o (k) —1) Ql—aa™) + —1)ng(1—aa™)))

() e~ 1) e ) 1) (=)

because

g (aonr) V2 _ (_E'nxlag) )?
o) =Ean)
(e ) st 1) o

Since the map

X - (y chr((l—fz—gg%) (g (x1) —1)2 (g () —1) (1— c‘ra"))
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induces a bijection from 1+Pgt1/14+Pi2 to (1+P?/1+P51) ", there exists a

unique element x; € 1+ P4*!/1+ P42 such that E e is trivial on 1+ Pk2
By repeating this procedure, we get our lemma for the case 4u>t. For the case

4p<t, we have there exists a unique element x*~? € 14+ P4*!/1+P¥# such that
E (aozten, @ is trivial on 1+ Pk 27! For y € 1+Pk? and x=awx® Vx,, 1, € 1+
P,

_ =
E (aoz, a) (y) = & (aox®V,a)

x g (e ) ) (1) ~1) bax) —1) (1—aa™))

1— &%k (ax®™™?)

% ¢T<< E%ng (agr“™") ; >4(nK(xu) —1)2(x(y) —1) (l—c‘m“)>

1— SZ"K (aox(u—l)

because
2 (#—1) 2
?low ) = <1ngn%oxw—)n) )
GZMK(aox(ﬂ—l)) 2 3
+<1_Eznx(aox("‘l’)) (ng (xx) —1)
52 ( (u—l)) 4 o,
+(1—§§:§;Mm—n)> (ng (x,) —1)*mod Pr.

Since the map x = (y = ¢, (x (ng () —1) (1 —a@a™'))) induces a bijection
from Op/Pr to (1 + Pg2/1 + Pg2+1) ™ | there exist two x,’s satisfying 2

(@oz-vz,00 @) =1 for all y € 1+P5* by the assumption a € S,. For [(t+2)
/2] +1<i<t—2u, we can show by the same way as in the proof of Lemma

A.2 that if g-i-e-b e ] +Pﬁ+1/1 +P;(_i satisfies 2 (@oxtt-1-4-1 4 (y) =1 for all y
€ 1+ Pk, there exists a unique element +~** € 1+Pk!/1+ Pk ~**' such that
E (@ozt-i--Vgi-na ») =1 for all y € 1+Pit. Hence our lemma.

By the above lemma and our routine calculation, we get our proposition.

The next term is Q, (@) for & € U*, when ﬂSt—% and 0<pu<t. We set

(A.13)

S, w={a € TUS-m-2ulBe, a)|1+Pl<,gM+tu-3'+1’/2' =1 for some x € ao(1+P%1)}
when 2m—3t>0 and

(A.14)

Sciw={a € YU m-2l B, a)|1+P"§"’+5u‘3‘*2”3' =1 for some x € ao(1+P4*)}

when 2m—3t<0.
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Proposition A.8. Let the notation as above and assume ,aZt—%, o<pu

<tand a EU*,.

1) If /.tSt—ém'Fl,

3
_qm+u—t—l 1f a € 7U;nk+u—t—l
Qula) =1 ¢ " P(g—1) if @ € tUmspu
0 otherwise.

2 If u>t—%m+l, 2m—3t>0 and t even,

—q"%(h(aa, @) thiae, a) if @ € Sy, w
Qu (a) =

0 otherwise
where a4 ax € 1+P% are determined by the condition that E @, o (v) =1 for all y
€ 1+4pgmrau-snrz

(3) If p>t—2m+3, 2m—3t>0 and t odd,

_q(’—l)/z (h (aay a) Ga (aa» a) +h (a(,, a) Gu (d:x, a)) 1f a € S(—l, w
Qula) =

0 otherwise
where aq, ax € 1+ P4 are determined by the condition that = ., o (%) =1 for
a”y = 1+P}(2m+4u—3t+l)/2 cmd
(A.15)

—z(x—1) _
Cle@= % o1+ T2 -2y
u xe1+PA2’”““'3"”/2’/1"'1,?"'“”-3‘“)/2 < ]. Nk (Z) )
¢T<Z(x—_1)) (]_ —aa_l) ) = (¢(2),a) (x) .

1—ng(z

For z=aaq, aa, the absolute value of G, (2, @) is ¢"% and G, (z, @) belongs to

Z[/-1].
(4) Ifﬂ>t—%m+%, 2m—3t<0 and m = 0 mod 3,

—q"’/sh (aa, a) 7'f a €< S(—l, ”
Qu(a) =‘

0 otherwise

where aq € 1+ Pk are determined by the condition that E (g,a) =1 for all y
= 1+P;{2m+6u~3t)/3’

5) 1fﬂ>t—§m+l, 2m—3t>0 and m £ 0 mod 3,
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—4" 0 (aa, ®)Hy(aa, @) if @ € Sy, w
Qula) =

0 otherwise

where a, € 1+ P4 are determined by the condition that E g, o ) =1 for all y €

1 +P}((2m+6u—3t+2)/3] and
(A.16)
H,(a) = b o1+ 7228 1—aa)
xEI+Pk2m*5”“3'V3] /1+pé(2m+su—at+2>/31 Pk \Ga
—1 TN g
(/’r( 1(11(;:’( aj (I—aa™) ) E wan.m (1)

o(((Ee ) )~ -aa),

Proof. First we assume ,uSt—%m +%, Since

Qula) = z o(@(x, @)
IE((1+P;)—(1+P;+1 ))/1+PK“2““‘1
2 Gl (r(l—aa™)) ¢ x) k() —1)),

YEL+Pp+2u=i-1 /14 pppau-t

a € 7U, is necessary for Q, () # 0. Next we consider y € 1+P§+*~'=2 then
we get & € U, is necessary for @, (a) # 0. Repeating this procedure, we get

> gb,(M(l—c‘va“))) if @ € tUmsn—t-1

Q.la) = [xe((1+PI{)—(1+P;*B)/1+PA!”2"-’ 1=k (x)

0 otherwise.
Since the map x = % induces a bijection from ((1+P%) — (1+P4*Y)) /1
+PET* " to @ FOF/1+PEY! we have

_qm+u—t—1 lf a € TU;nk+u—t—l
Qu (a) = qm+u—l—l (q__l) fac TUm+u—t
0 otherwise.

Now we assume ,a>t—%m+%. As above we get

Qula) = 2z o(0(x, )

ZE((L+PE )= (L+BE+)) /1+ Pgm+au=3t

> Qlr(rA—aa™)) ¢ k)y).

2Mm+44-3 m+2u-t
yEP VPF

Hence we have
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g > o0 (D(x, a)) if @ € YUzt-m—24

Q.la)= TE€ (L+PY) — (L+Pf+1 ) /1+Pgm+an-3t
otherwise.

Applying the calculation for Py () when 0<m—%t and for Q, () when

u>t—%, we get our proposition.

The last part is Q;(a). It is easily calculated by the same way as the case
t>2. (See Lemma 3.6.)

Proposition A.9. Let the notation as avove. For o € U%,_,,

Ul =2 ‘p’(c(lxz_ff :b) )

where b € krp—k¥ and C be an element of Pk such that trg(C) = ng(C) mod P
DEPARTMENT OF MATHEMATICS AND INFORMATION SCIENCES,
COLLEGE OF INTEGRATED ARTS AND SCIENCES,
OsAKA PREFECTURE UNIVERSITY
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