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Lie algebra of the infinitesimal automorphisms
on S3 and its central extension

By

Tosiaki KORI

O. Introduction

In this paper w e shall deal w ith a central extension of the Lie algebra of
infinitesimal automorphisms on S 3 .  Such a  centra l ex tension  on  the  circle is
famous in  th e  nam e o f V ira so ro  algebra. T h e  L ie  a lgeb ra  Vect (S4 ) o f  in-
finitesimal automorphisms on the circle is generated by (the restriction on S')
of

dLm =zm (z d z l ' m  ° ' - ± 1 ' ••• '

where we look S I =  (z EC; Izi =1), with the commutation relation

[Lm , Ln] = — m)Lm+n •

A two cocycle on  Vect (S i )  is given by the formula

(o-1) C (L m , L n) *Is (n 2 1 )  an+m,0 •

Virasoro algebra is the central extension associated with this two cocycle.
A  highest w eight representation o f the  V iraso ro  a lgeb ra  is  genera ted  by  a
h ighest w e igh t rep resen ta tion  o f  t h e  a f f in e  L ie  a lg e b ra  5 1g  (Sugawara
construction) [K] . Though w e have n o t a  satisfactory theory o n  th e  highest
weight representation o f the  (abe lian) ex tension  o f S 3g  [M - R ]  a n d  d o  not
know  ab o u t th e  ac tio n  o f  Vect (53) o n  th e  representation space o f  current
algebra th e  a u th o r  th in k s  it  is  w o rth  try in g  to  have a central extension of
Vect (s 3 ).

In  [K -K ] it w as show n  tha t the  tw o cocycle  (0-1) is derived  from  the
non - commutative residue on the cotangent bundle of S', tha t is,

c (X , Y ) = res [lnICl 2, symb X ] • symb Y .

Here symb X  is the pseudodifferential symbol a n d  denotes fiber coordin-
ate. (A ctually  their derivation o f  (0 -1 )  should be corrected a  little. See the
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discussion in section 5.) W e shall extend this m ethod to have our central ex-
tension of Vect (s3).

In  th e  above explanation zni 's  a re  spherical functions f o r  a  heighest
dweight representation of Lie group U(1) acting on Si

' z - -
d z

 =m ei. These weight

functions enjoy the property that they are closed under products. In sections 1
to  3 w e shall give a  class of spherical functions for a  heighest weight repre-
sentation of SU (2) acting on 53 su ch  th a t the product is expressed by their
linear combination. Such a  property has been investigated in [Ru, V] earlier
and we present a new  (dual pair of) basis of the space of spherical functions.
(The author thinks this is the only new point through sections 1 to  3.) These
spherical functions are very commode to describe the Lie algebra Vect (53 )  and
to construct a two- cocycle on it. The Lie algebra Vect (.33 )  is introduced in 4.2
and the commutation relations are given in Proposition 4.2, The draft of this
w ork w as distributed in  1992 as volume No.92-12 of Report of Science and
Engineering Research Laboratory of Waseda University.

1. Harmonic polynomials on C2

1. 1. W e introduce first the following vector fields that form  a  frame
on C2 - 101:

a , a_ a a
1., =z1 a z i -i-z2 a z 2  , v = i -i—_-a+i 2 n -

W I uZ2

_  a , a _ a  , a 
E =  Z2 a  - 1- 21. n ,  E —  Z2 a -  - 1- 21 n - .

W I 0Z2 W I 0Z2

1, 11 1 n = -
2

u) - FD), 00 = 
2 V - 1  

11) D ), 6 1 =  ( e + t ) ,  0 2
=   ( e  0.2 2V-1

n is the normal to the sphere 11.el = const) and {00, a ,  t )  form a basis for the in-
duced tangential Cauchy - Riemann structure on the sphere.

There is another quartet of frame on C2 - 101,

a , a  _
t i= 22 az2

 -
I
-

ZI a i, , ii — Z2 az - 1 - Zi. az i ,

(1-1-2)
a a a a z5= if 2  

az .22
_

1

 z 1  A  ,  5 = z 2  
az,0 z2.

1
These vector fields give also a  frame on C2 —  {W . W e have n = —

2  
(p - F1.-1) . Put

1 1 1 
To= 

2 V - 1  
(11 Ti), ri= 

2  
(6+ a) , r2 = 

2 V - 1  
(d  d ) .

On the unit sphere 53 = {izi = 1} w e have the following commutation rela-
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tions:

[On, E] = 1 - 1E, [6 0 ,  ]=  —1 - 1e, [6, t] = 28/- 100 .
(1 - 1- 3)

[To, / — 1 o, [ro, 5] = —  V-15, [6, = 28/- 1 ro

(1-1-4) [e, 5] = 5] = [6, 5] = [t, 5] = [00, ro ] =0.

1. 2 On C2 w e consider the natural metric dz i Odi i +dz 2 Od.i2 , and on
the sphere S3=  1 1  w e  c o n s i d e r  the  induced metric. W ith respect to this
metric {4  00 , 4 0 2 }  form an orthonormal frame on S3 . Similarly {4 r 0,
4 r1 , 4 T -2} also give an  orthonormal frame for the  same metric. 4 n  is  the

a az2  2
a
a i

.unit norm al to  th e  sphere. Laplacian on  C2 is  g iv e n  b y  d =   

2The Laplace - Beltrami operator on C2 —  {0} is given by d i =  (8ô+ Of+ = (To

r1) . We have the decomposoition;

d = 1 (n 2 ± n ± d i ).
IzI2

T he  separation o f variab le  m ethod to obtain th e  spherical expansion of
harm onic functions by th e  eigenvectors o f th e  Laplace - Beltram i operator on
the boundary is well known. W e note that w e have two candidates depending
on which frame of vector fields ei or 21 we use.

Let d i  be Laplace-Beltrami operator on the unit sphere S3 = {Izl =1}. — d i
being a second order elliptic differential operator, the eigenvalues o f  — d i  are
nonnegtative w ith  only  accumulation point a t in fin ity  a n d  th e  eigenfunctions
form a  complete system in L2 (S3 , da), where a  is  the  normalized surface mea-
sure. Let {02}20 be the  se t o f eigenfunctions of d i  on  the  un it sphere; d1O2 =
42. Then every harm onic function h in  a  u n it  ball D = Ilz I < 1 ) w ith L2 —
boundary value on 53 h as  the expansion of the form; 

(1-2-1) h (z) = E ca2 (IA) 0 2 ( 4 )  ,

where ct,i(t) = (V -42+ 1-1
.

1 .3
a .  A polynomial P on C2 is said to be of ty p e  (p, q) if

(1- 3- 1) P (azi, az2, bu, b i2 )=aq qP(zi, z2, i i ,  i2).

Let §P'q be the set of polynomials of type (p, q).
Similarly a polynomial that satisfies

(1 - 3- 2) P (az i , bz2, bi1 , aï2)=a kbiP(zi, z2, zi, z2)
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is called of class (k, 1) . The set of polynomials of c la ss  (k, 1) is denoted by S k i .

Let H be the set of harmonic polynomials on C2 and put

1 7 "= n § P ' 1,

The following facts are proved routinely [T].

Proposition 1. 1.
(1)

S  P 'q H  P 'qI 2 S —Z S P•4 - 1 4 ,4 , 0 1z12Sp – i,q – i  •
(2)

dim f i dim Hp,q =p ± q ± 1 .

We have the following decomposition of H to direct sums:

(1-3-3) H = 1 7 " ,  H =  I lk ,/  •
k,1

W e sha ll see  in  the  nex t section th a t these  are  decompositions of H  as
irreducible representation spaces of SU(2).

b. In the sequel we shall use the multiindices a= (ai, a2), as's being
non - negative integers, and the notation e = 4 2 fo r  z = (z 1, z 2) E  C .  The

—
meaning of the notations Sa , Ha  o r  H a will be obvious from  a. W e shall also
write l ai = a +a2.
Put

(1-3-4) 14(z ) = Eq (z ' ) ,  f o r  0 I al .
Proposition 1. 2.F o r  each a, 11:4; q= lai, give a basis of Ha
T here  is  on the other hand a  series of polynomials generated by the op-

eration of 5 that constitute a basis of H .

Put

(1-3-5) h-T̀j (z) = aq (FP zP) .

W e see that ii1j( z )  is  a harmonic polynomial.

Proposition 1. 3.F o r  every a, 171 ; q= 0,1, ••• , aL giv e a basis of -Ha.
We have the following relations;

Lemma 1.4.

    

( _ i ) a b  1 , 7 ,(1a+b–q,q) = 4 ! h(tal-q.

(1)

( — 1) b+q (a+ b — q) ! hL,b)=q

Proposition 1. 5.

r r

1-1 k,r–k =
f ir – k,k .

k=0 k=0
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(2)

Hk,r_k n =  
0  i f  s ± r

r '
. - k )  i f  s= r

The proposition follows from Proposition 1.1 and Lemma 1.4.

1.4.
a. W e shall describe the operations of 00, E, etc. on the space of har-

monic polynomials H. These w ill give an infinitesimal representation of su (2)
as we shall see in the next section.

Lemma 1.6.
(1)

egg  = Eq 640+ I — 1qEq , = Eq t - 2g,/ —1Eg- 1 00 + g (g sg- i.
(2)

r05q = 5g T o +  — 1 g 5g ,ô =  aq6— 2q / 1 5g - 1 r0 F g (q 1) 5g - 1 .

The lemma follows from the commutation relations (1-1 - 4 ) . T his lemma im-
plies the following calculation.

Proposition 1. 7.

(1) —1 q)o,,/ 19014=  for q= 0 ,1 , • • • jai.

(2) sh'1,= 4+ 1 .

(3) thl= — q (I al — q 14- .

Similarly we have;

Proposition 1. 8.

(1) —  1 -c0 =  ( -Y — q) WI for q=0,1,•••, lai

(2) 5  = 1-11' q+1.

(3) 1 7 ,̀/ = — g (I a l g ± 1)
k , k

Proposition 1. 9.

A iW c j, lai (la' +2 )  h—cr
4

ai (lai +2) 114 4 h".
These follow from 1.2 and the above lemmas.
(1 -2 -1 ) and Proposition 1.9 yield that every harm onic function h w ith L2 —
boundary values on {izl <1} has the expansion

(1-4-1) h = E cg hg (z),
a,p
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which converges compact uniformly.

b. A s is show n in  th e  following the  decomposition (1- 3- 3) is ortho-
gonal with respect to  the spherical measure on S3 . The 3-form which gives the

1 * * * 
spherical measure a (dz ) is defined by in (dz A d i)  = — 71 610 A e i A 0 2  =  2

0: A e* A •E *, w here i  indicates th e  inner derivation  a n d  0 :  etc . a re  dual
1-forms of 0c, etc.. The inner product of two functions on S3 is

V, g) = f f (z)g (z ) (d z ) .

W e see that the adjoint operator of E is and 00 is selfadjoint.

(1) Proposition 1. 10.
a !  (hg, hp = 3  3

!
(2)

a !  
171) = 6P'q 5 a 's  (1 1+a  1) —p

where a ! =al ! a2 ! .
We have used the formula

_TB a • b ! Izizil2d (a+b - 1- 1 ) ! •

2. Infinitesimal representation of SU (2)

2. 1. Let SU (2 ) b e  th e  special unitary  group and  su  (2 ) b e  i t s  Lie
algebra. We regard often z  E  S3 as the element of S U (2 ) given by

(2-1-1) =
z2 •

The left action of SU (2) on S3 is defined for g=  ( a  — 1) )  and z =(z i, z 2)  by
b

(2- 1- 2) g  • z = (az i
—Sz2, bzi - Fatz2).

Sim ilarly the  right action is  defiened by

(2-1 - 3) z  • g = dz2— .

Both actions are free and transitive.
For a continuous function on S3 w e put

(2- 1- 4) Lgf (z) =f (g - 1,  R gf (z) =f (z • g) .

Lg (resp. R g )  is extended to a  unitary operator on L 2 (.53 , d o ) and give a unit-
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ary representation of SU (2) .
We take a basis of the Lie algebra su (2) given as follows;
(2-1-5)

1(A/ - 1 0
e ° _  2 \ 0    /'

(  0  1  \ 1/ 0

e l  2  — 1  O P  e 2 = 2 \ ,/ -1

Proposition 2. 1.

dR (e0) = 00, dR (ei) = 01, dR (e2) = 02.

Proposition 2. 2.

dL(e0) = — To, d L  (el) = — dL(e2)= —Z-2.

Propsitions 1.7 and 2.1 yield, for each r and a with la l= r, the following (r-I-1)
— dimensional representation (dR , Ha )  of Lie algebra s i (2 , C ) with highest

rweight

(2 - 1- 6) dR (6014= —  — 1(1
2
1

—  q)h& for q=0,1,• • • ,r ,

(2-1-7) d R  4 1 4 = — 14 dR  _) h= 0 ,

(2-1-8) dR(e + )14=q(r — q+1)h1-1 , d R ( e + )1 =0,

where

= ( 0  0 \ / 0  — 1 '
e- 1 e+—

k   0 k 0 0  1

and dR is extended to  si (2, C). All weights are half odd integers.
Similar formula for the representation (dL , f i"), lai =r, holds.

Theorem 2. 3. (1 )  The space H of harmonic polynomials on C2 is decom-
posed by the action R of SU (2) into

H= E E Ha .
r l a l = r

Each induced representation Ra = (R , Ha), with laj=r, is an irrreducible rep-

resentation with highest weight —
2  •

(2) The decomposition of H by the action L of SU (2) is given by

H=E E
r l a l = r

Each induced representation La  =-- (L, ga ), with la i r , is an irrreducible repre-

sentation with highest weight .
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Let C be the Casimir operator of su (2);

(2-1-9) C=-1e2+-1 + e e2  °  4 '
Then we have the following;

Proposition 2. 4.

dR a  (C) = dL a  (C) = (lai +2)
 8 /.

3. Representation of SO (4)

Let A and B be two elements of SU (2) and consider the application

( Z1
= E SL /  (2)

Z2 Z i

which we regard  as a  poi,nt z  on S3 , (2 -1 -1 ). T his establishes a  homomorph-
ism A 4  from  SU (2) X SU (2 ) into 0 (4). The kernel of the homomorphism con-
sists only of the pairs  (1 ,1 ) a n d  (—/, — i) .  It can be observed that the diagon-
al subgroup K  (subgroup fo r which A =B ) leaves th e  p o in t (1 ,0 ) C  C2 in-
varian t and  generates th e  subgroup o f ro ta tions in  the  3-dimensional space
perpendicular to  (1,0). From  th is w e can  show that A

°
 i s  a  homomorphism

onto the  connected component o f the  identity  in  0  (4 ). T hus w e  have estab-
lished the isomorphism

(3-1-2) A  G S U ( 2 )  X SU(2) — > SO (4) .± (/,

A s w as rem arked in  th e  above the  isotropy subgroup o f  (1 ,0) by  the action
(3-1-2) is isomorphic to

K -= 
S U  (2 )

 S O  (3)
and we have

(3-1-3) G/K= SO (4) /SO (3) =5 3 •

Every finite dim ensional representation a  of SO (4) is  rea lized  by  th e  finite
dimensional representation p of SU (2) x SU (2 ) whose kernel contains (±  (I,
/));

p(g) = 0'(A 4 (g))

Let Ra  (R, Ha )  and ,Y  = (L, FIB) be the representation of SU(2) described in
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Theorem 2.3. T h e  ternsor product LsR a  i s  a  finite dimensional repre-
sentation of SU(2) x SU(2) on the space

Fg=iis Ha

given by

(.1,5  0  Ra ) (g ,e)f (z, z') =f (g • z, z' • g') , for f En.
We have

dim Fg= (la' +1) co +1),

and

® p=0 ,iSi,q=0 ,1, - . lai

form a  basi of F .  T h e  weights of representation a re  integers o r  half odd inte-
la1+1131 gers according to either

2
i s  i n t e g e r  o r half odd integer.

Let g= exp (veo) = 
In  0 ),

n—&, and g'=exp(ge o) =
On m =C20.

We have

(Le 0  R a ) ( g , g ,
)
 (2  0  0 1) = n 2P-I5Im 2q-lalit

In particular, if v=ii=27z-  w e have (Ls 0 Ra ) ( — I, 0 hl) =  (_ 1 ) 1+151

O 4 .  Hence, f o r  (Ls 0 R a ) to  be  a  representation of 0 (4) it is necessary
that lal +1131 is  an even number. In this case all weights a re  integers. The con-
verse  is true  and, for each p a ir  (a, 13) su c h  th a t 'a l+  01 is  an  even number,
we have a representation crg of SO (4) such that

(L8 R a ) =0-g 0 A .

The characteristic function of the representation (Ls 0 Ra )  being

(3-1-4) a  ((etv
sin (10 +1) s i n  (1a1 +1)p 

Xs, , e ito =  
sinv sing

the  representation (Ls 0 Ra )  is irreducible an d  fo r  'a l +  1,81 even the  repre-
sentation ag is irreducible.
Thus we have;

Theorem 3. 1. (1) For every r, s such that r - Fs is an even number and
for every indices a, g w ith l  — r, =s,

(P1,, cr4',)

gives the irreducible representation of SO (4) of highest weight r+s 
2 •
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(2) The polynomials WI, 0 0 form a basis of weight vectors
for

4 .  Algebra of infinitesimal automorphisms on s'

4. 1. F o r  in d ic e s  a =  (ai, a2 ) and /3=  (/31, P2) w e shall put a ±  =
(a1±I31, a2± is2) .
1 denotes the index (1,1).

Lemma 4. 1.

(4-1-1) hg • h l=  E a+$—k1

k=0

for some rational numbers Ck
=

Ck (a, p; )(3, q); k=  0, •••
 '
p +q, where, for terms with

a negative index, Ck
=

0.

In fact, hg • hg E  sa + , n §04 - qd-I - Fisi - p- o .  Repeated applications of Proiposi-
tions 1.1 and 1.4 yield the assertion.
To have the constants C k (a, p; /3, q) is very cumbersome. We must solve linear
equations:

(1 - 4- 2) E L (n , C k
= R (n) n =1 , • • • , P ,

with the coefficients

R
(

l )  _ E p  q a2 131 V  $2

\p—i — i \q— n
(4-1-3)

( k ) (a i +P i — k ) ( a2 +$ 2 —k
L (n k) =E(_].),(p+q_k) \ i ) \  n — i I\ a2 +  —p—q ±n

Evidently C o (a, 0; /3, 0) =1. Integrating both sides o f  (4-1-1) we have from
Lemma 1.4 and Proposition 1.10

(4 - 1- 4) Clal (a, q; —P) = (-1)a2+p  a !  
ial+1 .

i=0

i=0

1 4
hi3O • h i,1 = — h 4H Z 1 2 h 3 , 010 4 '11 5

1 2• 142= —
3  hi,2 —  1214140.h i2,0
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The equations to obtain the coefficients in the last example are

2C0 +C 1 +C2= 0 ,  8C0—  2C2= 4, 2C0 —  Ci +C2 = O.

There a re  some recurrent formulas among the numbers Ck (a, p; [3, q) but
here we do not write down them.

The multiplication of two harmonic polynomials on C2 is not harm onic but
its restriction on B = {IA= 1} is again the restriction of some harmonic polyno-
mial. We have given in  (4-1-1) the formula of th is multiplication;

p±q
(4-1-5) hg • 4 = E ck hP ad -4 2 ,k i on B.

k=0
The same investigations on Cn for 1,/, 2 have already appeared in [Ru].

On B = {IA = 1) we consider the following graded algebra of (the  restric-
tions on B of) harmonic polynomials;

H (n) = Egrr H
r=o

gr,H= E Ha= Ejja

lal=r lal=r

Then we have

(4-1-6) H(r) •  H( s ) cH (r+s).

4. 2. Let V  (V ) denote the Lie algebra of smooth vector fields on B =
{izi = 1 } . Every X E'l/ (V ) is  w ritten  in the form

X (z) =fo (z) o (z) +fi(z) ( z )  +f  2 (z)(z) 02 (z) , z  E B,

Or

(4-2-1) X  ( z )  f o  (z) 0o (z) f  + (z) E (z) +1- (z)t. (z) ,

with smooth functions as coefficients. The topology of 1/ (5 2 )  is g iven by the
uniform convergence of the coefficients. Since th e  p o ly n o m ia ls  W I fo rm  a
dense set, by a theorem of W eierstrass, every vector field is expanded in

(4-2-2) hgtao (a, p ) 00-1-a+ (a, E+a- (a, p) S}

cr,P

Put

(4-2-3) Lg=hgeo Eg=4,6 Fg=hgt.

Let Vect (V ) CV  (S 3)  be the Lie subalgebra generated by Lg, Eg and F .  Here
are the commutation relations between the generators Lg, E , Fg, that give the
structure constants of Lie algebra Vect(53).
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Proposition 4. 2.

p+q

[L , L ] =  — — p + al —  ISO) E  (p, a; q
g=0

p+q+1

[Eg, E ]=  E (C„(p, a; q + 1, —C11 (p + 1, a; q, p))Eg313-.I.,

u=0

P+ q-1

[Fg, F ] = E (lai — p+ 1) C„ (p — 1, a; q, 13)
g =o

— q 131 — q + 1) C11 (p, a; q — 1 , 13) ) F g+
4 1.3 —.1'

P+q

E f l  =  - 1(q - - (131+ 1) C, (p, a; q, p)Eg-F,Y8-42.1
g=0

p ± q .

E (p + 1, a; q, [3) Lig_13+2,-.1,

P-1-4
[a, F ]  = / - 1  (q — 4- 10 — i)Ecg(p, a; q, is)Fg+4-4.1

1,=0

p+q-1

+P dal —p+1) E c, (p —1, a; q, 13) 1, g+
+ ,

p = 0

p+q+i

[Et, F fl =  E
ti=0

a; q + 1, s)Figstig

P+q - 1

+/3 (lai —p+i) E C14 (p—1, a; q, 13) Egtil i
g =o

p+q

—2E cu(p, a; q, p)Liz,113-2„.1,
„=.

where

a+13—te • 1= (cri +Si — p, a2+132 — 12).

Let

V (r) = {X Vect (V) ; the coefficients of X are in H (r)}

Proposition 4. 3.[ V  (r) , V (s)] c V (r±s +1) .

We have form Proposition 1.9 (1)
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L =  ( —1) a2±P

Eg = ( — 1)

—Ft= (—J) "

(4-2-4)

Ela'
!

Thus V  (r) is closed under complex conjugation.

5. R adul - Kravchenko - Khesin cocycle on Vect (S3)

5. 1. A. O. Radul [R] introduced after Kravchenko-Khesin the follow-
ing form ula  for the  cocycle  on  the  ring  of classical pseudodifferential oper-
ators on a manifold.

Let

CL (Mn) = { E ak (x, )}
—0 .< k 5d

be the ring of formal pseudodifferential symbols on a riemannian manifold M'z.
Here x  = (xi, • • • , xn )  are local coordinates, (6., •••, is  a non-zero covec-
tor, a k (x, are  functions on the cotangent bundle T * M w ith  zero section re-
moved that satisfiy the  homogeneity condition a k (x, = t kak (x, , t> 0. The
multiplication in CL (M ) is defined by

(5-1-1) a  •  b = 11 1
a !

 aaa aabx

a

w here a  denotes a m ultiindex. Let a  be  th e  canonical 1-form  o n  T * M; a =
E U x ,, and  le t w = da. The noncommutative residue of M. Wodzicki [W] of a
symbol a E CL (M) is defined by the formula

(5-1-2) Res a= f (z, )aA con - 1,
stm

which is a  differential n-form on M and where SIM is the fiber over z  of unit
cosphere bundle S*M . Integrating R es a  on  M w e obtain the trace formula on
CL ( f):

(5-1-3) Tr a= f  Res a.

W e have Tr [a, I)] = 0. Let S  be an elliptic differential operator of order m on
M with the leading symbol sn i (x „ 0  > 0  for Then the formula

(5-1-4) c (a, h) = Tr ([ ln s„„ a ]  •  b) a , b CL  (M )

gives a 2-cocycle [R].
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Here we note that, though ln sm (x, )  C L  ( M ) , we have  [ In Sm (x,C L  (M)]
ŒCL (M) . The cocycle properties are proved by the following fact:

Tr [ ln sm , a] =O.

Now we shall change the definition of Wodzicki's residue to  have a con-
cordant resu lt w ith  Kravchenko - Khesin's explanation o f Virasoro term , that
is, the cocycle for the central extension of Vect (s 1). T he  L ie  algebra Vect (51)
is generated by

L m = e +1 ` ±  m=o, +1,dz '

where we look S l = {zCC; 1z1 l}. The symbol of Lm  is  zm+ 1 C while the symbol
of the square root of L a p la c ia n  is  I. Thus

Lm [ L i ]  E(-1)k± i(n+ i)...(n_k+2) 
2k

zn+m-1-2-kc2-k

1

± ( - 1) k ± ' (n+1) —k +1) 
z n + m + 1

_
k c l

2k

T h e  homogeneity order (— 1) te rm  is  — —
1

1

2
n ( /2 1 )  Z n + m - 1 .  If  w e u se  here

Wodzicki's formula w e must integrate it on S:S 1 = {± 1}, which leads to O. So
we change the definition (5 - 1- 2) to  have a correct result. Let P (T * M ) be the
projective cotangent bundle whose fiber over a  po in t z  E M  is  the projective
space P (T M). W e revise our definition of Res a  by

(5-1-5) Res a= a_n(z, a A co'  ,
f P ( T iM )

We note especially that P (T:S 1)  is one point. The 2-cocycle becomes

1c (Ln , L .) =  f  Resc(Lm[lnICI, Ln])dz= - - n (n2 - 1) an+m,o.izi=i
Thus we get the Kravchenko-Khesin's formula.

Now we shall investigate the  cocycle o n  Vect (S 3) • W e  sh a ll continue to
denote B ={ zEC 2 : Izi =1} =- S3 .

Any covector is w ritten  by  W - 1-  16/i'd -  215T o r  equivalently by n e :+
CE*

,  where E*  is  the dual 1-form o f  i  W e take 77, c, as the coordinates

on T:13. Then the canonical 1-form a  becomes a = n e i --I- CS* ± CCI'. Let w =da.

The 5-form a A O  restricted on the local coordinate Uo= {(z, [77. C, e ] ) ;  77*
01cP(T*B) is given by

1aA co2= — c1CA dCA dV , dV =W ' A 0 i
* A 0 2

* ,
77
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where 722 +1C12 =1. By the polar coordinates 77 =cosO, C=sin0 e i ° , C =sin0

we have a A co' le = sin0 dO dO A dV , 0 ç  < - ,  0  SO < 2 r.  The symbol of the

first order differential operators L , Eg, Fg are respectively hgri , hgc, hgc, and
the symbol of Laplace - Beltrami operator is 172 +IC12 .

For X , Y E  V ect (B) we put

(5-1-6) R (X, d V = Res { (symb [ ln (772 + I (I 2 ) , (symbX)] }.

Then the formula

(5-1-7) c (X , Y) = f s 3R (X , Y )d V

defines a 2-cocycle on Vect (53)  and we have the central extension of Vect (53)
associated with this 2- cocycle.

Proposition 5. 1. R  (X , Y) for every X , Y  in  Vect (5 3)  is written by a
linear combination of Beta functions

B  (u, v ) = f  7.2t (sin) 2 u - 1  (cos) 2 0 ' d ,

0

with its coefficients polynomials in z,
Proof . Since Vect (5 3)  i s  the linear hu ll o f  (Lg, Eg, Fg) it is enough to

give calculation of Res for these vector fields. W e shall look R (Li, Lg). The

others are obtained by the same calculation. Put r-=- (722 + I C12 ) i  We have

[ln r,f  (z) n]
min(P,P') [q/2]E k , p ,  k  E D g j e q , j+ lp (p f (z ) r -2(p+y-k-q-3 0 )

E  E  0 0
q,

where Cp,p , ,k and D,24 are some constants and 5q,;= 2j or 2j+1 according to q is

even o r  odd. P  P )  denotes the  sum  of all differentiations that are p
E  E  00

(resp. p ',  q )  tim es w ith  respect to  E (resp. E , Bo). The te rm  of homogeneity
order — 3 of g (z) 77 • [ln r,f  (z ) EcE(B), where 77 = symb Bo, is given on B  by

f
E E D Q,i77 2i+3g  (z ) p ( P )

( z )
\ E  BP+p•A-q=5 k. 1 = 0 , 1 , 2 O

E E D q i n v+ig  (2 ,) o o p

P +P '-1-9-4  k j=0,1,2

It is enough to consider only those terms with p = p', fo r the  other terms van-
ish after the integration by g d  C. Then q becomes necessarily odd and the in-

k

(1) 10 ' q  ) f (z) .
E  0 0
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tegration on  the  fiber P (T B )  becom es a  linear combination of the following
type of integrals with polynomial coefficients;

f (s in ) 2 P - 2 k + 1  (c o s)  2 1 ' d

Remark. If  we took in the definition of Res the integration on SIB in-
stead of the projective cotangent bundle P(T *B ) we would have R (X, Y) =0.
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