Lie algebra of the infinitesimal automorphisms on S^{3} and its central extension

By
Tosiaki Kori

0. Introduction

In this paper we shall deal with a central extension of the Lie algebra of infinitesimal automorphisms on S^{3}. Such a central extension on the circle is famous in the name of Virasoro algebra. The Lie algebra Vect (S^{1}) of infinitesimal automorphisms on the circle is generated by (the restriction on S^{1}) of

$$
L_{m}=z^{m}\left(z \frac{d}{d z}\right), \quad m=0, \pm 1, \cdots
$$

where we look $S^{1}=\{z \in \mathrm{C} ;|z|=1\}$, with the commutation relation

$$
\left[L_{m}, L_{n}\right]=(n-m) L_{m+n} .
$$

A two cocycle on $\operatorname{Vect}\left(S^{1}\right)$ is given by the formula

$$
\begin{equation*}
c\left(L_{m}, L_{n}\right)=-\frac{1}{12} n\left(n^{2}-1\right) \delta_{n+m, 0} \tag{0-1}
\end{equation*}
$$

Virasoro algebra is the central extension associated with this two cocycle. A highest weight representation of the Virasoro algebra is generated by a highest weight representation of the affine Lie algebra $S^{1} g$ (Sugawara construction) $[\mathrm{K}]$. Though we have not a satisfactory theory on the highest weight representation of the (abelian) extension of $S^{3} g[\mathrm{M}-\mathrm{R}]$ and do not know about the action of $\operatorname{Vect}\left(S^{3}\right)$ on the representation space of current algebra the author thinks it is worth trying to have a central extension of $\operatorname{Vect}\left(S^{3}\right)$.

In $[\mathrm{K}-\mathrm{K}]$ it was shown that the two cocycle ($0-1$) is derived from the non-commutative residue on the cotangent bundle of S^{1}, that is,

$$
c(X, Y)=\int_{|z|=1} r e s\left[\ln |\zeta|^{2}, \operatorname{symb} X\right] \cdot \operatorname{symb} Y .
$$

Here symb X is the pseudodifferential symbol and ζ denotes fiber coordinate. (Actually their derivation of ($0-1$) should be corrected a little. See the

[^0]discussion in section 5.) We shall extend this method to have our central extension of Vect $\left(S^{3}\right)$.

In the above explanation z^{m} 's are spherical functions for a heighest weight representation of Lie group $U(1)$ acting on $S^{1} ; z \frac{d}{d z}=m z^{m}$. These weight functions enjoy the property that they are closed under products. In sections 1 to 3 we shall give a class of spherical functions for a heighest weight representation of $S U(2)$ acting on S^{3} such that the product is expressed by their linear combination. Such a property has been investigated in [Ru, V] earlier and we present a new (dual pair of) basis of the space of spherical functions. (The author thinks this is the only new point through sections 1 to 3.) These spherical functions are very commode to describe the Lie algebra $\operatorname{Vect}\left(S^{3}\right)$ and to construct a two-cocycle on it. The Lie algebra $\operatorname{Vect}\left(S^{3}\right)$ is introduced in 4.2 and the commutation relations are given in Proposition 4.2, The draft of this work was distributed in 1992 as volume No.92-12 of Report of Science and Engineering Research Laboratory of Waseda University.

1. Harmonic polynomials on C^{2}

1. 2. We introduce first the following vector fields that form a frame on $\mathrm{C}^{2}-\{0\}$:

$$
\nu=z_{1} \frac{\partial}{\partial z_{1}}+z_{2} \frac{\partial}{\partial z_{2}}, \quad \bar{\nu}=\overline{z_{1}} \frac{\partial}{\partial \bar{z}_{1}}+\overline{z_{2}} \frac{\partial}{\partial \bar{z}_{2}},
$$

$$
\begin{equation*}
\varepsilon=-\bar{z}_{2} \frac{\partial}{\partial z_{1}}+\bar{z}_{1} \frac{\partial}{\partial z_{2}}, \quad \bar{\varepsilon}=-z_{2} \frac{\partial}{\partial \bar{z}_{1}}+z_{1} \frac{\partial}{\partial \bar{z}_{2}} . \tag{1-1-1}
\end{equation*}
$$

Put

$$
\mathbf{n}=\frac{1}{2}(\nu+\bar{\nu}), \theta_{0}=\frac{1}{2 \sqrt{-1}}(\nu-\bar{\nu}), \theta_{1}=\frac{1}{2}(\varepsilon+\bar{\varepsilon}), \theta_{2}=\frac{1}{2 \sqrt{-1}}(\varepsilon-\bar{\varepsilon}) .
$$

\mathbf{n} is the normal to the sphere $\{|z|=$ const $\}$ and $\left\{\theta_{0}, \varepsilon, \bar{\varepsilon}\right\}$ form a basis for the induced tangential Cauchy-Riemann structure on the sphere.

There is another quartet of frame on $C^{2}-\{0\}$,

$$
\mu=z_{2} \frac{\partial}{\partial z_{2}}+\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{1}}, \bar{\mu}=\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{2}}+z_{1} \frac{\partial}{\partial z_{1}},
$$

$$
\begin{equation*}
\delta=\bar{z}_{2} \frac{\partial}{\partial \bar{z}_{1}}-z_{1} \frac{\partial}{\partial z_{2}}, \bar{\delta}=z_{2} \frac{\partial}{\partial z_{1}}-\bar{z}_{1} \frac{\partial}{\partial \bar{z}_{2}} . \tag{1-1-2}
\end{equation*}
$$

These vector fields give also a frame on $\mathrm{C}^{2}-\{0\}$. We have $\mathbf{n}=\frac{1}{2}(\mu+\bar{\mu})$. Put $\tau_{0}=\frac{1}{2 \sqrt{-1}}(\mu-\bar{\mu}), \tau_{1}=\frac{1}{2}(\delta+\bar{\delta}), \tau_{2}=\frac{1}{2 \sqrt{-1}}(\delta-\bar{\delta})$.

On the unit sphere $S^{3}=\{|z|=1\}$ we have the following commutation rela-
tions:

$$
\begin{equation*}
\left[\theta_{0}, \varepsilon\right]=\sqrt{-1} \varepsilon, \quad\left[\theta_{0}, \bar{\varepsilon}\right]=-\sqrt{-1} \bar{\varepsilon}, \quad[\varepsilon, \bar{\varepsilon}]=2 \sqrt{-1} \theta_{0} \tag{1-1-3}
\end{equation*}
$$

$$
\left[\tau_{0}, \delta\right]=\sqrt{-1} \delta, \quad\left[\tau_{0}, \bar{\delta}\right]=-\sqrt{-1} \bar{\delta}, \quad[\delta, \bar{\delta}]=2 \sqrt{-1} \tau_{0}
$$

$$
\begin{equation*}
[\varepsilon, \delta]=[\bar{\varepsilon}, \delta]=[\varepsilon, \bar{\delta}]=[\bar{\varepsilon}, \bar{\delta}]=\left[\theta_{0}, \tau_{0}\right]=0 \tag{1-1-4}
\end{equation*}
$$

1. 2 On C^{2} we consider the natural metric $d z_{1} \otimes d \bar{z}_{1}+d z_{2} \otimes d \bar{z}_{2}$, and on the sphere $S^{3}=\{|z|=1\}$ we consider the induced metric. With respect to this metric $\left\{\sqrt{2} \theta_{0}, \sqrt{2} \theta_{1}, \sqrt{2} \theta_{2}\right\}$ form an orthonormal frame on S^{3}. Similarly $\left\{\sqrt{2} \tau_{0}\right.$, $\left.\sqrt{2} \tau_{1}, \sqrt{2} \tau_{2}\right\}$ also give an orthonormal frame for the same metric. $\sqrt{2} \mathbf{n}$ is the unit normal to the sphere. Laplacian on C^{2} is given by $\Delta=\frac{\partial^{2}}{\partial z_{1} \partial z_{1}}+\frac{\partial}{\partial z^{2} \partial \bar{z}_{2}}$. The Laplace-Beltrami operator on $\mathrm{C}^{2}-\{0\}$ is given by $\Delta_{1}=\left(\theta_{0}^{2}+\theta_{1}^{2}+\theta_{2}^{2}\right)=\left(\tau_{0}^{2}\right.$ $\left.+\tau_{1}^{2}+\tau_{2}^{2}\right)$. We have the decomposoition;

$$
\Delta=\frac{1}{|z|^{2}}\left(\mathbf{n}^{2}+\mathbf{n}+\Delta_{1}\right) .
$$

The separation of variable method to obtain the spherical expansion of harmonic functions by the eigenvectors of the Laplace-Beltrami operator on the boundary is well known. We note that we have two candidates depending on which frame of vector fields θ_{i} or τ_{i} we use.

Let Δ_{1} be Laplace-Beltrami operator on the unit sphere $S^{3}=\{|z|=1\} .-\Delta_{1}$ being a second order elliptic differential operator, the eigenvalues of $-\Delta_{1}$ are nonnegtative with only accumulation point at infinity and the eigenfunctions form a complete system in $L^{2}\left(S^{3}, d \sigma\right)$, where σ is the normalized surface measure. Let $\left\{\phi_{\lambda}\right\}_{\lambda \geq 0}$ be the set of eigenfunctions of Δ_{1} on the unit sphere; $\Delta_{1} \phi_{\lambda}=$ $\lambda \phi_{\lambda}$. Then every harmonic function h in a unit ball $D=\{|z|<1\}$ with $L^{2}-$ boundary value on S^{3} has the expansion of the form;

$$
\begin{equation*}
h(z)=\sum_{\lambda} c_{\lambda} a_{\lambda}(|z|) \phi_{\lambda}\left(\frac{z}{|z|}\right), \tag{1-2-1}
\end{equation*}
$$

where $a_{\lambda}(t)=t^{\sqrt{4 \lambda+1}-1}$.

1. 3
a. A polynomial P on C^{2} is said to be of type (p, q) if

$$
\begin{equation*}
P\left(a z_{1}, a z_{2}, b \bar{z}_{1}, b \bar{z}_{2}\right)=a^{p} b^{q} P\left(z_{1}, z_{2}, \overline{z_{1}}, \bar{z}_{2}\right) . \tag{1-3-1}
\end{equation*}
$$

Let $\widehat{S}^{p, q}$ be the set of polynomials of type (p, q).
Similarly a polynomial that satisfies

$$
\begin{equation*}
P\left(a z_{1}, b z_{2}, b \bar{z}_{1}, a \bar{z}_{2}\right)=a^{k} b^{l} P\left(z_{1}, z_{2}, \bar{z}_{1}, \overline{z_{2}}\right) \tag{1-3-2}
\end{equation*}
$$

is called of class (k, l). The set of polynomials of class (k, l) is denoted by $S_{k, l}$.
Let H be the set of harmonic polynomials on C^{2} and put

$$
\widehat{H}^{p, q}=H \cap \widehat{S}^{p, q}, \quad H_{k, l}=H \cap S_{k, l} .
$$

The following facts are proved routinely [T].

Proposition 1. 1.

(1)

$$
\widehat{S}^{p, q}=\widehat{H}^{p, q} \oplus|z|^{2} \widehat{S}^{p-1, q-1}, \quad S_{p, q}=H_{p, q} \oplus|z|^{2} S_{p-1, q-1} .
$$

(2)

$$
\operatorname{dim} \widehat{H}^{p, q}=\operatorname{dim} H_{p, q}=p+q+1 .
$$

We have the following decomposition of H to direct sums:

$$
\begin{equation*}
H=\sum_{p, q} \widehat{H}^{p, q}, \quad H=\sum_{k, l} H_{k, l} . \tag{1-3-3}
\end{equation*}
$$

We shall see in the next section that these are decompositions of H as irreducible representation spaces of $S U(2)$.
b. In the sequel we shall use the multiindices $\alpha=\left(\alpha_{1}, \alpha_{2}\right), \alpha_{i}$'s being non-negative integers, and the notation $z^{\alpha}=z_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}$ for $z=\left(z_{1}, z_{2}\right) \in \mathrm{C}^{2}$. The meaning of the notations S_{α}, H_{α} or \widehat{H}^{α} will be obvious from \mathbf{a}. We shall also write $|\alpha|=\alpha_{1}+\alpha_{2}$.
Put

$$
\begin{equation*}
h_{\alpha}^{q}(z)=\varepsilon^{q}\left(z^{\alpha}\right), \quad \text { for } 0 \leq q \leq|\alpha| . \tag{1-3-4}
\end{equation*}
$$

Proposition 1. 2. For each $\alpha, h_{\alpha}^{q} ; q=0,1, \cdots,|\alpha|$, give a basis of H_{α}
There is on the other hand a series of polynomials generated by the operation of δ that constitute a basis of \widehat{H}^{α}.
Put

$$
\begin{equation*}
\widehat{h}_{q}^{\alpha}(z)=\delta^{q}\left(\bar{z}_{1}^{\alpha_{1}} z_{2}^{\alpha_{2}}\right) . \tag{1-3-5}
\end{equation*}
$$

We see that $\widehat{h}_{q}^{\alpha}(z)$ is a harmonic polynomial.
Proposition 1. 3. For every $\alpha, \widehat{h_{q}^{\alpha}} ; q=0,1, \cdots,|\alpha|$, give a basis of \widehat{H}^{α}. We have the following relations;

Lemma 1. 4.

$$
(-1)^{b+q}(a+b-q)!\overline{h_{(a, b)}^{q}}=q!h_{(b, a)}^{a+b-q}, \quad(-1)^{a} b!\widehat{h}_{a}^{(a+b-a, q)}=q!h_{(a, b)}^{a+b-q} .
$$

Proposition 1. 5.
(1)

$$
\sum_{k=0}^{r} H_{k, r-k}=\sum_{k=0}^{r} \widehat{H}^{r-k, k}
$$

(2)

$$
H_{k, r-k} \cap \widehat{H}^{s-q, q}=\left\{\begin{array}{l}
0 \text { if } s \neq r \\
\mathrm{Ch}^{q}{ }_{k, r-k)} \text { if } s=r
\end{array}\right.
$$

The proposition follows from Proposition 1.1 and Lemma 1.4.

1.4.

a. We shall describe the operations of θ_{0}, ε, etc. on the space of harmonic polynomials H. These will give an infinitesimal representation of $s u(2)$ as we shall see in the next section.

Lemma 1. 6.

(1)

$$
\begin{equation*}
\theta_{0} \varepsilon^{q}=\varepsilon^{q} \theta_{0}+\sqrt{-1} q \varepsilon^{q}, \quad \bar{\varepsilon} \varepsilon^{q}=\varepsilon^{q} \bar{\varepsilon}-2 q \sqrt{-1} \varepsilon^{q-1} \theta_{0}+q(q-1) \varepsilon^{q-1} . \tag{2}
\end{equation*}
$$

$$
\tau_{0} \delta^{q}=\delta^{q} \tau_{0}+\sqrt{-1} q \delta^{q}, \quad \bar{\delta} \delta^{q}=\delta^{q} \bar{\delta}-2 q \sqrt{-1} \delta^{q-1} \tau_{0}+q(q-1) \delta^{q-1} .
$$

The lemma follows from the commutation relations (1-1-4). This lemma implies the following calculation.

Proposition 1. 7.

(1) $\sqrt{-1} \theta_{0} h_{\alpha}^{q}=\left(\frac{|\alpha|}{2}-q\right) h_{\alpha}^{q} \quad$ for $q=0,1, \cdots,|\alpha|$.
(2) $\varepsilon h_{\alpha}^{q}=h_{\alpha}^{q+1}$.
(3) $\bar{\varepsilon} h_{\alpha}^{q}=-q(|\alpha|-q+1) h_{\alpha}^{q-1}$.

Similarly we have;

Proposition 1. 8.

(1) $\sqrt{-1} \tau_{0} \widehat{h}_{q}^{\alpha}=\left(\frac{|\alpha|}{2}-q\right) \widehat{h_{q}^{\alpha}} \quad$ for $q=0,1, \cdots,|\alpha|$.
(2) $\delta \widehat{h}_{q}^{\alpha}=\widehat{h}_{q+1}^{\alpha}$.
(3) $\bar{\delta} \widehat{h}_{q}^{\alpha}=-q(|\alpha|-q+1) \widehat{h}_{q-1}^{\alpha \mid-k, k}$.

Proposition 1.9.

$$
\begin{aligned}
& \Delta_{1} \widehat{h_{q}^{\alpha}}=-\frac{|\alpha|(|\alpha|+2)}{4} \widehat{h_{q}^{\alpha}}, \\
& \Delta_{1} h_{\alpha}^{q}=-\frac{|\alpha|(|\alpha|+2)}{4} h_{\alpha}^{q} .
\end{aligned}
$$

These follow from 1.2 and the above lemmas.
(1-2-1) and Proposition 1.9 yield that every harmonic function h with $L^{2}-$ boundary values on $\{|z|<1\}$ has the expansion

$$
\begin{equation*}
h(z)=\sum_{\alpha, p} c_{\alpha}^{p} h_{\alpha}^{p}(z), \tag{1-4-1}
\end{equation*}
$$

which converges compact uniformly.
b. As is shown in the following the decomposition (1-3-3) is orthogonal with respect to the spherical measure on S^{3}. The 3-form which gives the spherical measure $\sigma(d z)$ is defined by $i_{n}(d z \wedge d \bar{z})=-\frac{1}{4} \theta_{0}^{*} \wedge \theta_{1}^{*} \wedge \theta_{2}^{*}=\frac{\sqrt{-1}}{2}$ $\theta_{0}^{*} \wedge \varepsilon^{*} \wedge \bar{\varepsilon}^{*}$, where i indicates the inner derivation and θ_{0}^{*} etc. are dual 1 -forms of θ_{0} etc.. The inner product of two functions on S^{3} is

$$
(f, g)=\int_{\{|z|=1\}} f(z) \overline{g(z)} \sigma(d z) .
$$

We see that the adjoint operator of ε is $-\bar{\varepsilon}$ and θ_{0} is selfadjoint.
(1) Proposition 1. 10.
(2)

$$
\left(h_{\alpha}^{p}, h_{\beta}^{q}\right)=\delta_{p, q} \delta_{\alpha, \beta} \frac{\alpha!}{(|\alpha|+1)} \frac{p!}{(|\alpha|-p)!}
$$

$$
\left(\widehat{h_{p}^{\alpha}}, \widehat{h_{q}^{\beta}}\right)=\delta_{p, q} \delta_{\alpha, \beta} \frac{\alpha!}{(|\alpha|+1)} \frac{p!}{(|\alpha|-p)!}
$$

where $\alpha!=\alpha_{1}!\alpha_{2}!$.
We have used the formula

$$
\int_{B}\left|z_{1}^{a} z_{2}^{b}\right|^{2} d \sigma=\frac{a!b!}{(a+b+1)!} .
$$

2. Infinitesimal representation of $\mathrm{SU}(2)$

2.1. Let $S U(2)$ be the special unitary group and $s u(2)$ be its Lie algebra. We regard often $z \in S^{3}$ as the element of $S U(2)$ given by

$$
\ddot{z}=\left(\begin{array}{cc}
z_{1} & -\bar{z}_{2} \tag{2-1-1}\\
z_{2} & \bar{z}_{1}
\end{array}\right)
$$

The left action of $S U(2)$ on S^{3} is defined for $g=\left(\begin{array}{cc}a & -\bar{b} \\ b & \bar{a}\end{array}\right)$ and $z=\left(z_{1}, z_{2}\right)$ by

$$
\begin{equation*}
g \cdot z=\left(a z_{1}-\bar{b} z_{2}, b z_{1}+\bar{a} z_{2}\right) . \tag{2-1-2}
\end{equation*}
$$

Similarly the right action is defiened by

$$
\begin{equation*}
z \cdot g=\left(\bar{a} z_{1}+b \overline{z_{2}}, \bar{a} z_{2}-b \bar{z}_{1}\right) \tag{2-1-3}
\end{equation*}
$$

Both actions are free and transitive.
For a continuous function on S^{3} we put

$$
\begin{equation*}
L_{g} f(z)=f\left(g^{-1} \cdot z\right), \quad R_{g} f(z)=f(z \cdot g) \tag{2-1-4}
\end{equation*}
$$

L_{g} (resp. R_{g}) is extended to a unitary operator on $L^{2}\left(S^{3}, d \sigma\right)$ and give a unit-
ary representation of $S U(2)$.
We take a basis of the Lie algebra $s u$ (2) given as follows; (2-1-5)

$$
e_{0}=\frac{1}{2}\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & \sqrt{-1}
\end{array}\right), \quad e_{1}=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad e_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right) .
$$

Proposition 2. 1.

$$
d R\left(e_{0}\right)=\theta_{0}, \quad d R\left(e_{1}\right)=\theta_{1}, \quad d R\left(e_{2}\right)=\theta_{2} .
$$

Proposition 2. 2.

$$
d L\left(e_{0}\right)=-\tau_{0}, \quad d L\left(e_{1}\right)=-\tau_{1}, \quad d L\left(e_{2}\right)=-\tau_{2} .
$$

Propsitions 1.7 and 2.1 yield, for each r and α with $|\alpha|=r$, the following $(r+1)$ - dimensional representation ($d R, H_{\alpha}$) of Lie algebra $s l(2, \mathrm{C})$ with highest weight $\frac{r}{2}$:

$$
\begin{equation*}
d R\left(e_{0}\right) h_{\alpha}^{q}=-\sqrt{-1}\left(\frac{r}{2}-q\right) h_{\alpha}^{q} \text { for } q=0,1, \cdots, r, \tag{2-1-6}
\end{equation*}
$$

$$
\begin{gather*}
d R\left(e_{-}\right) h_{\alpha}^{q}=-h_{\alpha}^{q+1}, \quad d R\left(e_{-}\right) h_{\alpha}^{r}=0, \tag{2-1-7}\\
d R\left(e_{+}\right) h_{\alpha}^{q}=q(r-q+1) h_{\alpha}^{q-1}, \quad d R\left(e_{+}\right) h_{\alpha}^{0}=0, \tag{2-1-8}
\end{gather*}
$$

where

$$
e_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad e_{+}=\left(\begin{array}{cc}
0 & -1 \\
0 & 0
\end{array}\right) .
$$

and $d R$ is extended to $s l(2, \mathrm{C})$. All weights are half odd integers. Similar formula for the representation $\left(d L, \widehat{H}^{\alpha}\right),|\alpha|=r$, holds.

Theorem 2. 3. (1) The space H of harmonic polynomials on C^{2} is decomposed by the action R of $S U$ (2) into

$$
H=\sum_{r} \sum_{|\alpha|=r} H_{\alpha}
$$

Each induced representation $R_{\alpha}=\left(R, H_{\alpha}\right)$, with $|\alpha|=r$, is an irrreducible rep. resentation with highest weight $\frac{r}{2}$.
(2) The decomposition of H by the action L of $S U(2)$ is given by

$$
H=\sum_{r} \sum_{|\alpha|=r} \hat{H}^{\alpha} .
$$

Each induced representation $L^{\alpha}=\left(L, \widehat{H}^{\alpha}\right)$, with $|\alpha|=r$, is an irrreducible representation with highest weight $\frac{r}{2}$.

Let C be the Casimir operator of $s u(2)$;

$$
\begin{equation*}
C=\frac{1}{2} e_{0}^{2}+\frac{1}{4}\left\{e_{+} e_{-}+e_{-} e_{+}\right\} . \tag{2-1-9}
\end{equation*}
$$

Then we have the following;

Proposition 2. 4.

$$
d R_{\alpha}(C)=d L^{\alpha}(C)=\frac{|\alpha|(|\alpha|+2)}{8} I
$$

3. Representation of $S O$ (4)

3. .1. Let A and B be two elements of $S U(2)$ and consider the application

$$
\begin{equation*}
\ddot{z} \longrightarrow A^{-1} \ddot{z} B \tag{3-1-1}
\end{equation*}
$$

where

$$
\ddot{z}=\left(\begin{array}{cc}
z_{1} & -\bar{z}_{2} \\
z_{2} & \bar{z}_{1}
\end{array}\right) \in S U(2)
$$

which we regard as a point z on $S^{3},(2-1-1)$. This establishes a homomorphism $A^{\#}$ from $S U(2) \times S U(2)$ into $O(4)$. The kernel of the homomorphism consists only of the pairs (I, I) and $(-I,-I)$. It can be observed that the diagonal subgroup K (subgroup for which $A=B$) leaves the point $(1,0) \in \mathrm{C}^{2}$ invariant and generates the subgroup of rotations in the 3 -dimensional space perpendicular to (1,0). From this we can show that $A^{\#}$ is a homomorphism onto the connected component of the identity in O (4). Thus we have established the isomorphism

$$
\begin{equation*}
A^{\#}: G=\frac{S U(2) \times S U(2)}{ \pm(I, I)} \longrightarrow S O(4) \tag{3-1-2}
\end{equation*}
$$

As was remarked in the above the isotropy subgroup of $(1,0)$ by the action (3-1-2) is isomorphic to

$$
K \simeq \frac{S U(2)}{ \pm I} \simeq S O
$$

and we have
(3-1-3)

$$
G / K \simeq S O(4) / S O(3) \simeq S^{3} .
$$

Every finite dimensional representation σ of $S O$ (4) is realized by the finite dimensional representation ρ of $S U(2) \times S U(2)$ whose kernel contains $(\pm$ (, I));

$$
\rho(g)=\sigma\left(A^{\#}(g)\right) .
$$

Let $R_{\alpha}=\left(R, H_{\alpha}\right)$ and $L^{\beta}=\left(L, \widehat{H}^{\beta}\right)$ be the representation of $S U(2)$ described in

Theorem 2.3. The ternsor product $L^{\beta} \otimes R_{\alpha}$ is a finite dimensional representation of $S U(2) \times S U(2)$ on the space

$$
F_{\alpha}^{\beta}=\widehat{H}^{\beta} \otimes H_{\alpha}
$$

given by

$$
\left(L^{\beta} \otimes R_{\alpha}\right)_{\left(g, g^{\prime}\right)} f\left(z, z^{\prime}\right)=f\left(g \cdot z, \quad z^{\prime} \cdot g^{\prime}\right), \quad \text { for } f \in F_{\alpha}^{\beta}
$$

We have

$$
\operatorname{dim} F_{\alpha}^{\beta}=(|\alpha|+1)(|\beta|+1),
$$

and

$$
\widehat{h_{p}^{\beta}} \otimes h_{\alpha}^{q} ; \quad p=0,1, \cdots,|\beta|, q=0,1, \cdots,|\alpha|
$$

form a basi of F_{α}^{β}. The weights of representation are integers or half odd integers according to either $\frac{|\alpha|+|\beta|}{2}$ is integer or half odd integer.

Let $g=\exp \left(\nu e_{0}\right)=\left(\begin{array}{cc}n & 0 \\ 0 & \bar{n}\end{array}\right), n=e^{\frac{i}{2} \nu}$, and $g^{\prime}=\exp \left(\mu e_{0}\right)=\left(\begin{array}{cc}m & 0 \\ 0 & \bar{m}\end{array}\right), m=e^{\frac{i}{2} \mu}$.
We have

$$
\left(L^{\beta} \otimes R_{\alpha}\right)_{\left(g, g^{\prime}\right)}\left(\widehat{h}_{p}^{\beta} \otimes h_{\alpha}^{q}\right)=n^{2 p-|\beta|} m^{2 q-|\alpha|} \widehat{h}_{p}^{\beta} \otimes h_{\alpha}^{q} .
$$

In particular, if $\nu=\mu=2 \pi$ we have $\left(L^{\beta} \otimes R_{\alpha}\right)(-I,-I)\left(\widehat{h_{p}^{\beta}} \otimes h_{\alpha}^{q}\right)=(-1)^{|\alpha|+|\beta|}$ $\widehat{h}_{p}^{\beta} \otimes h_{\alpha}^{q}$. Hence, for $\left(L^{\beta} \otimes R_{\alpha}\right)$ to be a representation of $O(4)$ it is necessary that $|\alpha|+|\beta|$ is an even number. In this case all weights are integers. The converse is true and, for each pair (α, β) such that $|\alpha|+|\beta|$ is an even number, we have a representation σ_{α}^{β} of $S O$ (4) such that

$$
\left(L^{\beta} \otimes R_{\alpha}\right)=\sigma_{\alpha}^{\beta} \circ \mathrm{A}^{\#} .
$$

The characteristic function of the representation $\left(L^{\beta} \otimes R_{\alpha}\right)$ being

$$
\begin{equation*}
\chi_{\beta, \alpha}\left(\left(e^{i \nu}, e^{i \mu}\right)\right)=\frac{\sin (|\beta|+1) \nu}{\sin \nu} \cdot \frac{\sin (|\alpha|+1) \mu}{\sin \mu}, \tag{3-1-4}
\end{equation*}
$$

the representation $\left(L^{\beta} \otimes R_{\alpha}\right)$ is irreducible and for $|\alpha|+|\beta|$ even the representation σ_{α}^{β} is irreducible.
Thus we have;
Theorem 3.1. (1) For every r, s such that $r+s$ is an even number and for every indices α, β with $|\alpha|=r,|\beta|=s$,

$$
\left(F_{\alpha}^{\beta}, \sigma_{\alpha}^{\beta}\right)
$$

gives the irreducible representation of $S O$ (4) of highest weight $\frac{r+s}{2}$.
(2) The polynomials $\widehat{h}_{p}^{B} \otimes h_{\alpha}^{q}, 0 \leq p \leq s, 0 \leq q \leq r$, form a basis of weight vectors for σ_{α}^{β}

4. Algebra of infinitesimal automorphisms on S^{3}

4. 5. For indices $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}\right)$ we shall put $\alpha \pm \beta=$ $\left(\alpha_{1} \pm \beta_{1}, \alpha_{2} \pm \beta_{2}\right)$.
$\mathbf{1}$ denotes the index $(1,1)$.

Lemma 4. 1.

$$
\begin{equation*}
h_{\alpha}^{p} \cdot h_{\beta}^{q}=\sum_{k=0}^{p+q} C_{k} \mid z^{2 k} h_{\alpha+\beta-k 1}^{p+q-k} \tag{4-1-1}
\end{equation*}
$$

for some rational numbers $C_{k}=C_{k}(\alpha, p ; \beta, q) ; k=0, \cdots, p+q$, where, for terms with a negative index, $C_{k}=0$.

In fact, $h_{\alpha}^{p} \cdot h_{\beta}^{\alpha} \in S_{\alpha+\beta} \cap \widehat{S}^{(p+q,|\alpha|+|\beta|-p-q)}$. Repeated applications of Proipositions 1.1 and 1.4 yield the assertion.
To have the constants $C_{k}(\alpha, p ; \beta, q)$ is very cumbersome. We must solve linear equations:

$$
\begin{equation*}
\sum_{k} L(n, k) C_{k}=R(n) \quad n=1, \cdots, p+q \tag{1-4-2}
\end{equation*}
$$

with the coefficients

$$
\begin{equation*}
R(n)=\sum_{i=0}^{n} p!q!\binom{\alpha_{1}}{i}\binom{\alpha_{2}}{p-i}\binom{\beta_{1}}{n-i}\binom{\beta_{2}}{q-n+i} \tag{4-1-3}
\end{equation*}
$$

$$
L(n k)=\sum_{i=0}^{k}(-1)^{i}(p+q-k)!\binom{k}{i}\binom{\alpha_{1}+\beta_{1}-k}{n-i}\binom{\alpha_{2}+\beta_{2}-k}{\alpha_{2}+\beta_{2}-p-q+n-i}
$$

Evidently $C_{0}(\alpha, 0 ; \beta, 0)=1$. Integrating both sides of (4-1-1) we have from Lemma 1.4 and Proposition 1.10

$$
\begin{equation*}
C_{|\alpha|}(\alpha, q ; \widehat{\alpha},|\alpha|-p)=(-1)^{\alpha_{2}+p} \frac{\alpha!}{|\alpha|+1} . \tag{4-1-4}
\end{equation*}
$$

Example.

$$
\begin{aligned}
& h_{1,0}^{0} \cdot h_{1,1}^{1}=\frac{2}{3} h_{2,1}^{1}+\frac{1}{3}|z|^{2} h_{1,0}^{0} \\
& h_{2,0}^{2} \cdot h_{2,1}^{2}=\frac{1}{10} h_{4,1}^{4}-\frac{4}{15}|z|^{2} h_{3,0}^{3} \\
& h_{2,0}^{1} \cdot h_{0,2}^{1}=\frac{1}{3} h_{2,2}^{2}-\frac{2}{3}|z|^{4} h_{0,0}^{0} .
\end{aligned}
$$

The equations to obtain the coefficients in the last example are

$$
2 C_{0}+C_{1}+C_{2}=0,8 C_{0}-2 C_{2}=4,2 C_{0}-C_{1}+C_{2}=0 .
$$

There are some recurrent formulas among the numbers $C_{k}(\alpha, p ; \beta, q)$ but here we do not write down them.

The multiplication of two harmonic polynomials on C^{2} is not harmonic but its restriction on $B=\{|z|=1\}$ is again the restriction of some harmonic polynomial. We have given in (4-1-1) the formula of this multiplication;

$$
\begin{equation*}
h_{\alpha}^{p} \cdot h_{\beta}^{q}=\sum_{k=0}^{p+q} C_{k} h_{\alpha+\beta-k 1}^{p+q-k} \text { on } B . \tag{4-1-5}
\end{equation*}
$$

The same investigations on C^{n} for $n \geq 2$ have already appeared in [Ru].
On $B=\{|z|=1\}$ we consider the following graded algebra of (the restrictions on B of) harmonic polynomials;

$$
\begin{aligned}
& H(n)=\sum_{r=0}^{n} g r_{r} H \\
& g r_{r} H=\sum_{|\alpha|=r} H_{\alpha}=\sum_{|\alpha|=r} \widehat{H}^{\alpha} .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
H(r) \cdot H(s) \subset H(r+s) . \tag{4-1-6}
\end{equation*}
$$

4. 2. Let $\mathscr{V}\left(S^{3}\right)$ denote the Lie algebra of smooth vector fields on $B=$ $\{|z|=1\}$. Every $X \in \mathscr{V}\left(S^{3}\right)$ is written in the form

$$
X(z)=f_{0}(z) \theta_{0}(z)+f_{1}(z) \theta_{1}(z)+f_{2}(z) \theta_{2}(z), \quad z \in B
$$

or

$$
\begin{equation*}
X(z)=f_{0}(z) \theta_{0}(z)+f_{+}(z) \varepsilon(z)+f_{-}(z) \bar{\varepsilon}(z), \tag{4-2-1}
\end{equation*}
$$

with smooth functions as coefficients. The topology of $\mathscr{V}\left(S^{3}\right)$ is given by the uniform convergence of the coefficients. Since the polynomials $\left\{h_{\alpha}^{q}\right\}$ form a dense set, by a theorem of Weierstrass, every vector field is expanded in

$$
\begin{equation*}
X=\sum_{\alpha, p} h_{\alpha}^{p}\left\{a_{0}(\alpha, p) \theta_{0}+a_{+}(\alpha, p) \varepsilon+a_{-}(\alpha, p) \bar{\varepsilon}\right\} . \tag{4-2-2}
\end{equation*}
$$

Put

$$
\begin{equation*}
L_{\alpha}^{p}=h_{\alpha}^{p} \theta_{0} \quad E_{\alpha}^{p}=h_{\alpha}^{\mathrm{p}} \varepsilon \quad F_{\alpha}^{p}=h_{\alpha}^{p} \bar{\varepsilon} . \tag{4-2-3}
\end{equation*}
$$

Let $\operatorname{Vect}\left(S^{3}\right) \subset \mathscr{V}\left(S^{3}\right)$ be the Lie subalgebra generated by $L_{\alpha}^{p}, E_{\alpha}^{p}$ and F_{α}^{p}. Here are the commutation relations between the generators $L_{\alpha}^{p}, E_{\alpha}^{p}, F_{\alpha}^{p}$, that give the structure constants of Lie algebra Vect $\left(S^{3}\right)$.

Proposition 4. 2.

$$
\begin{aligned}
& {\left[L_{\alpha}^{p}, L_{\beta}^{q}\right]=\sqrt{-1}\left(q-p+\frac{1}{2}(|\alpha|-|\beta|)\right) \sum_{\mu=0}^{p+q} C_{\mu}(p, \alpha ; q, \beta) L_{\alpha+\beta}^{p+q-\mu-\mu, 1}} \\
& {\left[E_{\alpha}^{p}, E_{\beta}^{q}\right]=\sum_{\mu=0}^{p+q+1}\left(C_{\mu}(p, \alpha ; q+1, \beta)-C_{\mu}(p+1, \alpha ; q, \beta)\right) E_{\alpha+\beta,-\mu-\mu}^{p++1-\mu}} \\
& {\left[F_{\alpha}^{p}, F_{\beta}^{q}\right]=\sum_{\mu=0}^{p+q-1}\left(p(|\alpha|-p+1) C_{\mu}(p-1, \alpha ; q, \beta)\right.} \\
& \left.{ }_{-q}(|\beta|-q+1) C_{\mu}(p, \alpha ; q-1, \beta)\right) F_{\alpha+\beta-\mu, 1}^{p+q-1-\mu} \\
& {\left[L_{\alpha}^{p}, E_{\beta}^{q}\right]=\sqrt{-1}\left(q-\frac{1}{2}|\beta|+1\right) \sum_{\mu=0}^{p+q} C_{\mu}(p, \alpha ; q, \beta) E_{\alpha+\beta-\mu-\mu}^{p+q-\mu}} \\
& -\sum_{\mu=0}^{p+q+1} C_{\mu}(p+1, \alpha ; q, \beta) L_{\alpha+\beta-\mu \cdot-1}^{p+q+1-\mu} \\
& {\left[L_{\alpha}^{p}, F_{\beta}^{q}\right]=\sqrt{-1}\left(q-\frac{1}{2}|\beta|-1\right) \sum_{\mu=0}^{p+q} C_{\mu}(p, \alpha ; q, \beta) F_{\alpha+\beta-\mu-\mu}^{p+q}} \\
& +p(|\alpha|-p+1) \sum_{\mu=0}^{p+q-1} C_{\mu}(p-1, \alpha ; q, \beta) L_{\alpha+\beta}^{p+q-1-\mu \cdot \mu} \\
& {\left[E_{\alpha}^{p}, F_{\beta}^{q}\right]=\sum_{\mu=0}^{p+q+1} C_{\mu}(p, \alpha ; q+1, \beta) F_{\alpha+\beta-\mu, 1}^{p+q+1-\mu}} \\
& +p(|\alpha|-p+1) \sum_{\mu=0}^{p+q-1} C_{\mu}(p-1, \alpha ; q, \beta) E_{\alpha+\beta}^{p+\alpha-1-\mu \cdot \mu} \\
& -2 \sum_{\mu=0}^{p+q} C_{\mu}(p, \alpha ; q, \beta) L_{\alpha+\beta-\mu-\mu,}^{p+q-\mu},
\end{aligned}
$$

where

$$
\alpha+\beta-\mu \cdot 1=\left(\alpha_{1}+\beta_{1}-\mu, \alpha_{2}+\beta_{2}-\mu\right) .
$$

Let

$$
V(r)=\left\{X \in \operatorname{Vect}\left(S^{3}\right) \text {; the coefficients of } X \text { are in } H(r)\right\} .
$$

Proposition 4. 3. $[V(r), V(s)] \subset V(r+s+1)$.
We have form Proposition 1.9 (1)

$$
\begin{align*}
& \overline{L_{\alpha}^{p}}=(-1)^{\alpha_{2}+p} \frac{p!}{(|\alpha|-p)!} L_{\bar{\alpha}}^{|\alpha|-p} \\
& \overline{E_{\alpha}^{\phi}}=(-1)^{\alpha_{2}+p} \frac{p!}{(|\alpha|-p)!} F_{\bar{\alpha}}^{|\alpha|-p} \tag{4-2-4}\\
& \overline{F_{\alpha}^{p}}=(-1)^{\alpha_{2}+p} \frac{p!}{(|\alpha|-p)!} E^{|\alpha|-p} .
\end{align*}
$$

Thus $V(r)$ is closed under complex conjugation.

5. Radul-Kravchenko-Khesin cocycle on Vect $\left(S^{3}\right)$

5. 6. A. O. Radul [R] introduced after Kravchenko-Khesin the following formula for the cocycle on the ring of classical pseudodifferential operators on a manifold.

Let

$$
C L\left(M^{n}\right)=\left\{a=\sum_{-\infty<k \leq d} a_{k}(x, \xi)\right\}
$$

be the ring of formal pseudodifferential symbols on a riemannian manifold M^{n}. Here $x=\left(x_{1}, \cdots, x_{n}\right)$ are local coordinates, $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$ is a non-zero covector, $a_{k}(x, \xi)$ are functions on the cotangent bundle $T^{*} M$ with zero section removed that satisfiy the homogeneity condition $a_{k}(x, t \xi)=t^{k} a_{k}(x, \xi), t>0$. The multiplication in $C L(M)$ is defined by

$$
\begin{equation*}
a \cdot b=\sum_{\alpha} \frac{1}{\alpha!} \partial_{\xi}^{\alpha} a \partial_{x}^{\alpha} b, \tag{5-1-1}
\end{equation*}
$$

where α denotes a multiindex. Let α be the canonical 1 -form on $T^{*} M ; \alpha=$ $\Sigma \xi_{i} d x_{i}$, and let $\omega=d \alpha$. The noncommutative residue of M . Wodzicki [W] of a symbol $a \in C L(M)$ is defined by the formula

$$
\begin{equation*}
\operatorname{Res} a=\int_{S_{2}^{*} M} a_{-n}(z, \xi) \alpha \wedge \omega^{n-1} \tag{5-1-2}
\end{equation*}
$$

which is a differential n-form on M and where $S_{z}^{*} M$ is the fiber over z of unit cosphere bundle $S^{*} M$. Integrating Res a on M we obtain the trace formula on $C L$ (M) :

$$
\begin{equation*}
\operatorname{Tr} a=\int_{M} \operatorname{Res} a . \tag{5-1-3}
\end{equation*}
$$

We have $\operatorname{Tr}[a, b]=0$. Let S be an elliptic differential operator of order m on M with the leading symbol $s_{m}(x, \xi)>0$ for $\xi \neq 0$. Then the formula

$$
\begin{equation*}
c(a, b)=\operatorname{Tr}\left(\left[\ln s_{m}, a\right] \cdot b\right) \quad a, b \in C L(M) \tag{5-1-4}
\end{equation*}
$$

gives a 2-cocycle [R].

Here we note that, though $\ln s_{m}(x, \xi) \notin C L(M)$, we have $\left[\ln s_{m}(x, \xi), C L(M)\right]$ $\subset C L(M)$. The cocycle properties are proved by the following fact:

$$
\operatorname{Tr}\left[\ln s_{m}, a\right]=0
$$

Now we shall change the definition of Wodzicki's residue to have a concordant result with Kravchenko-Khesin's explanation of Virasoro term, that is, the cocycle for the central extension of $\operatorname{Vect}\left(S^{1}\right)$. The Lie algebra Vect $\left(S^{1}\right)$ is generated by

$$
L_{m}=z^{m+1} \frac{d}{d z}, \quad m=0, \pm 1, \cdots
$$

where we look $S^{1}=\{z \in C ;|z|=1\}$. The symbol of L_{m} is $z^{m+1} \zeta$ while the symbol of the square root of Laplacian is $|\zeta|$. Thus

$$
\begin{aligned}
L_{m}\left[\ln |\zeta|, L_{n}\right] & =\sum_{k \geq 1} \frac{(-1)^{k+1}(n+1) \cdots(n-k+2)}{2 k} z^{n+m+2-k} \zeta^{2-k} \\
& +\sum_{k \geq 1} \frac{(-1)^{k+1}(n+1) \cdots(n-k+1)}{2 k} z^{n+m+1-k} \zeta^{1-k}
\end{aligned}
$$

The homogeneity order (-1) term is $-\frac{1}{12} n\left(n^{2}-1\right) z^{n+m-1}$. If we use here Wodzicki's formula we must integrate it on $S_{z}^{*} S^{1}=\{ \pm 1\}$, which leads to 0 . So we change the definition (5-1-2) to have a correct result. Let $P\left(T^{*} M\right)$ be the projective cotangent bundle whose fiber over a point $z \in M$ is the projective space $P\left(T_{z}^{*} M\right)$. We revise our definition of Res α by

$$
\begin{equation*}
\text { Res } a=\int_{P\left(T_{Z M}^{*} M\right.} a_{-n}(z, \xi) \alpha \wedge \omega^{n-1}, \tag{5-1-5}
\end{equation*}
$$

We note especially that $P\left(T_{z}^{*} S^{1}\right)$ is one point. The 2 -cocycle becomes

$$
c\left(L_{n}, L_{m}\right)=\int_{|z|=1} \operatorname{Res}_{\zeta}\left(L_{m}\left[\ln |\zeta|, L_{n}\right]\right) d z=-\frac{1}{12} n\left(n^{2}-1\right) \delta_{n+m, 0}
$$

Thus we get the Kravchenko-Khesin's formula.
Now we shall investigate the cocycle on $\operatorname{Vect}\left(S^{3}\right)$. We shall continue to denote $B=\left\{z \in C^{2} ;|z|=1\right\} \cong S^{3}$.

Any covector is written by $\xi_{0} \theta_{0}^{*}+\xi_{1} \theta_{1}^{*}+\xi_{2} \theta_{2}^{*}$ or equivalently by $\eta \theta_{0}^{*}+$ $\zeta \varepsilon^{*}+\bar{\zeta} \bar{\varepsilon}^{*}$, where $\bar{\varepsilon}^{*}$ is the dual 1 -form of $\bar{\varepsilon}$. We take $\eta, \zeta, \bar{\zeta}$ as the coordinates on $T_{2}^{*} B$. Then the canonical 1-form α becomes $\alpha=\eta \theta_{1}^{*}+\zeta \varepsilon^{*}+\bar{\zeta} \bar{\varepsilon}^{*}$. Let $\omega=d \alpha$. The 5-form $\alpha \wedge \omega^{2}$ restricted on the local coordinate $U_{0}=\{(z,[\eta, \zeta, \bar{\zeta}]) ; \eta \neq$ $0\} \subset P\left(T^{*} B\right)$ is given by

$$
\alpha \wedge \omega^{2}=\frac{1}{\eta} d \zeta \wedge d \bar{\zeta} \wedge d V, \quad d V=\theta_{0}^{*} \wedge \theta_{1}^{*} \wedge \theta_{2}^{*}
$$

where $\eta^{2}+|\zeta|^{2}=1$. By the polar coordinates $\eta=\cos \phi, \zeta=\sin \phi e^{i \theta}, \bar{\zeta}=\sin \phi e^{-i \theta}$, we have $\left.\alpha \wedge \omega^{2}\right|_{B}=\sin \phi d \phi d \theta \wedge d V, 0 \leq \phi<\frac{\pi}{2}, 0 \leq \theta<2 \pi$. The symbol of the first order differential operators $L_{\alpha}^{p}, E_{\alpha}^{p}, F_{\alpha}^{p}$ are respectively $h_{\alpha}^{p} \eta, h_{\alpha}^{p} \zeta, h_{\alpha}^{p} \bar{\zeta}$, and the symbol of Laplace-Beltrami operator is $\eta^{2}+|\zeta|^{2}$.

For $X, Y \in \operatorname{Vect}(B)$ we put

$$
\begin{equation*}
R(X, Y) d V=\operatorname{Res}\left\{(\operatorname{symb} Y) \cdot\left[\ln \left(\eta^{2}+|\zeta|^{2}\right),(\operatorname{symb} X)\right]\right\} . \tag{5-1-6}
\end{equation*}
$$

Then the formula

$$
\begin{equation*}
c(X, Y)=\int_{S^{3}} R(X, Y) d V \tag{5-1-7}
\end{equation*}
$$

defines a 2-cocycle on $\operatorname{Vect}\left(S^{3}\right)$ and we have the central extension of $\operatorname{Vect}\left(S^{3}\right)$ associated with this 2-cocycle.

Proposition 5. 1. $R(X, Y)$ for every X, Y in $\operatorname{Vect}\left(S^{3}\right)$ is written by a linear combination of Beta functions

$$
B(u, v)=\int_{0}^{\frac{\pi}{2}}(\sin \phi)^{2 u-1}(\cos \phi)^{2 v-1} d \phi
$$

with its coefficients polynomials in z, \bar{z}.
Proof. Since Vect $\left(S^{3}\right)$ is the linear hull of $\left\{L_{\alpha}^{p}, E_{\alpha}^{p}, F_{\alpha}^{p}\right\}$ it is enough to give calculation of Res for these vector fields. We shall look $R\left(L_{\beta}^{q}, L_{\alpha}^{p}\right)$. The others are obtained by the same calculation. Put $r=\left(\eta^{2}+|\zeta|^{2}\right)^{\frac{1}{2}}$. We have

$$
\begin{aligned}
& {[\ln r, f(z) \eta]} \\
& =\sum_{p+p^{\prime}+q \geq 1} \sum_{k}^{\min \left(p, p^{\prime}\right)} C_{p, p^{\prime}, k} \bar{\zeta}^{p-k} \zeta^{p^{\prime}-k} \sum_{q, j}^{j \leq[q / 2]} D_{q, j} \eta^{\delta, j,+1} P\left(\begin{array}{ccc}
p & p^{\prime} & q \\
\varepsilon & \bar{\varepsilon} & \theta_{0}
\end{array}\right) f(z) r^{-2\left(p+p^{\prime}-k-q-\delta, j\right)}
\end{aligned}
$$

where $C_{p, p^{\prime}, k}$ and $D_{q, j}$ are some constants and $\delta_{q, j}=2 j$ or $2 j+1$ according to q is even or odd. $P\left(\begin{array}{ccc}p & p^{\prime} & q \\ \varepsilon & \bar{\varepsilon} & \theta_{0}\end{array}\right)$ denotes the sum of all differentiations that are p (resp. p^{\prime}, q) times with respect to ε (resp. $\bar{\varepsilon}, \theta_{0}$). The term of homogeneity order -3 of $g(z) \eta \cdot[\ln r, f(z) \eta] \in C L(B)$, where $\eta=\operatorname{symb} \theta_{0}$, is given on B by

$$
\begin{aligned}
& \sum_{p+p^{\prime}+q=5} \sum_{k} C_{p, p^{\prime}, k} \zeta^{p^{\prime}-k} \bar{\zeta}^{p-k} \sum_{j=0,1,2} D_{q, j} \eta^{2 j+3} g(z) P\left(\begin{array}{ccc}
p & p^{\prime} & q \\
\varepsilon & \bar{\varepsilon} & \theta_{0}
\end{array}\right) f(z) \\
& +\sum_{p+p^{\prime}+q=4} \sum_{k} C_{p, p^{\prime}, k} \zeta^{p^{\prime}-k \bar{\zeta}^{p-k}} \sum_{j=0,1,2} D_{q, j} \eta^{2 j+1} g(z) \theta_{0} P\left(\begin{array}{ccc}
p & p^{\prime} & q \\
\varepsilon & \bar{\varepsilon} & \theta_{0}
\end{array}\right) f(z) .
\end{aligned}
$$

It is enough to consider only those terms with $p=p^{\prime}$, for the other terms vanish after the integration by $d \zeta d \bar{\zeta}$. Then q becomes necessarily odd and the in-
tegration on the fiber $P\left(T_{z}^{*} B\right)$ becomes a linear combination of the following type of integrals with polynomial coefficients;

$$
\int_{0}^{\pi}(\sin \phi)^{2 p-2 k+1}(\cos \phi)^{2 j+1} d \phi
$$

Remark. If we took in the definition of Res the integration on $S_{z}^{*} B$ instead of the projective cotangent bundle $P\left(T^{*} B\right)$ we would have $R(X, Y)=0$.

Waseda University

References

[K] V. Kac, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, World Sci., 1987.
[K. K] S. Kravchenko and B. A. Khesin, A non-trivial central extension of the Lie algebra of pseudo-differential symbols on the circle, Functional analysis and its applications, 23 (1989), 78-79.
[M-R] J. Mickelsson and S. Rajaev, Current algebras and determinant bundles over infinite-dimensional Grassmannians, Comm. Math. Phys, 116 (1988), 365.
[R] A. O. Radul, Lie algebras of differential operators, their central extensions and W -algebras, Functional analysis and its applications, 25 (1990), 25-39.
[Ru] W. Rudin, Function theory in the unit ball of C^{n}. Chap. 12, Springer-Verlag, 1980.
[T] M. Takeuchi, Gendai no Kyuukannsuu (in Japanese), Iwanami Shoten, Tokyo, 1971.
[TI] J. M. Talman, Special Functions, a group theoretical approach, Benjamin Inc., New-York, 1968.
[V] N. Ya. Vilenkin, Special functions and representation theory of Lie groups, Academic, 1965.
[W] M. Wodzicki, Noncommutative residue, Lecture Notes in Math., ed. by Yu. I. Manin 1289 (1986), Springer-Verlag.

[^0]: Communicated by Prof. T. Hirai, January 6, 1995

