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Lie algebra of the infinitesimal automorphisms

on S? and its central extension
By

Tosiaki KORI

0. Introduction

In this paper we shall deal with a central extension of the Lie algebra of
infinitesimal automorphisms on S% Such a central extension on the circle is
famous in the name of Virasoro algebra. The Lie algebra Vect (SY) of in-
finitesimal automorphisms on the circle is generated by (the restriction on S*)
of

Lm=2m<z;—z), m=0,i1,-",

where we look S'={z€E€C; |z| =1}, with the commutation relation
[Lm, Ln] = ("_m)Lm+n-

A two cocycle on Vect (S!) is given by the formula
0-1) ¢ (L, L) = =70 (017=1) Bpamo.

Virasoro algebra is the central extension associated with this two cocycle.
A highest weight representation of the Virasoro algebra is generated by a
highest weight representation of the affine Lie algebra S'g (Sugawara
construction) [K]. Though we have not a satisfactory theory on the highest
weight representation of the (abelian) extension of S%¢ [M-R] and do not
know about the action of Vect (S®) on the representation space of current
algebra the author thinks it is worth trying to have a central extension of
Vect (S3).

In [K-K] it was shown that the two cocycle (0-1) is derived from the
non-commutative residue on the cotangent bundle of S', that is,

c(X, V) =j; e [1n|g)? symb X ]  symb Y.

Here symb X is the pseudodifferential symbol and { denotes fiber coordin-
ate. (Actually their derivation of (0-1) should be corrected a little. See the
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discussion in section 5.) We shall extend this method to have our central ex-
tension of Vect (S?).
In the above explanation z™’'s are spherical functions for a heighest

weight representation of Lie group U (1) acting on S z;—z=mz’". These weight

functions enjoy the property that they are closed under products. In sections 1
to 3 we shall give a class of spherical functions for a heighest weight repre-
sentation of SU (2) acting on S® such that the product is expressed by their
linear combination. Such a property has been investigated in [Ru, V] earlier
and we present a new (dual pair of) basis of the space of spherical functions.
(The author thinks this is the only new point through sections 1 to 3.) These
spherical functions are very commode to describe the Lie algebra Vect (S®) and
to construct a two-cocycle on it. The Lie algebra Vect (S®) is introduced in 4.2
and the commutation relations are given in Proposition 4.2, The draft of this
work was distributed in 1992 as volume N0.92-12 of Report of Science and
Engineering Research Laboratory of Waseda University.

1. Harmonic polynomials on C?

1. 1. We introduce first the following vector fields that form a frame
on C2—{0}:

-, 0 90 ___0_,_ 3

vEag, Yag, . VSig tags
(1-1-1)

-_-0,.0 ___ 0., 0

E= 22621+21622' eE= Zzaz—l+zlaz—2.
Put

n=g (D), b=y (=), 0i=5(e+2), b= = (c=).

n is the normal to the sphere {|z2|=const} and {6,, €, &} form a basis for the in-
duced tangential Cauchy-Riemann structure on the sphere.
There is another quartet of frame on C2— {0},

__ 0 ,_9 ___0_ 0
U=z, o B=ags tag

(1-1-2)
s=5 0 5., 0 -0
Zzaz—l zlazz, Zzazl 216272.
These vector fields give also a frame on C*— {0}. We have n=%(#+ﬁ)‘ Put
=—1 — 7 =l S — 1 _ 3
To ZJ——I(‘LL ﬂ). T1 2(5+5), T2 —2/_—1 (6—0).

On the unit sphere S*= {|z] =1} we have the following commutation rela-
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tions:
[0, el =v/—1¢e, [60, El=—y—1& [e El=2/—16,.
(1-1-3)
(70, 0] =y—10, [70,01=—4y—106, [0, 0]=2/—11.
(1-1-4) le, 61 =[&, 61 =[e, 6] =g, 61 =[60, 7o] =0.
1.2 On C? we consider the natural metric dz, ®dz; +dz, ®dz,, and on

the sphere S3={|z| =1} we consider the induced metric. With respect to this
metric {v/2 6y, v2 61, v/2 65} form an orthonormal frame on S°. Similarly {2 7o,
V211, ¥/2 15} also give an orthonormal frame for the same metric. ¥/2n is the

2
unit normal to the sphere. Laplacian on C? is given by 4= azaaz + 5 zaa_ .
1 1 2°029

The Laplace-Beltrami operator on C2— {0} is given by 4,= (62+ 6%+ 6%) = (¢
+ 7+ 1f). We have the decomposoition;

A= (mt4+n+4,).
ER

The separation of variable method to obtain the spherical expansion of
harmonic functions by the eigenvectors of the Laplace-Beltrami operator on
the boundary is well known. We note that we have two candidates depending
on which frame of vector fields 6; or 7; we use.

Let A; be Laplace-Beltrami operator on the unit sphere S®= {lz|=1). —4,
being a second order elliptic differential operator, the eigenvalues of —4; are
nonnegtative with only accumulation point at infinity and the eigenfunctions
form a complete system in LZ(S% do), where o is the normalized surface mea-
sure. Let {¢:} 10 be the set of eigenfunctions of 4; on the unit sphere; 4,¢;=
A¢:. Then every harmonic function A in a unit ball D = {lz| <1} with L?—
boundary value on S® has the expansion of the form;

(1-2-1) h(2) =Z €20z (|Z|)¢x<]§[>,

a

where a; (£) =¥+ -1

1.3
a. A polynomial P on C? is said to be of type (p, q) if

(1-3-1) Plazi, azz, bz1, bzz) =a’b*P (21, 22, 21, 22) .

Let S be the set of polynomials of type (, q).
Similarly a polynomial that satisfies

(1-3-2) P(az, bz, bz, az;) =a*b'P (21, 22, 21, 22)
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is called of class (k, 1). The set of polynomials of class (&, 1) is denoted by S,
Let H be the set of harmonic polynomials on C* and put
ﬁ“=Hﬂ §p,q, HkJ:HnSk,l.
The following facts are proved routinely [T].

Proposition 1. 1.
(1)
SP=HP1@|25 7197 S, = Hyp,®|2|2Sp-14-1.
(2)
dim H?*=dim H,,=p+q+1.

We have the following decomposition of H to direct sums:

(1‘3‘3) H:Z ﬁp,q' H:Z Hk,z .
b k,!

We shall see in the next section that these are decompositions of H as
irreducible representation spaces of SU(2).

b. In the sequel we shall use the multiindices a= (o, az), ai’s being
non-negative integers, and the notation 2% = z{" 2§ for z= (21, z5) € C%. The

meaning of the notations Sq, Hq oOr H® will be obvious from a. We shall also
write |a| =a, +a..
Put

(1-3-4) he (z) =€?(z%), for 0<¢<|al.

Proposition 1. 2.  For each a, h; g=0,1,-++, |al, give a basis of Ha
There is on the other hand a series of polynomials generated by the op-

eration of & that constitute a basis of H%.
Put

(1-3-5) 1% (2) = 0% (7 287).
We see that 12 (z) is a harmonic polynomial.

Proposition 1. 3. For every a, ljt\q“; ¢=0,1,-, |al, give a basis of e
We have the following relations;

Lemma 1. 4.

(=D at+b—q) | Mam=q | G (—1)% | B2 =g piihe.

Proposition 1. 5.

(1)

7 r
k=0 k=0
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2)
~ 0if s¥#r
s
Ch?k,r—-k) if s=r
The proposition follows from Proposition 1.1 and Lemma 1.4.
1. 4.

a. We shall describe the operations of 6o, €, etc. on the space of har-
monic polynomials H. These will give an infinitesimal representation of su 2)
as we shall see in the next section.

Lemma 1. 6.
1

Ooc?'=e"0p+/—1qe?, Ee'=e%€—2q/— 16 0p+q(qg—1) e
(2)

7009= 87y +,/— 196, 869=0— 24/ =10 7o+ (g—1) 6.

The lemma follows from the commutation relations (1-1-4). This lemma im-
plies the following calculation.

Proposition 1. 7.

1) v=Tot= (12— )ns orq=0.1.Jal.
@) eng=ngt.

3) ene=—q(al—q+1)n& "

Similarly we have;

Proposition 1. 8.

(1) ./—11(,;?,;-:(%[—4);?3 for =01, |al.
) 55}‘:%“-
(3) he=—q(lal—q+1) 2",

Proposition 1. 9.

~_ o (al+2) ~
Ahg= 4 hy,

Aps——12 (|la|+2) "

These follow from 1.2 and the above lemmas.
(1-2-1) and Proposition 1.9 yield that every harmonic function A with L?—
boundary values on {|z| <1} has the expansion

(1-4-1) h(z) =E chnk(2),

a,p
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which converges compact uniformly.

b. As is shown in the following the decomposition (1-3-3) is ortho-
gonal with respect to the spherical measure on S®. The 3-form which gives the

spherical measure ¢ (dz) is defined by i, (dzAdz) = —%65"/\ 01*/\02*:___.51

O0F A e* A e* where i indicates the inner derivation and 6 etc. are dual
1-forms of 6, etc.. The inner product of two functions on S is

G.o0=[ s@sGolas).

We see that the adjoint operator of € is —€ and 6, is selfadjoint.

(1) Proposition 1. 10.
_ al !
(h%, h$) =0p40as Tal+1) Tal—=p) 1

(2)
~ _ ! p!

where a ! = ! a !.
We have used the formula

a_b|2 — a ! b !
j;kﬁﬁd” @ro+D) I
2. Infinitesimal representation of SU (2)

2. 1. Let SU (2) be the special unitary group and su (2) be its Lie
algebra. We regard often z € S® as the element of SU(2) given by

(2-1-1) z=(2 ;?).

The left action of SU(2) on S? is defined for g=<a —b ) and z= (23, z2) by
b a

(2-1-2) g * 2= (az1— bz, bzy+dzs).
Similarly the right action is defiened by
(2"1“3) zZ*g= ((1721+b2—2, 622_172_1) .

Both actions are free and transitive.
For a continuous function on S® we put

(2-1-4) Lef(2) =f(g7'  2), Ref(2)=f(z"g).

Ly (resp. Ry) is extended to a unitary operator on L%(S® do) and give a unit-
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ary representation of SU(2).
We take a basis of the Lie algebra su (2) given as follows;
(2-1-5)
_l(J—l 0 ) _1(0 1) _1( 0 ./—1)
AR EVE FARFATS B VAR AWES S
Proposition 2. 1.
dR (60) = 00, dR (el) = 01, dR (ez) = 02.
Proposition 2. 2.

2

dL(e) =—70 dL(e)=—7, dL(e) =—1s

Propsitions 1.7 and 2.1 yield, for each 7 and a with |@|=7, the following (r+1)
— dimensional representation (dR, He) of Lie algebra sl (2, C) with highest

weight % :

(2-1-6) dR (eo)h$=—/—_1<%—q>h$ for ¢g=0,1,-+r,
(2-1-7) dR (e-)h&=—h&", dR(e-)h:a=0,
(2-1-8) dR (e ) h&=q(r—q+1)h&", dR(es) ha=0,

where

(00 0

and dR is extended to s! (2, C). All weights are half odd integers.
Similar formula for the representation (dL, %), |al=v, holds.

Theorem 2. 3. (1) The space H of harmonic polynomials on C? is decom-
posed by the action R of SU(2) into

i3 T ke

r lal=r

Each induced representation Ry = (R, Hy) , with |a| =7, is an irrreducible rep-

resentation with highest weight %

(2)  The decomposition of H by the action L of SU(2) is given by
H=Z Z He.
r lal=r
Each induced representation L*= (L, ﬁ"’), with |a| =7, is an irrreducible vepre-

sentation with highest weight %
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Let C be the Casimir operator of su (2);

(2-1-9) C=%e%+%{e+e_+e_e+}.

Then we have the following;

Proposition 2. 4.

4R (€) =are(c) =l al+2),

3. Representation of SO (4)

3..1. Let A and B be two elements of SU(2) and consider the application
(3-1-1) Z—— A7ZB,

where

é’=<zl _zz)esu(z)
22 21

which we regard as a point z on S%, (2-1-1). This establishes a homomorph-
ism A* from SU (2) X SU (2) into O (4). The kernel of the homomorphism con-
sists only of the pairs (I, I) and (—1I, —1I). It can be observed that the diagon-
al subgroup K (subgroup for which A =B) leaves the point (1,0) € C? in-
variant and generates the subgroup of rotations in the 3-dimensional space
perpendicular to (1,0). From this we can show that A% is a homomorphism
onto the connected component of the identity in O (4). Thus we have estab-
lished the isomorphism

(3-1-2) AF G= SU(_Z_F) (?Slgj(z) SO(4).

As was remarked in the above the isotropy subgroup of (1,0) by the action
(3-1-2) is isomorphic to

k=22=50(3)
and we have
(3-1-3) G/K=S0(4)/S0(3) =S

Every finite dimensional representation ¢ of SO (4) is realized by the finite
dimensional representation o of SU (2) X SU (2) whose kernel contains (* (7,

0);
pg)=c(4%(g)).
Let Re= (R, Hy) and L?= (L, H?) be the representation of SU(2) described in
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Theorem 2.3. The ternsor product L® ® R, is a finite dimensional repre-
sentation of SU(2) X SU(2) on the space

Fi=H? ® H,
given by
(L® ® Ra) @unf(z. 2) =flg 2 2 -g), for fEFG.
We have
dim F§= (lal+1) (18/+1),
and

@ ® h«g, P:O»L"'»'BL(I:O'L"', |a|

form a basi of F4. The weights of representation are integers or half odd inte-

al+8

gers according to either 2 is integer or half odd integer.

n 0

i , m 0 i
_), n=e2", and g =exp (teo) =( i ) m=e2".
0n 0 m

Let g=exp (veo) = (
We have
(L® ® Ra) ) (3 ® hi) =n®~Bly2-12p8 @ pg,

In particular, if v=p=21 we have (L? ® R,) (—I, —I) (h} ® %) = (—1) I+l

W8 ® h%. Hence, for (L® ® R,) to be a representation of O (4) it is necessary
that |a|+|B| is an even number. In this case all weights are integers. The con-
verse is true and, for each pair (@, 8) such that |a|+|,B| is an even number,

we have a representation 04 of SO (4) such that
(L® ® Ry) =0f o A*.

The characteristic function of the representation (L® ® R,) being

(3-1-4) Ko (e, o)) =50 (BELY sin (L?L:D”

the representation (L® ® R,) is irreducible and for |a|+ |,8| even the repre-

sentation ¢f is irreducible.

Thus we have;

Theorem 3. 1. (1) For every v, s such that r+s is an even number and
for every indices a, B with |al=v, |Bl=s,

(F%, af)

gives the irreducible representation of SO (4) of highest weight r-;-s.
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(2)

The polynomials hE ® hi, 0<p<s, 0<q<y, form a basis of weight vectors
for o8

4. Algebra of infinitesimal automorphisms on S°

4.1. For indices a= (a1, a;) and = (B, B2) we shall put ax =
(aliBl. aziﬁz)-

1 denotes the index (1,1).

Lemma 4. 1.
p+q
(4-1-1) W hg= ). Clalntt,
k=0

for some rational numbers C,=Cy (@, p; B, q); k=0, ,p+q, where, for terms with
a negative index, C,=0.

In fact, h%  h§ € Squp N SP*lal+I81-2-0 Repeated applications of Proiposi-
tions 1.1 and 1.4 yield the assertion.

To have the constants C (@, p; B, q) is very cumbersome. We must solve linear
equations:

(1-4-2) Z L, B)Ci=R(n) n=1, -, p+gq,

with the coefficients

\ (241 (29 B B>
= g1
R (n) ;p 4 ( i )(p—i) —i>(q—n+i)
(4-1-3)
k
. k a1+,31—k a2+ﬁz_k
Link)=) (—1)'(pt+q—Fk) ! ) .
Evidently Co (e, 0; B, 0) =1. Integrating both sides of (4-1-1) we have from
Lemma 1.4 and Proposition 1.10

!
(4-1-4) Cial (@, g; & lal—p) = (—1) =+ 95

|a|+1'
Example.
2 1
hio - hi,l=§h;,l+§|z|2h?_o
1 4
h3.o * h2,l=ﬁhil_ﬁ|z|2hg’o

1 2
h%,o * h(l).z = ghg,z _§|Z|4hg,o.



Lie algebra 55

The equations to obtain the coefficients in the last example are
2C0+C1+Cz:0, 800_202:4, 2C0_C1+Cz=0

There are some recurrent formulas among the numbers Cy (@, p; B, q) but
here we do not write down them.

The multiplication of two harmonic polynomials on C? is not harmonic but
its restriction on B={|z|=1} is again the restriction of some harmonic polyno-
mial. We have given in (4-1-1) the formula of this multiplication;

p+a
(4-1-5) W+ 1§= ) Cubltsa on B.
k=0
The same investigations on C” for #=2 have already appeared in [Ru].
On B={|z|=1} we consider the following graded algebra of (the restric-
tions on B of) harmonic polynomials;

Hm) = Zn:gr, H

r=0
gryH= Z Ho= Z e

|la|=7r |la|=7
Then we have
(4-1-6) H(r) - H(s) CH(r+s).

4. 2. Let ¥ (S®) denote the Lie algebra of smooth vector fields on B=
{lzl=1}. Every X€¥(S%) is written in the form

X (2) =fo(2) 60 (2) +11(2) 6, (2) +12(2) 6:(2), z€EB,
or
(4-2-1) X (@) =fo(2) 6o (2) tf+ (2)e(2) +f- (@) E(2),

with smooth functions as coefficients. The topology of ¥ (S®) is given by the

uniform convergence of the coefficients. Since the polynomials {r&} form a
dense set, by a theorem of Weierstrass, every vector field is expanded in

(4-2-2) X=Z 18 4ao (@, p) Botas (@, p)e+a_ (o, p)E).
a,p

Put

(4-2-3) L$=hﬁﬁo Eﬁ=hgs Fﬁ=h’,§§.

Let Vect (S®) C¥ (S®) be the Lie subalgebra generated by L%, E% and F%. Here

are the commutation relations between the generators L%, E%, F%, that give the
structure constants of Lie algebra Vect (S?).
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Proposition 4. 2.

b+q
(1, 181 =y=T(g—p+5 (|l - IBI)>ZCu(p & g, B) LE3S A
b+g+1
(B Ef)= ), (Culp, @ g1, B —Culo+1, a g, ) BRI
Pi:gl
[P = ), al=p+DCo—1. @ 0. B)

—q(Bl—g+1)Cup, a; g—1, B)) FAE5L4

b+q
1
(14 E) = V=T (4—5181+1) ). Culp, o 0. B 2555
=0
p+g+1 ’
= Y Culp+1, e g, BL

#=0
p+a

(14 FO =/=T (4= 5181—1) ) Cu b, o 0. B) F25%

p+q-1
+pal—p+1) Y, Culo—1. e q. B) LA
u=0
p+a+1

(B4 FE1= ), Culp. o o1, B)FAISH
©=0
p+g-1

+pal—p+1) ). Culp—1, o q. B ERESIA
u=0
b+q

~2)! G, g, B LA,

un=0
where
CH-,B—/J 1= (a'1+61_[l, a'2+Bz_[1)
Let

V (r) ={X E Vect (S?); the coefficients of X are in H(7)}.

Proposition 4.3. [V(r), V(s)]CV(r+s+1).
We have form Proposition 1.9(1)
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B (D)ot rre™
(4_2_4) E: (_1)az+p_(‘zﬁ_!pTF?I—b
FZZ (_ 1) az+pWE|&al—ﬂ.

Thus V (#) is closed under complex conjugation.

5. Radul-Kravchenko-Khesin cocycle on Vect (S°)

5. 1. A. O. Radul [R] introduced after Kravchenko-Khesin the follow-
ing formula for the cocycle on the ring of classical pseudodifferential oper-
ators on a manifold.

Let

CL(M") = {a= Z 0, £))

—o0<p<d

be the ring of formal pseudodifferential symbols on a riemannian manifold M".
Here x = (x1, ***, x») are local coordinates, £= (&, -+, &,) is a non-zero covec-
tor, ax (x, ) are functions on the cotangent bundle T*M with zero section re-
moved that satisfiy the homogeneity condition ay (x, t&) =t*a; (x, &), t>0. The
multiplication in CL (M) is defined by

(5-1-1) a - b=Z

Lo¢a oz,

where a denotes a multiindex. Let @ be the canonical 1-form on T*M; a=
Y€idx;, and let @ =da. The noncommutative residue of M. Wodzicki [W] of a
symbol a €CL (M) is defined by the formula

(5-1-2) Res a=fS*Ma_,, (z, & an o™,

which is a differential n-form on M and where S¥M is the fiber over z of unit
cosphere bundle S*M. Integrating Res a on M we obtain the trace formula on
CL (M):

(5-1-3) Tr a=fM Res a.

We have Tr[a, b] =0. Let S be an elliptic differential operator of order m on
M with the leading symbol s, (x, , &) >0 for £#0. Then the formula
(5-1-4) cla,b)=Tr([1n s, al + b) a, bECL(M)

gives a 2-cocycle [R].
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Here we note that, though In s, (x, £) €CL (M), we have [In sm(x, £), CL (M) ]
CCL (M). The cocycle properties are proved by the following fact:

Tr [1n $m, a ] =0.

Now we shall change the definition of Wodzicki's residue to have a con-
cordant result with Kravchenko-Khesin's explanation of Virasoro term, that
is, the cocycle for the central extension of Vect (S!). The Lie algebra Vect (SY)
is generated by

L=z m=0, £1, -,

where we look S'={z€C; |z|=1}. The symbol of L, is z”*'{ while the symbol
of the square root of Laplacian is |C| Thus

L[ 1nl2, L”]:Z (=) (n+1) - n—k+2) pemes-kgah

2k
k21
+Z (_ 1) b+t (n+;) o (n_k+1) Zn+m+l—kcl—k
k ’
k21

The homogeneity order (—1) term is —%n (n®—1) 2"*™ ! If we use here

Wodzicki’s formula we must integrate it on S¥S'={% 1}, which leads to 0. So
we change the definition (5-1-2) to have a correct result. Let P (T*M) be the
projective cotangent bundle whose fiber over a point 2z € M is the projective

space P(T#M). We revise our definition of Res a by
(5-1-5) Resa=[ ., au(z &)ana,
P(TZM)
We note especially that P(T*S!) is one point. The 2-cocycle becomes

4 (Ln, Lm) =j;z|=lR33C ( Ly I: ll’l|C|, Ly ] )dZ: _1_12” (”2_ 1) 6n+m.0-

Thus we get the Kravchenko-Khesin's formula.

Now we shall investigate the cocycle on Vect (S®). We shall continue to
denote B={z€E€C% |z|=1) =53, }

Any covector is written by &6 + & 6iF + &05 or equivalently by 165+
Ce*+ {&*, where £* is the dual 1-form of & We take 7, {, { as the coordinates
on T¥B. Then the canonical 1-form a becomes a@=n6;*+ {e*+ {e*. Let w=da.

The 5-form a A w? restricted on the local coordinate Ups={(z, [n. {, C]); Ea
0} CP(T*B) is given by

a/\w2=%dC/\dz/\d V, dV=0FN0FNG,
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where 72+]{|2=1. By the polar coordinates n=cos@®, {=singe*, {=sing e~ ",

we have a A w?|z=sing dp dONAYV, OS¢<%, 0<0<2m. The symbol of the
first order differential operators L&, E%, F% are respectively h4n, k4, h4C, and

the symbol of Laplace-Beltrami operator is n%+|Z]2.
For X, YE Vect(B) we put

(5-1-6)  R(X, Y)dV=Res{(symbY) - [In(n?+|¢?), (symbX)1}.

Then the formula
(5-1-7) e, V)= [ RX V)av

defines a 2-cocycle on Vect (S%) and we have the central extension of Vect (S°)
associated with this 2-cocycle.

Proposition 5. 1. R (X, Y) for every X, Y in Vect (S%) is written by a
linear combination of Beta functions

B (‘u. 1)) =.];% (Sin¢) 2u—1 (COS¢) Zv—ld¢’

with its coefficients polynomials in z, z.
Proof. Since Vect (S®) is the linear hull of {L%, E%, F%} it is enough to
give calculation of Res for these vector fields. We shall look R (L$, L%). The

others are obtained by the same calculation. Put = (n2+]¢?) 7. We have

(in 7, f(2) m]
min(p,p’) i<[q/2] )
= Z Z Ch.p’ ka_"C""" Z qundq,]+lp(p P q )f(z)r_zwﬂl_k_q_"“)
b ) _ 00

g ¢
pHi+e21 k Wi

where Cppx and Dy ; are some constants and 0,;=2j or 2 +1 according to g is
p v oq
E & 0
(resp. p, q) times with respect to € (resp. &, 6o). The term of homogeneity
order —3 of g(z)n * [In7, f(z2) n] ECL(B), where p=symbb,, is given on B by

Y Yoo ¥ uap(” 1) s

even or odd. P( ) denotes the sum of all differentiations that are p

D +a=5 k j=0,1,2 e € b
P —kpPr—k 2j+1 P P' q
+ Cor i ”7*C D in**'g (2) 6P - f(2).
p+p +a=4 k j=0,1,2 e e b

It is enough to consider only those terms with p =p’, for the other terms van-
ish after the integration by d{d C Then g becomes necessarily odd and the in-
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tegration on the fiber P (T¥B) becomes a linear combination of the following
type of integrals with polynomial coefficients;

ﬁ” (sin¢) 2p—2k+1 (COS¢) 2i+ld¢

Remark. If we took in the definition of Res the integration on S¥B in-
stead of the projective cotangent bundle P(T*B) we would have R (X, Y) =0.
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