Normal subgroups and heights of characters

By
Masafumi Mural

Introduction

Let G be a finite group and p a prime. Suppose we are given an irreducible character χ of G such that χ_{N} is irreducible for a normal subgroup N of G. Then every irreducible character ζ of G lying over χ_{N} is written as $\zeta=\chi \theta$ for a unique irreducible character θ of G / N. Let B (resp. \bar{B}) be the block of G (resp. G / N) to which ζ (resp. θ) belongs. It is natural to ask how B and \bar{B} are related. If χ is the trivial character then B is just a block which dominates \bar{B} and basic facts, including the relations between defect groups of these blocks, are known (cf. [11, Chapter 5, Sections 8.2 and 8.3]). (We note that we have shown, with no restrictions on N, that there exists a block of G / N dominated by B with defect group $D N / N$ for a defect group D of B, cf. [10, Remark 4.7].) We shall show in Section 1 that, for an arbitrary χ, the situation is quite analogous to that of the usual "domination" above. The same is true when χ is an irreducible Brauer character. Actually the results are obtained in a more general setting, that is, we consider " V-domination" for suitable indecomposable G-modules V.

To explain the results in Section 2 we need to introduce some notation. Let B be a block of G which covers a block b of a normal subgroup N of G. Let ξ be an irreducible character in b. Let $T_{G}(b)$ be the inertial group of b in G. As in [10] we call a defect group D of B an inertial defect group of B if D is a defect group of the Fong-Reynolds correspondent of B in $T_{G}(b)$. Fix an inertial defect group D of B. Let $\operatorname{Irr}(B \mid \xi)$ be the set of irreducible characters in B lying over ξ. In Section 2 we shall show that

$$
\min \{\mathrm{ht}(\chi)-\mathrm{ht}(\xi) \mid \chi \in \operatorname{Irr}(B \mid \xi)\}
$$

is determined by information on $D N$ and the $T_{G}(b)$-conjugates of ξ. This extends some results in [10]. As an application we shall obtain a result related to the Dade conjecture [3]. We shall also obtain a slight extension of the Gluck-Wolf theorem [5].

In Section 3 we shall give the modular version of the above.
Throughout this paper let (K, R, k) be a p-modular system. We assume that K is sufficiently large with respect to G and that k is algebraically closed.

[^0]The maximal ideal of R is denoted by (π). Let ν be the valuation of K normalized so that $\nu(p)=1$.

The author would like to express his thanks to Professor Y. Tsushima for his interest in [10] and to the referee for valuable suggestions.

1. Domination of blocks of a factor group

Throughout this section, N is a normal subgroup of a finite group G and V is an indecomposable $\mathfrak{o} G$-module such that V_{N} is indecomposable, where o denotes R or k. The block of N to which V_{N} belongs is denoted by b.

We say that a block B of G dominates a block \bar{B} of G / N through V (simply $B V$-dominates $\bar{B})$ if there exists an $0[G / N]$-module X in \bar{B} such that $V \otimes \operatorname{Inf}(X)\left(=V \otimes_{0} \operatorname{Inf}(X)\right)$ lies in B, where $\operatorname{Inf}(X)$ denotes the inflation of X to G. So when V is the trivial module, " V-domination" coincides with the usual "domination".

In the following we understand $\pi=0$ when $\mathfrak{o}=k$. All $\mathfrak{o} G$-modules are assumed to be o-free of finite rank.

The following extends [6, VII. 9.12 (i), (iii)] slightly.
Lemma 1.1 (i) Let W be an indecomposable $\mathfrak{o}[G / N]-m o d u l e$. If $\mathfrak{o}=R$, assume that $W / \pi W$ is indecomposable. Then $V \otimes \operatorname{Inf}(W)$ is indecomposable. In particular, $V \otimes \operatorname{Inf}(W)$ is indecomposable for every projective indecomposable module W.
(ii) Let W and W^{\prime} be $\mathrm{o}[G / N]$-modules. If $V \otimes \operatorname{Inf}(W) \mid V \otimes \operatorname{Inf}\left(W^{\prime}\right)$, then $W / \pi W \mid W^{\prime} / \pi W^{\prime}$.

Proof. We shall prove the assertion by mimicking the proof of [6, VII 9.12]. Put $E=\operatorname{End}_{o N}(V)$.
(i) Let $\psi \in \operatorname{End}_{o G}(V \otimes \operatorname{Inf}(W))$ be an idempotent. Put $m=\operatorname{rank}_{\boldsymbol{o}} W$. Let $\left\{w_{i}\right\}$ be an \mathbf{o}-basis of W. Let

$$
w_{i} g=\sum_{j} a_{i j}(g) w_{j}, a_{i j} \in \mathbb{o}, \text { for every } g \in G
$$

Put

$$
\left(v \otimes w_{i}\right) \psi=\sum_{j} v \psi_{i j} \otimes w_{j}, \psi_{i j} \in E
$$

As in [6], we get

$$
\sum_{j} a_{i j}(g) \psi_{j k}=\sum_{j} \psi_{i j}{ }^{g} a_{j k}(g), \text { for } 1 \leqq i, k \leqq m .
$$

Since $E=\mathfrak{o} 1_{V}+J(E)$, we may take $\lambda_{i j} \in \mathfrak{o}, \rho_{i j} \in J(E)$ so that $\psi_{i j}=\lambda_{i j} 1_{V}+$ $\rho_{i j}$ for $1 \leqq i, j \leqq m$. Then we get

$$
\sum_{j} a_{i j}(g) \lambda_{j k} \equiv \sum_{j} \lambda_{i j} a_{j k}(g)(\bmod \pi), \text { for } 1 \leqq i, k \leqq m,
$$

since $\pi \mathrm{o} 1_{V}=\mathrm{o} 1_{V} \cap J(E)$.

Let $\Lambda \in \operatorname{Mat}_{m}(k)$ be the matrix whose (i, j)-th entry is $\lambda_{i j}+\pi \mathrm{o}$. Since $W / \pi W$ is indecomposable, the above shows that Λ is the identity matrix or 0 . We may assume $\Lambda=0$. So $\left(\psi_{i j}\right) \in \operatorname{Mat}_{m}(J(E))=J\left(\operatorname{Mat}_{m}(E)\right)$. Since $\left(\psi_{i j}\right)$ is an idempotent, it follows that $\left(\psi_{i j}\right)=0$ and hence $\phi=0$. This completes the proof.
(ii) Let $\phi: V \otimes \operatorname{Inf}(W) \rightarrow V \otimes \operatorname{Inf}\left(W^{\prime}\right)$ and $\psi: V \otimes \operatorname{Inf}\left(W^{\prime}\right) \rightarrow V \otimes \operatorname{Inf}(W)$ be oG-homomorphisms such that $\phi \psi$ is the identity map of $V \otimes \operatorname{Inf}(W)$. Let $\left\{w_{i}\right\}$ (resp. $\left\{w^{\prime}{ }_{s}\right\}$) be an o-basis of W (resp. W^{\prime}). We may write

$$
\left(v \otimes w_{i}\right) \phi=\sum_{s} v \phi_{i s} \otimes w_{s}^{\prime}, v \in V,
$$

where $\phi_{i s} \in E$. Also

$$
\left(v \otimes w_{s}^{\prime}\right) \psi=\sum_{i} v \psi_{s i} \otimes w_{i}, v \in V,
$$

where $\psi_{s i} \in E$. Then we get

$$
\sum_{s} \phi_{i s} \psi_{s j}=\delta_{i j} 1_{V},
$$

where $\delta_{i j}$ is the Kronecker delta. Put $\phi_{i s}=\lambda_{i s} 1_{V}+\rho_{i s}, \phi_{s i}=\mu_{s i} 1_{V}+\sigma_{s i}$, where $\lambda_{i s}, \mu_{s i} \in_{0}, \rho_{i s}, \sigma_{s i} \in J(E)$. We get

$$
\sum_{s} \lambda_{i s} \mu_{s j} \equiv \delta_{i j}(\bmod \pi)
$$

as above. Now define the k-linear map $\bar{\phi}: W / \pi W \rightarrow W^{\prime} / \pi W^{\prime}$ by

$$
\bar{w}_{i} \bar{\phi}=\sum_{s} \bar{\lambda}_{i s} \bar{w}_{s}^{\prime},
$$

where $\bar{w}_{i}=w_{i}+\pi W, \bar{w}^{\prime}{ }_{s}=w_{s}+\pi W^{\prime}$, and $\bar{\lambda}_{i s}=\lambda_{i s}+\pi \mathrm{o}$. Similarly define the k-linear $\operatorname{map} \bar{\phi}: W^{\prime} / \pi W^{\prime} \rightarrow W / \pi W$ by

$$
\bar{w}^{\prime}{ }_{s} \bar{\psi}=\sum_{i} \bar{\mu}_{s i} \bar{w}_{i}
$$

Then clearly $\bar{\phi} \bar{\psi}$ is the identity map of $W / \pi W$. On the other hand, if we let

$$
\begin{aligned}
& w_{i} g=\sum_{j} a_{i j}(g) w_{j}, a_{i j}(g) \in_{0}, \text { and } \\
& w^{\prime} g=\sum_{t} b_{s t}(g) w_{t}^{\prime}, b_{s t}(g) \in \mathbb{0}, \text { for every } g \in G
\end{aligned}
$$

then we get

$$
\sum_{j} a_{i j}(g) \phi_{j t}=\sum_{s} \phi_{i s}{ }^{g} b_{s t}(g)
$$

From this we get as above,

$$
\sum_{j} a_{i j}(g) \lambda_{j t} \equiv \sum_{s} \lambda_{i s} b_{s t}(g)(\bmod \pi)
$$

This implies that $\bar{\phi}$ is a $k G$-homomorphism. Similarly $\bar{\phi}$ is a $k G$-homomorphism. Thus the result follows.

Theorem 1.2. (i) A block B of $G V$-dominates a block of G / N if and only if B covers b.
(ii) Every block \bar{B} of G / N is V-dominated by a unique block, say B, of G. In that case, for every $\mathfrak{o}[G / N]$-module W in $\bar{B}, V \otimes \operatorname{Inf}(W)$ lies in B.

Proof. (i) if part: If B covers b, then $\left(V_{N}\right)^{G}$ has an indecomposable summand U lying in B. Since $\left(V_{N}\right)^{G} \cong V \otimes_{\mathcal{O}}[G / N]$, we have, by Lemma 1.1 (i), U $\cong V \otimes \operatorname{Inf}(P)$ for some projective indecomposable $\mathfrak{o}[G / N]$-module P. So B V-dominates the block of G / N containing P.
only if part: This is easy to see.
(ii) Let \bar{B} be a block of G / N. Choose a projective indecomposable o $[G / N]$ -module P in \bar{B}, then $V \otimes \operatorname{Inf}(P)$ is indecomposable. Let B be the block of G to which $V \otimes \operatorname{Inf}(P)$ belongs. So \bar{B} is V-dominated by B. To prove the assertion, it suffices to show that for every o $[G / N]$-module W in $\bar{B}, V \otimes \operatorname{Inf}(W)$ lies in B. Suppose that we are given projective indecomposable o $[G / N]$-modules P_{1} and P_{2} in \bar{B} such that $V \otimes \operatorname{Inf}\left(P_{1}\right)$ lies in B and that there is a non-zero $\mathfrak{o}[G / N]$-homomorphism $f: P_{1} \rightarrow P_{2}$. Then $1_{V} \otimes f: V \otimes \operatorname{Inf}\left(P_{1}\right) \rightarrow V \otimes \operatorname{Inf}\left(P_{2}\right)$ is non-zero. Since $V \otimes \operatorname{Inf}\left(P_{2}\right)$ is indecomposable, it follows that $V \otimes \operatorname{Inf}\left(P_{2}\right)$ lies in B. So, since $V \otimes \operatorname{Inf}(P)$ lies in B, the indecomposability of the Cartan matrix of \bar{B} yields that $V \otimes \operatorname{Inf}(Q)$ lies in B for every projective indecomposable module Q in \bar{B}. For every $\mathfrak{o}[G / N]$-module W in \bar{B}, there is a surjection: $V \otimes$ $\operatorname{Inf}\left(P_{W}\right) \rightarrow V \otimes \operatorname{Inf}(W) \rightarrow 0$, where P_{W} is the projective cover of W. Since $V \otimes$ $\operatorname{Inf}\left(P_{W}\right)$ lies in B by the above, so does $V \otimes \operatorname{Inf}(W)$. This completes the proof.

We need the following.
Lemma 1.3 Let N_{1} be a normal subgroup of a group G_{1} and let H be a subgroup of G_{1} such that $H \geqq N_{1}$. Let b_{1} be a G_{1}-invariant block of N_{1}. If B_{1} is a block of H for which $B_{1}{ }^{G_{1}}$ is defined, then B_{1} covers b_{1} if and only if $B_{1}{ }^{G_{1}}$ covers b_{1}.

Proof. There are a $k G_{1}$-module X in $B_{1}{ }^{G_{1}}$ and a $k H$-module Y in B_{1} such that Y is a direct summand of X_{H} by [11, Theorem 5.3.10] (see also [10, Corollary $1.7(\mathrm{i})]$). This yields the assertion.

Theorem 1.4. Let B be a block of G covering b and let D be a defect group of B. Then:
(i) For every block \bar{B} of G / N which is V-dominated by B, a defect group of \bar{B} is contained in $D N / N$.
(ii) Furthermore for some block \bar{B} of G / N which is V-dominated by B, $D N / N$ is a defect group of \bar{B}.

Proof. (i) If $\mathfrak{o}=k$, let W be an irreducible module in \bar{B} of height 0 . If $\mathrm{o}=R$, let W be an R-form of an irreducible $K[G / N]$-module in \bar{B} of height 0 such
that $W / \pi W$ is indecomposable, cf. [4, I. 17.12] for the existence of such a W. Then $V \otimes \operatorname{Inf}(W)$ is indecomposable by Lemma 1.1 (i) and lies in B by Theorem 1.2 (ii). Let Q be a vertex of $V \otimes \operatorname{Inf}(W)$. Since $V \otimes \operatorname{Inf}(W)$ is QN-projective,

$$
V \otimes \operatorname{Inf}(W) \mid\left((V \otimes \operatorname{Inf}(W))_{Q N}\right)^{G} \cong V \otimes\left((\operatorname{Inf}(W))_{Q N}\right)^{G} .
$$

Clearly $\left((\operatorname{Inf}(W))_{Q N}\right)^{G} \cong \operatorname{Inf}\left\{\left(W_{Q N / N}\right)^{G / N}\right\}$. Hence $W / \pi W$ is a summand of $\left(W_{Q N / N}\right)^{G / N} / \pi\left(W_{Q N / N}\right)^{G / N}$ by Lemma 1.1. By the choice of W and Green's theorem, $W / \pi W$ is an indecomposable module whose vertex is a defect group of \bar{B}. Since $\left(W_{Q N / N}\right)^{G / N} / \pi\left(W_{Q N / N}\right)^{G / N}$ is $Q N / N$-projective and Q is contained in a defect group of B, the result follows.
(ii) Put $H=N_{G}(D) N$ and let \widetilde{B} be the unique block of H with defect group D such that $\widetilde{B}^{G}=B$. Since V_{N} lies in b, b is G-invariant. So \widetilde{B} covers b by Lemma 1.3. Hence by Theorem 1.2 (i) there is a block B_{1} of H / N which is V_{H}-dominated by \widetilde{B}. Since $D N / N$ is normal in H / N, it follows from (i) that $D N / N$ is a defect group of B_{1}. Here we note that $H=N_{G}(D N)$, i.e. $H / N=$ $N_{G / N}(D N / N)$. In fact, since b is G-invariant, if \widehat{b} is a unique block of $D N$ that covers b, then D is a defect group of \widehat{b} by [10, Lemma 2.2] and \widehat{b} is $N_{G}(D N)$ -invariant. Hence the "Frattini argument" shows that $H=N_{G}(D N)$. Thus if we put $\bar{B}=B_{1}{ }^{G / N}$, then \bar{B} has defect group $D N / N$ by the First Main Theorem. So it suffices to prove that \bar{B} is V-dominated by B.

Let W be a module chosen as in the proof of (i) for B_{1}. Then $V_{H} \otimes \operatorname{Inf}(W)$ is an indecomposable module in \widetilde{B} as above. (Here $\operatorname{Inf}(W)$ is the inflation of W to H.) By the proof of (i) we see there is a vertex Q of $V_{H} \otimes \operatorname{Inf}(W)$ such that $Q N=D N$. Now let U be the Green correspondent of W with respect to $(G / N, D N / N, H / N)$. (Note that $D N / N$ is a vertex of W.) Then U lies in \bar{B} by the Nagao-Green theorem [11, Theorem 5.3.12]. Clearly $V_{H} \otimes \operatorname{Inf}(W) \mid(V \otimes$ $\operatorname{Inf}(U))_{H}$, so there is an indecomposable summand X of $V \otimes \operatorname{Inf}(U)$ such that $\mathrm{V}_{H} \otimes \operatorname{Inf}(W) \mid X_{H}$. Since $C_{G}(Q) \leqq N_{G}(Q N)=N_{G}(D N)=H, X$ belongs to $\widetilde{B}^{G}=B$ by the Nagao-Green theorem again. Then $V \otimes \operatorname{Inf}(U)$ lies in B by Theorem 1.2 (ii). So \bar{B} is V-dominated by B. This completes the proof.

Let χ (resp. ϕ) be an irreducible character (resp. irreducible Brauer character) of G such that χ_{N} (resp. ϕ_{N}) is irreducible. We say that a block of B of $G \chi$-dominates (resp. ϕ-dominates) a block \bar{B} of G / N, if $\chi \otimes \zeta$ (resp. $\phi \otimes \phi$) lies in B for an irreducible character ζ (resp. an irreducible Brauer character ψ) in \bar{B}. (In this paper we write $\chi \otimes \zeta$ (or $\phi \otimes \psi$) instead of $\chi \zeta$ (or $\phi \psi$) to avoid unnecessary confusions.)

Corollary 1.5 Let χ and ϕ be as above. For every block B of G, let $\mathrm{Bl}(B, \chi)($ resp. $\mathrm{Bl}(B, \phi))$ be the set of blocks of G / N which are χ-dominated (resp. ϕ-dominated) by B.
(i) (i. a) $\operatorname{Bl}(B, \chi) \neq \emptyset$ if and only if B covers the block of N to which χ_{N}
belongs.
(i. b) Assume $\mathrm{Bl}(B, \chi) \neq \emptyset$. Let D be a defect group of B. Then for every block $\bar{B} \in \mathrm{Bl}(B, \chi)$, a defect group of \bar{B} is contained in $D N / N$. Furthermore there is a block $\bar{B} \in \mathrm{Bl}(B, \chi)$ such that $D N / N$ is a defect group of \bar{B}.
(i. c) Every block \bar{B} of G / N is χ-dominated by a unique block, say B, of G. In that case, for every $\theta \in \operatorname{Irr}(\bar{B}), \chi \otimes \theta \in \operatorname{Irr}(B)$.
(ii) (ii. a) $\mathrm{Bl}(B, \phi) \neq \emptyset$ if and only if B covers the block of N to which ϕ_{N} belongs.
(ii. b) Assume $\mathrm{Bl}(B, \phi) \neq \emptyset$. Let D be a defect group of B. Then for every block $\bar{B} \in \mathrm{~B} 1(B, \phi)$, a defect group of \bar{B} is contained in $D N / N$. Furthermore there is a block $\bar{B} \in \operatorname{Bl}(B, \phi)$ such that $D N / N$ is a defect group of \bar{B}.
(ii. c) Every block \bar{B} of G / N is ϕ-dominated by a unique block, say B, of G. In that case, for every $\theta \in \operatorname{IBr}(\bar{B}), \phi \otimes \theta \in \operatorname{IBr}(B)$.

Proof. (i) Let V be an R-form of a $K G$-module affording χ. Then clearly a block \bar{B} of G / N is χ-dominated by B if and only if \bar{B} is V-dominated by B.
(i. a) By the above, the assertion follows from Theorem $1.2(\mathrm{i})$.
(i. b) Similarly this follows from Theorem 1.4.
(i. c) As is well-known, $\chi \otimes \theta$ is irreducible for every $\theta \in \operatorname{Irr}(G / N)$. Theorem 1.2 (ii) yields that $\{\chi \otimes \theta \mid \theta \in \operatorname{Irr}(\bar{B})\}$ is contained in a single block of G.

The proof of (ii) is similar.

2. Normal subgroups and heights of irreducible characters

For an irreducible character χ lying in a $(p-)$ block B of a group G, let θ_{χ} be the class function on G defined by

$$
\begin{aligned}
\theta_{\chi}(x) & =p^{\mathrm{d}(B)} \chi(x) & & \text { if } x \text { is } p \text {-regular, } \\
& =0 & & \text { otherwise, }
\end{aligned}
$$

where $\mathrm{d}(B)$ is the defect of B.
Lemma 2.1 Let B be a block of G. Let b be a block of a subgroup H of G such that $b^{G}=B$ and that $\mathrm{d}(b)=\mathrm{d}(B)$. Let ζ be an irreducible character of height 0 in b. Then for every $\chi \in \operatorname{Irr}(B)$, we have:
(i) $\quad \nu\left(\left(\chi_{H}, \theta_{\zeta}\right)_{H}\right)=\mathrm{ht}(\chi)$.
(ii) There is a constituent $\eta \in \operatorname{Irr}(b)$ of χ_{H} with $\operatorname{ht}(\eta) \leqq \operatorname{ht}(\chi)$.

Proof. (i) By Frobenius reciprocity $\left(\chi_{H}, \theta_{\zeta}\right)_{H}=\left(\theta_{\chi}, \zeta^{G}\right)_{G}$. As in [10, Section 1], let $\left(\zeta^{G}\right)^{*}=\sum \zeta^{G}\left(x^{-1}\right) x$, where x runs through the p-regular elements of G. Then $\left(\theta_{\chi}, \zeta^{G}\right)_{G}|G| /\left(p^{\mathrm{d}(B)} \chi(1)\right)=\omega_{\chi}\left(\left(\zeta^{G}\right)^{*}\right)$, where ω_{χ} is the central character corresponding to χ. Since B-component of ζ^{G} is of height $0[10$, Proposition 1.8 (ii)], the result follows from [10, Theorem 1.3].
(ii) This follows from (i), cf. [1].

In the rest of this section we use the following notation:
N is a normal subgroup of a group G, ξ is an irreducible character of N, b is the block of N to which ξ belongs, and B is a block of G covering b.

Let $T_{G}(\xi)$ be the inertial group of ξ in G. Let $\operatorname{Irr}(B \mid \xi)$ be the set of irreducible characters in B lying over ξ, that is,

$$
\operatorname{Irr}(B \mid \xi)=\left\{\chi \in \operatorname{Irr}(B) \mid\left(\chi_{N}, \xi\right)_{N} \neq 0\right\} .
$$

Let $T_{G}(b)$ be the inertial group of b in G.
The following generalizes Corollary 4.2 (i) in [10].
Lemma 2.2. For every $\chi \in \operatorname{Irr}(B \mid \xi)$, we have ht $(\chi) \geqq$ ht (ξ).
Proof. Let $\chi \in \operatorname{Irr}(B \mid \xi)$. Let $\chi^{\prime} \in \operatorname{Irr}\left(T_{G}(\xi) \mid \xi\right)$ be such that $\chi^{\prime G}=\chi$ and let B^{\prime} be the block of $T_{G}(\xi)$ to which χ^{\prime} belongs. Then it follows that ht $(\chi)=$ $\mathrm{ht}\left(\chi^{\prime}\right)+\mathrm{d}(B)-\mathrm{d}\left(B^{\prime}\right) \geqq \mathrm{ht}\left(\chi^{\prime}\right)$, since $B^{\prime} G=B$. So we may assume ξ is G-invariant. Take a central extension of G,

$$
1 \rightarrow Z \rightarrow \widehat{G} \xrightarrow{f} G \rightarrow 1,
$$

such that $f^{-1}(N)=N_{1} \times Z, N_{1} \triangleleft \widehat{G}$ and that ξ extends to a character of \widehat{G}, say $\widehat{\xi}$, under the identification of N_{1} with N through f, and that Z is a finite cyclic group. Let \widehat{B} (resp. $\widehat{\chi}$) be the inflation of B (resp. χ) to \widehat{G}. Then there is an irreducible character θ of \widehat{G} / N such that $\widehat{\chi}=\widehat{\xi} \otimes \theta$. Let \bar{B} be the block of \widehat{G} / N to which θ belongs. Then we get ht $(\widehat{\chi})=\mathrm{ht}(\xi)+\mathrm{ht}(\theta)+\mathrm{d}(\widehat{B})-\mathrm{d}(b)-$ $\mathrm{d}(\bar{B})$. Let \widehat{D} be a defect group of \widehat{B}. Then $\widehat{D} N / N$ contains a defect group of \bar{B} by Corollary $1.5(\mathrm{i})$, so we get $\mathrm{d}(\widehat{B})-\mathrm{d}(b)-\mathrm{d}(\bar{B}) \geqq 0$. (Note that $\widehat{D} \cap N$ is a defect group of b [8, Proposition 4.2].) On the other hand, since \widehat{G} is a central extension of $G, \widehat{D} Z / Z$ is a defect group of B. This implies ht $(\widehat{\chi})=\mathrm{ht}(\chi)$, since a Sylow p-subgroup of Z is contained in \widehat{D}. Hence ht $(\chi) \geqq h t(\xi)$.

Fix an inertial defect group D of B and let \widehat{b} be a unique block of $D N$ covering b. Put

$$
\begin{aligned}
& \alpha(\xi, B)=\min \{\operatorname{ht}(\chi)-\mathrm{ht}(\xi) \mid \chi \in \operatorname{Irr}(B \mid \xi)\}, \\
& \alpha^{\prime}(\xi, B)=\min \left\{\operatorname{ht}(\zeta)-\mathrm{ht}(\xi) \mid \zeta \in \operatorname{Irr}\left(\widehat{b} \mid\left\{\xi^{T_{\sigma}(b)}\right)\right\},\right. \text { and } \\
& \beta(\xi, B)=\min \left\{\mathrm{d}(B)-\nu(|Q|) \left\lvert\, \begin{array}{l}
Q \text { is a subgroup of } D \text { such that } \\
\xi^{t} \text { extends to } Q N \text { for some } \\
t \in T_{G}(b)
\end{array}\right.\right\},
\end{aligned}
$$

where $\operatorname{Irr}\left(\widehat{b} \mid\left\{\xi^{T_{d}(b)}\right\}\right)$ denotes the set of irreducible characters in \widehat{b} lying over a $T_{G}(b)$-conjugate of ξ.

We note that the quantities $\alpha^{\prime}(\xi, B)$ and $\beta(\xi, B)$ do not depend on a particular choice of D, since D is determined up to $T_{G}(b)$-conjugacy.

We have shown in [10, Theorem 4.4 (i)] that if ht $(\xi)=0$, then $\alpha(\xi, B)$ $=0$ if and only if $\beta(\xi, B)=0$. Now we extend this as follows:

Theorem 2.3 With the notation above, we have $\alpha(\xi, B)=\alpha^{\prime}(\xi, B)=$ $\beta(\xi, B)$.

Proof. $\alpha(\xi, B)=\alpha^{\prime}(\xi, B)$: We may assume that $G=T_{G}(b)$ by the Fong-Reynolds theorem. First we show that for any $\chi \in \operatorname{Irr}(B \mid \xi)$ there is a character $\zeta \in \operatorname{Irr}\left(\widehat{b} \mid\left\{\xi^{T_{c}(b)}\right\}\right)$ such that ht $(\chi) \geqq \mathrm{ht}^{(\zeta)}(\zeta)$. Let \widetilde{B} be the unique block of $N_{G}(D) N_{\sim}$ with defect group D such that $\widetilde{B}^{G}=B$. By Lemma 2.1 there is a constituent $\widetilde{\chi} \in \operatorname{Irr}(\widetilde{B})$ of $\chi_{N_{c}(D) N}$ with ht $(\chi) \geqq$ ht $(\widetilde{\chi})$. Since \widetilde{B} covers b by Lemma $1.3, \widetilde{B}$ covers \widehat{b} (note that $D N \triangleleft N_{G}(D) N$). Furthermore, since b is $\underset{\sim}{G}$-invariant, $\widehat{\widehat{b}}$ is $N_{G}(D) N$-invariant. So every irreducible constituent ζ of $\widetilde{\chi}_{D N}$ lies in \widehat{b} and by Lemma $2.2 \mathrm{ht}(\widetilde{\chi}) \geqq \mathrm{ht}(\zeta)$. Thus any such ζ is a required character.

Next we show that for any $\zeta \in \operatorname{Irr}\left(\widehat{b} \mid\left\{\xi^{T_{c(b}(b)}\right\}\right)$, there is a character $\chi \in$ $\operatorname{Irr}(B \mid \xi)$ such that $\mathrm{ht}(\chi) \leqq \mathrm{ht}(\zeta)$. This is proved as in the proof of Lemma 4.3 in [10]. In fact, let \widetilde{B} be the block of $N_{G}(D) N$ as above. Since \widetilde{B} covers \widehat{b}, there is a character $\tilde{\chi} \in \operatorname{Irr}(\widetilde{B} \mid \zeta) \dot{\sim}$ Then, as is well-known, $\nu\left(\widetilde{\chi}_{\tilde{\chi}}(1)\right) \leqq$ $\nu\left(\left|N_{G}(\underset{\sim}{D}) N / D N\right|\right)+\nu(\zeta(1))$. Since $\dot{\widetilde{B}}^{G}=B$, we have $\nu\left(\tilde{\chi}^{B}(1)\right)=\nu\left(\tilde{\chi}^{G}(1)\right)$, where $\widetilde{\chi}^{B}$ denotes the B-component of $\tilde{\chi}^{G}([4, \mathrm{~V} .1 .3])$. So there is an irreducible constituent χ of $\widetilde{\chi}^{B}$ such that $\nu(\chi(1)) \leqq\left(\widetilde{\chi}^{G}(1)\right)$. Then easy computations show that ht $(\chi) \leqq$ ht (ζ) and, by Frobenius reciprocity, $\chi \in \operatorname{Irr}(B \mid \xi)$. This completes the proof.

$$
\begin{aligned}
& \alpha^{\prime}(\xi, B)=\beta(\xi, B): \text { For every } t \in T_{G}(b), \text { put } \\
& \alpha_{t}^{\prime}=\min \left\{\text { ht }(\zeta)-\operatorname{ht}(\xi) \mid \zeta \in \operatorname{Irr}\left(\hat{b} \mid \xi^{t}\right)\right\}, \text { and } \\
& \beta_{t}=\min \left\{\begin{array}{l}
\mathrm{d}(B)-\nu(|Q|) \left\lvert\, \begin{array}{l}
Q \text { is a subgroup of } D \text { such that } \\
\xi^{t} \text { extends to } Q N
\end{array}\right.
\end{array} .\right.
\end{aligned}
$$

Since $\alpha^{\prime}(\xi, B)=\min \left\{\alpha_{t}^{\prime} \mid t \in T_{G}(b)\right\}$ and $\beta(\xi, B)=\min \left\{\beta_{t} \mid t \in T_{G}(b)\right\}$, it suffices to show that $\alpha_{t}^{\prime}=\beta_{t}$ for every $t \in T_{G}(b)$. Fix $t \in T_{G}(b)$ and put $\xi_{1}=\xi^{t}$. Let Q be a subgroup of D such that $Q N$ has a character η with $\eta_{N}=\xi_{1}$. There is an irreducible constituent ζ of $\eta^{D N}$ with

$$
\nu(\zeta(1)) \leqq \nu(\eta(1))+\nu(|D N: Q N|) \leqq \nu(\xi(1))+\nu(|D: Q|) .
$$

Since $\nu(|D N|)-\mathrm{d}(B)=\nu(|N|)-\mathrm{d}(b)$, we get ht $(\zeta) \leqq h t(\xi)+\mathrm{d}(B)-\nu(|Q|)$. Since ζ lies in \widehat{b}, it follows that $\alpha_{t}^{\prime} \leqq \beta_{t}$. Conversely let $\zeta \in \operatorname{Irr}\left(\widehat{b} \mid \xi_{1}\right)$. Since $D N / N$ is a p-group, there are a subgroup H with $N \leqq H \leqq D N$ and a character η $\in \operatorname{Irr}(H)$ such that $\eta_{N}=\xi_{1}$ and that $\eta^{D N}=\zeta$ by [7, Theorem 6.22]. We have H $=Q N$ with $Q=D \bigcap H$. Then ht $(\zeta)=$ ht $(\xi)+\mathrm{d}(B)-\nu(|Q|)$. Hence $\beta_{t} \leqq \alpha^{\prime}{ }_{t}$. Thus $\alpha_{t}^{\prime}=\beta_{t}$. This completes the proof.

In [3] , E. C. Dade conjectures the following. Assume that $\mathrm{O}_{p}(G)$ is central
in G and that $\mathrm{O}_{p}(G)$ is not a defect group of a block B of G. Then for every irreducible character ϕ of $\mathrm{O}_{p}(G)$ and for all integers h,

$$
\text { (*) } \mathrm{k}(B, h \mid \phi)=\sum_{c}(-1)^{|C|+1} \sum_{B^{\prime}} \mathrm{k}\left(B^{\prime}, \mathrm{d}\left(B^{\prime}\right)-\mathrm{d}(B)+h \mid \phi\right) \text {, }
$$

where C runs through a certain set of " p-chains" with $|C|>0$ and B^{\prime} runs through the blocks of $N_{G}(C)$ with $B^{\prime G}=B$. Here $\mathrm{k}(B, h \mid \phi)$ denotes the number of irreducible characters in B of height h which lie over ϕ.

Put $h_{1}=\min \{\nu(\zeta(1)) \mid \zeta \in \operatorname{Irr}(D \mid \phi)\}$.
Corollary 2.4 The equality (*) is true for every $h<h_{1}$.
Proof. Let $h<h_{1}$. We shall show that all the terms appearing in (*) are 0 . By applying Theorem 2.3 with $\mathrm{O}_{p}(G)$ and ϕ in place of N and ξ, we get $\min \{h t(\chi) \mid \chi \in \operatorname{Irr}(B \mid \phi)\}=h_{1}$. Hence $\mathrm{k}(B, h \mid \phi)=0$.

If $\mathrm{k}\left(B^{\prime}, \mathrm{d}\left(B^{\prime}\right)-\mathrm{d}(B)+h \mid \phi\right) \neq 0$ for some B^{\prime}, then, by Theorem 2.3, there is a subgroup $Q \geqq \mathrm{O}_{p}(G)$ of a defect group D^{\prime} of B^{\prime} such that ϕ extends to Q and that $\nu\left(\left|D^{\prime}: Q\right|\right) \leqq \mathrm{d}\left(B^{\prime}\right)-\mathrm{d}(B)+h$. Let D_{1} be a defect group of B containing D^{\prime}. Then $\nu\left(\left|D_{1}: Q\right|\right) \leqq h$, so $\mathrm{k}\left(B, h^{\prime} \mid \phi\right) \neq 0$ for some $h^{\prime} \leqq h$ by Theorem 2.3. This contradicts the above. Thus the result follows.

Now put

$$
\gamma(\xi, B)=\max \{\operatorname{ht}(\chi)-\mathrm{ht}(\xi) \mid \chi \in \operatorname{Irr}(B \mid \xi)\}
$$

For a solvable group X, let $\mathrm{dl}(X)$ be the derived length of X . Define the commutator subgroups of X by $X^{(0)}=X, X^{(i)}=\left[X^{(i-1)}, X^{(i-1)}\right](i \geqq 1)$. The following is a slight extension of a theorem of Gluck-Wolf [5]. (In fact, letting N $=1$, we recover Theorem D in [5].)

Theorem 2.5. Let D be a defect group of B. If G / N is p-solvable, then $\mathrm{dl}(D N / N) \leqq 2 \gamma(\xi, B)+1$.

Proof. First we assume $\gamma(\xi, B)=0$ and show that $D N / N$ is abelian. We argue by induction on $|G / N|$.

We may assume ξ is G-invariant. In fact, let $\chi \in \operatorname{Irr}(B \mid \xi)$ and let $\chi^{\prime} \in$ $\operatorname{Irr}\left(T_{G}(\xi) \mid \xi\right)$ be such that $\chi^{\prime G}=\chi$, and let B^{\prime} be the block of $T_{G}(\xi)$ to which χ^{\prime} belongs. Then ht $(\chi)=\mathrm{ht}\left(\chi^{\prime}\right)+\mathrm{d}(B)-\mathrm{d}\left(B^{\prime}\right) \geqq \mathrm{ht}\left(\chi^{\prime}\right) \geqq \mathrm{ht}(\xi)$ by Lemma 2.2. Hence equality holds throughout by assumption. Thus B^{\prime} and B have a common defect group. For any $\eta \in \operatorname{Irr}\left(B^{\prime} \mid \xi\right)$, we have $\eta^{G} \in \operatorname{Irr}(B \mid \xi)$ and ht $(\boldsymbol{\eta})$ $=$ ht $\left(\boldsymbol{\eta}^{G}\right)=$ ht (ξ). Thus $\gamma\left(\xi, B^{\prime}\right)=0$. So, if $T_{G}(\xi) \neq G$, then the result follows by induction.

We may assume $\mathrm{O}_{p^{\prime}}(G / N)=1$. In fact, let $L / N=\mathrm{O}_{p^{\prime}}(G / N) \neq 1$. Choose $\eta \in$ $\operatorname{Irr}(L \mid \xi)$ so that the block of L containing η is covered by B. Clearly ht $(\eta)=$ ht (ξ). This and $\operatorname{Irr}(B \mid \eta) \subseteq \operatorname{Irr}(B \mid \xi)$ show $\gamma(\eta, B)=0$. By induction $D L / L$ is abelian and then so is $D N / N$, since L / N is a p^{\prime}-group.

Now let

$$
1 \rightarrow Z \rightarrow \widehat{G} \xrightarrow{f} G \rightarrow 1
$$

be a central extension of G as in the proof of Lemma 2.2. Choose any $\chi \in$ $\operatorname{Irr}(B \mid \xi)$. Let \widehat{B} (resp. $\widehat{\chi}$) be the inflation of B (resp. $\chi)$ to \widehat{G}. Put $\bar{G}=\widehat{G} / N$. There is an irreducible character θ of \bar{G} such that $\widehat{\chi}=\widehat{\xi} \otimes \theta$. Let \bar{B} be the block of \bar{G} to which θ belongs. Let \widehat{D} be a defect group of \widehat{B} and put $\bar{D}=$ $\widehat{D} N / N$. Then, since ht $(\chi)=h t(\xi)$, we get that \bar{D} is a defect group of \bar{B} and that ht $(\theta)=0$, cf. the proof of Lemma 2.2. Now put $\bar{Z}=Z N / N$. Let $\mu \in \operatorname{Irr}(Z)$ be a constituent of $\widehat{\xi}_{z}$. We may regard μ as a character of \bar{Z} in a natural way. Since $\bar{G} / \bar{Z} \cong G / N$, we see $\mathrm{O}_{p^{\prime}}(\bar{G})=\mathrm{O}_{p^{\prime}}(\bar{Z})$. Then, since \bar{G} is p-solvable, it follows from Fong's theorem (cf. for example [9, Theorem 0.28]) that all irreducible characters of \bar{G} lying over the character μ^{-1} of \bar{Z} lie in \bar{B} and that \bar{D} is a Sylow p-subgroup of \bar{G}. So for every $\theta^{\prime} \in \operatorname{Irr}\left(\bar{G} \mid \mu^{-1}\right), \widehat{\xi} \otimes \theta^{\prime} \in$ $\operatorname{Irr}(\widehat{B} \mid \xi)$ by Corollary $1.5(\mathrm{i})$ and then $\widehat{\xi} \otimes \theta^{\prime}$ is inflated from a character in $\operatorname{Irr}(B \mid \xi)$, which implies (as above) ht $\left(\theta^{\prime}\right)=0$ and $\theta^{\prime}(1)$ is prime to p. Thus by Gluck-Wolf [5, Theorem A], $\bar{D} \bar{Z} / \bar{Z}$ is abelian. Since $D N / N \cong \widehat{D} N Z / N Z \cong$ $\bar{D} \bar{Z} / \bar{Z}$, the result follows.

For the general case we argue by induction on $|G / N|$ along the line of the proof of Corollary 14.7 (a) in [9]. By the above, we may assume that $\gamma(\xi, B) \geqq 1$ and that $D N / N$ is nonabelian. Let $N=L_{0} \triangleleft L_{1} \triangleleft \cdots \triangleleft L_{n}=G$ be a chief series (of G / N). Take blocks b_{i} of L_{i} so that $b_{0}=b, b_{n}=B$, and b_{i} covers b_{i-1} for $1 \leqq i \leqq n$. Let Q_{i} be a defect group of b_{i} for $0 \leqq i \leqq n$. Since $D N / N$ is nonabelian, we can choose $j \geqq 1$ so that $Q_{j} N / N$ is nonabelian and $Q_{j-1} N / N$ is abelian. (Note that then L_{j} / L_{j-1} is an abelian p-group.) By the above, there is $\zeta \in \operatorname{Irr}\left(b_{j} \mid \xi\right)$ such that $\operatorname{ht}(\zeta)-\mathrm{ht}(\xi) \geqq 1$. Then $\gamma(\zeta, B) \leqq \gamma(\xi, B)-1$ and by induction $\mathrm{dl}\left(D L_{j} / L_{j}\right) \leqq 2 \gamma(\zeta, B)+1$. Put $d=\mathrm{dl}\left(D L_{j} / L_{j}\right)$. So $D^{(d)} \leqq D \bigcap L_{j}$. On the other hand, $Q_{j}{ }^{(1)} \leqq Q_{j} \bigcap L_{j-1}$, since L_{j} / L_{j-1} is abelian. Since $D \bigcap L_{j}$ is G-conjugate to Q_{j} and $Q_{j} \cap L_{j-1}$ is L_{j}-conjugate to Q_{j-1} by [8, Proposition 4.2], the fact that $Q_{j-1}{ }^{(1)} \leqq N$ now implies $\mathrm{dl}(D N / N) \leqq d+2$. Thus $\mathrm{dl}(D N / N) \leqq$ $2(\gamma(\xi, B)-1)+3=2 \gamma(\xi, B)+1$. This completes the proof.

3. Normal subgroups and heights of irreducible Brauer characters

In this section we shall show the modular version of Theorem 2.3.
Throughout this section we use the following notation:
N is a normal subgroup of a group G, ψ is an irreducible Brauer character of N, b is the block of N to which ψ belongs, and B is a block of G cover. ing b.

Let $T_{G}(\psi)$ be the inertial group of ψ in G. Let $\operatorname{IBr}(B \mid \psi)$ be the set of irreducible Brauer characters in B lying over ψ.

The following is well-known in the case of (ordinary) irreducible characters, cf. [11, Lemma 5.3.1 (ii)].

Lemma 3.1. Let the notation be as above. Let $\phi \in \operatorname{IBr}(B \mid \psi)$ and let $\phi^{\prime} \in$ $\operatorname{IBr}\left(T_{G}(\psi) \mid \psi\right)$ be such that $\phi^{\prime G}=\phi$. If B^{\prime} is the block of $T_{G}(\psi)$ containing ϕ^{\prime}, then $B^{\prime G}$ is defined and equals B.

Proof. By the Fong-Reynolds theorem, we may assume that b is G-invariant. Let $T^{\prime}=\bigcap T_{G}(\xi)$, where ξ runs through $\operatorname{Irr}(b)$. Clearly $T^{\prime} \triangleleft T_{G}(b)=G$. Also $T^{\prime} \triangleleft T_{G}(\psi)$, since ψ is an integral linear combination of the irreducible characters in b (on the set of p-regular elements of N). Let B_{1} be a block of T^{\prime} covered by B^{\prime}. Then by [10, Lemma $\left.4.14(\mathrm{i})\right], B^{\prime}=B_{1}{ }^{T_{c}(\psi)}$. Since B also covers $B_{1}, B=B_{1}{ }^{G}$ by the same reason. Hence $B^{\prime}{ }^{G}$ is defined and equals B ([11, Lemma 5.3.1]).

Lemma 3.2. Let the notation be as above. Then
(i) $\mathrm{ht}(\phi) \geqq \mathrm{ht}(\phi)$ for every $\phi \in \operatorname{IBr}(B \mid \psi)$.
(ii) If ψ is G-invariant, then there is $\phi \in \operatorname{IBr}(B \mid \phi)$ with ht $(\phi)=\mathrm{ht}(\psi)$.

Proof. (i) The proof is much the same as that of Lemma 2.2. But we repeat it here, since it is necessary for the proof of (ii).

Let $\phi \in \operatorname{IBr}(B \mid \psi)$. Let $\phi^{\prime} \in \operatorname{IBr}\left(T_{G}(\psi) \mid \psi\right)$ be such that $\phi^{\prime \mathrm{G}}=\phi$ and let B^{\prime} be the block of $T_{G}(\psi)$ to which ϕ^{\prime} belongs. Then it follows that ht $(\phi)=$ ht (ϕ^{\prime}) $+\mathrm{d}(B)-\mathrm{d}\left(B^{\prime}\right) \geqq \mathrm{ht}\left(\phi^{\prime}\right)$, since $B^{\prime G}=B$ by Lemma 3.1. So we may assume ϕ is G-invariant. Take a central extension of G,

$$
1 \rightarrow Z \rightarrow \widehat{G} \xrightarrow{f} G \rightarrow 1,
$$

such that $f^{-1}(N)=N_{1} \times Z, N_{1} \triangleleft \widehat{G}$ and that ψ extends to a Brauer character of \widehat{G}, say $\widehat{\psi}$, under the identification of N_{1} with N through f, and that Z is a finite cyclic group. Let \widehat{B} (resp. $\widehat{\phi}$) be the inflation of B (resp. ϕ) to \widehat{G}. There is an irreducible Brauer character θ of \widehat{G} / N such that $\widehat{\phi}=\widehat{\phi} \otimes \theta$. If \bar{B} is the block of \widehat{G} / N to which θ belongs, $\mathrm{d}(\widehat{B})-\mathrm{d}(b)-\mathrm{d}(\bar{B}) \geqq 0$ by Corollary 1.5 (ii). Since ht $(\widehat{\phi})=h t(\phi)$, we get ht $(\phi) \geqq h t(\phi)$.
(ii) Let $\widehat{G}, \widehat{\psi}, \widehat{B}$ be as above. Clearly \widehat{B} covers b. So by Corollary 1.5 (ii), we can choose a block \bar{B} of \widehat{G} / N which is $\widehat{\psi}$-dominated by \widehat{B} and for which $\mathrm{d}(\widehat{B})-\mathrm{d}(b)-\mathrm{d}(\bar{B})=0$. Let θ be an irreducible Brauer character lying in \bar{B} of height 0 . Then $\widehat{\phi} \otimes \theta$ is an irreducible Brauer character lying in \widehat{B} by Corollary 1.5 (ii) and ht $(\widehat{\phi} \otimes \theta)=h t(\psi)$. Since \widehat{B} covers the principal block $B_{0}(Z)$ of Z and $\operatorname{IBr}\left(B_{0}(Z)\right)$ consists of only the trivial character, $\widehat{\psi} \otimes \theta$ is trivial on Z. Thus $\hat{\phi} \otimes \theta$ is inflated from some $\phi \in \operatorname{IBr}(B \mid \psi)$ and then ht $(\hat{\phi} \otimes \theta)$ $=\mathrm{ht}(\phi)$ as above. So ht $(\phi)=\mathrm{ht}(\phi)$. This completes the proof.

Fix an inertial defect group D of B and let \widehat{b} be a unique block of $D N$ covering b. Let $T_{G}(b)$ be the inertial group of b in G.

Put

$$
\begin{aligned}
& \alpha(\psi, B)=\min \{\text { ht }(\phi)-\mathrm{ht}(\psi) \mid \phi \in \operatorname{IBr}(B \mid \psi)\}, \\
& \alpha^{\prime}(\psi, B)=\min \left\{\text { ht }(\theta)-\mathrm{ht}(\psi) \mid \theta \in \operatorname{IBr}\left(\widehat{b} \mid\left\{\phi^{\tau_{c}(b)}\right\}\right)\right\}, \text { and } \\
& \beta(\psi, B)=\min \left\{\mathrm{d}(B)-\nu(|Q|) \left\lvert\, \begin{array}{l}
Q \text { is a subgroup of } D \text { such } \\
\text { that } \phi^{t} \text { extends to } Q N \text { for } \\
\text { some } t \in T_{G}(b)
\end{array}\right.\right\},
\end{aligned}
$$

where $\operatorname{IBr}\left(\widehat{b} \mid\left\{\psi^{T_{c}(b)}\right\}\right)$ denotes the set of irreducible Brauer characters in \widehat{b} lying over a $\mathrm{T}_{G}(b)$-conjugate of ψ.

As in Section 2, the quantities $\alpha^{\prime}(\psi, B)$ and $\beta(\psi, B)$ do not depend on a particular choice of D. Also we have shown in [10, Theorem 4.4 (ii)] that if ht $(\psi)=0$, then $\alpha(\psi, B)=0$ if and only if $\beta(\psi, B)=0$. We extend this as follows:

Theorem 3.3. With the notation above, we have $\alpha(\psi, B)=\alpha^{\prime}(\psi, B)=$ $\beta(\psi, B)$.

Proof. We may rewrite $\beta(\psi, B)$ as follows:

$$
\beta(\psi, B)=\min \left\{\nu\left(\left|D: D \bigcap T_{G}\left(\phi^{t}\right)\right|\right) \mid t \in T_{G}(b)\right\}
$$

In fact, if $\psi^{t}, t \in T_{G}(b)$, is Q-invariant for a subgroup $Q \leqq D$, then ψ^{t} necessarily extends to $Q N$. From this the above follows.
$\alpha(\psi, B)=\beta(\psi, B)$: By the Fong-Reynolds theorem, we may assume that b is G-invariant. First we show $\alpha(\psi, B) \leqq \beta(\phi, B)$. Let $t \in G$ and put $Q=$ $D \bigcap T_{G}\left(\phi^{t}\right)$. We shall show there is $\phi \in \operatorname{IBr}(B \mid \psi)$ with ht $(\phi)-\mathrm{ht}(\psi) \leqq \mathrm{d}(B)-$ $\nu(|Q|)$. We claim there is a block B^{\prime} of $T=T_{G}\left(\psi^{t}\right)$ such that:

$$
B^{\prime} \text { covers } b, B^{\prime G}=B \text { and } Q \text { is contained in a defect group of } B^{\prime} .
$$

Since $Q \leqq D$, there is a block B_{1} of $N_{G}(Q) N$ with $B_{1}{ }^{G}=B$. Then B_{1} covers b by Lemma 1.3. Choose $\phi_{1} \in \operatorname{IBr}\left(B_{1} \mid \psi^{t}\right)$ and let $\phi_{2} \in \operatorname{IBr}\left(N_{G}(Q) N \cap T \mid \psi^{t}\right)$ be such that $\phi_{2}{ }^{G}=\phi_{1}$. Let B_{2} be the block of $N_{G}(Q) N \cap T$ to which ϕ_{2} belongs. Then B_{2} covers b and, by Lemma 3.1. $B_{2}^{N_{g}(Q) N}=B_{1}$. Clearly B_{2} covers a unique block \widetilde{b} of $Q N$ that covers b. (Note that $Q N \triangleleft N_{G}(Q) N \cap T$.) Since $Q \geqq D \cap N, Q$ is a defect group of \widetilde{b} by [10, Lemma 4.13]. So a defect group D_{2} of B_{2} contains Q by [8, Proposition 4.2] and then, since $C_{T}\left(D_{2}\right) \leqq C_{T}(Q) \leqq N_{G}(Q) N \cap T$, $B_{2}{ }^{T}$ is defined. Put $B^{\prime}=B_{2}{ }^{T}$. Then B^{\prime} covers b by Lemma 1.3 and, since $B_{2}{ }^{G}=$ $\left(B_{2}^{N_{G}(Q) N}\right)^{G}=B, B^{G}=B$ by [11, Lemma 5.3.1]. Since a defect group of B^{\prime} contains D_{2}, B^{\prime} is a required block.

By Lemma 3.2 (ii), there is $\phi^{\prime} \in \operatorname{IBr}\left(B^{\prime} \mid \phi^{t}\right)$ with ht $\left(\phi^{\prime}\right)=\mathrm{ht}\left(\phi^{t}\right)$. Now let $\phi=\phi^{\prime}$. Then $\phi \in \operatorname{IBr}\left(B \mid \phi^{t}\right)=\operatorname{IBr}(B \mid \psi)$ by Lemma 3.1, and ht $(\phi)-\mathrm{ht}(\phi)=$ ht $(\phi)-\mathrm{ht}\left(\phi^{\prime}\right)=\mathrm{d}(B)-\mathrm{d}\left(B^{\prime}\right) \leqq \mathrm{d}(B)-\nu(|Q|)$. Thus $\alpha(\psi, B) \leqq \beta(\psi, B)$.

Now we show the reverse inequality. Let $\phi \in \operatorname{IBr}(B \mid \psi)$. Let $\phi^{\prime} \in$ $\operatorname{IBr}\left(T_{G}(\psi) \mid \psi\right)$ be such that $\phi^{\prime G}=\phi$ and B^{\prime} the block of $T_{G}(\psi)$ to which ϕ^{\prime} belongs. Let D^{\prime} be a defect group of B^{\prime}. Since $B^{\prime G}=B$ by Lemma 3.1, we get that ht $(\phi)-\mathrm{ht}\left(\phi^{\prime}\right)=\mathrm{d}(B)-\mathrm{d}\left(B^{\prime}\right)$ and that $D^{\prime t} \leqq D$ for some $t \in G$. Then $D^{\prime t}$
$\leqq D \bigcap T_{G}\left(\phi^{t}\right)$ and $\nu\left(\left|D: D \bigcap T_{G}\left(\psi^{t}\right)\right|\right) \leqq \mathrm{d}(B)-\mathrm{d}\left(B^{\prime}\right)=\mathrm{ht}(\phi)-\mathrm{ht}\left(\phi^{\prime}\right) \leqq \mathrm{ht}(\phi)$ -ht (ψ) by Lemma $3.2(\mathrm{i})$. Thus the reverse inequality is also true.
$\alpha^{\prime}(\psi, B)=\beta(\psi, B):$ Let $t \in T_{G}(b)$. Since $D N / N$ is a p-group and ψ^{t} belongs to $b, \operatorname{IBr}\left(\hat{b} \mid \psi^{t}\right)$ consists of a single character, say θ. Since the ramification index of θ relative to N equals 1 , we get ht $(\theta)-\mathrm{ht}(\psi)=$ $\nu\left(\left|D N: D N \cap T_{G}\left(\phi^{t}\right)\right|\right)$. So

$$
\alpha^{\prime}(\psi, B)=\min \left\{\nu\left(\left|D N: D N \bigcap T_{G}\left(\psi^{t}\right)\right|\right) \mid t \in T_{G}(b)\right\}
$$

Since $\nu\left(\left|D N: D N \bigcap T_{G}\left(\psi^{t}\right)\right|\right)=\nu\left(\left|D: D \bigcap T_{G}\left(\psi^{t}\right)\right|\right)$, the result follows.
Mejul-machi 2-27
Izumi Toki-shi
Gifu-ken 509-51
Japan

References

[1] R. Brauer and W. Feit, On the number of irreducible characters of finite groups in a given block, Proc. Nat. Acad. Sci., 45 (1959), 361-365.
[2] E. C. Dade, Counting characters in blocks I, Invent. Math., 109 (1992), 187-210.
[3] E. C. Dade, The numbers and heights of characters in blocks, preprint.
[4] W. Feit, The Representation Theory of Finite Groups, North Holland, Amsterdam, 1982.
[5] D. Gluck and T. R. Wolf, Brauer's height conjecture for p-solvable groups, Trans. Amer. Math. Soc., 282 (1984), 137-152.
[6] B. Huppert and N. Blackburn, Finite Groups II, Springer, Berlin, 1982.
[7] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
[8] R. Knörr, Blocks, vertices and normal subgroups, Math. Z., 148(1976), 53-60.
[9] O. Manz and T. R. Wolf, Representations of Solvable Groups. Cambridge University Press, Cambridge, 1993.
[10] M. Murai, Block induction, normal subgroups and characters of height zero, Osaka J. Math., 31 (1994), 9-25.
[11] H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press, New York, 1988.

Note added on August 30, 1995.
For shorter (module-theoretical) proofs of Lemma 2.2 and Lemma 3.2 (i), and related results, see A. Watanabe: Normal subgroups and multiplicities of indecomposable modules, preprint.

[^0]: Communicated by Prof. T. Hirai, October 27, 1994

