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Pontrjagin rings of the Morava K-theory
for finite H-spaces
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Introduction

In this note, we study Morava K-theory of finite homotopy associative
H-spaces X with p-torsion. By using a result of Ravenel-Wilson [R-W] we
compute the Pontrjagin product structure for K(2),(X) or K(3),(X). As its appli-
cation, we give very short proofs of the Kane’s theorems [K] about the relations
between H-spaces with p-torsion and the exceptional Lie groups. In particular,
we show that the Pontrjagin ring K(3),(Eg) for p =3 is extremely simple, e.g.,
it is generated by only two elements as a K(3),-algebra. Moreover this K(3),-
algebra structure deduces the Hopf algebra structure of the ordinary mod 3
cohomology H*(Eg; Z/3) without using any theories of classification of simple
Lie algebras. These arguments are some analogue for the proof of non homotopy
nilpotency of exceptional Lie groups in [R], [Y3].

§1. H-spaces with one even degree generator

Let X be a simply connected homotopy associative H-space. By the Borel
theorem, H*(X, Z/p) is a tensor algebra of truncated polynomial and exterior
algebras generated by elements of even and odd dimensional respectively. In this
section we consider the case that the polynomial algebra is generated by only
one element y. From Kane [K] we have |y|=2(p'+p" ' +---4+p+1) for
some i and y?* =0. However all known examples satisfy the case i =1 and
y? =0. Hence we assume here

(L.1) H*(X; Z/p) = Z/p[y]/(y")® 1, lyl=2p +2

where A is an exterior algebra generated by odd degree elements. Then it is
also well known (see [K]) that there are elements x, x’ € A such that

Qix=00x"=y, x| =3, [x|=2p+1, |y=2p+2

where Q; is the Milnor primitive operator, ie., Q, = f, @, = pP' — 2'p.
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Lemma 1.2. Let X be an H-space in (1.1). Then
K(n)*(X) = K(n)* ® H¥(X; Z/p) forn=2.
Proof. We consider the Atiyah-Hirzebruch spectral sequence
(1) E}* = H¥(X; Z/p) ® K(n)* = K(n)*(X) .
It is known (Theorem 4.9 in [Y2])
y = Q,x € Image (BP*(X) - H¥(X; Z/p)) .

Hence y is permanent in the Atiyah-Hirzebruch spectral sequence for BP, hence
so for P(n). Here P(n)*(—) is the cohomology theory with the coefficient P(n)* =
Z/p[v,, Vpsq,...]. Since K(n)*(X) = K(n)* Qp,y« P(n)*(X), y is also permanent in
the spectral sequence (1) for K(n)*-theory.

Considering the biprimitive spectral sequence ([B], [K], confer the proof of
Lemma 3.1 in [Y1]) we see that the differential in the spectral sequence (1) maps
generators to generators. Since there is no even degree generator of degree
>2p? — 2= —|v,|, all odd generators are also permanent. gq.e.d.

Here we recall a result of Ravenel-Wilson (Theorem 12.4 in [R-W]) for the
Morava K-theory of the Eilenberg-MacLane space.

Theorem 1.3 ([R-W]). Let K(n)* = K(n)*/(v, = 1) = Z/p. Then
KQ*K(Z,3)=Z/p[[s]1] Isl=2p+2

and the vershiebung map V (the dual of the Frobenius map x> xP) is given by
V(s)= —s.

Since H*(X:Z/p) =0, the modp reduction H*(X;Z)— H*X;Z/p) is an
epimorphism. We choose a class in H*(X; Z) which map to x by the mod p
reduction. This class is represented by the map f: X —» K(Z, 3). We also know
from [R-W] the element s e K(2)*(K(Z, 3)) corresponds Q,i; in H¥(K(Z. 3); Z/p)
for the fundamental class 1;. Since f*(i3) = x in H*(X; Z/p), we get f*(s)=y
in K(2)*(X). Therefore we know

V(y)= —vyy

Let us write by z, z’, y the dual of x, x', y in K(2),(X) = Hom, ). (K(2)*(X),
K(2)*). Hence
(1.4) yP= —v,y.

Recall that Q; (i % 2) is also defined in K(2),(X) such that it is a derivation
[S-Y]. From (1.4) and Q,y =z, we get

—0yz=0,y"

=zy..y+yzy...y+-+y...yz,
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here note the non commutativity of y and z. Let us write ad (y)(z) = [y, z] =
yz —zy. Then it is well known

ad M@ =D [s-n [, 2]1..] = Z(;)(—l)"y...yzy...y.
Y Y

In particular the case i = p — | shows
—vyz =ad”™! (y)(2).

Similarly, we have —uv,z’ = ad?™! (y)(z').

Here we consider the connective Morava K-theory k(2),(—). By [S-Y],
we can also define the Pontrjagin product in k(2),(X) = k(2), ® H.(X; Z/p).

By the dimensional reason, k(2),(X) = H,(X, Z/p) for 0 < = < |v,| = 2(p* — 1).
Since |ad’ (y)(z)| < 2(p* — 1) for i <p — 1, we have ad’(y)(z) # 0 in H(X;Z/p)
for i <p— 1. These elements are primitive since so are z, y. Thus there are
ring generators x; in H*(X; Z/p) which are dual of ad’(y)(z). Therefore we get
the following theorem (for the case H*(X, Z/p), more general results are given
by Kane [K]).

Theorem 1.5, Let X be an H-space with (1.1). Then H*(X, Z/p) (resp.
K(2)%(X)) has a quotient Hopf algebra

K[y)/O") ® A(x, x/|0<i<p—1)  with K = Z/p or K(2)*

;| =2(p+ Di+3, |xij|=2(p+ 1)(i + 1) — 1 such that its dual Hopf algebra is
generated by three elements z, z' and y with the relations

ad® ' (y)(z2) =0 (resp. = —v,2), ad® ' (y)(z) =0 (resp. = —v,z')
yr=0 (resp.= —v,y) [2,2]=0.

The following facts on the cohomology of the exceptional Lie groups are
known ([K-M], [Ko])

H*(F,, Z/3) = Zﬂ[)’s]/()’%) ® A(x3, X7, X1, X15) and
H¥(Eg, Z/5) = Z/5[y,21/(y32) ® A(x3, X141, X15. X33, X279, X35, X39, X47) -

Hence we get
Corollary 1.5. Let X be an H-space in (1.1). Then there are epimorphisms
KQ)*(X) - K(2)*(F,),  H%X;Z/3)—» H*(F,;Z/3)  for p=3
K(2)*(X) > K(2)%Eg), HXX:;Z/S5)—> H*(Eg;Z/5) for p=5.
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§2. Two even degree generators

In this section, we consider a simply connected homotopy associative H-space
X such that

(2.1)  HXX,Z/p)=Z/p[y, ul/(y", u")® 1, [yl # lul, lyl=2p+2

where A is an exterior algebra generated by odd dimensional elements. Then by
a theorem of Kane [K], there are x, x’, w, w’ such that

0, x=0x" =y, O, x=0,w=0,w =u.
By the arguments similar to the proof of Lemma 1.2, we have
22 KQ*X) = KQ*[y)/(y") ® A ® A(xuP™")
where 4 = A" ® A(x). We also see
(2.3) ad?™! (y)(z') = —v,z’ for the dual z' of x'.

We study K(3)*(X) now. Also by the arguments similar to the section 2,
we can prove

KQ3)*X) = KQ)*® H*(X, Z/p) .
The Ravenel-Wilson theorem for this case is stated as
(2.4) K(3)*(K(Z,3)) = Z/p[[s. 1], Isl=2p+2, [t|=2p*+2

and V(s)= —t, V() = —sP. Let z, z/, v, v’ be the dual elements in K(3),(X) of
x, x', w, w' respectively. Then the vershiebung map shows

(2.5) uf = —ovyy, yr=0.

This induces ad?™! (u)(v) = —Q,(v3y) = —vsz. Similarly, ad?™! (u)(v') = —v,z"
Moreover from (2.3),

ad? (w)(z') = [u”, 2] = —v3[y, 2’1 #0.
Taking x}, w;, w/ as dual of ad’ (u)(z'), ad’ (u)(v), ad’ () (v') respectively, we get;

Proposition 2.6. Let X be an H-space in (2.1). Then H*(X, Z/p) (resp.
K(3)*(X)) has a quotient algebra

KLy, i/(y", u?) ® A(x, xj w, w/[0<j<pO0<i<p—1) K=Z/p or KO

with x| = 2(pP2+ Dj+2p+1, [w| = 202+ D+ 1D)—-Q2p—1), [w] =
Ap? + D+ 1) — 1.

The following fact is also known ([K-M])
H*(Eg, Z/3) = Z/3[ xs, xzo]/(xg, X30) ® A(X3, X7, X15, X195 X275 X35, X309, X47) -

Corollary 2.7. The Pontrjagin ring K(3),(Eg) for p =3 is generated by two
elements u, z' with relations u® =0, ad® (u)(z') =0, z>=0. Hence
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K(3)* ® H¥(Eg, Z/3) = K(3)*[u*, u**]/(w*?, @**)*) ® A(ad’ (u)(z')*[0 < i

where a* is the dual of a.

N
3

Proof. For the dimensional reason, [y,z'] =v. From the formulas after
(2.5),

ad? (W)(v') = —vsz’
ad® @)(z') = ad ()(z') = —v3[y. 2] = —v3v
ad? (u)(v) = —v3z

ad (u)(z) = ad (y)(v) = ad® (y)(z') = 0.
The last equation is induced from (2.3) and
—v3 ad (y)(v) = ad (?)(v) = ad® (u)(v) = ad (u) ad® () (v)
= ad (u)(—v32) = —v; ad (u)(z) .
By the same reason, ad (y)(v') = ad (u)(z'). q.e.d.

The Pontrjagin product structuure for H,(Eg, Z/3) is easily reduced from
the arguments in the above proof, indeed, y*> = u®> =0 and

ad? (u)(v') = ad® (u)(z') = ad (u)(z) = 0
ad (y)(v') =ad W)(z'), ad’(y)(z')=ad (y)(2)=0.

Corollary 2.8. Let X be a H-space in (2.1) and suppose ad (y)(z') =v. Then
for p =3, there are epimorphisms of Hopf-algebras.

HX(X, Z/3) » H*Eg, Z/3),  KQ)*X) - KQ3)*(Es).
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