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Quasi Sure quadratic variations of two parameter
smooth martingales on the Wiener space*’

By

Zong-xia LIANG

1. Introduction

Stimulated by Malliavin calculus, the theory of quasi sure analysis of Wiener
functionals has been extensively developed (cf. [4, 6, 7, 8, 9, 12, 13, 16, 17, 18,
197, etc). Recently, J. Ren (cf. [17]) has studied quasi sure properties of quadratic
variation of “smooth martingales”, a notion introduced by P. Malliavin and D.
Nualart [8], and his results are concentrated on studying one parameter smooth
martingales and two parameter smooth strong martingales. In this paper we
generalize his results in more general setting and study the quasi sure properties
of two parameter smooth martingales which are not necessary strong martingale
in general. This situation is much more difficulty to handle, when Malliavin
calculus is involved, because the two parameter stochastic differentiation rules
(cf. [1, 21, 24]) and the representation of two parameter square integrable martin-
gales involve “stochastic integral of the second type”, ie., ([, f(& ndW.dW,
(cf. [1]). Now let us state our results in more details.

Let N be a two parameter smooth martingale, then by [1] and [21], for
each zeIT=[0,1]% N can be represented as a sum of stochastic integral of
the first type and stochastic integral of the second type,

N, = J pmdW, + ” Y(E n)dWdW,
R, R. xR,

where W is a two parameter Wiener process and vanishing on the axes. Let

Nz:J d(n)dW, and M, =JJ (& ndWdW,. 1t is well known that the
R, R, >R,

quadratic variation processes of N, M and N are given by (N>, = | ¢(n)*dn,

RZ

(M), = Jj Y(& n)’dedn and (N =J $(n)*dn + JJ Y(& n)*didn re-
R, xR, R, . R, xR,
spectively. And by [21], we have for each z that (N, M), = 0. We shall prove
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that the quadratic variation process (N} of two parameter smooth martingale
N admits an oo-modification which can be constructed as quasi sure limit of

sums of form ) N(A;)?. Our main tool is the quasi sure version of Kolmogrov
i

criterion for the continuity of trajectories of stochastic processes established by
J. Ren (cf. [4, 16, 18]).

The organization of this paper is as follows. In section 2 we will briefly
recall some basic facts about Malliavin calculus for two parameter Wiener func-
tionals and two parameter processes. In section 3 we will study the quasi sure

properties of two parameter smooth martingale M, = j j V(& ndWdWw,. In
R; xR,

section 4 we will give the main results.

2. Malliavin calculus

The extension of Malliavin Calculus to the case of two parameter Wiener
functionals is straightforward. We introduce here those notations and concepts
which are necessary for finishing our main results. Let IT = [0, 1]> be our param-
eter space, z; = (s;, t;) and z, = (s,, t,) be two points in I1, we write z, < z, iff
s;<s,and t; <t,, z;, <z, iff s;,<s, and t, <t,, and z, A z, iff 5; <s, and
ty >t,. If z; <z,, (z;,2,] will denote the rectangle {zell;z, <z<z,}. We
put R, =[0,z], and z, v z, = (max (s, S,), max (t;,t,)). The increment of a
function f:IT—- R on a rectangle (z,z,] is given by f((zy,2,]) = f(s1, t,) —
Sy, t3) — f(s2, ty) + fls2, 13).

Let (X, #, u) be the canonical probability space associated with the two
parameter Wiener process W, that is, X = {w: IT > R, continuous, vanishing on
the axes}, u is the two parameter Wiener measure (cf. [14, 25]), and & is the
completion of the Borel o-field of X with respect to u, {#,} is the filtration
generated by the functions {w(r), w e X,r <z} and the null sects of #. Let
3721 = %s.l)* 'g;zz = eg'-(l,t) for z = (S, I)G H’ then {‘%}ze 1> {'g;zl }zell and {‘%Z}ze 11

Pw

satisfy the usual conditions of [1]. Let H = {w e X, there exists e L2(IT)

0Osot

s [t 62(1)
such that w(s, t) = J‘ f dudv, for any z = (s, t) € 17} be its Cameron—Martin

o Jo Ouow

. . . . 0’w,
subspace. H is a Hilbert space with the inner product {w;, w,>y= Fren
n
02 . .
5 C(;)tz dsdt. Then (X, H, u) forms a classical two parameter Wiener space (cf. [12,
s

13]).

A smooth functional is a map F:X — R such that there exists some n > 1
and C*-function f on R" with the following properties:
(i) f and all its derivatives have at most polynomial growth order;
(i) F(w) = f(o(z,), ..., w(z,)) for some z,, ..., z, €Il
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The derivative FF of a smooth functional F along any vector h € H is given by

(PF, by ; 5“’- 0(z), ..., 0(z)h(zy)
=J E()h(r)dr (2.1)
n
n 2
Where &(r) = Z z(a)(zl), v 0z ) g (), h(z) = "his, t), for z = (s, t).

k=1 8xk i 0sot
Similar to [12], we can define the Nth derivative ¥¥F of F, it determines
a square integrable random variable taking values on the Hilbert space H®" of
all continuous N-multilinear forms on H®(N)®H with the Hilbert—Schmidt
norm |||y (for details cf. [13]). We define Ornstein—Uhlenbeck operator L on
smooth functionals as follows:

no 0
LF@) = 3 0 wfe). o e 3)

0x
LG/
=3 ot .. ool
k=1 k
Where I'(z;, z;) = min (x;, x;)-min (y;, y;) if z; = (x;, ;) i =1, ..., n. For any inte-

ger r >0 and any real number p > 1, we set
IFllp2 = I(I =L)F|  and
IFllp2 = IFll, + IP*FI|,
Wp= () W&

© p>1,r=0
Where WY, is the completion of set of smooth functionals with respect the norm
[1l,,2 (ie., WS, is the Sobolev space of order 2r and of power p over X), then
we have (cf. [3, 12]) that for any smooth functional F there exists constant c
and ¢’ such that

CHF”p.Zr < “F”;;,Zr < C,”F”p.Zr (2'2)

and W, is a nice space in the sense that:

(1) W, is an algebra;

(ii) if F, Ge W, then LFe W, and {(FF,VG)ye W,;

(iii)) if FeW,, and let u: R > R be a C -function such that u and all its
derivatives have at most polynomial growth order. If we set F = (F,, ..., F,)
then uo F e W, and the following differentiation rules hold:

V(uoF) = _i (F) VF, (2.3)

d 9%y
L(qu)=< S oo
ihj= iOX;

i5=1

F)~<VF.-, Py + (Z o )LF 24
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In [1, 21] Cairoli and Walsh, Wong and Zakai introduced the concepts of
two parameter martingales, i-martingales (i = 1, 2), strong (weak) martingales and
stochastic surface integral. With these concepts it is well known that a strong
martingale is a martingale, a process is a martingale iff it is both an adapted
I-martingale and an adapted 2-martingale, and adapted 1- and 2-martingales are
also weak martingales. By [1], for any square integrable martingale N, there
exists {Z.'}-predictable increasing process [N]' (i=1,2), and {Z,}-predictable
increasing process {N) such that (N)> — [N]' is an i-martingale (i =1, 2 when
i =2, 1, respectively) and (N)> — (N) is a weak martingale.

Let s} = —217 = % (i,j=1,2,...,2", for any z = (s, t) € II. We shall denote

the rectangle i/\si+1/\s X j/\tj+1/\t i/\si+1/\ X
gies % ’7 ? > i ? > on N

. i ; .
(0,% A t] and (0% A s] X (% A t,J ; A t] by A, A, and A, respec-

tively. By the definition of stochastic integral of the second type and stochastic
Fubini’s theorem (cf. [1, Theorem 2.6]), we have the following.

Proposition 2.1. For the square integrable martingale M, = jj o n)-
R, xR,
dW.dW, we have that

r 2
[M]} = { f $(&, rl)d%} dn (2.5)
JR, R,
r 2
[M]? = H #(&, n)dW,,} d¢ (2.6)
JR, R,
ML) = j G, mdW dW, (2.7)
[URURASR AV
r 2
[M1'(D) = { f #(&, n)d%} dn (2.8)
J b A,
r 2
[M]*(A) = {f (&, n)dW,,} d¢ (2.9)
v A2 Al

Moreover we note that the parameter space T = [0, 1] of [20] can be replaced
by T =[0, 11> = 11, then by the definition of stochastic integral and stochastic
Fubini’s theorem (cf. [1, 24]) we easily deduce from the proposition 5.1 and
proposition 5.8 of [20] and (2.2), (2.3) that

L(J f(n)de> = | (LS =)W, (2.10)
R, JR:

L<” f(él,éz)dwg,dwgz>= j (Lf = 2f)(&y, &R)dW, dW,,  (2.11)
R, ~R_ R: >R

o

L(Jl[ jV(élaCZ)déldVVQ): j (L_/.—f)(énéz)dad”/;l (2.12)
R xR, JJR. xR,
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We don’t give the proofs of (2.10) (2.11) (2.12), for it is entirely similar to the
one parameter case (cf. [23]).
Given an open set O in X, its (r, p)-capacity is defined by (cf. [3, 4, 7, 19])

C, (0) = inf {[|lull, ,,; ue W, u>1, p-ae on O}
and for any subset A of X, the capacity is defined to be
C, ,(A) = inf {C, ,(0); O is open and O > A}

If C,,(A)=0 for all p>2 and for all reN, then 4 is called a slim set (cf.
[7]). If some property holds except on a slim set, then we say that it holds
quasi surely (abb. g.s.). It is well known (cf. [4]) that for any element f in
W, = ﬂ W2 we can find a function f* such that (1) f* = f p-ae; (2) for

p>1,r>0
each pair (p,r) and any ¢ > 0, there exists an open set O with C, ,(0) <& such
that f* is continuous on X\0. f* is referred to as redefinition of f. Obviously,
any two redefinitions of a function coincide except on a slim set. Any function
with property (2) above is called co-quasi continuous. The important tool we
will also use is the concept of co-modification of a random field.

Definition 2.1 (cf. [4, 18]). Let {X(t),t € D} be a random field, where D is
a domain in R%. A random field {X(t),t e D} is called an oo-modification of
{X(),teD} if
(1) X(t)= X(t) ae. for each te D;
(2) X(-, w) are continuous in D q.s.;
(3) X(t, ) is oo-quasi continuous for each t € D.

Theorem 2.1 (Quasi sure version of Kolmogrov criterion) (cf. [18]). Suppose
that for any pair (p, r) we can find an even number B(p, r) and two positive constant
c=c(p,r), a =oa(p,r) such that
(1) X(t)e W5, for each te D;

(2) (X(t) — X(s))’ € W5, for each (t,s)e D x D;
3) X @) — X)llp2 <clit —s)|*™ for each (t,5)e D x D,

d
where ||t — s|| = Z lt; — s;l. Then {X(t),t € D} has an co-modification.
j=1

In addition, we quote the following theorems which will be used later.

Theorem 2.2 (cf. [4, 18]). If two processes X,(t, w), X,(t, w) satisfy the condi-
tions of Theorem 2.1 above and if X,(t, w) < X,(t, w) a.e. for every t, then X,(t, w) <
X,(t, w) g.s. for all teD.

Theorem 2.3 (Faa di Bruno’s inequality) (cf. [4, 16]). For any fixed p > 2,
re N and n > 2r, there exists a constant ¢ = c¢(n, p, r) such that

19”11 p.2r < €llgliZr2p.2, max [Ellg|"-=2P]12P
O<a<2r

Theorem 2.4. Suppose that ue W5,, u* is its refinement, then
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N 1
Co (lu*ll >e) < Ellullp.zr

for any ¢ > 0.

Now we define two parameter smooth martingales. As in introduction, for
any square integrable martingale N which vanishes on the axes, we have

N, =¢- W, +y WW,

= f $(mdw, + ” V(& ndW.dWn (2.13)
R, R, xR,

where ¢ € L3, = {f: f is an {&,}-predictable process and E{J If({)lzdé} < 400,
R

for any z e 17}, Yyely, = {f:f = {f(& n), & n e IT} satisfies: (1) f is predictable

process (cf. [1]), (2) f(&,n7) =0 unless & A 5, (3) E{ﬁ[ f(&, n)zdédn} < 4o

R, xR,
for zell;.

Following P. Malliavin and D. Nualart [8], we say that N represented as
(2.13) is smooth if the following conditions are fulfilled:
(C.1) ¢(2)e W, and (&, n) e W, for almost 0 <z <(1,1),and 0 < ¢, 5 < (1, 1).

(C2) f 817, 2-dn + JJ (&, M3, 2,dSdn < +oo0 for all p, r.
1 1nxn

3. Quasi sure analysis on two parameter smooth martingale M

Analogously to [8, Theorem 4.2], we have the following.

Theorem 3.1. Let M,=y-WW, = JJ Y(& ndWdW, and  satisfies
R, xR,

conditions (C.1) (C.2), then
(i) M,eW, for all z€ I,
(ii) There exists a decreasing sequence {O,,n > 1} of open subsets of X and a

function M: ( U 0:) x IT— R such that

n>1
(@) M is continuous on O; x II, for each n > 1,
(b) G, ,(0,)-0, as n—> +oo, for all p, r;
(c) M, = M., almost surely, for all z e II.
Proof. For simplicity, all the constants depending only on M, p, but not
on n and the parameter z, will be simply denoted by c¢. Note that (M), =

Jf W(& n)*dédn. By (2.11), Burkholder’s inequality for two parameter mar-
R, xR,
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tingales (cf. [2, 5, 10, 11]) and Holder’s inequality there exists ¢ such that
sup [|M_[I} . <c JJ I (&, ml},dédn < +oo
z 1Ix 11
(by (C.1) (C.2))

and in the same way

sup M. |5, <c jjn ; (&, iy, dédn < +o0

for all p, r. In particular, (i) holds.
To prove (ii), for any z, z’' € I, we only consider the case z <z, and z R z’
can be considered in the same way as in previous case. For any z < z', we have

M, — M, = M(D,) + M(D,) (3.1)

where D, = (0,s'] x (t,t'], D, =(s,s'] x (0,t] for z={(s,t), z=(s,t')eIl, and
by (2.7) we have

M(D,) = Jj Y(& ndWdw,

M(D2)=IL N Y(&, ndWdw,

where Dy = (s,s'] x (0,t']. Using again Burkholder’s inequality and Holder’s
inequality we get

pl2
[M(Dy)l5,2 < CE<ff 13y — Ll//lzdfdn>
D, xD;
< em(D, x D)7 jf 15, 2dSdn
D, xD,

<clt — PP ” 5 ,d&dn (3.2)
1 x 11

where m stands for Lebesgue measure on IT x [I1.
Similarly

IM(D,)]| < cls — '[P JJ W17, 2d8dn (33)
nx

A combination of (3.1), (3.2) and (3.3) implies
IM, — M_||5, <c[lt — t'["P7" +|s —s'|P27"]

(by (C.1) (C2))

And we can prove in the same way that
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1My, — Mg oI} 5 < clls — 17270 + |t — t/P271]

p,2r =
for all p, r. Hence by Theorem 2.1 and Theorem 2.3, the proof of (ii) is finished.
Q.E.D

Similar to the proof of Theorem 3.1 of [17] and the proof of (ii) above, we
have the following.

Theorem 3.2. (M) = {JJ Y(E n)dédn, z € H} admits an co-modification.
R: xR,

We denote by M (resp (M) itself its oo-modification M (resp (M)). The
following theorem is our main result in this section.

Theorem 3.3. The convergence

lim Y, M(Af(s, 1) = J f Y (& n)*ddn
R. xR,

n—o ij

holds uniformly in z = (s, t) € I1, q.s., where Aji(s, t) = (s;, Siv1] X (&, tj41 ), 8i = % A

J

S, IJZ?At

Proof. We define a random field parametrized by [0, 1]° as follows:
XQ7s 0+ (- 2@ — 27 )

X2 s, 1) — X7, s, 1)), if 27*D 27m,
Xespod XKOTSO-XQs 0 i Eel ]

f J Y(&, n)*dédn, if £=0.
R, xR,

where X(27" s, 1) =Y M(A})?, z=(s,t). By Theorem 2.1, 2.2, 2.3, 2.4 and 3.2,
7
it suffices to prove the following facts:

sup [X(27" s, t') — X" s, )5 <c[ls" —s/PP™H + |t —tPP71] (3.4)
sup [X(27" s, 1) — X(0, s, 1)[|5 < c27"P27D (3.5)
sup 1X (&, 27,2, < +o0 (3.6)

We divide the proof in three steps.

Proof of (3.4). By the definition of z <z and z A z', we need only to
consider two cases s <s’,t <t and s <s’,t>t. Since the methods are similar,
[2"s] . [2"t]
= —2n . t" = 2" N
we can reduce the following four cases: (5, £,) = (5, )y (S £n) < 5y £1)y (5, £) <
(5..f,) and (,,t,) < (5, f,), so we can only prove (3.4) in two cases of (5,,t,) =
(5, £,) and (5, £,) < (S, L)

we only prove (3.4) in the case of s<s’ and t <t". Let 5,
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In the first case, we have
[X2™" s, t)— X2 s, )b
= IM((z,, 2'])* — M((z,, 2D)*II}
< IM(Gy s1 % (6, 8']) + M((s, s'] x (£, £'D)115,
< IM(Gy, 5T % (6, ' DS, + 1M (s, 8] x (2, ' DI, 3.7
where z, = (5,, [,), z = (s, t).

On the other hand, by (2.7) we have

M((S,, s] x (¢, 1']) = ” Y(& n)dW dW,

(Rs\Rgy) x (Rsr'\RE":’)

By the Burkholder’s inequality for two parameter continuous martingales and
proposition 2.4(b) of [1] we get

E< f f W(E, nydédn)
(Rsr'\Rst) X (Rg¢ \RE,Ir’)

JL: E|y*?d&dn

<cl|t—tpP? (3.8)

1/2
IM((5,, 5] > (6, ' DI, < ¢

1/2
< Cm(Rst’\Rst )p- 12 m(Rst’\Rint’ )p— 12

Similarly
IM((s, 8'] % (T, t' D5, < cls — 57727 (3.9
Therefore we deduce from (3.7), (3.8) and (3.9) that
IX@2™" s, 1) — XQ™ s, t)E<c[ls—sPP 4+t —t'|P?71] (3.10)
For the second case, we have
X@2™ s, t')y—XQ2™" s t)
[27s']-1 [27

t]—1
= M((z,, 2,0 — M((z,, 2] + ) ZO M(A})?

i=[2ns]
[27s]-1 [271']—1 R [2ns']—1 [271']—1
+ Y Y M@+ Y Y MO}

=0 j=[2") i=[27] j=12")

=aj+ay+ai+ay (3.11)
i i+1 i j+1 .. .
where Af = <?, T] X (%’LZT:I Similar to the proof in the first case, we
have

lailly < clls —s1727" + |t — ¢'|P271] (3.12)

By Burkholder’s inequality for two parameter discrete martingales and Holder’s
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inequality, we have

E|a5|” < cE|M;, — M§","|2p

j f Y (&, n)dWdw,
Rs; i, x(Rs; \Rs 7 )

f J Y(& n)’dédn
Rsi x(Rs \Rs 7))

<cl|s—s|P?

2p

=cE

p
<cE

<cl|s— s PP
Similarly
Elaj/P <c|t —t'|P27!
Elaj|P <c[|s — s'|PP7' 4 |t — ¢/ |PP71]

A combinaion of (3.11), (3.12), (3.13), (3.14) and (3.14) yields

X2 s, t) = X2 s, 0)lh < clls — s'IP271 + |t — t'|P271]

hence the proof of (3.4).

Proof of (3.5). For two parameter martingale M, = JJ

R xR,

(3.13)

(3.14)
(3.15)

W(E ndWdw,,

by Ito formula (cf. [2]) for two parameter stochastic processes we have the

following decomposition

X2 s, t)— X(0,s,t)

=2) J M(DY(s A ut A v))AM,, +2 Jl[ doM, dtM,,
ij Al(s,1) ij Ajs)

+ 2 ([MT1(A(s, 1) — <MD (As, 1)
ij
+ 2 ([MT2(A(s, 1) — MO (As, 1)

= b"+ b2 + b + bl

(3.16)

Since {<M>(u, v) = J‘u J‘" JH Jv W(&, n)2dédn, noting that (&, 1) =0 unless & A 7,
0o Jo Jo Jo

we have

d{M}>(u, v) = {j" Jl Y&, v, nz)zdfld"lz} dudv

0 JO

Hence we have

(3.17)
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p

E[b{|P = c(p)E

Z Jf M(Af(s A u, t A v))dM,,
Aljs,1)

ij
(by Burkholder’s inequality for two parameter discrete
martingales and Holder’s inequality)

< c4rtri2—1) Z E Jj M(AJ(s A u, t A v))dM,,
His, )

p

(by Burholder’s inequality for two parameter continuous martingales)

< capn- “ZE( f f M(@Bis A .t A )PdCM v))m
(s, 0)

(by (3.17))

< c4noi2- I)ZE<J‘SM JJHJ J M((s;, u]

(tj> V1) ¥ (&4, v5 u, n,) dudvdl, d’?z)

(by Holder’s inequality)

<cl | J J f IE|M((s;, u] x (t;, v])[27] 2

x IEIt//(él, v, u, 1,)|*P|'? dudvd€ dn, (3.18)
On the other hand, for any (u, v) € Ajs, t), we have
E|M((s;, u] x (¢, v])I**

(by Burholder’s inequality for two parameter continuous martingales)

14
<cE <Jf v, n)zdéd’?>
(Rut \Ru) % (Rugu\Ry )

(by Holder’s inequality)

< em(R,,\Ry ) " m(R,\R, )™ J J E|y(, n)**didn
mn?

< c47me b (3.19)
Substituting (3.19) into (3.18) and taking (C.1) (C.2) into account we get
E|b}F < 271271 (3.20)

For b;, by using again Burkholder’s inequality for two parameter parameter
martingales, we get

2
> (jj doM,,dtM,,)
ij Afj(s, 1)

(by Holder’s inequality)

p/2

E|bI” < cE
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JIAE}(S.!)

(by Burkholder’s inequality for two parameter continuous martingales)

< 4RI Y E

ij

P2

<Y E

f f do[M];.dt[M]3,
(s, 1)

p/2
< c4nr- “ZE( sup ff da[M];,,dr[M]f,>
Ay

i (u,v)e A;}(s.l)

p
< c4n(p/2 1) Z E< sup [1\/1]“,JH [M]311)>

ij ue(sisivil

+ C4n(p’2 1) Z E( sup ([M]sliuv - [M]sl,v)>p

ij e (tjtjvy]
= b}, + b, (3.21)

Noting that [M]*> — (M) is a l-martingale, by the corollary of Theorem
(11.3) of [5] (cf. [5, page 98]) and Burkholder’s inequality for two parameter
continuous martingales we have

by < c4"P27D 5 E( MY (A, 1))

(by Holder’s inequality)

<cany J j EWE P dzn
1% 0,

ij

= 47" “ E|y(&, n)*r dedn
R, xR,

<c27 (3.22)
Similarly
by, <c¢27"F (3.23)
Hence we deduce from (3.21), (3.22) and (3.23) that
E|bj|P < 270271 (3.24)

To estimate by, let M. = I W(&, ndW, for z e Il, by applying Ito’s formula

to 1-martingale M., = {M,,, s€ [0 1], #.'} for every fixed t € [0, 1]. (In general,
M is not both martingale and 2- martmgale) we have

Sit1 AS 14

Elb‘”l’ = E‘z Z J‘ (Mu.l,” At A_/!,vif\.\"l,-+,Al)duMu,l,-H/\tdé
7 Ja, . . J

S AS

(by Burkholder’s inequality for one parameter discrete martingales and
noting that [M]? — (M) is a l-martingale)
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<Z j J‘ (A_/Iu,rﬁ, At Ms,«r\s,tjﬂ At)du]\_/lu,tjﬂ Atdé)z
P A,

J SiAS

p/2
<cE

)

13

(by using Holder’s inequality, three times)

p
< ey E dé (3.25)

ij Jo,

Sie1AS . o
(Mu.tjﬂ N Ms,v/\s,tjﬂ Ar)duMu,er At

5i At

s
Since J (Mot ni = Mg nsiyo ad @My 0 B8 2 martingale w.r.t. {#'}, therefore
0

by Burkholder’s inequality for one parameter continuous martingales, we get

p

E

SiciAS _ .
(Mu‘qu/\l - Ms,-/\s.ljﬂz\l)duMu,th/\r

SiAS

Sit1 NS pl2
V3 Vi 2 Af1
< CE( (Mll‘lj+‘/\l - Ms,-As.ljﬂAt) du[M]u.th/\l

S;AS

Sier AS [Piogat _
= CE(\[ j (Mu,rjﬂ At Msiz\s.t,-ﬂ M)z‘//(é3 u, v)zdudv|p/2

SiAS 0

(by using Holder’s inequality, twice)

SiviAs [Tl At _ .
<c27meRh (E|M -M |2p) 12

Uiy At SiAS, Ly AL
S AS ]

x (E[Y(& n)*?) 2 dudv (3.26)

Again by using Burkholder’s inequality for one parameter continuous martingales,

we get
u tiv1 AL p
j f w(&, n)zdn‘
sins J O

(by Holder’s inequality)

— — 2p
E|Mu,rj+,m - Ms,-/\s.tjﬂml <cE

Si+1 Li+y
gcz"’”"”j j Ely& mi*dn (327

Si (4]

Substituting (3.27) into (3.26) and then (3.26) into (3.25), we get (again by using
Holder’s inequality)

E|b;|" < ¢27"P7V2 % (Jj Ely(, '1)|2”d77d€>
ij Ay x A,

=27 H E[y(&, n)|*rdédn
R xR,

< ¢27mem bR (3.28)



632 Zong-xia Liang

For b}, we note that 1\712 = J Y(& n)dW, is a 2-martingale, [M]! — (M is also
R,
a 2-martingale. Similar to the estimate of b; we get

E|b}P < c27mp~V02 (3.29)
A combination of (3.16), (3.20), (3.24), (3.28) and (3.29) implies that
sup | X2 s, 1) — X(0, s, t)|[5 < ¢27"P27D)

hence the proof of (3.5).

Proof of (3.6). To prove (3.6) we need the following propositions which are
easily deduced from (2.3), (2.4) and the definition of stochastic integral of the
second type.

Proposition 3.1. For two parametermartingale M, = - WW, we have

<15 V”(J:[ w(&, n)dVngW,,>(')
R; xR,

= ” 7", n)(-)dWdW, + n ” PP M) () dWydn
R, xR, R, xR,
+n JJ vrt(E, mm)(-)dedw,
R

2 xR,
e ([ reE ey
R, xR;

2> V"(JJ (< '7)W,,d€>(')

= ” (&, n)(-)dWdE + n ” PPN m)()dEdn
R, xR, R: xR,

V"<” y(&, n)dndwé)(')
R.xR,

= ” (g, r,)(-)dr,dw,:+n” _ TN n)()dEdn
R, xR, R; xR,

Proposition 3.2. Let f, geW,, ‘then ( f,9 e W, and

L(f.9) = (Lf,g9) + (f,Lg) + ¥/, V9)u
Now we turn to the proof of (3.6). By (C.1) and (C.2), for all p, r, we have

” Y(& n)dedn
R, xR,

Y, M(Ay(s, 1)

ij

< +0o0. So it suffice to prove that

P
sup
z p,2r

< 400, Yp, r. (3.30)

p,2r

sup

n,z
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By Proposition 3.2 we have the following decomposition:
L(Z M2, t))2> =27, M(AY(s, )LM(AY(s, 1)) + Y, 7M@)l
ij 1) u

=211+ 15 (3.31)
In view of (2.11), LM is a martingale. By (C.1), (C.2) and [2], we get
lim sup E|I](2)|” = sup E|{(M, LM),|” < sup (E{M )" sup (ELM)?)'? < +oo0.

n=>+w0 z
Consequently

sup E|I’(2)|” < +o0 (3.32)

We deduce from Proposition 2.1 and Proposition 3.1 that

VM(Aj(s, ) (u, v) = f'[ V(& n)(u, v)dW,dW,

Ay x Dy

+ ” Y(&, mdWedn
Ay(u,v) X Ay

+ ﬁ[ Y(& mdEW, (3.33)
Ay(u,v) X Ay

where A (u, v) = (0, 5,4y A ul X (G A v, tiyy A D], Ay(u, v) = (5 A u, 849 A u] x (0,
tiy; A v]. By Proposition 2.1, we have

jL N (S, n)(u, ) WedW, = ((Pih)- WW)(A(s, 1) (u, v) (3.34

By the definition of inner product (-, -)y we have

Jf Y(& ndWy)dn
Ba(e,)x Ay

2

H
02 2
2
=f (J Wi n)dwg) in
A, ™
= [M]'(Aj(s, 1) (3.35)
Similarly
2
H U o VG maw sy = IMP(AYs, 1) (3.36)
10, )x By

From (3.33), (3.34), (3.35) and (3.36) we deduce that
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2 7ML, 1)) Z I7w)- WW(AL (s, DI + [M]; + [M]2

ij
=11 + Iy + 1%, (3.37)

To estimate I3,(z), we have

p
Ell3, @) = Z I(7y)- WW(AL (s, )l
(by Burkholder’s inequality for Hilbert space-valued martingales
with discrete parameter)
2p
< cE[sup ‘ J f PU(E dWedW, ]
i Risi oy nstjiyan * Ris i asijyan H

(by Burkholder’s inequality for H-valued martingales with discrete
parameter, but in reverse way)

< cE[ j j 7 n)u%,dédn]"
R; xR,

(by Holder’s inequality)

<c Jj E |V (& n)ifdédn < +oo (by (C.1) and (C.2)) (3.38)
12

And for I3,, by [5] we get

E|5,(2))" < cEKM),)" < ¢ fj E[y(&, n)I*Pdédn < +oo (3.39)

1?2

Similarly

E|I55(2))F < ¢ ” E|y(&, n)|?Pdédn < +o0 (3.40)
12

From (3.37), (3.38), (3.39) and (3.40) we have

sup E|I1|" < +o0 (3.41)

nz

A combination of (3.32) and (3.41) implies that

Y M(Djs. 1)

ij

sup < 4o for r=1

n,

p.2r

Now we proceed to estimate the fourth order derivatives. By Proposition
3.2 we have
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L2 <Z M), t))2>
= Y. 2M(A(s, D)L M(AYs, 1)

+ 2LM(AL(s, 1)) + 207 M(Als, 1)), VLM(AY(s, 1))y
+ 2LV M (Af(s, 1), VMDA, 0)u + 172 M(A(s, ) fien]
S [ A (3.42)

The estimation of J! (i = 1,2, 3) being obtained in a way similar to that of I}
and I3, we have that

sup E(JJ71” + |J317 + 1J31P) < 400 (3.43)

n,z
Since

2l < 2 ILV MG, Ol + 2 IPMAGs, Ol
ij Y

=5 + i (3.44)
Similar to that for I we get
sup E|J},)” < 40 (3.45)

To estimate Jj,, we first make the following observation (by (2.11), (2.12) and
Proposition 3.1):

LV M(Al(s, 1) (u, v) = f j LV — 27 (u, v)dW;dW,

By x Dy

+ Jf Ly — ) (&, ndWedn
Dp(u,v)x A

+ Jj Ly — ¥)(E, n)dW,dE (3.46)
Ap(u,v)x Ay

If set M =(Ly — ) WW, and M = (LVy — 2y)- WW, then similar to the proof
of I3 we get from (3.46) that

S ILPM(AYs. )% < Y IM(A5Gs, 0)l13 + (M1} + [M]2

The RHS can be estimated in the same way as for I3 and we have

sup E|Jg, 7 < +o0 (3.47)

n,z

Therefore

sup E|JIP < +o0 (3.48)

n.z
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To estimate JZ, we use Proposition 3.1 to obtain

P2M(AY(s, 1)) (u, v) = j f P29, n)(w, v)dW;dW,
By x D,

rr

+2 (&, n)(u, v)dWedn

JJ Bau,0)x by
rp

+2 Py (&, n)(u, v)dW,dg

JJ O (u,v)x Dy

r e

+2 Y(&, n)dédn

JJ By (u,0) x Dy(u,v)

=c;+c+c3+ ¢y (3.49)

Setting

Cy = Caluy, g5 Uy, Uy) =2 Jf V&, n)(u,, Uz)d"/gdﬂ
Ay(u,v) x Ay

then by the theorem I1.10 of M. Reed and B. Simon [15] we have

lealbion = —~L 2du dv,du,dv
2 HEH — 12 \ O, 00, 0u, 0v, 1T

2
=4 J j VY&, ndW| dn (3.50)
A, N, H
Similarly
r 2
lesliien =4 U vy, mdw,| dg
Joy lda, H
lealfion =4 J (&, n)*dédn
Ay x D,y

= 4(M>(A]s, 1) (3.51)
Hence from (3.49), (3.50) and (3.51) we get

2
dn

H

LY NP WW(AYS Dllfcn +4 % L L V(. n)dw,

2

2

d¢ + 4 ” Y(&, n)*ddn
H R. xR,

+4Y
ij

=J5 + U5, + 53 + Js, (3.52)

j vy (&, nydW,
ZA%

Ay

Since JI, can be estimated in the same way as for I3, and it is trivial that

JT Y(&, n)*dédn
R xR,

14
< 400, so it suffices to estimate JI, (in view of
p.2r

sup
z
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the symmetric relation of JI, and JI5). By Holder’s inequality, we have

2p
dn

E|J5,P <23 | E ‘H Vy (&, ndWw;
7 Ja, A,
(by Burkholder’s inequality for H-valued martingales w.r.t {#?},. )

p
<2y E(J Iy, ’7)||2Hdé) dn
ij Ay AN

(by Holder’s inequality)

<cy, JJ EPy (& nlifdidn
ij Ayx D,
=c jj E [Py (&, n)lifdidn
R; xR,

< jjm E|Vy( nlifdédn < +0  (by (C.1) (C2))

Therefore

sup E|J§IP < + 00 (3.53)

n,z

Finally we deduce from (3.42) (3.48) and (3.53) that

sup

n,z

< 4o
p.4

¥ M(A(s, 1))

proving (3.30) for r = 2. Doing the same thing for high order derivatives, step
by step, we complete the proof of (3.30). Thus finished the proof of Theorem 3.3.
QED

4. Main results

Theorem 4.1. Let N be a two parameter smooth martingale represented as
(2.13), then the convergence

lim 2 N(Qjs, 1) = L $(n)*dn + ”R . W(&, n)*dedn

holds uniformly in z = (s, t) € I1, q.s. where AJ(s, t) = (s;, S;41] X (8, tj4,] and s; =

! J
?/\S, lj:?/\t‘

To prove this theorem, in view of Theorem 3.3 above and Theorem 4.3 of
[17], we need only to prove the following.
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Theorem 4.2. Let N, =J d(mdW, and M, = ff V(& ndWdW, for any
R, R. xR,

z € Il, where ¢, Y satisfy conditions (C.1) and (C.2), then the convergence
lim Y M(Al(s, ) N(Als, 1) = 0
n—+oo ij

holds uniformly in z = (s,t) e I, q.s.

Proof. Put X(27" s t)= Z M (A(s, t))N(A (s, 1)). Similar to that of
Theorem 3.3 we reduce the proof to proving the following inequalities:

sup [ X(27", s, 1)[|b < ¢27mP27H 4.1
sup [ X(27" s, 1) = X" s t)Ih < c[ls — SR 4t — PP 4.2)

sup X(27" 8, )l .2r < +© 4.3)

where z = (s, t).
To prove (4.1), by applying Ito formula for two parameter processes
to (M +N)?, N2, M? and Ito formula for one parameter processes to

2
{(I W(& mdW; + ¢('1)> } and {(I Y& mdWw, + ¢(f§)> ,%2}
s€[0,1] R

sto sot

for a fixed (sq, to) € I1, we get the following decomposition:

te[0,1]

Y M(AL)N(A) )—ZJT M(A(s A u, t A v)dN,,
ij Als,1)

ij

rpe

+Y N(AG(s A u, t A v))dM,,
b JJ a1

cr

+Y. doM, dtN,,
i JJ Aajis,n

rp

+) doN, dtM,,

ij JJ Ak

=d} +dj +d3 + d} (4.4)

where we have used the fact: (N, M) = 0.
Similar to the estimation of bj, we have
1 tivq p |12
Eldn|p<(4n(p/2 I)Z|: J‘ J‘ ¢(é)2d€ :|
ij
<(4,,(,,/2 1)Z|: - “<J‘s‘,+1 J‘;H J‘ i+1 J‘l;*l Eldj|2pd6d’1>

1 eal
j J EI¢|2”d«..]
0 1

sup ([M];,,. — [M];,VE

veljtjiy)
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Sivt [Ttivyr sivn [ 1 0
sc2‘""’2[ZJ f J f Ely[*dédn + Y J J ' E|¢|2"dc}
i Jo t s 0 i Jo Ji

< 27 [JJ E|y[?Pdédn + 2" J E|¢|2"df:|
R, xR, n

< ¢27me27h 4.5)

By the symmetric relation of dj and dj, we get
E|d}|P < c27"pl27D (4.6)
The estimation of df (i = 1, 2) can be done in the same way as for bj, thus we have

sup E(|d}|” + E|d}|P) < c27mP27D) 4.7

A combination of (4.4), (4.5), (4.6) and (4.7) implies the proof of (4.1).

By an argument similar to that of (3.4) and (3.6) we need only to replace
M(Als, 1))* by M(As, t))N(AE}(s, 1)) and use Holder’s inequality |(-, ) yen| <
clll- e + Il 1fen] to estimate (LFM(Al(s, 1), VN(AY(s, )y, (FV*M(A5(s, 1)),
VZIV(A;}(S, Nuen-> ---» and so on in the proof of (3.4) and (3.6). We can easily
prove (4.2) and(4.3), thus complete the proof. QED

From the proof of Theorem 4.1 of [17] and that of Theorem 3.1, we also
have the following

Theorem 4.3. Let N be a two parameter smooth martingale represented as
(2.13), then
(i) N,eW,, for all ze I,
(ii) There exists a decreasing sequence {O,,n > 1} of open subset of X and a

function N: <U O,‘,') x IT1— R such that

(a) N is continuous on O; x I, for each n > 1;
(b) C, ,0,)—-0as n—oo for all p,r;
(c) N.= N, almost surely, for all ze Il
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