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Cancellation of lattices and
approximation properties of division algebras

By

Aiichi YAMASAKI

§0. Introduction

Let R be a Dedekind domain with the quotient field K. Let A be an
R-order. In this general setting, it is proved in [3] that Roiter-Jacobinski type
Divisibility Theorem holds for A-lattices. As a consequence, for a A-lattice L,
the following two cancellation properties are equivalent.

(¢) If L' is alocal direct summand of nL=L® -+ @®L for some n=0, then
LO®L =M®L implies L=M.

(¢) U LSnL=M®nL for some n=0, then L=M.

As was pointed out in [3], putting I . =EndsL and B : =KT, there is an
intimate connection between cancellation property and the approximation
property of the group of Vaserstein E(ﬁ) in the idele topology of /B\", of which
precise definitions will be rec/glled in §1.

Here we only indicate, R . HR,,, the d1rect product of p-adic comple-
tions over all maximal ideals of R, M -—M®RR for any R-alegbra M, and
E(C) : =<(14xy) Q+yx) HryEC1+xyEC*>for any ring C 1. Our first
remark is

Proposition 1  (proof in 1.5). The property (¢') for L is equivalent with the
following property (c'”) of I
") E(ﬁ) CT*B* as subsels of B*.
0.1. We shall consider, for any finite dimensional K—algeb/r\a B, the following
three approximation properties over R, in the idele topology of B*.
(a) Strong approximation property -
E(B) is dense in E (B)
(a’) B*-approximation property :
E(B) is contained in the closure of B*.
(@”) j?\xBx—approximation property -
E(B) is contained in the closure of R*B*.
There are the obvious implications (a) = (a’) = (a”). Our second (rather
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obvious) remark is

Proposition 2  (proof in 1.2). The property (2’) for B is equivalent with
the (validity of) property (¢”') for any A-lattice L such that KEndsL =B.
In the following cases, the property (a) always holds.

(1) B is commutative (since E (B) =E (B) =1, by definitions) .
(2) R is semi-local (by the Chinese Remainder Theorem).
(3) B=M,(C) by some K-algebra C(n>2) (cf[3]).

0.2. We shall give the following reduction to division algebras.

Theorem 1 (proof in 2.3). Writing as B/J (B) = éle (D;) , with the

Jacobson radical ] (B) and the division algebras D;, in such an ordering that n;=1
(1<i<7) and n;=22(r<i<n), we have

(@) (@) for B&(a') for D;(1<i<r).

(1) (a) (resp. (3”) for B=(a) (resp.(a”)) for D; (1<i<y).

Thus the approximation properties of general B can be reduced, more or
less, to that of non-commutative division algebras over non-semi-local R, and
then under a reasonable restriction, to that of central division ones, by 1.6.

Since PF-fields are the most familiar and important source of non
semi-local Dedekind domains, now we restrict our attention to central division
algebras over PF-fields and recall some basic facts and known results.

0.3. Assume that K is a PF-field in the sense of Artin [1], Chap.12, and let
D be a finite dimensional non-commutative central division algebra over K.

In particular, there is given a set of valuations @ of K, satisfying the pro-
duct formula I@I|x|l,=l for any x €K*. In fact K is either a number field or a

function field (of one variable) over the constant field Ko : = {x€K||x/,<1 for
any vED}. K is called a global field if either it is a number field or a functin
field with #Ko<oo,

(i) Let P be proper non-empty subset of 9 consisting of non-archime-
dian valuations. Then R (P) : = {xEKHxlp <1 for any p €P} is a Dedekind
domain (with an additional requirement R (P) D K,, if K is a function field)
having K as its quotient field. Conversely, any such Dedekind domain R in K is
obtained as R=R (P) by some P.

Consider the following condition (EC) for D over R =R (P), which is
known as Eichler's condition when K is a global field.

(EC) There is at least one v €ED\P, such that the completion D, =D&kK,
is not a division algebra.

(i) If K is a global field, by Wang-Platonov Theorem (cf.[6]), [D*,.D*]

=E (D) = the kernel of the reduced norm. Hence the well known Eichler-
Kneser Strong Approximation Theorem [2],[4] (and its analog due inde-
pendently to Morita [8] and Swan [9], when K is a function field with # K,
<o) implies
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(SAT) (a) for D over R(P)& (EC) for D over R(P).
0.4. Apart from global fields, we shall prove;

Theorem 2 (proof in 3.4). For any PF-field K,
(@”) for D over R (P)=>(EC) for D over R(P).

All in all, the most optimistic speculation would be “(a) © (a) © (a") ©
(EC)” for any central division algebras over any PF-fields. In this direction
we can extend our previous result [11] as,

Theorem 3 (proof in 4.4) . When K is an algebraic function field of one
variable over the reals,
(EC) for D over R(P)=(a) for D over R (P).

1. Idele topology

Let R be a Dedekind domain with the quotient field K. A finitely gener-
ated R-module L is called an R-lattice, if it is torsion free (or equivalently
projective) over R, then K ® gL is a finite dimensionl K-vector space and by
the natural embedding L—K ®L, one can identify as K ® L=KL. An R-algebra
A is called an R-order if it is an R-lattice, then KA=K ® A is a finite dimen-
sional K-algebra. When a finite dimensional K-algebra B is given, we call that
I'is an R-order of B, if I' is an R-order and B=KTI

For a maximal ideal p of R, let Ry always denote the p-adic completion of R.
Let R = an, the product over all maximal ideals of R. By the diagonal
embedding R—*R R is an R-algebra which is faithfully flat as an R-module.
For any R-module M, put

M, —M®RR,, M®RR

We shall be concerned with only the following two special cases.

1) F/i\s an R-order . Then, since I' is a finitely generated projective
R—module,Fi =F®RHRp:H(F®RRp):an ~ N
N 2) B is a finite dimensional K-algebra . Then B | =B®rR=B®xK Q
1/?\ B ®KK and smce R is faithfully flat over R, one may canomcal/y v1ew as
BDF B and BN r=r Moreover, there is a natural identification B——llmf/r

(reRr\{0}) =II'By(w.rt I,), where the last term denotes the restricted direct
product i.e. [1'By (wort. Ip) © = {x= (x,) € [IBylx, €T, for almost all p}. The
adele topology on B is defined as the unique topology which induces on j“\the
direct product of p-adic topology [1715, f9\r one (hence any) R-order I’ of B.
The name comes from the fact that K with this- topology is called the
(restricted) adele ring of K.

The idele topology in B™ is defined as the unique topology which induces on
T the direct product of p-adic topologies [I1I}*, for one (hence any) R-order
I' of B. The following explicit description of the idele topology will be useful
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for us.

1.1. For any R-order I" of B and non-zero r€R, put

Iy if r€R}
1++I if rEpR,.
U ) 2 =T, (1) =T* 0 (14T,

Up (L) - =130 QD) =]

I'(r) : =R+I", which is an R-order of B again.

By definitions, we have
(1) {U(T, 7)l[r€R\{0}} is a fundamental system of neighbourhoods of 1
in B in the idele topology (for any one fixed I).
1) {rFlrER\{O}} is a fundamental system of neighbourhoods of 0in B in
the adele topology.
Let H be a subgroup of B" and H will denote the closure of H in B*.
(2) It HN (14++T) T for some I” and r&R\{0}, (in particular if HN
T'c 1"") then the idele topology of B* and the adele topology of B induce the
same topology on H. Indeed, HNU (I, »') =HN (1+n’ T or any ¥ €R\{0}.
Since I'(r) y =R;U, (I, r), we have
/\ —
(3) R* U(F r)=I(0)*

(4) 1 R*CH then HU (I 7) SR* so that H= nHr( )*— N r(r) *H,

r+0
1.2. Proof of Proposition 2 §0. For any R-order I" of B, put A=I"", the
opposite ring of I"and L : =T, then EndsL=1" Hence the condition ((¢”) for
any L such that K Ends L =B) is equivalent with the condition E (B) cT'*B~

Pay ay ey
for any I But we have QF*B" =R*B*, since I'*B* is closed and contains

P N\ pas T s — T
R*B*, so R*B*C QFXBXC,QOF(") *B*, while we have R*B*= QF(V) *B*, by
(4).

1.3. Results of Vaserstein. Let A be a ring with 1, and E, (4) be the
elementary subgroup of GL, (4) | =M, (A) *. By the usual embedding x

x 0 ~

(0 . ) we consider as A*=GL, (4) CGL, (4) ®=>2). Let E(A) be the
n—1

group of Vaserstein, i.e. the subgroup of A™ given by the generators as

E(A) : =< (I4xy) Q+yx) Yx, yEAL+ryEA™>.

The commutator subgroup [A% A*] is always contained in E(A). Further, if

A is local, E(4) =[A* 4*].
If A is semi—local, the well known Lemma of Bass and the fundamental
results of Vaserstein ([10], Th.3.6) state :

(5) GL.(A)=A"E,(4) Wm=22).
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6) A*NE,(A)=EA) ®=2).

1.4.

Lemma. Let B be a finite dimensional K-algebra and I be an R- order of
B. Then the equality (5) of Bass (resp. (6) of Vaserstein) holds for A= Bor F
(where B or F is not semi-local if R is not semi-local. )

Proof. In the proof of [10] Th.3.6 (a) , where semi—locality of A is
assumed, it is in fact proved that

(i) If the ring A satisfies the following condition (5’), then (5) holds.

(5') For any finitely generated left ideal L and xEA,

Ax+L=A=(x+L) NA*#¢.

(ii) If A satisfies (5') and moreover the following (6'), then (6) holds.

(6) Axi+Ax,=A="yE€A, *v, q, uEA such that x; +vx, EAX1 —yqv €
A% x1Fu (xtyx) €A™, xtu (rptygr,) EA™.

Now, let A=1I1"A, (w.r.t C») be the restricted direct product of A, with
respect to its subring Cp, over some index p's. If each A, C, satisfies (5°) and
(6) it is easy to see that A itself satisfies (5') and (6"). This applies for
B or F since B, and [, are semi-local.

1.5. Proof of Proposition 1 §0. As is well known (cf[3]82 and §3), the
property (¢) is equivalent with the following (¢") B* N GL, (B) GL, (IA"> =
B*T™ for n>2.
By 1.4, we have

1) GLx(B) =B*Ex(B) 2) GL.(D)=E, ()T~

Since E, (B) is dense in E, (B (/\, in the idele topology of B* (cf[3]1.2.1)

3)  En(B)GLA () =En(B)GL(T).

Using 1), 3), 2) in this order, we have : GL,(B)GL,(I) =B*E,B)GL, (D)
=B"E(B)GLy (1) =B*E,(B)E, (") T*=BE, (B) ™.

Hence, the left hand side of (¢”) =B NB*E, (@ T==p* (}/B\" NE, (@)f"
=B*E ([/3\) T the last equality by 1.4 again. This implies that (¢”’) is equiva-
lent with (¢”).

1.6. Change of the base field. Let K’ be a finite extension field of K
contained in the center of B, and let R’ be the integral closure of R in K’. Then
R’ is a Dedekind domain with the quotient K’, and B is a finite dimensional
K’'-algebra. Assume the following condition

(f) R’ is a finitely generated R-module.

Then there are canonical isomorphisms R ~F ®RR and K’ ®R»R ~K ®p
R (cf.[7] Th.l and Prop. 4 Chap. 1 §3), so that B®pR’ ~B®R including the
topology. Hence the approximation property (a) (resp. (a’)) of B over R is
equivalent with that of B over R’, and (a”) over R implies that over R'.

(i) For a residually separable algebra B (i.e. B/J (B) is separable) the
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B*-approximation problem is reduced, by Theorem 1, to that of a central divi-
sion algebra.

(i) If K is a PF-field, the condition (f) always holds (cf.[5] Th.72), so
that we get the reduction to a central division algebra even for residually in-
separable case.

2. Reduction to a division algebra

Let B be a finite dimensional K-algebra with the Jacobson radical J=J(B),
¢ . B—B' : =B/] be the canonical K-morphism and I : = ¢ (I'). Then I” is
an R- order in B’, and l ¢ mduces the followmg suuectlve morphlsms . qoo .
r—r, (p P=e9®l1 . B=B®R—B ®R=DB and Qo =@ ®1: r=rer—
I'®R= F

Since R is faithfully flat over R,

1) Kergo=I'NJC/(I), I\ergo =/®R jC](B)

2) Viewing as BDF Band I'NB= I @o, Do, ¢ is the restriction of @ to
I, F B respectively.

By 1), 1+]CB" SO that go induces the exact sequence of groups -

3) 1-14]—B*—B*—1, and $~*(B"*) =B*.

Consequently, we have
4) QE®B)=E®B).
By the same reasoning, we have
5) @®(EB))=EB).
Also we have
6) j\""“/\_l(lq"‘) which in turn implies
7) @WU( »))=UI", 1), in the notation of 1.1.

2.1.
Lemma. Let H be a subgroup of B* and H be its closure in B*.
) EB)cH=EB)co®)
(@) If 1+/]\C17, then the converse implication (<) also holds.
Git) 14J<B*.

Proof. (i) and (i) : (E(B CI_) @ (E (B)CHU (I, 7) for any r€R\{0})

4)&7) 3)4)&7)
= (E (B)Ctp(H) UI"y) for any r€R\{0}) = (E (B) c A+ HU(T, 7
(=HU (T, v)it HD1+)) for any rER\{O})

(iii) Since any element of] is nilpotent, (1 +:D nNQaA+D) =1+ (]ﬂrﬂ
c T, hence by (2) 1.1, the idele topology on 1+/ is induced from the adele
topology. Since J is dense m/[ in the adele topology, 1+] is dense in 1+j in
the idele topology so that 1+JC (14+)) U (I, ) CB*U (I v) for any r€R\{0}.
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2.2,

m
Lemma. Let B= .GBIB,- be the ving dirvect sum of finite dimensional K—algebras.
i=

Then we have the following implications.
() (a) (resp.(a)) for B&(a) (vesp. (a)) forany B;(1<i<m).
() (") for B=>(a") for any B;(1<i<m).

Proof. Let I'; be an R-order of B;, then I' . = @I is an R-order of B. By
the canonical isomorphism B=B®R=@a (B; ®I® = GBB\,-, B* ’Zﬂfﬁ\?, I'= l’[f’f
U v) =NU (I, v), E(B) =IIE (B,) and E(@ ~TIE (1/3\,) the claims are com-
pletely obvious.

2.3. Proof of Theorem 1 §0. Put B;=M,,(D;), ni=1(1<i<y), 0,22 (r<i
<m) . Recall that (a) holds for B, *<i<m) ((3) of 0.1) and apply 2.1 and
2.2, then we get the following implications which obviously prove Theorem 1.

(a) for B=(a) for B (a) for D; 1<i<y)

(a") for B&(a) for B (a’) for D;(1<i<y)

(") for B&(a”) for B=(a") for D;(1<i<y).

3. (@)= (EC) for a PF-field

Let K be a PF-field in the sense of [1], D be a central division K-algebra
of dimension #? [D : K] =n% Let D, . =D ®kK, be the completion at vED. Let
N . D—K be the reduced norm and N, : D,—K, be its extension.

If D, is a division algebra, D, 2 x =[N |Y” defines a norm of D, as a
K,-vector space. While for any basis {ei|1 <i<n?} of D over K, writing x =
2.Ee;ED,, x'-’Max|Ei|,, is also a norm of D,. Hence there is a constant ¢,>0
such that

(1) MaXi|Si|v£Cv|mvx|llvm(x:Z&iei)-

For almost all v, we have . v is non-archimedean; {ZéieJmaxil&Lél} is
a maximal order of D, ; IdetTr (eiej) |u=1. Hence for almost all v such that D,
is a division algebra, D,/K, is unramified and |Mwx|)”=Max|&],. Thus we can
choose ¢, as

(1) ¢,=1 for almost all v such that D, is a division algebra.

Let R be a Dedekind domain with the quotient field K, so that it has the
form R=R (P) : ={£€K||€],<1 for any p € P} by some non-empty proper
subset P consisting of non-archimedeam valuations of 9. For a fixed R, we can
obviously choose a basis {e;]1<i<n? satisfying

n2
(2) r= i_ZIRe; is an R-order of D, and ¢;=1.
Then I'(r) : =R++I"is also an R-order for any »(¥0) ER.

3.1.
Lemma. Assume that D does not satisfy the Eichler's condition (EC) over
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R=R(P), ie. the following— (EC) is satisfied.

—(EC) : Dyis a division algebra for any v € D\P.

(i) Let {ei} be a basis of D satisfying (2), then there is a positive constant
c depending only on {e;} but not on r(#0) €R such that

I;[|7'|p<(,:r(r) X =Rx.
(i) R*D* is closed in D*.
Proof. (i) It suffices to take ¢ : =®I\]Pc,.‘1(which is well defined by (1')). In-

deed, if I'(r) *#R*, there is some x= 2 &, €EI'(r) * with £ | =& +#0 for some
122. At pEP,

(3) &l =<Irly=Irlp9xlp™
Using the product formula, (1) at v €ED\P and (3) at p €P, the product
formula again, in this order, we get

l=gl&| Hlé‘l x I11él, < Hcvl‘)?xl””x T | Rl
—QI\IPcvx ];Hflp—c 1;,”7|1:-

(i) PutR(c) : = {VER\{O}II’]M,, <c}. H r€R(c), by (i), we have I'(r) *
ND*=TI(r)*=R*. This obviously implies
4) (DF(V))D(QF())

eR(c) €R(c)
Then together with (4)1.1, we have

DR*=0 O TWc 0 OTE*)=b"( N TG)*)=p*R*cD*R™.
3.2. As usual, we consider Dj as the subgroup of D consisting of the ele-
ments x = (x,) EDx such that x,=1 for g€ P\{p}, Under this convention, the
following is obvious.

(5) #P=2=R*D*ND;CK].

[f#P<oo, then R is semi—local and 5"=l/)\", hence 3.1 implies
(6) 2<#P<oo=(EC).

~ A~ A~
Indeed : —(EC) implies R*D*=R*D* so that Dy CR*D* hence Dy CDj; N
R*D*CKj}, a contradiction to the assumption that D is non-commutative.

3.3.

Lemma. Let D be a central division algebra over a PF-field K. Then D, is
not a division algebra for infinitely many vE D.

Proof. 1f 9 contains at least one archimedean valuation (ie. if K is a
number field) , as is well known, much stronger results are known. Assume
that @ consists of non—archimedean valuations. If # {v E®|D, is not a division
algebra} <o, then obviously we can choose a subset P of @ such that 2< #P
< o0 and —(EC), a contradiction with (6)3.2.
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3.4. Proof of Theorem 2 We shall prove :
—(EC)=[D* D*]¢R*D".
ras e ) ay
Suppose not, then [D*, D*] CR*D* by 3.1, so that [D;, D;]=D; N [D*,
D*] CD; NR*D*C Ky for any pEP. It is a contradiction, since if xy do not
commute in D}, then one of [xy] and [x,1+y] does not belong to K.

4. (EC)=(a) for a real coefficient case

We shall derive our Theorem 3 from our previous result [11], where it is
proved only for a special case of K= R (X). For this purpose, we prepare a
few lemmas, which are of quite general nature, but regretfully, effectively ap-
plicable only for a very restricted situation like in Theorem 3, so that we state
them only for PF-fields.

4.1. Let D be a central division algebra over a PF-field K and R=R (P)
as in 0.3. For a fixed po € P, as usual, we identify D}, as the (closed normal)
subgroup of D*, consisting of elements = (x,) ED*C [1D; with x,=1 for p#
po. Then {E(D,)|pE P} generates a dense subgroup of E (D) in D* (cf.[2]851).
Hence a closed subgroup H of l/)\" contains E (I% if and only if it contains

E(D,) =[D}, Df] for all pEP. By the Chinese Remainder Theorem, ‘all’ can be
replaced by ‘almost all’. In particular we have .

(1) (a) for D over R& [D}, D1 CE (D) for almost all p,
and the corresponding (1) (resp.(1”)) for (a’) (resp.(a”)).

Let K' be a finite extension field of K, and let P be the set of all
(non-equivalent) valuations of K’ lying over P, P’={p’|p' Dp,p EP}. The integ-
ral closure R of R in K" is given by R'=1{0} U {ix€K"|l], <1 for any p'€P}.

Put D' I =D®kK' . By 1.6, D’ . =D'®p R =D'®RR DD ®rR =D as topo-
logical rings, and

2) b\'“Db\xﬁ/xD’EpD'}‘r: 'S DD; as topological groups.

In the following ( ) denotes the closure in D,
Let consider the following condition (3% ).

(%) For almost all pEP, p' Dp= D'}, [Dy, D11 =[D’}., D'}].

Lemma. Assume that the condition (%) holds. Then
(a”) for D over R=>(a) for D’ over R’.

Proof. By the Chinese Remainder Theorem, D' is dense in PHpD'},".
=)
Hence, by (2), [D'}, [D;, D311 <D™, [D;, D%] ], so that the assumption (%)
implies

(3) D% DyplcD™, [Df, D%]] for almost all pEP.
On the other hand we have
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(a”) for D over R(ﬁ) (D5, Dy] C R*D* for almost all pEP=[D* D},

plc[p* R*px1c D™, 1 [0’*, D1 =E (D).

Hence by (3), we have [D'}, D'}]1 CE (D) for almost all p, which is equivalent
with ((a) for D" over R’) by (1).

4.2, Now assume that the constant field Ko = R, i.e. K is an algebraic
function field of one variable over the reals.

Recall from [11] that Br (K) =K*/R (K (/—1)*) =K~/ (K*+K?) N K*, so
that any central division algebra D over K is a quaternion algebra of the form
D={—1f} with fEK*. D is trivial if and only if fEK?+ K2

We call a valuation v € D real (resp. imaginary) if the residue field is iso-
morphic to R (resp. C). K (/—1) is an algebraic function field of one variable
over C, so the corresponding @’ is identified with the Riemann surface R, and
K (/—1) with the field of all meromorphic functions on R. Since a real valua-
tion v of K does not decompose on K (y—1), the set RP (K) of all real valua-
tions can be embedded in R as a finite disjoint union of closed curves. Then
we have

K={peK (/—1)|p(z) ER for zERP(K)}.

Furthermore, as shown in [11],
K2+ K:={feK|f(z) 20 for zERP (K)},

so{—1, f} is trivial for such f.
Let P be a non-empty proper subset of P.

Lemma. If D satisfies (EC) over R (P), then D can be written as D =D, ®
rK, where g€R (P)\R and Dy is a central division R(g) -algebra satisfying (a)
over R[g].

Proof. (EC) for D means that Dy, is trivial for some vo € D\ P. From
Riemann-Roch Theorem, for any fEK* we can find h €K* such that g . =h?f
has the unique pole at vo. Therefore D can be written as D={—1, g}, where g
€R(P) and has the unique pole at v,.

Since Dy, is trivial, we have either (i) v, is imaginary or (ii) vo is real and
g is positive around ve. In any case, g is bounded from below on RP (K), since
g has no pole other than ve. So, g+cEK*+K? for some ¢c € R, hence D={—1,
gt=1{—1,g(g+c)} =Dy ®rek where Dy={—1, g(g+c)} over R(g) which
satisfies (EC) over R[g] since X (X +¢) is monic and quadratic. From our
previous result [11], D, satisfies (a) over R[g].

4.3.
Lemma. If K is an algebraic function field of one variable over R, then the
condition (%) in 4.1 is satisfied for any D.

Proof. Note that D, is unramified for almost all pE€P. If D, is trivial, then
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Dy =GL (2, K;) and [Dj, D;]1 =SL (2, K,) . In this case [D'}, [D}, D;]] =
[GL (2, K'y), SL(2, K»)] is a normal subgroup of SL (2, K'y) not contained in
its center, so it must coincide with SL(2, K'p/).

If D, is an unramified quaternion algebra, then p is real so that —1 ¢ K}
and K3+ K3%=K3. Thus the reduced norm N, . D;—K}; maps D; onto K;* with
the kernel [D}, D;]. This implies Dj =K} [Dj, Di], so that [D}, [Dj, D5]] =
Dy, D¥] D [Dy, Df], hence the left hand side is a normal subgroup of [D3,
D3*] containing i € [D}, D3], and as such it coincides with [D}*, D5*]. (Proof
for D'y ={—1,—1)} is as follows : Let N be a normal subgroup of [D}*, Dy*]
containing i, then {x €D’y [x2+1=0} CN since such z is conjugate with i by
Skolem-Noether Theorem. So for any a € K'p» such that 1-a> € K%, we have
—ai+bj €N (with a®+b%=1), hence y . i (—ai+bj) =a+bij EN which satisfies
y®> — 2ay +1=0. Thus, again from Skolem-Noether Theorem, every y € [Dy*,
Dy*] belongs to N).

4.4. Proof of Theorem 3 §0. Assume that D satisfies (EC) over
R (P). Applying Lemmas 4.1 and 4.3 to the result of Lemma 4.2 (regarding
R(g) as K and K as K'), we see that D satisfies (a) over R[g], the integral
closure of R[g] in K. Since gER(P), we have R(P) DR[g]k so that (a) over
R[g]k implies (a) over R (P).
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