Cancellation of lattices and approximation properties of division algebras

Ву

Aiichi YAMASAKI

§0. Introduction

Let R be a Dedekind domain with the quotient field K. Let Λ be an R-order. In this general setting, it is proved in [3] that Roiter-Jacobinski type Divisibility Theorem holds for Λ -lattices. As a consequence, for a Λ -lattice L, the following two cancellation properties are equivalent.

- (c) If L' is a local direct summand of $nL = L \oplus \cdots \oplus L$ for some $n \ge 0$, then $L \oplus L' \cong M \oplus L'$ implies $L \cong M$.
 - (c') If $L \oplus nL \cong M \oplus nL$ for some $n \ge 0$, then $L \cong M$.

As was pointed out in [3], putting $\Gamma := \operatorname{End}_A L$ and $B := K\Gamma$, there is an intimate connection between cancellation property and the approximation property of the group of Vaserstein $\widetilde{E}(\widehat{B})$ in the idele topology of \widehat{B}^{\times} , of which precise definitions will be recalled in §1.

Here we only indicate, $\widehat{R}:=\Pi R_p$, the direct product of p-adic completions over all maximal ideals of R, $\widehat{M}:=M\otimes_R\widehat{R}$ for any R-alegbra M, and $\widetilde{E}(C):=<(1+xy)\;(1+yx)^{-1}|x,y\in C,1+xy\in C^\times>$ for any ring $C\ni 1$. Our first remark is

Proposition 1 (proof in 1.5). The property (c') for L is equivalent with the following property (c'') of Γ .

- (c'') $\widetilde{E}(\widehat{B}) \subset \widehat{\Gamma}^* B^*$ as subsets of \widehat{B}^* .
- **0.1.** We shall consider, for any finite dimensional K-algebra B, the following three approximation properties over R, in the idele topology of \widehat{B}^{\times} .
 - (a) Strong approximation property:

 $\widetilde{E}(B)$ is dense in $\widetilde{E}(\widehat{B})$

- (a') B^{\times} -approximation property: $\widetilde{E}(\widehat{B})$ is contained in the closure of B^{\times} .
- (a") \widehat{R}^*B^* -approximation property: $\widetilde{E}(\widehat{B})$ is contained in the closure of \widehat{R}^*B^* .

There are the obvious implications (a) \Rightarrow (a') \Rightarrow (a"). Our second (rather

obvious) remark is

Proposition 2 (proof in 1.2). The property (a'') for B is equivalent with the (validity of) property (c'') for any Λ -lattice L such that $KEnd_{\Lambda}L \cong B$.

In the following cases, the property (a) always holds.

- (1) B is commutative (since $\widetilde{E}(B) = \widetilde{E}(\widehat{B}) = 1$, by definitions).
- (2) R is semi-local (by the Chinese Remainder Theorem).
- (3) $B = M_n(C)$ by some K-algebra $C(n \ge 2)$ (cf[3]).
- **0.2.** We shall give the following reduction to division algebras.

Theorem 1 (proof in 2.3). Writing as $B/J(B) = \bigoplus_{i=1}^m M_{n_i}(D_i)$, with the Jacobson radical J(B) and the division algebras D_i , in such an ordering that $n_i = 1$ $(1 \le i \le r)$ and $n_i \ge 2(r < i \le n)$, we have

- (i) (a') for $B \Leftrightarrow (a')$ for $D_i (1 \le i \le r)$.
- (ii) (a) (resp. (a'') for $B \Rightarrow$ (a) (resp. (a'')) for $D_i (1 \le i \le r)$.

Thus the approximation properties of general B can be reduced, more or less, to that of non-commutative division algebras over non-semi-local R, and then under a reasonable restriction, to that of central division ones, by 1.6.

Since PF-fields are the most familiar and important source of non semi-local Dedekind domains, now we restrict our attention to central division algebras over PF-fields and recall some basic facts and known results.

0.3. Assume that K is a PF-field in the sense of Artin [1], Chap.12, and let D be a finite dimensional non-commutative central division algebra over K.

In particular, there is given a set of valuations \mathscr{D} of K, satisfying the product formula $\prod_{\mathscr{D}} |x|_v = 1$ for any $x \in K^{\times}$. In fact K is either a number field or a function field (of one variable) over the constant field $K_0 := \{x \in K | |x|_v \le 1 \text{ for any } v \in \mathscr{D}\}$. K is called a global field if either it is a number field or a function field with $\# K_0 < \infty$.

(i) Let P be proper non-empty subset of \mathscr{D} consisting of non-archimedian valuations. Then R(P): $= \{x \in K | |x|_p \le 1 \text{ for any } p \in P\}$ is a Dedekind domain (with an additional requirement $R(P) \supset K_0$, if K is a function field) having K as its quotient field. Conversely, any such Dedekind domain R in K is obtained as R = R(P) by some P.

Consider the following condition (EC) for D over R = R (P), which is known as Eichler's condition when K is a global field.

- (EC) There is at least one $v \in \mathcal{D} \setminus P$, such that the completion $D_v = D \bigotimes_K K_v$ is not a division algebra.
- (ii) If K is a global field, by Wang-Platonov Theorem (cf. [6]), $[D^*,D^*]$ = $\widetilde{E}(D)$ = the kernel of the reduced norm. Hence the well known Eichler-Kneser Strong Approximation Theorem [2], [4] (and its analog due independently to Morita [8] and Swan [9], when K is a function field with $\# K_0 < \infty$) implies

(SAT) (a) for D over $R(P) \Leftrightarrow (EC)$ for D over R(P).

0.4. Apart from global fields, we shall prove;

Theorem 2 (proof in 3.4). For any PF-field K, (a") for D over $R(P) \Rightarrow (EC)$ for D over R(P).

All in all, the most optimistic speculation would be "(a) \Leftrightarrow (a') \Leftrightarrow (EC)" for any central division algebras over any PF-fields. In this direction we can extend our previous result [11] as,

Theorem 3 (proof in 4.4). When K is an algebraic function field of one variable over the reals,

(EC) for D over $R(P) \Rightarrow (a)$ for D over R(P).

1. Idele topology

Let R be a Dedekind domain with the quotient field K. A finitely generated R-module L is called an R-lattice, if it is torsion free (or equivalently projective) over R, then $K \otimes_R L$ is a finite dimensionl K-vector space and by the natural embedding $L \longrightarrow K \otimes L$, one can identify as $K \otimes L = KL$. An R-algebra Λ is called an R-order if it is an R-lattice, then $K\Lambda = K \otimes \Lambda$ is a finite dimensional K-algebra. When a finite dimensional K-algebra B is given, we call that Γ is an R-order of B, if Γ is an R-order and $B = K\Gamma$.

For a maximal ideal p of R, let R_p always denote the p-adic completion of R. Let $\widehat{R} := \prod R_p$, the product over all maximal ideals of R. By the diagonal embedding $R \longrightarrow \widehat{R}$, \widehat{R} is an R-algebra which is faithfully flat as an R-module. For any R-module M, put

$$M_p := M \otimes_R R_p, \widehat{M} := M \otimes_R \widehat{R}.$$

We shall be concerned with only the following two special cases.

- 1) Γ is an R-order: Then, since Γ is a finitely generated projective R-module, $\widehat{\Gamma}:=\Gamma\otimes_R\prod R_p\simeq\prod (\Gamma\otimes_R R_p)=\prod \Gamma_p$.
- 2) B is a finite dimensional K-algebra: Then $\widehat{B} := B \otimes_R \widehat{R} \simeq B \otimes_K K \otimes_R \widehat{R} \simeq B \otimes_K \widehat{K}$, and since \widehat{R} is faithfully flat over R, one may canonically view as $\widehat{B} \supset \widehat{\Gamma}$, B and $B \cap \widehat{\Gamma} = \Gamma$. Moreover, there is a natural identification $\widehat{B} \simeq \varinjlim \widehat{\Gamma}/r$

 $(r \in R \setminus \{0\}) \cong \prod' B_{\mathfrak{p}} (\text{w.r.t } \Gamma_{\mathfrak{p}})$, where the last term denotes the restricted direct product i.e. $\prod' B_{\mathfrak{p}} (\text{w.r.t. } \Gamma_{\mathfrak{p}}) := \{x = (x_{\mathfrak{p}}) \in \prod B_{\mathfrak{p}} | x_{\mathfrak{p}} \in \Gamma_{\mathfrak{p}} \text{ for almost all } \mathfrak{p}\}$. The adele topology on B is defined as the unique topology which induces on $\widehat{\Gamma}$ the direct product of \mathfrak{p} -adic topology $\prod \Gamma_{\mathfrak{p}}$, for one (hence any) R-order Γ of B. The name comes from the fact that \widehat{K} with this topology is called the (restricted) adele ring of K.

The *idele topology* in \widehat{B}^{\times} is defined as the unique topology which induces on $\widehat{\Gamma}^{\times}$ the direct product of p-adic topologies $\prod \Gamma_p^{\times}$, for one (hence any) R-order Γ of B. The following explicit description of the idele topology will be useful

for us.

1.1. For any R-order Γ of B and non-zero $r \in R$, put

$$(0) \begin{cases} U_{p}(\Gamma, r) := \Gamma_{p}^{\times} \cap (1 + r\Gamma_{p}) = \begin{cases} \Gamma_{p}^{\times} & \text{if } r \in R_{p}^{\times} \\ 1 + r\Gamma_{p} & \text{if } r \in pR_{p}. \end{cases}$$

$$U(\Gamma, r) := \prod_{p} U_{p}(\Gamma, r) = \widehat{\Gamma}^{\times} \cap (1 + r\widehat{\Gamma}),$$

$$\Gamma(r) := R + r\Gamma, \text{ which is an } R\text{-order of } B \text{ again.}$$

By definitions, we have

- (1) $\{U(\Gamma, r)|r \in R \setminus \{0\}\}\$ is a fundamental system of neighbourhoods of 1 in \widehat{B}^{\times} in the idele topology (for any one fixed Γ).
- (1') $\{r\widehat{\Gamma}|r\in R\setminus\{0\}\}\$ is a fundamental system of neighbourhoods of 0 in \widehat{B} in the adele topology.

Let H be a subgroup of \widehat{B}^{\times} , and \overline{H} will denote the closure of H in \widehat{B}^{\times} .

(2) If $H \cap (1+r\widehat{\Gamma}) \subset \widehat{\Gamma}^{\times}$ for some Γ and $r \in R \setminus \{0\}$, (in particular if $H \cap \widehat{\Gamma} \subset \widehat{\Gamma}^{\times}$), then the idele topology of \widehat{B}^{\times} and the adele topology of \widehat{B} induce the same topology on H. Indeed, $H \cap U(\Gamma, rr') = H \cap (1+rr'\widehat{\Gamma})$ or any $r' \in R \setminus \{0\}$.

Since $\Gamma(r) \stackrel{\times}{b} = R_{p}^{\times} U_{p}(\Gamma, r)$, we have

- (3) $\widehat{R}^{\times}U(\Gamma, r) = \widehat{\Gamma(r)}^{\times}$
- (4) If $\widehat{R}^{\times} \subset \overline{H}$, then $HU(\Gamma, r) \supset \widehat{R}^{\times}$ so that $\overline{H} = \bigcap_{r \neq 0} H\widehat{\Gamma(r)}^{\times} = \bigcap_{r \neq 0} \widehat{\Gamma(r)}^{\times} H$.
- **1.2.** Proof of Proposition 2 §0. For any R-order Γ of B, put $\Lambda = \Gamma^{op}$, the opposite ring of Γ and $L := \Gamma$, then $\operatorname{End}_{\Lambda} L = \Gamma$. Hence the condition ((c'')) for any L such that $K \operatorname{End}_{\Lambda} L \cong B$) is equivalent with the condition $\widetilde{E}(\widehat{B}) \subseteq \widehat{\Gamma}^{\times} B^{\times}$ for any Γ . But we have $\bigcap_{\Gamma} \widehat{\Gamma}^{\times} B^{\times} = \overline{\widehat{R}^{\times} B^{\times}}$, since $\widehat{\Gamma}^{\times} B^{\times}$ is closed and contains $\widehat{R}^{\times} B^{\times}$, so $\overline{\widehat{R}^{\times} B^{\times}} \subseteq \bigcap_{\Gamma} \widehat{\Gamma}^{\times} B^{\times} \subseteq \bigcap_{r \neq 0} \widehat{\Gamma}(r) \otimes B^{\times}$, while we have $\overline{\widehat{R}^{\times} B^{\times}} = \bigcap_{\Gamma} \widehat{\Gamma}(r) \otimes B^{\times}$, by (4).
- **1.3. Results of Vaserstein.** Let A be a ring with 1, and $E_n(A)$ be the elementary subgroup of $GL_n(A)$: $= M_n(A)^{\times}$. By the usual embedding $x \mapsto \begin{pmatrix} x & 0 \\ 0 & 1_{n-1} \end{pmatrix}$, we consider as $A^{\times} = GL_1(A) \subset GL_n(A)$ $(n \ge 2)$. Let $\widetilde{E}(A)$ be the group of Vaserstein, i.e. the subgroup of A^{\times} given by the generators as

$$\widetilde{E}(A) := < (1+xy) (1+yx)^{-1} | x, y \in A, 1+xy \in A^{\times} > .$$

The commutator subgroup $[A^*, A^*]$ is always contained in $\widetilde{E}(A)$. Further, if A is local, $\widetilde{E}(A) = [A^*, A^*]$.

If A is semi-local, the well known Lemma of Bass and the fundamental results of Vaserstein ([10], Th.3.6) state:

(5)
$$GL_n(A) = A \times E_n(A)$$
 $(n \ge 2)$.

(6) $A \times \cap E_n(A) = \widetilde{E}(A)$ $(n \ge 2)$.

1.4.

Lemma. Let B be a finite dimensional K-algebra and Γ be an R-order of B. Then the equality (5) of Bass (resp. (6) of Vaserstein) holds for $A = \widehat{B}$ or \widehat{T} , (where \widehat{B} or $\widehat{\Gamma}$ is not semi-local if R is not semi-local.)

Proof. In the proof of [10] Th.3.6 (a), where semi-locality of A is assumed, it is in fact proved that

- (i) If the ring A satisfies the following condition (5'), then (5) holds.
- (5') For any finitely generated left ideal L and $x \in A$,

$$Ax + L = A \Longrightarrow (x + L) \cap A \times \neq \phi$$
.

- (ii) If A satisfies (5') and moreover the following (6'), then (6) holds.
- (6') $Ax_1 + Ax_2 = A \Rightarrow \forall y \in A$, $\exists v, q, u \in A$ such that $x_1 + vx_2 \in A^{\times}, 1 yqv \in A^{\times}$ $A^{\times}, x_1 + u (x_2 + yx_1) \in A^{\times}, x_1 + u (x_2 + yqx_1) \in A^{\times}.$

Now, let $A = \prod' A_p$ (w.r.t C_p) be the restricted direct product of A_p with respect to its subring C_p , over some index p's. If each A_p , C_p satisfies (5') and (6'), it is easy to see that A itself satisfies (5') and (6'). This applies for \widehat{B} or $\widehat{\Gamma}$, since B_{p} and Γ_{p} are semi-local.

1.5. Proof of Proposition 1 \\$0. As is well known (cf [3] \\$2 and \\$3), the property (c') is equivalent with the following (c''') $\widehat{B}^{\times} \cap GL_n(B) GL_n(\widehat{\Gamma}) =$ $B^{\times}\widehat{\Gamma}^{\times}$ for $n \ge 2$.

By 1.4, we have

1) $GL_n(B) = B^{\times}E_n(B)$ 2) $GL_n(\widehat{\Gamma}) = E_n(\widehat{\Gamma})\widehat{\Gamma}^{\times}$. Since $E_n(B)$ is dense in $E_n(\widehat{B})$ in the idele topology of \widehat{B}^{\times} (cf[3]1.2.1)

3) $E_n(B) GL_n(\widehat{\Gamma}) = E_n(\widehat{B}) GL_n(\widehat{\Gamma})$

Using 1), 3), 2) in this order, we have : $GL_n(B)GL_n(\widehat{\Gamma}) = B^*E_n(B)GL_n(\widehat{\Gamma})$ $=B^{\times}E_n(\widehat{B})GL_n(\widehat{\Gamma})=B^{\times}E_n(\widehat{B})E_n(\widehat{\Gamma})\widehat{\Gamma}^{\times}=B^{\times}E_n(\widehat{B})\widehat{\Gamma}^{\times}.$

Hence, the left hand side of $(c''') = \widehat{B}^{\times} \cap B^{\times} E_n(\widehat{B}) \widehat{\varGamma}^{\times} = B^{\times} (\widehat{B}^{\times} \cap E_n(\widehat{B})) \widehat{\varGamma}^{\times}$ $=B^{\times}\tilde{E}(\hat{B})\hat{\Gamma}^{\times}$, the last equality by 1.4 again. This implies that (c''') is equivalent with (c").

- **1.6.** Change of the base field. Let K' be a finite extension field of Kcontained in the center of B, and let R' be the integral closure of R in K'. Then R' is a Dedekind domain with the quotient K', and B is a finite dimensional K'-algebra. Assume the following condition
 - (f) R' is a finitely generated R-module.

Then there are canonical isomorphisms $\widehat{R}' \cong R' \otimes_{R} \widehat{R}$ and $K' \otimes_{R'} \widehat{R}' \cong K' \otimes_{R}$ \widehat{R} (cf. [7] Th.1 and Prop. 4 Chap. $[[\S 3]]$, so that $B \otimes_{R'} \widehat{R'} \simeq B \otimes_{R} \widehat{R}$ including the topology. Hence the approximation property (a) (resp. (a')) of B over R is equivalent with that of B over R', and (a'') over R implies that over R'.

(i) For a residually separable algebra B (i.e. B/J(B) is separable) the

 B^{\times} -approximation problem is reduced, by Theorem 1, to that of a central division algebra.

(ii) If K is a PF-field, the condition (f) always holds (cf. [5] Th.72), so that we get the reduction to a central division algebra even for residually inseparable case.

2. Reduction to a division algebra

Let B be a finite dimensional K-algebra with the Jacobson radical J=J(B), $\varphi: B \to B' := B/J$ be the canonical K-morphism and $\Gamma' := \varphi(\Gamma)$. Then Γ' is an R-order in B', and φ induces the following surjective morphisms : $\varphi_0: \Gamma \to \Gamma'$, $\widehat{\varphi}: = \varphi \otimes 1: \widehat{B} = B \otimes \widehat{R} \to B' \otimes \widehat{R} = \widehat{B}'$ and $\widehat{\varphi}_0: = \varphi_0 \otimes 1: \widehat{\Gamma} = \Gamma \otimes \widehat{R} \to \Gamma' \otimes \widehat{R} = \widehat{\Gamma}'$.

Since \widehat{R} is faithfully flat over R,

1) $\operatorname{Ker} \varphi_0 = \Gamma \cap \widehat{J} \subset J(\widehat{\Gamma}), \operatorname{Ker} \widehat{\varphi} = J \otimes \widehat{R} = \widehat{J} \subset J(\widehat{B}),$

2) Viewing as $\widehat{B} \supseteq \widehat{\Gamma}$, B and $\widehat{\Gamma} \cap B = \Gamma$, φ_0 , $\widehat{\varphi}_0$, φ is the restriction of $\widehat{\varphi}$ to Γ , $\widehat{\Gamma}$, B respectively.

By 1), $1+\widehat{j}\subset\widehat{B}^{\times}$ so that $\widehat{\varphi}$ induces the exact sequence of groups:

3)
$$1 \rightarrow 1 + \widehat{J} \rightarrow \widehat{B}^{\times} \rightarrow \widehat{B}^{\times} \rightarrow 1$$
, and $\widehat{\varphi}^{-1}(\widehat{B}^{\times}) = \widehat{B}^{\times}$.

Consequently, we have

4)
$$\widehat{\varphi}(\widetilde{E}(\widehat{B})) = \widetilde{E}(\widehat{B}')$$
.

By the same reasoning, we have

5)
$$\widehat{\varphi}(\widetilde{E}(B)) = \widetilde{E}(B')$$
.

Also we have

- 6) $\widehat{\Gamma}^{\times} = \widehat{\varphi}_0^{-1}(\widehat{\Gamma}^{\times})$, which in turn implies
- 7) $\widehat{\varphi}(U(\Gamma, r)) = U(\Gamma', r)$, in the notation of 1.1.

2.1.

Lemma. Let H be a subgroup of \widehat{B}^{\times} and \overline{H} be its closure in \widehat{B}^{\times} .

- $(i) \quad \widetilde{E}(\widehat{B}) \subset \overline{H} \Rightarrow \widetilde{E}(\widehat{B}') \subset \overline{\widehat{\varphi}(H)}$
- (ii) If $1+\widehat{J} \subset \overline{H}$, then the converse implication (\Leftarrow) also holds.
- (iii) $1+\widehat{J}\subset \overline{B}^{\times}$.

Proof. (i) and (ii): $(\widetilde{E}(\widehat{B}) \subset \overline{H}) \stackrel{(1)1,1}{\Leftrightarrow} (\widetilde{E}(\widehat{B}) \subset HU(\Gamma, r) \text{ for any } r \in R \setminus \{0\})$ $\Rightarrow (\widetilde{E}(\widehat{B}') \subset \widehat{\varphi}(H)U(\Gamma',r)) \text{ for any } r \in R \setminus \{0\}) \Rightarrow (\widetilde{E}(\widehat{B}) \subset (1+\widehat{I})HU(\Gamma, r)$ $(=HU(\Gamma, r) \text{ if } \overline{H} \supset 1+\widehat{I}) \text{ for any } r \in R \setminus \{0\}).$

(iii) Since any element of \widehat{J} is nilpotent, $(1+\widehat{J})\cap (1+r\widehat{\Gamma})=1+(\widehat{J}\cap r\widehat{\Gamma})$ $\subset \widehat{\Gamma}^{\times}$, hence by (2) 1.1, the idele topology on $1+\widehat{J}$ is induced from the adele topology. Since J is dense in \widehat{J} in the adele topology, 1+J is dense in $1+\widehat{J}$ in the idele topology so that $1+\widehat{J}\subset (1+J)\,U(\Gamma,r)\subset B^{\times}U(\Gamma,r)$ for any $r\in R\setminus\{0\}$.

2.2.

Lemma. Let $B = \bigoplus_{i=1}^{m} B_i$ be the ring direct sum of finite dimensional K-algebras. Then we have the following implications.

- (i) (a) (resp. (a')) for $B \Leftrightarrow (a)$ (resp. (a')) for any $B_i (1 \le i \le m)$.
- (ii) (a'') for $B \Longrightarrow (a'')$ for any $B_i (1 \le i \le m)$.

Proof. Let Γ_i be an R-order of B_i , then $\Gamma:=\oplus \Gamma_i$ is an R-order of B. By the canonical isomorphism $\widehat{B}=B\otimes\widehat{R}\simeq \oplus (B_i\otimes\widehat{R})=\oplus \widehat{B}_i, \ \widehat{B}^\times\simeq \Pi\widehat{B}_i^\times, \ \widehat{\Gamma}\simeq \Pi\widehat{\Gamma}_i^\times$, $U(\Gamma,r)\simeq \Pi U(\Gamma_i,r), \ \widetilde{E}(B)\simeq \Pi\widetilde{E}(B_i)$ and $\widetilde{E}(\widehat{B})\simeq \Pi\widetilde{E}(\widehat{B}_i)$, the claims are completely obvious.

- **2.3.** Proof of Theorem 1 §0. Put $B_i = M_{n_i}(D_i)$, $n_i = 1$ $(1 \le i \le r)$, $n_i \ge 2$ $(r < i \le m)$. Recall that (a) holds for B_i $(r < i \le m)$ ((3) of 0.1) and apply 2.1 and 2.2, then we get the following implications which obviously prove Theorem 1.
 - (a) for $B \Rightarrow$ (a) for $B' \Leftrightarrow$ (a) for $D_i (1 \le i \le r)$
 - (a') for $B \Leftrightarrow (a')$ for $B' \Leftrightarrow (a')$ for $D_i (1 \le i \le r)$
 - (a") for $B \Leftrightarrow (a'')$ for $B' \Rightarrow (a'')$ for $D_i (1 \le i \le r)$.

3. $(a'') \Rightarrow (EC)$ for a PF-field

Let K be a PF-field in the sense of [1], D be a central division K-algebra of dimension n^2 , $[D:K] = n^2$. Let $D_v := D \otimes_K K_v$ be the completion at $v \in \mathcal{D}$. Let $\mathfrak{R}: D \rightarrow K$ be the reduced norm and $\mathfrak{R}_v: D_v \rightarrow K_v$ be its extension.

If D_v is a division algebra, $D_v \ni x \mapsto |\mathfrak{N}_v x|_v^{1/n}$ defines a norm of D_v as a K_v -vector space. While for any basis $\{e_i | 1 \le i \le n^2\}$ of D over K, writing $x = \sum \xi_i e_i \in D_v$, $x \mapsto \operatorname{Max} |\xi_i|_v$ is also a norm of D_v . Hence there is a constant $c_v > 0$ such that

(1) $\max_{i} |\xi_{i}|_{v} \leq c_{v} |\mathfrak{N}_{v}x|_{v}^{1/n} (x = \sum \xi_{i}e_{i})$.

For almost all v, we have v is non-archimedean; $\{\sum \xi_i e_i | \max_i | \xi_i|_v \le 1\}$ is a maximal order of D_v ; $|\det \operatorname{Tr}(e_i e_j)|_v = 1$. Hence for almost all v such that D_v is a division algebra, D_v/K_v is unramified and $|\mathfrak{R}_v x|_v^{1/n} = \operatorname{Max}|\xi_i|_v$. Thus we can choose c_v as

(1') $c_v = 1$ for almost all v such that D_v is a division algebra.

Let R be a Dedekind domain with the quotient field K, so that it has the form R = R(P): $= \{ \xi \in K | |\xi|_p \le 1 \text{ for any } p \in P \}$ by some non-empty proper subset P consisting of non-archimedeam valuations of \mathcal{D} . For a fixed R, we can obviously choose a basis $\{e_i | 1 \le i \le n^2\}$ satisfying

(2) $\Gamma = \sum_{i=1}^{n^2} Re_i$ is an R-order of D, and $e_i = 1$. Then $\Gamma(r) := R + r\Gamma$ is also an R-order for any $r(\neq 0) \in R$.

3.1.

Lemma. Assume that D does not satisfy the Eichler's condition (EC) over

R = R(P), i.e. the following—(EC) is satisfied.

 $\neg(EC)$: D_v is a division algebra for any $v \in \mathcal{D} \setminus P$.

(i) Let $\{e_i\}$ be a basis of D satisfying (2), then there is a positive constant c depending only on $\{e_i\}$ but not on $r(\neq 0) \in R$ such that

$$\prod_{p} |\mathbf{r}|_{p} < c \Longrightarrow \Gamma(\mathbf{r}) \times = R^{\times}.$$

- (ii) $\widehat{R}^{\times}D^{\times}$ is closed in \widehat{D}^{\times} .
- *Proof.* (i) It suffices to take $c:=\prod_{\mathfrak{g}\backslash P}c_v^{-1}$ (which is well defined by (1')). Indeed, if $\Gamma(r)^{\times} \neq R^{\times}$, there is some $x=\sum \xi_{i}e_i \in \Gamma(r)^{\times}$ with $\xi:=\xi_i\neq 0$ for some $i\geq 2$. At $p\in P$,
 - (3) $|\xi|_p \le |r|_p = |r|_p |\mathfrak{N}_x|_p^{1/n}$.

Using the product formula, (1) at $v \in \mathcal{D} \setminus P$ and (3) at $p \in P$, the product formula again, in this order, we get

$$\begin{split} 1 &= \prod\limits_{\mathcal{D}} |\xi|_v = \prod\limits_{\mathcal{D} \backslash P} |\xi|_v \times \prod\limits_{P} |\xi|_{\rho} \leq \prod\limits_{\mathcal{D} \backslash P} c_v |\mathfrak{N}x|_v^{1/n} \times \prod\limits_{P} |r|_{\rho} |\mathfrak{N}x|_{\rho}^{1/n} \\ &= \prod\limits_{\mathcal{D} \backslash P} c_v \times \prod\limits_{P} |r|_{\rho} = c^{-1} \prod\limits_{P} |r|_{\rho}. \end{split}$$

- (ii) Put R(c) : = $\{r \in R \setminus \{0\} \mid \prod_{p} |r|_{p} < c\}$. If $r \in R(c)$, by (i), we have $\widehat{\Gamma}(r) \times \bigcap D^{\times} = \Gamma(r) \times = R^{\times}$. This obviously implies
- $\bigcap D^{\times} = \Gamma(r)^{\times} = R^{\times}. \text{ This obviously implies}$ $(4) <math display="block">
 \bigcap_{r \in R(c)} \left(D^{\times} \widehat{\Gamma(r)^{\times}} \right) = D^{\times} \left(\bigcap_{r \in R(c)} \widehat{\Gamma(r)^{\times}} \right).$

Then together with (4)1.1, we have

$$\overline{D^{\times}\widehat{R}^{\times}} = \bigcap_{r \neq 0} (D^{\times}\widehat{\Gamma(r)}^{\times}) \subset \bigcap_{r \in R(c)} (D^{\times}\widehat{\Gamma(r)}^{\times}) = D^{\times} (\bigcap_{r \in R(c)} \widehat{\Gamma(r)}^{\times}) = D^{\times}\widehat{R}^{\times} \subset \overline{D^{\times}\widehat{R}^{\times}}.$$

- **3.2.** As usual, we consider D_p^{\times} as the subgroup of \widehat{D}^{\times} consisting of the elements $x = (x_p) \in \widehat{D}^{\times}$ such that $x_q = 1$ for $q \in P \setminus \{p\}$, Under this convention, the following is obvious.
 - $(5) \quad \sharp P \ge 2 \Longrightarrow \widehat{R}^{\times} D^{\times} \cap D_{p}^{\times} \subset K_{p}^{\times}.$

If $\sharp P < \infty$, then R is semi-local and $\overline{D}^* = \widehat{D}^*$, hence 3.1 implies

 $(6) \quad 2 \le \#P < \infty \Longrightarrow (EC).$

Indeed: $\neg(EC)$ implies $\overline{\widehat{R}^{\times}D^{\times}} = \widehat{R}^{\times}D^{\times}$ so that $D_{p}^{\times} \subseteq \widehat{R}^{\times}D^{\times}$ hence $D_{p}^{\times} \subseteq D_{p}^{\times} \cap \widehat{R}^{\times}D^{\times} \subseteq K_{p}^{\times}$, a contradiction to the assumption that D is non-commutative.

3.3.

Lemma. Let D be a central division algebra over a PF-field K. Then D_v is not a division algebra for infinitely many $v \in \mathcal{D}$.

Proof. If \mathscr{D} contains at least one archimedean valuation (i.e. if K is a number field), as is well known, much stronger results are known. Assume that \mathscr{D} consists of non-archimedean valuations. If $\sharp \{v \in \mathscr{D} | D_v \text{ is not a division algebra}\} < \infty$, then obviously we can choose a subset P of \mathscr{D} such that $2 \leq \sharp P < \infty$ and $-\neg$ (EC), a contradiction with (6)3.2.

3.4. Proof of Theorem 2 We shall prove:

$$\neg (EC) \Rightarrow [\widehat{D}^{\times}, \widehat{D}^{\times}] \not\subset \overline{\widehat{R}^{\times}D^{\times}}.$$

Suppose not, then $[\widehat{D}^{\times}, \widehat{D}^{\times}] \subseteq \widehat{R}^{\times}D^{\times}$ by 3.1, so that $[D_{p}^{\times}, D_{p}^{\times}] = D_{p}^{\times} \cap [\widehat{D}^{\times}, \widehat{D}^{\times}] \subseteq D_{p}^{\times} \cap \widehat{R}^{\times}D^{\times} \subseteq K_{p}^{\times}$ for any $p \in P$. It is a contradiction, since if x,y do not commute in D_{p}^{\times} , then one of [x,y] and [x,1+y] does not belong to K_{p}^{\times} .

4. $(EC) \Rightarrow (a)$ for a real coefficient case

We shall derive our Theorem 3 from our previous result [11], where it is proved only for a special case of $K = \mathbf{R}(X)$. For this purpose, we prepare a few lemmas, which are of quite general nature, but regretfully, effectively applicable only for a very restricted situation like in Theorem 3, so that we state them only for PF-fields.

- **4.1.** Let D be a central division algebra over a PF-field K and R = R(P) as in 0.3. For a fixed $p_0 \in P$, as usual, we identify $D_{p_0}^{\times}$ as the (closed normal) subgroup of \widehat{D}^{\times} , consisting of elements $x = (x_p) \in \widehat{D}^{\times} \subset \prod D_p^{\times}$ with $x_p = 1$ for $p \neq p_0$. Then $\{\widetilde{E}(D_p) | p \in P\}$ generates a dense subgroup of $\widetilde{E}(\widehat{D})$ in \widehat{D}^{\times} (cf. [2] §51). Hence a closed subgroup H of \widehat{D}^{\times} contains $\widetilde{E}(\widehat{D})$ if and only if it contains $\widetilde{E}(D_p) = [D_p^{\times}, D_p^{\times}]$ for all $p \in P$. By the Chinese Remainder Theorem, 'all' can be replaced by 'almost all'. In particular we have:
- (1) (a) for D over $R \Leftrightarrow [D_p^{\mathsf{x}}, D_p^{\mathsf{x}}] \subset \widetilde{E}(D)$ for almost all p, and the corresponding (1') (resp. (1'')) for (a') (resp. (a'')).

Let K' be a finite extension field of K, and let P' be the set of all (non-equivalent) valuations of K' lying over P, $P' = \{p'|p' \supset p, p \in P\}$. The integral closure R' of R in K' is given by $R' = \{0\} \cup \{x \in K'^{\times} | |x|_{p'} \le 1 \text{ for any } p' \in P'\}$. Put D': $= D \otimes_R K'$. By 1.6, $\widehat{D'}$: $= D' \otimes_R \widehat{R'} \cong D' \otimes_R \widehat{R} \cong \widehat{D} \otimes_R \widehat{R} \cong \widehat{D}$ as topo-

Put $D' := D \otimes_R K'$. By 1.6, $D' := D' \otimes_{R'} R' \cong D' \otimes_R R \supseteq D \otimes_R R = D$ as topo logical rings, and

(2)
$$\widehat{D}^{'\times} \supset \widehat{D}^{\times}, \widehat{D}^{'\times} \supset \prod_{p'\supset p} D^{'\times} \cong D^{'\times} \supset D^{\times}_{p}$$
 as topological groups.

In the following $\widehat{(\)}$ denotes the closure in \widehat{D}'^{\times} .

Let consider the following condition (*).

 $(\textcolor{red}{\bigstar}) \text{ For almost all } p \in P, p' \supset p \Longrightarrow [D'^{\times}_{p'}, [D^{\times}_{p}, D^{\times}_{p}]] = [D'^{\times}_{p'}, D'^{\times}_{p'}].$

Lemma. Assume that the condition (*) holds. Then (a'') for D over $R \Rightarrow (a)$ for D' over R'.

Proof. By the Chinese Remainder Theorem, $D^{'\times}$ is dense in $\prod_{p'\supset p}D^{'\times}_{p'}$. Hence, by (2), $[D^{'\times}_{p'}, [D^{\times}_{p}, D^{\times}_{p}]] \subset [\overline{D^{'\times}, [D^{\times}_{p}, D^{\times}_{p}]}]$, so that the assumption (*) implies

(3) $[D_{p'}^{\times}, D_{p'}^{\times}] \subset [D_{p'}^{\times}, [D_{p}^{\times}, D_{p}^{\times}]]$ for almost all $p \in P$. On the other hand we have

(a") for D over $R \Leftrightarrow_{(1'')} [D_p^{\times}, D_p^{\times}] \subset \overline{\widehat{R}^{\times}D^{\times}}$ for almost all $p \in P \Rightarrow [D'^{\times}, [D_p^{\times}, D_p^{\times}]]$

$$D_{p}^{\times}]] \subset [D'^{\times}, \overline{\widehat{R}^{\times}D^{\times}}] \subset [\overline{D'^{\times}, D^{\times}}] \subset [\overline{D'^{\times}, D'^{\times}}] = \overline{\widetilde{E}(D')}.$$

Hence by (3), we have $[D'_{p'}^{\times}, D'_{p'}^{\times}] \subset \widetilde{E}(D')$ for almost all p, which is equivalent with ((a) for D' over R') by (1).

4.2. Now assume that the constant field $K_0 = \mathbf{R}$, i.e. K is an algebraic function field of one variable over the reals.

Recall from [11] that $Br(K) \simeq K^{\times}/\mathfrak{N} (K(\sqrt{-1})^{\times}) = K^{\times}/(K^2+K^2) \cap K^{\times}$, so that any central division algebra D over K is a quaternion algebra of the form $D \simeq \{-1,f\}$ with $f \in K^{\times}$. D is trivial if and only if $f \in K^2+K^2$.

We call a valuation $v \in \mathcal{D}$ real (resp. imaginary) if the residue field is isomorphic to R (resp. C). $K(\sqrt{-1})$ is an algebraic function field of one variable over C, so the corresponding \mathcal{D}' is identified with the Riemann surface \Re , and $K(\sqrt{-1})$ with the field of all meromorphic functions on \Re . Since a real valuation v of K does not decompose on $K(\sqrt{-1})$, the set RP(K) of all real valuations can be embedded in \Re as a finite disjoint union of closed curves. Then we have

$$K = \{ \varphi \in K(\sqrt{-1}) | \varphi(z) \in \mathbf{R} \text{ for } z \in RP(K) \}.$$

Furthermore, as shown in [11],

$$K^2 + K^2 = \{ f \in K | f(z) \ge 0 \text{ for } z \in RP(K) \},$$

so $\{-1, f\}$ is trivial for such f.

Let P be a non-empty proper subset of \mathfrak{D} .

Lemma. If D satisfies (EC) over R(P), then D can be written as $D = D_0 \otimes R(g)K$, where $g \in R(P) \setminus \mathbf{R}$ and D_0 is a central division $\mathbf{R}(g)$ -algebra satisfying (a) over $\mathbf{R}[g]$.

Proof. (EC) for D means that D_{v_0} is trivial for some $v_0 \in \mathcal{D} \setminus P$. From Riemann-Roch Theorem, for any $f \in K^{\times}$ we can find $h \in K^{\times}$ such that $g := h^2 f$ has the unique pole at v_0 . Therefore D can be written as $D = \{-1, g\}$, where $g \in R(P)$ and has the unique pole at v_0 .

Since D_{v_0} is trivial, we have either (i) v_0 is imaginary or (ii) v_0 is real and g is positive around v_0 . In any case, g is bounded from below on RP(K), since g has no pole other than v_0 . So, $g+c \in K^2+K^2$ for some $c \in \mathbf{R}$, hence $D=\{-1,g\}=\{-1,g(g+c)\}\simeq D_0\otimes_{\mathbf{R}(g)}K$ where $D_0=\{-1,g(g+c)\}$ over $\mathbf{R}(g)$ which satisfies (EC) over $\mathbf{R}[g]$ since X(X+c) is monic and quadratic. From our previous result [11], D_0 satisfies (a) over $\mathbf{R}[g]$.

4.3.

Lemma. If K is an algebraic function field of one variable over \mathbf{R} , then the condition (*) in 4.1 is satisfied for any D.

Proof. Note that D_p is unramified for almost all $p \in P$. If D_p is trivial, then

 $D_{p}^{\times} = GL(2, K_{p})$ and $[D_{p}^{\times}, D_{p}^{\times}] = SL(2, K_{p})$. In this case $[D_{p}^{\times}, [D_{p}^{\times}, D_{p}^{\times}]] = [GL(2, K_{p'}'), SL(2, K_{p})]$ is a normal subgroup of $SL(2, K_{p'}')$ not contained in its center, so it must coincide with $SL(2, K_{p'}')$.

If D_p is an unramified quaternion algebra, then p is real so that $-1 \notin K_p^2$ and $K_p^2 + K_p^2 = K_p^2$. Thus the reduced norm $\mathfrak{N}_p : D_p^\times \to K_p^\times$ maps D_p^\times onto $K_p^{\times 2}$ with the kernel $[D_p^\times, D_p^\times]$. This implies $D_p^\times = K_p^\times [D_p^\times, D_p^\times]$, so that $[D_p^\times, [D_p^\times, D_p^\times]] = [D_p^\times, D_p^\times] \supset [D_p^\times, D_p^\times]$, hence the left hand side is a normal subgroup of $[D_p^\times, D_p^\times]$ containing $i \in [D_p^\times, D_p^\times]$, and as such it coincides with $[D_p^\times, D_p^\times]$. (Proof for $D_p^\times = \{-1, -1\}$ is as follows: Let N be a normal subgroup of $[D_p^\times, D_p^\times]$ containing i, then $\{x \in D_p^\times, x^2 + 1 = 0\} \subseteq N$ since such x is conjugate with i by Skolem-Noether Theorem. So for any $a \in K_p^\times$ such that $1-a^2 \in K_p^{\times 2}$, we have $-ai+bj \in N$ (with $a^2+b^2=1$), hence $y:i(-ai+bj)=a+bij \in N$ which satisfies $y^2-2ay+1=0$. Thus, again from Skolem-Noether Theorem, every $y \in [D_p^\times, D_p^\times]$ belongs to N).

4.4. Proof of Theorem 3 §0. Assume that D satisfies (EC) over R(P). Applying Lemmas 4.1 and 4.3 to the result of Lemma 4.2 (regarding $\mathbf{R}(g)$ as K and K as K'), we see that D satisfies (a) over $\mathbf{R}[g]_K$, the integral closure of $\mathbf{R}[g]$ in K. Since $g \in R(P)$, we have $R(P) \supset \mathbf{R}[g]_K$ so that (a) over $\mathbf{R}[g]_K$ implies (a) over R(P).

DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY

References

- [1] E.Artin, Algebraic numbers and algebraic functions I, Princeton Univ., Lecture Notes, 1951.
- [2] C.W.Curtis and I.Reiner, Methods of representation theory. vol.2, Interscience (1987) Especially §51 Jacobinski's cancellation theorem.
- [3] H.Hijikata, On the decomposition of lattices over orders, to appear in J. Math. Soc. Japan.
- [4] M. Kneser, Strong approximation, Proc. Symp. Pure Math. AMS, 9(1966), 187-196.
- [5] H.Matsumura, Commutative Algebra, Benjamin, 1970.
- [6] V.P.Platonov, The Tannaka-Artin problem and reduced K-theory, Math. USSR Izvestija, 10 (1976), 211-243.
- [7] J.P.Serre, Corps Locaux, Hermann, 1968.
- [8] H. Shimizu, Approximation theorem, Hecke ring and Zeta function, (in Japanese) Department of Mathematics, Tokyo Univ., Lecture Notes 21, 1968.
- [9] R.G.Swan, Strong approximation and locally free modules, Ring Theory and Algebra [III] (B.McDonald, ed.), Marcel Dekker, New York, 1980, 153-223.
- [10] L.N.Vaserstein, On the stabilization of the general linear group over a ring, Math. USSR Sbornik, 8(1969), 383-400.
- [11] A. Yamasaki, Strong approximation theorem for division algebras over $\mathbf{R}(X)$, to appear in J.Math. Soc. Japan 49-3.