Cancellation of lattices and approximation properties of division algebras

By

Aiichi YAMASAKI

§ 0 . Introduction

Let R be a Dedekind domain with the quotient field K . Let Λ be an R-order. In this general setting, it is proved in $[3]$ that Roiter-Jacobinski type Divisibility Theorem holds for Λ -lattices. As a consequence, for a Λ -lattice L , the following two cancellation properties are equivalent.

(c) If *L'* is a local direct summand of $nL = L \oplus \cdots \oplus L$ for some $n \ge 0$, then $L \oplus L' \cong M \oplus L'$ implies $L \cong M$.

(c') If $L \oplus nL \simeq M \oplus nL$ for some $n \geq 0$, then $L \simeq M$.

As was pointed out in [3], putting Γ : $=$ $\text{End}_{A}L$ and B : $=$ $\overline{K}\Gamma$, there is an intimate connection between cancellation property and the approximation property of the group of Vaserstein $\widetilde{E}(\widehat{B})$ in the idele topology of \widehat{B}^{\times} , of which precise definitions will be recalled in §1.

Here we only indicate, \hat{R} : = $\prod R_p$, the direct product of p-adic completions over all maximal ideals of *R,* \hat{M} $\hat{i} = M \otimes_R \hat{R}$ for any *R*-alegbra *M,* and $(\widetilde{E}(C))$: = < $(1+xv)$ $(1+vx)^{-1}|x,y \in C$, 1 + $xy \in C^*$ > for any ring $C \ni 1$. Our first remark is

Proposition 1 (proof in 1.5). The property (c') for L is equivalent with the following property (c'') *of* Γ .

 $(c'') \quad \widetilde{E}(\widehat{B}) \subset \widehat{\Gamma}^* B^*$ *as subsets of* \widehat{B}^* .

0.1. We shall consider, for any finite dimensional K-algebra *B*, the following three *approximation properties over* R , in the idele topology of B^* .

(a) Strong approximation property:

 $\widetilde{E}(B)$ is dense in $\widetilde{E}(B)$

(a') B^* -approximation property:

 $\widetilde{E}(\widehat{B})$ is contained in the closure of B^* .

(a'') $\widehat{R}^{\times}B^{\times}$ -approximation property:

 $\widetilde{E}(\widehat{B})$ is contained in the closure of $\widehat{R}^{\times}B^{\times}$.

There are the obvious implications (a) \Rightarrow (a') \Rightarrow (a''). Our second (rather

Received March 1,1996

¹⁹⁹¹ *Mathematics Subject Classification.* 35R25, 35R30.

obvious) remark is

Proposition 2 (proof in 1.2) . The property (a") *for B is equivalent with the* (validity of) property (c'') for any A-lattice L such that $KEnd_AL \simeq B$.

In the following cases, the property (a) always holds.

- (1) *B* is commutative (since $\widetilde{E}(B) = \widetilde{E}(\widehat{B}) = 1$, by definitions).
- *(2) R* is semi-local (by the Chinese Remainder Theorem).
- (3) $B=M_n(C)$ by some K-algebra $C(n \geq 2)$ (cf [3]).

0.2. We shall give the following reduction to division algebras.

Theorem 1 (proof in 2.3) . Writing as $B/J(B) = \bigoplus_{i=1}^{m} M_{n_i}(D_i)$ *, with the Jacobson radical* $J(B)$ *and the division algebras* D_i *, in such an ordering that* $n_i = 1$ $(1 \leq i \leq r)$ and $n_i \geq 2 (r \leq i \leq n)$, we have

- (i) (a) for $B \Leftrightarrow$ (a) for $D_i (1 \leq i \leq r)$.
- (ii) (a) $(resp. (a'')$ *for* $B\Rightarrow$ (a) $(resp. (a''))$ *for* $D_i(1 \leq i \leq r)$.

Thus the approximation properties of general *B* can be reduced, more or less, to that of non-commutative division algebras over non-semi-local *R,* and then under a reasonable restriction, to that of central division ones, by 1.6.

Since PF-fields are the most familiar and important source of non semi-local Dedekind domains, now we restrict our attention to central division algebras over PF-fields and recall some basic facts and known results.

0.3. Assume that *K* is a PF-field in the sense of Artin [1], Chap.12, and let *D* be a finite dimensional non-commutative central division algebra over *K.*

In particular, there is given a set of valuations *0* of *K,* satisfying the product formula $\prod_{\alpha} |x|_{\alpha} = 1$ for any $x \in K^*$. In fact *K* is either a number field or a function field (of one variable) over the constant field K_0 : = $\{x \in K | |x|_v \leq 1 \}$ for any $v \in \mathcal{D}$. *K* is called a global field if either it is a number field or a functin field with $\# K_0 < \infty$.

(i) Let *P* be proper non-empty subset of \mathcal{D} consisting of non-archimedian valuations. Then $R(P)$ $\mathcal{C} = \{x \in K | |x|_p \leq 1 \text{ for any } p \in P\}$ is a Dedekind domain (with an additional requirement $R(P) \supset K_0$, if K is a function field) having *K* as its quotient field. Conversely, any such Dedekind domain *R* in *K* is obtained as $R = R(P)$ by some *P*.

Consider the following condition (EC) for *D* over $R = R(P)$, which is known as Eichler's condition when *K* is a global field.

(EC) There is at least one $v \in \mathcal{D} \backslash P$, such that the completion $D_v = D \otimes_K K_v$ is not a division algebra.

(ii) If *K* is a global field, by Wang-Platonov Theorem (cf. [6]), $[D^{\times}, D^{\times}]$ $=\widetilde{E}(D)$ = the kernel of the reduced norm. Hence the well known Eichler-Kneser Strong Approximation Theorem $[2]$, $[4]$ (and its analog due independently to Morita [8] and Swan [9], when *K* is a function field with $# K_0$ $<\infty$) implies

(SAT) (a) for *D* over $R(P) \Leftrightarrow (EC)$ for *D* over $R(P)$.

0.4. Apart from global fields, we shall prove;

Theorem 2 (proof in 3.4). *For any PF- field K, (a") for D over* $R(P) \Rightarrow (EC)$ *for D over* $R(P)$.

All in all, the most optimistic speculation would be " $(a) \Leftrightarrow (a') \Leftrightarrow (a'') \Leftrightarrow (a'')$ (EC) " for any central division algebras over any PF-fields. In this direction we can extend our previous result [11] as,

Theorem 3 *(proof* in 4 .4) . *W hen K is an algebraic function field of one variable over the reals,*

(EC) *for D over* $R(P) \Rightarrow$ (a) *for D over* $R(P)$.

1. Idele topology

Let R be a Dedekind domain with the quotient field K . A finitely generated R -module L is called an R -lattice, if it is torsion free (or equivalently projective) over *R*, then $K \otimes_R L$ is a finite dimensionl *K*-vector space and by the natural embedding $L \rightarrow K \otimes L$, one can identify as $K \otimes L = KL$. An R-algebra *A* is called an *R*-order if it is an *R*-lattice, then $KA = K \otimes A$ is a finite dimensional K-algebra. When a finite dimensional K-algebra *B* is given, we call that *F* is an *R*-order of *B*, if *F* is an *R*-order and $B=KT$.

For a maximal ideal p of *R,* let *Rp always denote the p-adic completion of R.* Let \hat{R} : = $\prod R_{p_1}$, the product over all maximal ideals of *R*. By the diagonal embedding $R \rightarrow \hat{R}$, \hat{R} is an R-algebra which is faithfully flat as an R-module. For any R-module *M,* put

$$
M_{p} := M \otimes_{R} R_{p}, \widehat{M} := M \otimes_{R} \widehat{R}.
$$

We shall be concerned with only the following two special cases.

1) Γ is an R-order : Then, since Γ is a finitely generated projective R -module, $\hat{\Gamma}$: = $\Gamma \otimes_R \prod R_p \simeq \prod (I \otimes_R R_p) = \prod \Gamma_p$.

2) *B* is a finite dimensional *K*-algebra : Then B : $=B\otimes_R R\simeq B\otimes_K K\otimes_K R$ $R\cong B\otimes_K K$, and since R is faithfully flat over R , one may canonically view as β \supset Γ , B and B \cap Γ $=$ Γ . Moreover, there is a natural identification B \cong \varinjlim $\Gamma/2$ $(r \in R \setminus \{0\}) \simeq \prod' B_p(w.r.t \Gamma_p)$, where the last term denotes the restricted direct product i.e. $\prod' B_p(w.r.t. \Gamma_p)$: = { $x = (x_p) \in \prod B_p | x_p \in \Gamma_p$ for almost all p}. The *adele topology* on *B* is defined as the unique topology which induces on \hat{T} the direct product of p-adic topology $\prod F_p$, for one (hence any) R-order Γ of *B*. The name comes from the fact that \hat{K} with this topology is called the (restricted) adele ring of *K.*

The *idele topology* in \widehat{B}^{\times} is defined as the unique topology which induces on $\hat{\Gamma}^*$ the direct product of p-adic topologies $\Pi\Gamma_p^*$, for one (hence any) R-order *F* of *B*. The following explicit description of the idele topology will be useful for us.

1.1. For any R-order Γ of B and non-zero $r \in R$, put

$$
(0) \begin{cases} U_p(\Gamma, r) : = \Gamma_p^* \cap (1 + r \Gamma_p) = \begin{cases} \Gamma_p^* & \text{if } r \in R_p^* \\ 1 + r \Gamma_p & \text{if } r \in pR_p. \end{cases} \\ U(\Gamma, r) : = \prod_p U_p(\Gamma, r) = \widehat{\Gamma}^* \cap (1 + r \widehat{\Gamma}), \\ \Gamma(r) : = R + r \Gamma, \text{ which is an } R \text{-order of } B \text{ again.} \end{cases}
$$

By definitions, we have

(1) $\{U(\Gamma, r)|r \in R \setminus \{0\}\}\)$ is a fundamental system of neighbourhoods of 1 in \widehat{B}^{\times} in the idele topology (for any one fixed Γ).

 $(1') \quad \{\hat{nH} | r \in R \setminus \{0\}\}\$ is a fundamental system of neighbourhoods of 0 in \hat{B} in the adele topology.

Let H be a subgroup of \widehat{B}^{\times} , and \overline{H} will denote the closure of H in \widehat{B}^{\times} .

(2) If $H \cap (1 + r\hat{I}) \subset \hat{I}^*$ for some Γ and $r \in R \setminus \{0\}$, (in particular if $H \cap$ $\hat{T} \subseteq \hat{T}^{\times}$, then the idele topology of \hat{B}^{\times} and the adele topology of \hat{B} induce the same topology on H. Indeed, $H \cap U(\Gamma, m') = H \cap (1 + m'\widehat{\Gamma})$ or any $r' \in R \setminus \{0\}$.

Since $\Gamma(r) = R_b^* U_b(\Gamma, r)$, we have

- (3) $\widehat{R}^{\times}U(\Gamma,r) = \widehat{\Gamma(r)}^{\times}$
- (4) If $\widehat{R}^{\times}\subset\overline{H}$, then $HU(\Gamma,r)\supset\widehat{R}^{\times}$ so that $\overline{H}=\bigcap_{r\in\mathbb{N}}\widehat{H(r)}^{\times}=\bigcap_{r\in\mathbb{N}}\widehat{f(r)}^{\times}H$.

1.2. Proof of Proposition 2 §0. For any R-order Γ of B, put $A = \Gamma^{op}$, the opposite ring of Γ and $L := \Gamma$, then $\text{End}_A L = \Gamma$. Hence the condition $((c'')$ for any L such that K End_A $L \cong B$ is equivalent with the condition $\widetilde{E}(\widehat{B}) \subseteq \widehat{T}^*B^*$ for any *Γ*. But we have $\widehat{A}^{\ast}B^{\ast} = \overline{\widehat{R}^{\ast}B^{\ast}}$, since $\widehat{T}^{\ast}B^{\ast}$ is closed and contains $\widehat{R}^{\times}B^{\times}$, so $\widehat{R}^{\times}B^{\times} \subset \bigcap_{r} \widehat{T}^{\times}B^{\times} \subset \bigcap_{r=0} \widehat{T(r)}^{\times}B^{\times}$, while we have $\widehat{R}^{\times}B^{\times} = \bigcap_{r} \widehat{T(r)}^{\times}B^{\times}$, by $(4).$

1.3. Results of Vaserstein. Let A be a ring with 1, and $E_n(A)$ be the elementary subgroup of $GL_n(A)$: = $M_n(A)$ ×. By the usual embedding $x \mapsto$ $\binom{x}{0}$, we consider as $A^* = GL_1(A) \subset GL_n(A)$ $(n \ge 2)$. Let $\widetilde{E}(A)$ be the group of Vaserstein, i.e. the subgroup of A^* given by the generators as

$$
\widetilde{E}(A) := \langle (1+xy) (1+yx)^{-1} | x, y \in A, 1+xy \in A^* \rangle.
$$

The commutator subgroup $[A^{\times}, A^{\times}]$ is always contained in $\widetilde{E}(A)$. Further, if A is local, $\widetilde{E}(A) = [A^{\times}, A^{\times}]$.

If A is semi-local, the well known Lemma of Bass and the fundamental results of Vaserstein $([10]$, Th.3.6) state:

(5) $GL_n(A) = A^*E_n(A)$ $(n \ge 2)$.

860

$$
(6) \quad A^* \cap E_n(A) = \widetilde{E}(A) \quad (n \ge 2).
$$

1.4.

Lemma. Let B be a finite dimensional K-algebra and Γ be an R-order of *B. Then the equality* (5) *of Bass* (resp. (6) *of Vaserstein*) *holds for* $A = \widehat{B}$ *or* \widehat{T} *, (where* \widehat{B} *or* \widehat{T} *is not semi-local if* R *is not semi-local.)*

Proof. In the proof of $[10]$ Th.3.6 (a), where semi-locality of *A* is assumed, it is in fact proved that

(i) If the ring A satisfies the following condition $(5')$, then (5) holds.

(5[']) For any finitely generated left ideal L and $x \in A$,

$$
Ax + L = A \Rightarrow (x + L) \cap A^* \neq \phi.
$$

(ii) If *A* satisfies $(5')$ and moreover the following $(6')$, then (6) holds.

 $f(6')$ $Ax_1 + Ax_2 = A \Rightarrow y \in A$, $y \in A$, $y \in A$ such that $x_1 + vx_2 \in A^*$, $1 - yqv \in A$ $A^{\times}, x_1 + u(x_2 + yx_1) \in A^{\times}, x_1 + u(x_2 + yqx_1) \in A^{\times}$

Now, let $A = \prod' A_p(w.r.t C_p)$ be the restricted direct product of A_p with respect to its subring C_p , over some index p's. If each A_p , C_p satisfies (5') and $(6')$, it is easy to see that A itself satisfies $(5')$ and $(6')$. This applies for \widehat{B} or \widehat{T} , since B_{p} and Γ_{p} are semi-local.

1.5. Proof of Proposition 1 \S 0. As is well known (cf $[3]$ \S 2 and \S 3), the property (c') is equivalent with the following (c''') $B^{\times} \cap GL_n (B) GL_n (T) =$ $B^{\times} \hat{T}^{\times}$ for $n \geq 2$.

By 1.4, we have

1) $GL_n(B) = B^{\times}E_n(B)$ $\qquad \qquad$ 2) $GL_n(\Gamma) = E_n(\Gamma)\Gamma^{\times}$. $E_n(B)$ is dense in $E_n(\widehat{B})$ in the idele topology of \widehat{B}^{\times} (cf [3]1.2.1)

3) $E_n(B)GL_n(\widehat{T})=E_n(\widehat{B})GL_n(\widehat{T})$.

Using 1), 3), 2) in this order, we have : $GL_n(B)GL_n(\widehat{T}) = B^{\times}E_n(B)GL_n(\widehat{T})$ $= B^{\times}E_n(\widehat{B})GL_n(\widehat{T}) = B^{\times}E_n(\widehat{B})E_n(\widehat{T})\widehat{T}^{\times} = B^{\times}E_n(\widehat{B})\widehat{T}^{\times}$

Hence, the left hand side of $(c'''') = \widehat{B}^{\times} \cap B^{\times}E_n(\widehat{B}) \widehat{T}^{\times} = B^{\times} (\widehat{B}^{\times} \cap E_n(\widehat{B})) \widehat{T}^{\times}$ $=B^{\times}E(B)$ \varGamma^{\times} , the last equality by 1.4 again. This implies that (c''') is equivalent with (c'') .

1.6. Change of the base field. Let K' be a finite extension field of K contained in the center of *B*, and let R' be the integral closure of R in K' . Then R' is a Dedekind domain with the quotient K' , and B is a finite dimensional K' -algebra. Assume the following condition

(f) *R'* is a finitely generated R-module.

Then there are canonical isomorphisms $\hat{R}' \simeq R' \otimes_R \hat{R}$ and $K' \otimes_{R'} \hat{R}' \simeq K' \otimes_R R'$ (cf. [7] Th.1 and Prop. 4 Chap. II §3), so that $B \otimes_R R^2 \simeq B \otimes_R R^2$ including the topology. Hence the approximation property (a) (resp. (a')) of *B* over *R* is equivalent with that of *B* over *R'*, and (a'') over *R* implies that over *R'*.

(i) For a residually separable algebra *B* (i.e. $B/J(B)$ is separable) the

 B^{\times} -approximation problem is reduced, by Theorem 1, to that of a central division algebra.

(ii) If K is a PF-field, the condition (f) always holds (cf. $[5]$ Th.72), so that we get the reduction to a central division algebra even for residually inseparable case.

Reduction to a division algebra $2.$

Let B be a finite dimensional K-algebra with the Jacobson radical $J = J(B)$, φ : $B\rightarrow B'$: $=B/I$ be the canonical K-morphism and Γ' : $=\varphi(\Gamma)$. Then Γ' is an R-order in B', and φ induces the following surjective morphisms : φ_0 : $\Gamma \rightarrow \Gamma'$, $\hat{\varphi}$: $= \varphi \otimes 1$: $\hat{B} = B \otimes \hat{R} \rightarrow B' \otimes \hat{R} = \hat{B}'$ and $\hat{\varphi}_0$: $= \varphi_0 \otimes 1$: $\hat{\Gamma} = \Gamma \otimes \hat{R} \rightarrow \hat{R}$ $\Gamma' \otimes \widehat{R} = \widehat{\Gamma}'$

Since \widehat{R} is faithfully flat over R,

1) Ker $\varphi_0 = \Gamma \cap J \subset J(\Gamma)$, Ker $\widehat{\varphi} = J \otimes \widehat{R} = \widehat{J} \subset J(\widehat{B})$,

2) Viewing as $\widehat{B} \supset \widehat{T}$, B and $\widehat{T} \cap B = \Gamma$, φ_0 , $\widehat{\varphi}_0$, φ is the restriction of $\widehat{\varphi}$ to Γ , $\hat{\Gamma}$, \hat{B} respectively.

By 1), $1+\hat{i} \subset \hat{B}^*$ so that $\hat{\varphi}$ induces the exact sequence of groups:

3) $1 \rightarrow 1 + \hat{i} \rightarrow \hat{B}^{\times} \rightarrow \hat{B}^{\times} \rightarrow 1$ and $\hat{\omega}^{-1}(\hat{B}^{\times}) = \hat{B}^{\times}$.

Consequently, we have

4) $\widehat{\omega}(\widetilde{E}(\widehat{B})) = \widetilde{E}(\widehat{B})).$

By the same reasoning, we have

5) $\widehat{\varphi}(\widetilde{E}(B)) = \widetilde{E}(B')$.

Also we have

6) $\hat{\Gamma}^* = \hat{\varphi}_0^{-1}(\hat{\Gamma}^{\prime*})$, which in turn implies

7) $\hat{\varphi}(U(\Gamma,r)) = U(\Gamma', r)$, in the notation of 1.1.

$2.1.$

Lemma. Let H be a subgroup of \widehat{B}^{\times} and \overline{H} be its closure in \widehat{B}^{\times} .

- (i) $\widetilde{E}(\widehat{R}) \subset \overline{H} \Rightarrow \widetilde{E}(\widehat{R}) \subset \overline{\widehat{\omega}(H)}$
- (ii) If $1 + \hat{i} \subseteq \overline{H}$, then the converse implication (\Leftarrow) also holds.
- (iii) $1 + \hat{i} \subseteq \overline{B}^{\times}$.

Proof. (i) and (ii): $(\widetilde{E}(\widehat{B}) \subset \overline{H}) \stackrel{(1)1,1}{\Leftrightarrow} (\widetilde{E}(\widehat{B}) \subset HU(\Gamma, r)$ for any $r \in R \setminus \{0\}$) $4)$ & 7) $\Rightarrow (\widetilde{E}(\widehat{B})) \subset \widehat{\varphi}(H) U(\Gamma,r))$ for any $r \in R \setminus \{0\}$ $\Rightarrow (\widetilde{E}(\widehat{B}) \subset (1+\widehat{f}) H U(\Gamma,r))$ $(=$ HU(Γ , r) if $\overline{H} \supseteq 1 + \widehat{I}$ for any $r \in R \setminus \{0\}$.

(iii) Since any element of \hat{j} is nilpotent, $(1+\hat{j}) \cap (1+\hat{i}) = 1 + \hat{i} \cap \hat{i} \cap \hat{j}$ $\subset \widehat{\Gamma}^{\times}$, hence by (2) 1.1, the idele topology on $1 + \widehat{\Gamma}$ is induced from the adele topology. Since *J* is dense in \hat{j} in the adele topology, $1 + J$ is dense in $1 + \hat{j}$ in the idele topology so that $1 + \hat{j} \subset (1 + J)U(\Gamma, r) \subset B^{\times}U(\Gamma, r)$ for any $r \in R \setminus \{0\}$. 2.2.

Lemma. Let $B = \bigoplus_{i=1}^{\infty} B_i$ be the ring direct sum of finite dimensional K-algebras. *Then we have the following implications.*

- (i) (a) $(resp. (a'))$ *for* $B \Leftrightarrow (a)$ $(resp. (a'))$ *for* any $B_i (1 \le i \le m)$.
(ii) (a'') *for* $B \Rightarrow (a'')$ *for* any $B_i (1 \le i \le m)$.
- (a'') *for* $B \Rightarrow (a'')$ *for any* $B_i (1 \le i \le m)$.

Proof. Let Γ_i be an R-order of B_i , then Γ : $\equiv \bigoplus \Gamma_i$ is an R-order of B. By the canonical isomorphism $B = B \otimes R \simeq \bigoplus (B_i \otimes R) = \bigoplus B_i$, B ² $U(\Gamma, r) \cong \Pi U(\Gamma_i, r)$, $E(B) \cong \Pi E(B_i)$ and $E(B) \cong \Pi E(B_i)$, the claims are completely obvious.

2.3. Proof of Theorem 1 §0. Put $B_i = M_{ni}(D_i)$, $n_i = 1 (1 \le i \le r)$, $n_i \ge 2 (r \le i)$ \leq *m*). Recall that (a) holds for *B_i* (r \leq $i \leq$ *m*) ((3) of 0.1) and apply 2.1 and 2.2, then we get the following implications which obviously prove Theorem 1.

- (a) for $B \Rightarrow$ (a) for $B' \Leftrightarrow$ (a) for $D_i (1 \le i \le r)$
- (a') for $B \Leftrightarrow (a')$ for $B' \Leftrightarrow (a')$ for $D_i (1 \leq i \leq r)$
- (a'') for $B \Leftrightarrow (a'')$ for $B' \Rightarrow (a'')$ for $D_i (1 \le i \le r)$.

3. $(a'') \Rightarrow (EC)$ for a PF-field

Let *K* be a PF-field in the sense of *[1], D* be a central division K-algebra of dimension n^2 , $[D: K] = n^2$. Let $D_v := D \otimes_K K_v$ be the completion at $v \in \mathcal{D}$. Let $\mathfrak{R}: D \rightarrow K$ be the reduced norm and $\mathfrak{R}_v: D_v \rightarrow K_v$ be its extension.

If D_ν is a division algebra, $D_\nu \ni x \mapsto |\Re_{\nu} x|_{\nu}^{1/n}$ defines a norm of D_ν as a K_v -vector space. While for any basis $\{e_i | 1 \le i \le n^2\}$ of *D* over *K*, writing $x =$ $\sum \xi_i e_i \in D_v$, $x \mapsto \text{Max} |\xi_i|_v$ is also a norm of D_v . Hence there is a constant $c_v > 0$ such that

(1) $\max_i |\xi_i|_v \leq c_v |\mathfrak{N}_v x|_v^{1/n}$ (x

For almost all v , we have : v is non-archimedean; $\{\sum \xi_i e_i | \max_i |\xi_i|_v \leq 1\}$ is a maximal order of D_v ; $\left|\det Tr(e_i e_j)\right|_v=1$. Hence for almost all v such that D_v is a division algebra, D_v/K_v is unramified and $|\mathfrak{N}_v x|_v^{1/n} = \text{Max} |\xi_i|_v$. Thus we can choose *c^v* as

(1) $c_v = 1$ for almost all v such that D_v is a division algebra.

Let R be a Dedekind domain with the quotient field K , so that it has the form $R = R(P)$: $= {\xi \in K \|\xi|_p \leq 1}$ for any $p \in P$ by some non-empty proper subset *P* consisting of non-archimedeam valuations of \mathcal{D} . For a fixed *R*, we can obviously choose a basis $\{e_i | 1 \leq i \leq n^2\}$ satisfying

(2) $\Gamma = \sum_{i=1}^{n^2} Re_i$ is an *R*-order of *D*, and $e_i = 1$. Then $\Gamma(r)$ $\mathrel{\mathop:}= R+r\Gamma$ is also an R-order for any $r(\pm 0) \in R$

3.1.

Lem m a. A ssume that D does not satisfy the Eichler's condition (EC) over

 $R = R(P)$, i.e. the following $-(EC)$ is satisfied.

 \neg (EC): D_v is a division algebra for any $v \in \mathcal{D} \backslash P$.

(i) Let $\{e_i\}$ be a basis of D satisfying (2), then there is a positive constant c depending only on $\{e_i\}$ but not on $r(\neq 0) \in R$ such that

$$
\prod_P |\mathbf{r}|_p \leq c \Rightarrow \Gamma(r)^\times = R^\times.
$$

(ii) $\widehat{R}^{\times}D^{\times}$ is closed in \widehat{D}^{\times}

Proof. (i) It suffices to take $c := \prod_{v \in V} c_v^{-1}$ (which is well defined by (1')). Indeed, if $\Gamma(r)$ ^x \neq R^x, there is some $x = \sum_{i=1}^{N} \xi_{i}e_i \in \Gamma(r)$ ^x with $\xi := \xi_i \neq 0$ for some $i \geq 2$. At $p \in P$,

(3) $|\xi|_p \leq |r|_p = |r|_p |\Re x|_p^{1/n}$.

Using the product formula, (1) at $v \in \mathcal{D} \backslash P$ and (3) at $p \in P$, the product formula again, in this order, we get

$$
1 = \prod_{\varnothing} |\xi|_v = \prod_{\varnothing \backslash P} |\xi|_v \times \prod_{P} |\xi|_p \le \prod_{\varnothing \backslash P} c_v |\Re x|_v^{1/n} \times \prod_{P} |\mathbf{r}|_p |\Re x|_v^{1/n}
$$

=
$$
\prod_{\varnothing \backslash P} c_v \times \prod_{P} |\mathbf{r}|_p = c^{-1} \prod_{P} |\mathbf{r}|_p.
$$

(ii) Put $R(c)$: = { $r \in R \setminus \{0\}$ | $\prod_{p} |r|_{p} < c$ }. If $r \in R(c)$, by (i), we have $\widehat{\Gamma}(r)$ *

 $\bigcap D^{\times} = \Gamma(r)^{\times} = R^{\times}$. This obviously implies

(4) $\bigcap_{r \in R(c)} (\overline{D^{\times} \Gamma(r)^{\times}}) = D^{\times} (\bigcap_{r \in R(c)} \overline{\Gamma(r)^{\times}})$.

Then together with (4) 1.1, we have

$$
\overline{D^{\times}\widehat{R}^{\times}} = \bigcap_{r \neq 0} (D^{\times}\widehat{T(r)^{\times}}) \subset \bigcap_{r \in R(c)} (D^{\times}\widehat{T(r)^{\times}}) = D^{\times}(\bigcap_{r \in R(c)} \widehat{T(r)^{\times}}) = D^{\times}\widehat{R}^{\times} \subset \overline{D^{\times}\widehat{R}^{\times}}.
$$

3.2. As usual, we consider D_p^{\times} as the subgroup of \widehat{D}^{\times} consisting of the elements $x = (x_p) \in \widehat{D}^{\times}$ such that $x_q = 1$ for $q \in P \backslash \{p\}$, Under this convention, the following is obvious.

 $\sharp P \geq 2 \Longrightarrow \widehat{R}^{\times} D^{\times} \cap D_{\mathfrak{n}}^{\times} \subset K_{\mathfrak{n}}^{\times}.$ (5)

If # $P \leq \infty$, then R is semi-local and $\overline{D}^* = \widehat{D}^*$, hence 3.1 implies (6) $2 \leq \sharp P \leq \infty \Rightarrow (EC)$.

Indeed : $-(EC)$ implies $\overline{\hat{R}^{\times}D^{\times}} = \hat{R}^{\times}D^{\times}$ so that $D_{\rho}^{\times} \subset \hat{R}^{\times}D^{\times}$ hence $D_{\rho}^{\times} \subset D_{\rho}^{\times} \cap$ $\widehat{R}^{\times}D^{\times}\subset K_{\nu}^{\times}$, a contradiction to the assumption that D is non-commutative.

3.3.

Lemma. Let D be a central division algebra over a PF-field K. Then D_v is not a division algebra for infinitely many $v \in \mathcal{D}$.

Proof. If $\mathcal D$ contains at least one archimedean valuation (i.e. if K is a number field), as is well known, much stronger results are known. Assume that $\mathcal D$ consists of non-archimedean valuations. If $\# \{v \in \mathcal D | D_v \text{ is not a division}\}\$ algebra) $\langle \infty$, then obviously we can choose a subset P of $\mathcal D$ such that $2 \leq \#P$ $\langle \infty \rangle$ and \langle EC), a contradiction with (6) 3.2.

864

3.4. Proof of Theorem 2 We shall prove:

 \rightarrow (EC) \Rightarrow $[D^{\times}, D^{\times}] \not\subset R^{\times}D^{\times}$.

Suppose not, then $[D^{\times}, D^{\times}] \subset R^{\times}D^{\times}$ by 3.1, so that $[D_{p}^{\times}, D_{p}^{\times}] = D_{p}^{\times} \cap [D^{\times}, D_{p}^{\times}]$ \widehat{D}^{\times}] $\subset D_{\rho}^{\times} \cap \widehat{R}^{\times} D^{\times} \subset K_{\rho}^{\times}$ for any $\rho \in P$. It is a contradiction, since if xy do not commute in D_b^{\times} , then one of $[x,y]$ and $[x,1+y]$ does not belong to K_b^{\times} .

4. $(EC) \Rightarrow$ (a) for a real coefficient case

We shall derive our Theorem 3 from our previous result [11], where it is proved only for a special case of $K = \mathbf{R}(X)$. For this purpose, we prepare a few lemmas, which are of quite general nature, but regretfully, effectively applicable only for a very restricted situation like in Theorem 3, so that we state them only for PF-fields.

4.1. Let *D* be a central division algebra over a PF-field *K* and $R = R(P)$ as in 0.3. For a fixed $p_0 \in P$, as usual, we identify $D_{p_0}^{\times}$ as the (closed normal) subgroup of D^{\times} , consisting of elements $x = (x_p) \in D^{\times} \subset \prod D_p^{\times}$ with $x_p = 1$ for $p \neq$ p_0 . Then $\{E(D_p)|p \in P\}$ generates a dense subgroup of $E(D)$ in D^{\times} (cf. [2] §51). Hence a closed subgroup *H* of \widehat{D}^* contains $\widetilde{E}(\widehat{D})$ if and only if it contains $\widetilde{E}(D_{\rho})=[D_{\rho}^{\times}, D_{\rho}^{\times}]$ for all $p \in P$. By the Chinese Remainder Theorem, 'all' can be replaced by 'almost all'. In particular we have

(1) (a) for *D* over $R \Leftrightarrow [D_P^{\times}, D_P^{\times}] \subseteq E(D)$ for almost all p, and the corresponding $(1')$ $(resp. (1''))$ for $(a') (resp. (a''))$.

Let K' be a finite extension field of K , and let P' be the set of all (non-equivalent) valuations of K' lying over *P*, $P' = \{p'|p' \supset p, p \in P\}$. The integral closure *R'* of *R* in *K'* is given by $R' = \{0\} \cup \{x \in K' \mid |x|_{p'} \leq 1 \text{ for any } p' \in P'\}.$

Put D' : $=D \otimes_K K'$. By 1.6, D' : $=D' \otimes_{R'} R \simeq D' \otimes_R R \supset D \otimes_R R = D$ as topological rings, and

(2) $\widehat{D}^{\prime} \times \widehat{D}^{\prime} \widehat{D}^{\prime} \times \widehat{D}_{p}^{\prime} \supseteq D_{p}^{\prime} \cong D_{p}^{\prime} \supseteq D_{p}^{\prime}$ as topological groups.

In the following (b) denotes the closure in $\hat{D}^{\prime\prime}$. Let consider the following condition $(*)$.

(*) For almost all $p \in P$, $p' \supset p \Rightarrow [D^{\prime}^{\times}_{p'}, [D^{\times}_{p}, D^{\times}_{p}]] = [D^{\prime}^{\times}_{p'}, D^{\prime}^{\times}_{p'}].$

*Lemma. Assume that the condition (*) holds. Then* (a'') *for D* over $R \implies$ (a) *for D'* over *R'*.

Proof. By the Chinese Remainder Theorem, D'^* is dense in $\prod_{p' \supset p} D_p'^*$. Hence, by (2), $[D^{\times}_{p'}, [D^{\times}_{p}, D^{\times}_{p}]] \subset [D^{\times}, [D^{\times}_{p}, D^{\times}_{p}]]$, so that the assumption (*) implies

(3) $[D^{\prime}\check{\rho}, D^{\prime}\check{\rho}] \subset [D^{\prime\star}, [D^{\star}, D^{\star}\check{\rho}]]$ for almost all $\rho \in P$. On the other hand we have

866 *Aiichi Yamasaki*

(a'') for *D* over $R \underset{(1'')} {\Leftrightarrow} [D_f^{\times}, D_f^{\times}] \subseteq R^{\times}D^{\times}$ for almost all $p \in P \Longrightarrow [D'^{\times}, [D_f^{\times}]$

$$
D_{\rho}^{\times}]\}\subset [D^{\prime\star},\ \overline{\widehat{R}^{\times}D^{\times}}] \subset [D^{\prime\star},\ D^{\times}] \subset [D^{\prime\star},\ D^{\prime\star}] = \widetilde{E}(D^{\prime}).
$$

Hence by (3), we have $[D\prime_{p'}^{\times}, D\prime_{p'}^{\times}] \subset \widetilde{E}(D')$ for almost all p, which is equivalent with $((a)$ for *D'* over *R'*) by (1) .

4.2. Now assume that the constant field $K_0 = \mathbf{R}$, i.e. *K* is an algebraic function field of one variable over the reals.

Recall from [11] that $Br(K) \simeq K^{\times}/\mathfrak{N}$ ($K(\sqrt{-1})^{\times}$) = $K^{\times}/(K^2+K^2) \cap K^{\times}$, so that any central division algebra *D* over *K* is a quaternion algebra of the form $D \simeq \{-1\}$ with $f \in K^{\times}$. *D* is trivial if and only if $f \in K^2 + K^2$.

We call a valuation $v \in \mathcal{D}$ real (resp. imaginary) if the residue field is isomorphic to \boldsymbol{R} (resp. \boldsymbol{C}). K ($\sqrt{-1}$) is an algebraic function field of one variable over C, so the corresponding \mathcal{D}' is identified with the Riemann surface \Re , and $K(\sqrt{-1})$ with the field of all meromorphic functions on \Re . Since a real valuation v of K does not decompose on $K(\sqrt{-1})$, the set $RP(K)$ of all real valuations can be embedded in \Re as a finite disjoint union of closed curves. Then we have

$$
K = \{ \varphi \in K(\sqrt{-1}) \, | \, \varphi(z) \in \mathbf{R} \text{ for } z \in RP(K) \}.
$$

Furthermore, as shown in [11],

$$
K^2 + K^2 = \{ f \in K | f(z) \ge 0 \text{ for } z \in RP(K) \},
$$

so $\{-1, f\}$ is trivial for such *f*.

Let *P* be a non-empty proper subset of *D.*

Lemma. If D satisfies (EC) over $R(P)$, then D can be written as $D = D_0 \otimes$ $_{R(g)}K$, where $g \in R(P) \backslash \mathbb{R}$ and D_0 is a central division $\mathbb{R}(g)$ -algebra satisfying (a) *over* $R[g]$.

Proof. (EC) for *D* means that D_{v_0} is trivial for some $v_0 \in \mathcal{D} \setminus P$. From Riemann-Roch Theorem, for any $f \in K^*$ we can find $h \in K^*$ such that $g : = h^2f$ has the unique pole at v_0 . Therefore *D* can be written as $D = \{-1, g\}$, where *g* $\in R(P)$ and has the unique pole at v_0 .

Since D_{ν_0} is trivial, we have either (i) ν_0 is imaginary or (ii) ν_0 is real and *g* is positive around v_0 . In any case, *g* is bounded from below on $RP(K)$, since g has no pole other than v_0 . So, $g + c \in K^2 + K^2$ for some $c \in \mathbb{R}$, hence $D = \{-1\}$, g } = {-1, $g(g+c)$ } $\simeq D_0 \otimes_{R(g)} K$ where $D_0 = \{-1, g(g+c)\}$ over $R(g)$ which satisfies (EC) over $\mathbf{R}[g]$ since $X(X + c)$ is monic and quadratic. From our previous result $[11]$, D_0 satisfies (a) over $\mathbf{R}[g]$.

4.3.

Lem m a. If K is an algebraic function field of one variable aver R, then the condition (\ast) *in* 4.1 *is satisfied for any D.*

Proof. Note that D_p is unramified for almost all $p \in P$. If D_p is trivial, then

 $D_{\rho}^{\times} = GL(2, K_{\rho})$ and $[D_{\rho}^{\times}, D_{\rho}^{\times}] = SL(2, K_{\rho})$. In this case $[D_{\rho}^{\times}, [D_{\rho}^{\times}, D_{\rho}^{\times}] =$ $[GL(2, K'_{p'})$, *SL* $(2, K_{p})$] is a normal subgroup of *SL* $(2, K'_{p'})$ not contained in its center, so it must coincide with *SL* (2, *K'p,).*

If D_p is an unramified quaternion algebra, then p is real so that $-1 \notin K_p^2$ and $K_p^2 + K_p^2 = K_p^2$. Thus the reduced norm $\mathfrak{N}_p : D_p^{\times} \to K_p^{\times}$ maps D_p^{\times} onto $K_p^{\times 2}$ with the kernel $[D_0^{\times}, D_0^{\times}]$. This implies $D_0^{\times} = K_p^{\times} [D_p^{\times}, D_p^{\times}]$, so that $[D_p^{\times}, [D_p^{\times}, D_p^{\times}]$. $[D_p^{\star}, D_p^{\star}] \supseteq [D_p^{\star}, D_p^{\star}]$, hence the left hand side is a normal subgroup of $[D_p^{\star}]$ D_p^{\times} containing $i \in [D_p^{\times}, D_p^{\times}]$, and as such it coincides with $[D_p^{\times}, D_p^{\times}]$. (Proof for $D'_{p'} \simeq \{-1, -1\}$ is as follows : Let *N* be a normal subgroup of $[D'_{p'}, D'_{p'}]$ containing *i*, then $\{x \in D'_{p'}|x^2 + 1 = 0\} \subset N$ since such *x* is conjugate with *i* by Skolem-Noether Theorem. So for any $a \in K'_{p'}$ such that $1-a^2 \in K_{p'}^2$, we have $a^2 + b^2 = 1$, hence $y : i(-ai + bj) = a + bij \in N$ which satisfies $y^2 - 2ay + 1 = 0$. Thus, again from Skolem-Noether Theorem, every $y \in [D_{p}^{\prime\prime}]$ $D_{p'}^{(x)}$ belongs to *N*).

4.4. Proof of Theorem 3 §0. Assume that *D* satisfies (EC) over $R(P)$. Applying Lemmas 4.1 and 4.3 to the result of Lemma 4.2 (regarding $R(g)$ as *K* and *K* as *K'*), we see that *D* satisfies (a) over $R[g]_K$, the integral closure of $\mathbf{R}[g]$ in *K*. Since $g \in R(P)$, we have $R(P) \supseteq \mathbf{R}[g]_K$ so that (a) over $R[g]_K$ implies (a) over $R(P)$.

DEPARTMENT OF MATHEMATICS. KYOTO UNIVERSITY

References

- $[1]$ E.Artin, Algebraic numbers and algebraic functions I , Princeton Univ., Lecture Notes, 1951.
- $\lceil 2 \rceil$ C.W.Curtis and I.Reiner, Methods of representation theory, vol.2, Interscience (1987) Especially §51 Jacobinski's cancellation theorem.
- $[3]$ H.Hijikata, On the decomposition of lattices over orders, to appear in J. Math. Soc. Japan.
- $[4]$ M. Kneser, Strong approximation, Proc. Symp. Pure Math. AMS, 9(1966), 187-196.
- $[5]$ H.Matsumura, Commutative Algebra, Benjamin, 1970.
- $[6]$ V.P.Platonov, The Tannaka-Artin problem and reduced K - theory, Math. USSR Izvestija, 10 (1976), 211-243.
- $[7]$ J.P.Serre, Corps Locaux, Hermann, 1968.
- $[8]$ H. Shimizu, Approximation theorem, Hecke ring and Zeta function, (in Japanese) Department of Mathematics, Tokyo Univ., Lecture Notes 21,1968.
- $[9]$ R.G.Swan, Strong approximation and locally free modules, Ring Theory and Algebra $\mathbb I$ (B.McDonald, ed.), Marcel Dekker, New York, 1980,153-223.
- $[10]$ L.N.Vaserstein, On the stabilization of the general linear group over a ring, Math. USSR Sbornik, 8(1969), 383-400.
- $[11]$ A . Yamasaki, Strong approximation theorem for division algebras over *R (X) ,* to appear in J.Math. Soc. Japan 49-3.