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Cancellation of lattices and
approximation properties of division algebras

By

Aiichi YAMASAKI

§ 0 .  Introduction

L et R  b e  a  D edek ind  dom ain w ith  the  quo tien t fie ld  K . L et A  b e  an
R-order. In this general setting, it is proved in  [3] tha t Roiter-Jacobinski type
Divisibility Theorem holds for A - lattices. A s a  consequence, for a  A - lattice L,
the following two cancellation properties are equivalent.

(c) If L ' is  a  local direct summand of nL=LE13, •••EDL for some 0, then
LEDL'=MEDL' implies L =M .

(c') If LEDn.L.-- ----'ME3nL for some n >_ 0, then L M.
As was pointed o u t in  [3], putting I ' :  , ----EnciA L  and B  : =K T , there  is an

in tim ate  connection  betw een cancella tion  property  and the approxim ation
property of the group of Vaserstein E(./j )  in the idele topology of /13N x, of which
precise definitions will be recalled in §1.

H ere w e only indicate, RN  : =  IIRp, the  d irec t product of p-adic comple-
tions over a ll maximal ideals of R, XI\  :  =  M  RR\  fo r  any  R-alegbra M, and

(C) : =- < (1 - - xy) (1 + yx) E  C ,1+  x y  C x  >  for any ring C 1. O u r  first
remark is

Proposition 1 (proof in 1.5). The property (c') for L  is equivalent with the
following property (c") of F

(c") 7 É -  ( / ) CPx.Bx as subsets of

0 . 1 .  W e shall consider, for any finite dimensional K-algebra B , the  following
three approximation properties over R , in the idele topology of .rEÎ".

(a) Strong approximation property
E (B ) is  dense in TE

(a') B x -approximation property
E  )  is contained in the closure of 13'.

(a") R''B'<-approximation property
E TO is contained in the closure of /7 'W .

There are  the obvious implications (a) (a') (a ") . O ur second (rather
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obvious) remark is

Proposition 2  (proof in  1 .2 ) . The property  (a") for B  is equivalent w ith
the (validity of) property (c" ) for any A - lattice L such that KEncIAL B .

In the following cases, the property  (a )  always holds.
(1) B is  commutative (since E(B) = -E (3 ) =1 , by definitions).
(2) R is  sem i-local (by the Chinese Remainder Theorem).
(3) B =M (C ) by some K-algebra C (n 2) (cf [3]).

0 .2 .  We shall give the following reduction to division algebras.

Theorem 1 (proof in  2.3) . W riting as B/J (B) E M„, (D i ) ,  w ith the

Jacobson radical J (B ) and the division algebras Di , in  such an ordering that n i =1
and 2 (r< i , we have

(i) (al for B<:=> (a') for
(ii) (a) (resp. (a") for B (a) (resp. (a")) for D i (1 .

Thus the  approximation properties of general B  can be reduced, more or
less, to  that of non-commutative division algebras over non-semi-local R, and
then under a  reasonable restriction, to that of central division ones, by 1.6.

S in ce  PF-fields a r e  t h e  m o st fam ilia r  an d  im p o rtan t so u rce  o f  n o n
semi-local Dedekind domains, now we restrict our attention to  central division
algebras over PF-fields and recall some basic facts and known results.

0.3. Assume that K  is  a  PF-field in  the sense of Artin [1], Chap.12, and let
D be a finite dimensional non-commutative central division algebra over K.

In particular, there is given a set of valuations 0  of K, satisfying the pro-
duct formula 111x1,-= 1 fo r any

 x E K x
. I n  fact K  is e ither a  number field or a

function field (of one variable) over the constant field Ko{ x e K I I x I v 1  for
any y E V . K  is called a global field if e ithe r it is  a  number field or a functin
field w ith  #K0<°°.

( .1) Let P  be proper non-em pty subset o f 0  consisting o f  non- archime-
dian valuations. Then R  (P ) : = -(x EKII.xip_.1 fo r any p E P I  is  a Dedekind
dom ain (w ith a n  additional requirement R (P) D Ko ,  if K  i s  a  function field)
having K as its quotient field. Conversely, any such Dedekind domain R in K  is
obtained as R  R  (P )  by some P.

Consider th e  following condition (E C ) fo r D  over R =  R  (P ) , which is
known as Eichler's condition when K is a global field.

(EC) There is at least one y E 0 \P , such that the completion Dv =DOKK,
is not a division algebra.

(ii) If K  is  a global field, by  Wang-Platonov Theorem  (cf. [6]) , [D x ,Dx ]

= T.2(D) -= th e  ke rne l o f  th e  reduced norm . Hence th e  well known Eichler-
Kneser Strong Approximation Theorem  [2 ] , [4 ]  (and  its  a n a lo g  d u e  inde-
pendently to M orita [8 ] and Sw an [9] , when K  is  a  function field w ith  #K 0

<co) im plies
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( S A T )  (a) for D over R (P) ‹* (EC) for D over R (P) .

0 . 4 .  Apart from global fields, we shall prove;

Theorem 2  (proof in  3 .4 ). For any PF - field K,
(a") for D over R (P) (EC) for D over R (P).

A ll in  a ll, the  most optimistic speculation would be " (a) 47 > (a') (a") <7 >
(EC) " for any central division algebras over any PF - fields. In  th is  direction
we can extend our previous result [11] as,

Theorem 3  (proof in  4 .4 )  . W hen K  is  an  algebraic function f ield of  one
variable over the reals,

(EC) for D over R (P) (a) for D over R (P).

1. I d e l e  topology

Let R  b e  a Dedekind domain with the quotient field K . A  finitely gener-
ated R-module L  is  ca lled  an  R - lattice, if  it  is  to rs io n  f r e e  (or equivalently
projective) over R, then K  R L  is  a  finite dimension] K-vector space and  by
the natural embedding L- - >KOL, one can identify as K O L =K L . An R-algebra
A  is called an R-order if i t  is  an R - lattice, then K A = K O A  is  a  finite dimen-
sional K-algebra. When a  finite dimensional K-algebra B  is given, we call that
F is an R-order of B, if F is an R-order and B =K T.

For a maximal ideal p of R, let Rp always denote the p-adic completion of R.
Let R  : =  nR, th e  p roduc t ove r a ll maximal ideals o f R . B y the diagonal
embedding R R ,  17 is  an R -algebra w hich is faithfully flat as an R-module.
For any R-module M, put

M :

We shall be concerned with only the following two special cases.
1) F is  a n  R -o rd e r  :  T h e n , since I '  is  a  finitely generated projective

R-module, F : ---FORnRp= fi ( r o R R p )  = FIrp.
2) B  is  a  finite dimensional K-algebra : Then B  : =  B  R 1 7 = B  K K OR

R =B OK K , and since R  is faithfully flat over R , one may canonicaly  v ie w  as
i q D  F, B  and B  n P= F. Moreover, there is a  natural identification B  l i m r r

(rERVOI) I1'/3p (w.r.t F t ) ,  where the last term denotes the restricted direct
product i.e. n 'B p (w .r.t. Fp) : =  {x= (xp) E  n B p iX p  e r p  for almost all p) x The
adele topology on B  is defined as the unique topology which induces on F  the
direct product of p-adic topology r[Fp, for o n e  (hence any) R -order F  of B.
T h e  nam e com es from  t h e  f a c t  th a t  K  w ith  th is  to p o lo g y  is  c a lle d  the
(restricted) adele ring of K.

The idele topology in B x  is defined as the  unique topology which induces on
P- the direct product of p-adic topologies rirp., fo r one  (hence any) R-order
F of B . The following explicit description of the idele topology will be useful
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for us.

1.1. For any R-order F of B  and non-zero rE R , put

Up (F, n (i+d-p). frPx i f  r E R ;

1-FrFp i f  rEpRp.

(0 ) u (r, r) : =  9 up (r, = r x n (1 + r ? ) ,

F(r)  : =R - f- rF, which is an R-order of B  again.

By defin'tions, we have
(1) {U (r, r)Ir ER \ {0}} is  a fundamental system of neighbourhoods of 1

in / ix  in the idele topology (for any one fixed n .
(1') ()TITER\ (OD is a  fundamental system of neighbourhoods of 0 in ./riÎ in

the adele topology.
Let H be a subgroup of /4x, and H will denote the closure of H in
(2) If H n  ( 1 + r )  C Px  for some r and r E 4 (0 ) ,  (in particular if H n

rc r-x) , then the  idele topology of I/3x and the adele topology o f ./Î' induce the
same topology on H. Indeed, H n u (r, rr') =Hn (1 -FrrT) o r any r' ERVOI.

Since F(r);', -=1?; Up (F, r), we have
(3) /7x U ( F ,  =7-F ( x
(4) If /7' c.fr, then HU (F, D i x so  tha t Ti- -= f l  H .F (r )  =  r*o r*o

1.2. Proof of Proposition 2  § 0 .  F or any R-order F  o f  B, put A = F°P , the
opposite ring of r and L : F, then EndAL =I'. Hence the condition ((c " ) for

any L  such that K  EndA B ) is equivalent w ith the condition (iN=3) TxBx

fo r  any  F. B ut w e h a v e  CI ) T'Bx =17 )V3x , since TxBx is c losed  and  contains

/7xBx, so ir x.13" c n Tx/3x c  n r(y) "B' , while we have 17)<Bx = n T(r) xBx, by
r*0

(4).

1.3. Results of V a se rste in . L e t A  b e  a  r in g  w ith  1, and En (A )  b e  the
elementary subgroup of GL n  (A )  : = M  (A ) X. B y th e  usual embedding x

x 0
w e consider a s  A x  = GL i (A) C GL, (A) (n_. 2) . Let É (A ) b e  the

\ 0 l n _i

group of Vaserstein, i.e. the subgroup of A X  given by the generators as

E(A ) : = <(1 ±xy) (1 - Fyx)Hx, y EA,1-1-xy EAx > .

The commutator subgroup [A", A l  is always contained in E  (A) . Further, if

A  is local, (A) = [Ax, .
If A  is semi—local, th e  well known Lemma o f B ass and  the  fundamental

results of Vaserstein ([10], Th.3.6) state

(5) GLn (A) -=A x En  (A) (n 2 )  .
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(6) A x  E n (A )=E (A) (n .

1.4.
Lem m a. Let B  be a finite dimensional K -algebra and r be an R-order of

B. Then the equality (5) of Bass (resp. (6) of Vaserstein) holds for A = I/3 or P,
(where /f3 or r is not semi-local if R is not semi-local.)

P ro o f  I n  th e  p roof o f  [10] Th.3.6 (a) ,  where semi— locality o f  A  is
assumed, it is in fact proved that

(i) If the ring A  satisfies the following condition (5'), th en  (5) holds.
(5') For any finitely generated left ideal L and x EA,

nA. *q5.

(ii) If A  satisfies (5') and moreover the following (6'), th e n  (6) holds.
(6') A x i  - FAx 2 = A  v y E A , 3 v, q, u E A  such that xi + vx2 E A —yqv E

A ', x1 +u (x 2 -i-yx i ) EA X  x i - F- u (x2 -1- -yqx 1) A x

Now, let A = (w.r.t Cp) be the  restricted d irec t product of Ap with
respect to its subring Cp, over some index p's. If each A p , C p  satisfies (5 ') and
(6') , it  is  e a sy  to  se e  th a t A  itse lf sa tisfies (5 ') a n d  (6') . T h is  applies for
BN o r  P, since Bp and Tp are semi-local.

1.5. Proof of Proposition 1 §0. A s is w ell know n (cf [3] §2 and §3), the
p rope rty  (c ')  is equivalent w ith  th e  following (c—)  B X  (1 GL n  (B) GLn (P) =
B 'P x  for
By 1.4, we have

1) GLn (B)= kr E n (B) 2) G L ( )  = E ( î )i?'< .
 En (B) is dense in En (Iq) in the idele topology of '< (cf [3]1 .2.1)

3) En  (B) G Ln (P) = (1i) G  n (P).
Using 1), 3), 2) in this order, we have :  GL„ (B) G Ln (P) = B x En (13) GLn (î1

=B x En (ii)GL n (P) = B 'EnS) En (P) PX  B x  En (13N ) r x

rr' = B xn  E n (i3) P xHence, the left hand side o f  (c— ) 43\  n/rE n  (8)
=B x E (Î3)r .  , the last equality by 1.4 again. T h is  im plies that (c— )  is equiva-
lent w ith (c").

1.6. Change of the base field. Let K  be  a finite extension field of K
contained in the center of B, and let R' be the integral closure of R in . Then
R ' i s  a D edekind dom ain w ith th e  quotient K% and B  i s  a  finite dimensional
K'-algebra. Assume the following condition

(f) R' is a finitely generated R-module.
Then there a re  canonical isomorphisms R '  R ' R I7 and K' If' OR

(Cf. [7] Th.1 and Prop. 4 C hap. It §3) , so that B 0 R 4?\ ' B  R kN  including the
topology. Hence the approxim ation p ro p e r ty  (a )  (resp. (a')) o f B  over R  is
equivalent with that of B over R', a n d  (a " )  over R implies that over R'.

(i) F o r  a  residually separable algebra B  (i.e. 138 (B) is  separab le ) the
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B x -approximation problem is reduced, by Theorem 1, to  that of a central divi-
sion algebra.

(ii) If K is  a  PF - field, the condition ( f )  alw ays holds (cf. [5] Th.72) , so
that w e get the  reduction to a central division algebra even for residually in-
separable case.

2 .  Reduction to a division algebra

Let B  be a  finite dimensional K-algebra with the Jacobson radical J= J (B ) ,
: B — *B ' : = B / J be the canonical K-morphism and F' : = 9 (F) . Then F' is

an  R-order in  B ', and ço induces th e  following surjective morphisms :
F ' , 9 : = 9 01 :BN =B 01/2- 4B' = -  and i,co = ç ® 1 T

F' 0 / Î= r-".
Since R is faithfully flat over R,
1) Ker 90 = r f (r) , KerCo ( .) ,
2) Viewing as B p i ',  B  and rnB=r 9o, o ,  (19 is the restriction of Co to

F, r, B respectively.
By 1), 1 4- J C B  so  tha t p  induces the exact sequence of groups
3) 1-41 +7 - 43x- 4/3"— >l, and tiN) - 1

( ") =8N x
Consequently, we have

By the same reasoning, we have
5) Co (E (B)) (B') .

Also we have
6) r .  (',No o  1 (k.) , which in turn implies
7) Co (LI (r, ) = U(F', r), in the notation of 1 1.

2.1.
L em m a . Let H be a subgroup of and H be its closure in

(i) c H (iN3') (H)
(ii) If  1+1ICH, then the converse im plication ( )  also holds.

(iii) +7c rilx

Proof. ( i )  and (ii) : ( (B) cfi) (1,

)1

:1 (T cHU(F, r ) for any rERVO))
4)&7) 3i4)8,7)

S') c  o (II) LI (I -  ,r ) )  for any reR \ {0)) 43) C (1 +7) HU (F. r)
( = HU (E, r)if HD1 +7) for any reRVO}).

(iii) Since any element of7 is nilpotent, (1 - 1i )  (1 (1 4- 4") =1+ qn
C F., hence by (2) 1.1, the idele topology on 1+J is induced from the adele
topology. Since J  is  dense in in  the  adele topology, 1 +J is  dense in  1 +7 in
the idele topology so that 1 4- Jc  ( 1 + J ) U ( T ,  c i f  u (r, r) for any reR\ (0).
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2.2.

Lemma. Let B= @B i b e  the ring direct sum  of  f inite dim ensional K —algebras.t=i
Then we have the following implications.

(i) ( a )  (resP. (a') ) for B<=> (a )  (resP. (a') ) for any
(ii) (a") for (a") for any  B i.

Proof. Let ri be an R-order of Bi, then F : r i i s  an  R-order of B . By
the canonical isomorphism = 0 (13 1 /i )  -= 0 :6  :13N x

U (T, =LIU (ri, r), E(B) -- =1-1-È (B i) a n d  (B) =1-1-È Si), the  claims a re  com-
pletely obvious.

2 .3 . Proof of Theorem 1  § 0 .  Put B i= (D i) , n i = 1 (1 , 2 (r<i
' m). R ecall that (a) holds for B  (r <i m )  ((3 ) of 0.1) and apply 2.1 and
2.2, then we get the following implications which obviously prove Theorem 1.

(a ) for B (a) for B' <=> (a) for D  ( 1  i
(a ')  for 13<=> (a ') for B' <=> (a ')  for D i (1 _i
(a") for B<4'(a'') for (a”) for D ( 1  i .

3. (a") (EC) for a PF - field

Let K be a  PF - field in the sense of [1], D be a central division K-algebra
of dimension n2 ,[D : K]=-- n t . Let Dy : = DOKK v b e  the completion at 7) E Let

: D- - .K  be the reduced norm and 91, : D„- - , K, be its extension.
If  D u i s  a  division algebra, D v x INvx IV' defines a  norm  of D , as a

Kr -vector space. W hile fo r any basis {e Ii _.n2 }  of D  over K , writing x =
E i e i E  Dv, x'— *M ax l0v  is  a lso  a  norm of D .  H ence there is a constant cv > 0
such that

(1) Maxi' eilv 6'9'Zvx1Vn (x
For almost all v, we have : v  is non-archimedean; (ZieilmaxiiNt , 11 is

a maximal order of D v ;  IdetTr (eief) Iv=1. Hence for almost all y such that Dv
is  a division algebra, Dr/Kr is unramified and 1 9 - i t a iV n = M a x lV v .  Thus we can
choose cv  as

(1') c v = 1 for almost all y such that D v is  a division algebra.
Let R  be a Dedekind domain with the  quotient field K, so  th a t it  h a s  the

form R= R (P) = { E for any p  P}  by some non-empty proper
subset P consisting of non-archimedeam valuations of 0. For a  fixed R, we can
obviously choose a basis '),12) satisfying

n2
(2) F E=  Re i is  an R-order of D, and ei =1.

Then r( r)  : =R - Frr is also an R-order for any r ( * 0 )  R .

3.1.
Lemma. A ssum e that D  does not satisfy  the Eichler's condition (EC) over



864 A iichi Yœrnasaki

R =R  (P), i.e. the follawing---1 (EC) is satisfied.
:  Dy  is a division algebra for any v E \ P .

(i) Let {ei}  be a basis of D satisfying (2), then there is a positive constant
c depending only on {ei) but not on r(± 0 ) ER such that

rilrip<c r(r).=-Rx.

(ii) .IÎ'D x  is closed in

P ro o f ( ) It suffices to take c ric 1  (which is well defined by (1)). In-

deed, if F (r)x  *R x , there is some x = E ,e ,E F ( r) "  with : =e i #0 for some
At pEP,

(3) elp 'rip = IldpiNxir.
Using the  product form ula, (1) at v E 0\P  a n d  (3) at p EP, the  product

formula again, in this order, we get

1= rm iv= flv X Flcv1Txlvnx illrlp191xlYn
0 0\P 0\P

=
11C v X 1P IP =

C-1 111r1p.0\P

(ii) Put R  (c) : = Ire R\ {0}19171p <c} . If rER (c ), by (i), we have (r) x

FIDx =1"(r)x =R x  . This obviously implies
(4) i e f;( , )  (D x F(r) x ) =D x ( „ r x)il l ( r ) .
Then together with (4)1.1, we have

D 'ix =  fl (D x .F(r) x ) c  n  (Dx F(r)x) ( n [ ' (r) X )  D x  c D 'Î ? "
r*0 reR(c) reR(c)

3.2. A s usual, w/  je consider D ; as the  subgroup of .6. consisting o f the  ele-
ments x =  p) D  x su c h  th a t x g = 1 for q E P\ {p}, U nder this convention, the
following is obvious.

(5) #P_2RxDx nD7, c K ;.
If #P<co, then R  is semi—local and 5 x 43 ', hence 3.1 implies
(6) 2. .1$ P< oc) (EC) .

Indeed : — ,(EC) implies ix ./ Y =  Dx so that D; CK"'D x  hence D; C D ; n
RXDXCKX, a contradiction to the assumption that D is non-commutative.

3.3.
Lem m a. Let D be a central division algebra over a PF - f ield K . Then D, is

not a division algebra for infinitely many v ED.
Proof. I f  0  con ta ins a t least one  archimedean valuation (i.e . if  K  i s  a

number field) , a s  is w ell know n, m uch stronger results a re  known. Assume
that 0  consists of non—archimedean valuations. If 1* {v E 0ID v is not a division
algebra} <co, then obviously we can choose a  subset P of D such that 2  # P
< cc  and --1(EC), a contradiction with (6)3.2.
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3 . 4 .  Proof of Theorem 2  We shall prove

--1(EC) [:6x :61 c t i xDx .
Suppose not, th e n  [/3x, 131 C/7 )<Dx by 3.1, so  th a t [N , DA  =Di; n [ x,

i3x] c D ; f l Dx CK ;  fo r  any p EP. I t  is  a contradiction, since if xty do not
commute in D , then one o f  [x,y] a n d  [x,1 - Fy] does not belong to K.

4. (E C )  (a) for a real coefficient case

W e shall derive our Theorem 3 from  our previous result [11], where it is
proved only fo r  a  special case of K  R  (X) . F o r this purpose, w e prepare a
few lemmas, which are  of quite general nature, but regretfully, effectively ap-
plicable only for a very restricted situation like in Theorem 3, so that we state
them only for PF-fields.

4 . 1 .  Let D be a central division algebra over a  PF-field K and R= R (P)
as  in  0.3. F or a  fixed po E P, a s  usual, we identify N o a s  th e  (closed normal)
subgroup of D x , consisting of elements x= (Xp) E13'  OE 11D; with xp=1 for p *
Po. Then ft (Dp)IPEP) generates a dense subgroup of --É (g) in  /D" (cf. [2]§51).
Hence a  closed subgroup H  of D . contains k-  CD) if  a n d  on ly  if  it contains

(Dp)= D ] for all pEP. By the Chinese Remainder Theorem, 'all' can be
replaced by 'almost all'. In particular we have

(1) (a) for D over R<4.[D );, Dfl CE" (D) for almost all p,
and the corresponding (1') (resp. (1") ) fo r (a ')  (resp.(a")).

L e t K ' b e  a  fin ite  ex tension  fie ld  o f K , a n d  le t  P ' b e  th e  s e t  o f  all
(non-equivalent) valuations of K' lying over P, P' =- {pip' Dp,p E  .  The integ-
ral closure R' of R in K' is given by R' = {0} U fxEK'xilxx  f o r  any p' ./2/1.

Put D ' :  = D  K K'. By 1.6, 13' : = D ' rii R R  D RkN  - 13 as topo-
logical rings, and

(2) .6 '" D ',ÎY 'D  H  Tyk =D-; DD; as topological groups.
P'nP

In the following ( )  denotes the closure in 13 ".
Let consider the following condition ( * ) .
( * )  For almost all p E P, p' Dp [D' [N, D ]] = D';,] .

Lemma. A ssume that the condition ( * )  holds. Then
(a") for D over R (a) for D' over R'.

Proof. B y  th e  C hinese Rem ainder Theorem , D'" i s  d e n s e  i n  11 D'P.
YDP

Hence, by (2 ), [ D P ,  [N , D ]] C  [D' x  , [0; , Ifp] J, so  th a t the assum ption ( * )
implies

(3) [D'k, [D", [D; , W I ) ] ]  for almost all p EP.
On the other hand we have
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(a " )  fo r D  over R <=> c R x Dx  f o r  alm ost all p  e [D'0, [D;,(1, , )

D ;]]  c  [D' 0 , 17xD0 ] C [D' x  , D x ] c  [D' 0 , D' 0 ] =E (D').

Hence by (3), we have [D' (D ') for almost all p , which is equivalent
w ith  ((a )  for D' over R ') b y  (1).

4 .2 .  Now assume th a t the constant field  Ko = R , i.e. K  i s  a n  algebraic
function field of one variable over the reals.

soRecall from [11] that Br (K) (K (F 1 (K2±K2) n K x ,

that any central division algebra D  over K  is  a quaternion algebra of the form
D={ - 1 f}  with fE l i x . D is  trivial if and only i f  f  E K 2+ K 2.

W e call a  valuation v ED re a l (resp. imaginary) if the residue field is iso-
morphic to R (resp. C). K ( V — i )  i s  an algebraic function field of one variable
over C, so  the corresponding D' is identified with the Riemann surface  9 ,  and
K ( 1/- 1 )  with the field of a ll meromorphic functions on R. S ince a  real valua-
tion v of K  does not decompose on K  — 1 ) ,  the set RP (K )  of all real valua-
tions can be embedded in  9 i a s  a  finite disjoint union of closed curves. Then
we have

K=  {(pEK(,/ - 1)ko (z)E R  for zE R P (K )).

Furthermore, as shown in  [11],

K 2 - i- K 2 = K V ( Z )  0 for zE R P (K )),

so{ - 1, f )  is trivial for such f .
Let P  be a non-empty proper subset of D.

Lem m a. If  D satisf ies (EC) over R (P), then D can be written as D=D o 0
R (g ) K, where gE R (P) \

\R  and Do is  a central division R (g) -algebra satisfy ing (a)
over R[g] .

Proof. (E C ) fo r D  m eans that Doo i s  tr iv ia l fo r  some vo E  Ø \P. From
Riemann-Roch Theorem, for any f  E lf ' w e  can  find  h E R " such  tha t g  :
has the unique pole at vo. Therefore D can be written as D= g ) ,  where g
ER  (P )  and has the unique pole a t vo .

Since Dpo i s  trivial, we have either (i) v o is im aginary o r (ii) vo is  re a l and
g  is positive around vo. In any case, g  is bounded from below on RP (K) , since
g  has no pole other than vo. So, g+  c e l i 2 -  K 2 fo r  some c G R , hence D= ( - 1,
g) =  —  1, g ( g  c ) }  =  Do 0  R cgoK  where D o = ( - 1, g (g + c ))  over R ( g )  which
satisfies (EC ) over R [ g ]  since X (X  + c) is  monic and quadratic. From our
previous result [11], Do satisfies (a) over R [g]

4.3.
Lem m a. If  K  is  an algebraic function f ield of one variable aver R, then the

condition ( * )  in  4.1  is satisf ied for any D.

Proof. Note that Dp is unramified for almost all pEP. If D p  is trivial, then
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D; =G L  (2, K )  a n d  [N ,  D f l  S L  (2, K )  .  In  th is  c a se  [D'; , ,  [D;, =
[GL (2, K 'y), SL (2, K b )] i s  a normal subgroup of SL (2, ;Cy) not contained in
its center, so it must coincide with SL (2, K'p , ).

If Dp is  an  unramified quaternion algebra, then p is  rea l so  th a t — 1  lq
and 4+ K?, = 4 .  Thus the reduced norm 91/0 D -'- K 5  m aps D; onto K; 2  with
the kernel [N , . T his implies D;=1‘; ,̀ [D; , D ] ,  s o  th a t  [D r, [D;;, D;]] =
[D; , D  [D;, D ] ,  hence  the  left hand side is a norm al subgroup o f  [D'i ,
D ]  containing i E  {D , D ;] , and as such it coincides w ith [I ); , D y ] .  (P roof
for D' 1, 1 )  is  a s  follows :  Let N be a norm al subgroup o f  [D'p ,
containing i ,  then  (x ED'prix 2 1  =  0 )  e N  since such x is conjugate with i  by
Skolem-Noether Theorem. So fo r  any a E  Kp , s u c h  th a t  1-a 2 E la  w e  have
—ai±bj EN (with a2 + b2 =1) , hence y  : i ( — ai-Fbj) = a H-bij EN which satisfies
y2 — 2ay ± 1 2= O. Thus, again from  Skolem-Noether Theorem, every y E  [ D y,
D 1  belongs to N).

4 . 4 .  Proof o f Theorem 3  § 0 .  Assum e th a t D  sa tisfies  (E C ) over
R (P) . Applying Lemmas 4.1  a n d  4 .3  to  the  resu lt o f  Lemma 4 .2  (regarding
R (g ) as K and K as K') , we see that D satisfies (a )  over R[g] if, the  integral
closure of R [g] in K. Since g G R (P) , we have R (P) D R  [g] K  so  th a t (a )  over
R  K  implies (a) over R (P) .
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