On H-spaces and exceptional Lie groups

By

Akihiro OHSITA

O.Introduction

An H -space is a space which admits a continuous product with unit. F Borel [1] showed its fundamental group is restricted by the rational cohomology algebra under a certain associativity condition. In particular, if an *H*-space *X* satisfies $H^*(X; \, \mathbf{Q}) \cong H^*(G; \, \mathbf{Q})$ as an algebra where G is an exceptional Lie group, then $\pi_1(X)$ is a subgroup of the group in the following table.

As for the mod 2 cohomology, J.Lin showed

Theorem 1 ([4]) Let *X* be a 1-connected H-space such that $H_*(X)$; \bm{F}_2) is finite and associative. If $H^*(X; \, \bm{Q}) \cong H^*(G; \, \bm{Q})$ as an algebra for an exceptional Lie group G, then $H^*(X; \mathbf{F}_2) \cong H^*(G; \mathbf{F}_2)$ as an algebra over the mod 2 *Steenrod algebra.*

By adding Serre spectral sequence arguments we can refine these. The purpose of this paper is to prove the following theorem.

Theorem 2 *Let X be a connected homotopy associative H- space such that* $H_*(X; \mathbf{F}_2)$ is finite. Assume that $H^*(X; \mathbf{Q}) \cong H^*(G; \mathbf{Q})$ as an algebra, where G *is* an exceptional Lie group. Then $\pi_1(X)$ and H^* $(X; F_2)$ are as follows.

$G = G_2, F_4, E_8$	$\begin{cases} \pi_1(X) = 0, \\ H^*(X : \mathbf{F}_2) \cong H^*(G : \mathbf{F}_2). \end{cases}$
$G = E_6$	$\begin{cases} \pi_1(X) \subseteq \mathbb{Z}/3 \times \mathbb{Z}/5, \\ \mathrm{H}^*(X; \mathbf{F}_2) \cong \mathrm{H}^*(E_6; \mathbf{F}_2) \end{cases}$
$G = E_7$	$\{\pi_1(X) = 0,$ $\{ H^*(X; \mathbf{F}_2) \cong H^*(E_7; \mathbf{F}_2) \}$
	$\begin{cases} \pi_1(X) = \mathbf{Z}/2, \\ \mathrm{H}^*(X; \mathbf{F}_2) \cong \mathrm{H}^*(\mathrm{Ad}(E_7); \mathbf{F}_2) \end{cases}$

Communicated by prof. A. Kono, October 17,1995

The four isomorphisms between the cohomologies preserve the Hopf algebra structure over the mod 2 Steenrod algebra.

For our sake we recall here the projecitve plane and the associated exact sequence :

$$
\rightarrow \widetilde{H}^{i}(X) \rightarrow [\widetilde{H}^{*}(X) \otimes \widetilde{H}^{*}(X)]^{i} \stackrel{\lambda}{\rightarrow} \widetilde{H}^{i+2} (P_{2}X) \stackrel{\iota}{\rightarrow} \widetilde{H}^{i+1}(X) \rightarrow
$$

In the sequence P_2X is the projective plane of X and $\bar{\Psi}$ is the reduced coproduct. Our plan to prove Theorem 2 is as follows. §1 is devoted to the proof for the case $G = G_2$ and explains our method. §2 and §3 deal with the cases $G = F_4$ and E_i ($i=6, 7, 8$), respectively. In these sections we shall make use of the above exact sequence to compute $\pi_1(X)$ as is stated in Theorem 2. Note that in most cases Theorem 1 will be applicable.

Throughout this paper a space is assumed to have the homotopy type of a *CW* complex *localized at 2.* The symbol *X* is reserved for the space in Theorem 2. Let H^* denote H^* (; \boldsymbol{F}_2), or on apparent occasions $H^*(X; \boldsymbol{F}_2)$. Last let \widetilde{X} \rightarrow *X* be the universal covering.

Especially for the reason of rather heavy tasks in my previous office I needed to recover. I am very grateful to Professor A kira Kono. Throughout preparation of this paper he advised and encouraged me kindly. Also I would like to thank Dr. Kouichi Inoue, a kind friend who helped me to study.

1. Case $G = G_2$

This easiest case illustrates our method. At first we notice a lemma about the associativity of a covering space.

Lemma 3 Let $p : E \rightarrow B$ be a covering where B is a connected homotopy *associative H- space and E is connected. Then E is also a hamotopy associative H- space and p is* an *H- map.*

Proof. An easy application of the lift theorem, Since *E* is homeomorphic to \widetilde{B}/M , where \widetilde{B} is the universal covering space and M is a subgroup is a subgroup of $\pi_1(B)$, it is easy to see *E* is an *H*-space and *p* is an *H*-map. Thus for a CW-complex *K*, $[K, \pi_1 (B) / M] \rightarrow [K, E] \rightarrow [K, B]$ is an exact sequence of algebraic loops. Note that the first and the last terms are groups. Each element *x* lying in $[K, E]$ has a unique right inverse $-x([10])$. Let μ denote the multiplication map of *E*. Because $\pi_1(B)/M$ is discrete, it is immediate to see $\mu(\mu \times$ $1) - (\mu (1 \times \mu))$ is trivial.

Q.E.D.

Suppose $H^* (X; Q) \cong H^* (G_2; Q)$ as an algebra. If $\pi_1 (X) \neq 0$, we can assume $\pi_1(X) = \mathbb{Z}/2$ by replacing X with an appropriate covering space if *H- spaces* 655

necessary. Lemma 3 ensures *X* is still homotopy associative after such an exchange. We will show the assumption $\pi_1(X) = Z/2$ leads to a contradiction.

By the hypothesis we have a fibration $X \rightarrow X \rightarrow \mathbb{R}P^{\infty}$, where X is homotopy associative by Lemma 3. Because \widetilde{X} and X are rationally homotopy equivalent, \widetilde{X} fulfils the condition of Theorem 1 and its mod 2 cohomology is isomorphic to that of G_2 ;

$$
H^*(\widetilde{X}) = \frac{\mathbf{F}_2[x_3]}{(x_3^4)} \otimes \Lambda(x_5),
$$

where deg $x_i = i$, and $Sq^2x_3 = x_5$. Set $H^*RP^{\infty} = F_2 \lfloor t \rfloor$, where deg $t = 1$. Since *X* is mod 2 finite, all elements lying in $\mathrm{H}^*(X)$ are of finite height. Thus because of the theorem of Hopf-Borel, the Serre spectral sequence deduces that

$$
H^*(X) = \frac{\boldsymbol{F}_2 \left[t \right]}{(t^4)} \otimes \Lambda(x_5, \overline{x_6}),
$$

where *t* and x_5 are obvious elements and $\overline{x}_6 = Sq^1x_5$. H^{*} (X) is primitively generated. In particular there exists a_7 lying in H'(P₂X) such that ι (a_7) $=\overline{x}_6$. We now have $a_7^2 = Sq^7a_7 = Sq^3Sq^4a_7$, and $c(Sq^4a_7) = 0$. Hence Sq^4a_7 has an inverse image $\sum a' \otimes a''$ by λ . $Sq^3(\sum a' \otimes a'')$ has $\overline{x_6} \otimes \overline{x_6}$ as a summand, which is inconsistent with the Steenrod action on QH^* . Therefore X is 1-connected. We find that $H^*(X)$ is isomorphic to $H^*(G_2)$ as an algebra over the Steenrod algebra by Theorem 1. The Hopf algebra structure is described in [8].

2. Case $G = F_4$

Assume $\pi_1(X) = \mathbf{Z}/2$ (, which is equivalent to the assumption $\pi_1(X) \neq 0$). In the present case

$$
H^*(\widetilde{X}) = \frac{\bm{F}_2[x_3]}{(x_3^4)} \otimes \Lambda(x_5, x_{15}, x_{23}).
$$

From the Serre spectral sequence for $\widetilde{X} \rightarrow X \rightarrow \mathbb{R}P^{\infty}$ we have two cases about H^{*} *(X) :*

(1)
$$
H^* (X) = \frac{\mathbf{F}_2 [t]}{(t^4)} \otimes A (x_5, \overline{x}_6, x_{15}, x_{23}),
$$
 or
(2) $H^* (X) = \frac{\mathbf{F}_2 [t]}{(t^{16})} \otimes \frac{\mathbf{F}_2 [x_3]}{(x_3^4)} \otimes A (x_5, x_{23}).$

We find the former case is impossible in a similar way as in $\S1$. Suppose the latter case. To show x_3 is primitive, we need the following useful lemma.

Lemma 4 ([6] *Lemma 1. 11 in §1, Chap.* 7, [2]) *Suppose that a connected Hopf algebra A over a field k* satisfies $A = \Delta(y_1, y_2, \dots, y_n)$ *in dimensions*

less than N, *where* y_i 's are *primitive* and Δ *denotes the simple system of generators. Then* $\overline{A} \cdot \overline{A} + \overline{\Psi}^{-1} (PA \otimes PA) = A$ *in dimension N, where PA denotes the submodule* of the *primitive* elements and \overline{A} the augmentation ideal. In particular we can *choose indecomposable elements of degree N from* $\overline{\Psi}^{-1}$ (PA \otimes PA).

If x_3 is not primitive we can assume $\Psi'(x_3) = t \otimes t^2$ Thus we get $\Psi'(Sq^1 x_3) = t^2$ t^2 . As is easily seen, this cannot happen. Therefore x_3 is primitive. Again by Lemma 4, x_{23} is also primitive. Let a_{24} be an inverse image of x_{23} by ζ . Note that $Sq^{24} = Sq^{8}Sq^{16} + Sq^{23}Sq^{1} + Sq^{22}Sq^{2} + Sq^{20}Sq^{4}$. Since $PH^{39} = PH^{24} = PH^{25} = PH^{27} = H^{26}$ 0, there are *a*, *b*, *c*, *d* lying in $H^* \otimes H^*$ such that $a_{24}^2 = Sq^8 \lambda$ (*a*) $+ Sq^{23} \lambda$ (*b*) $Sq^{22}\lambda(c) + Sq^{20}\lambda(d)$. Therefore $Sq^{8}a + Sq^{23}b + Sq^{22}c + Sq^{20}d = x_{23} \otimes x_{23}$ mod Since $x_{23} \otimes x_{23}$ does not lie in Im $\overline{\Psi}$, by passing to QH* \otimes QH*, one sees this relation is impossible. Therefore X is 1-connected. The remaining part is verified as in §1.

3. Case $G = E_i$ $(i = 6, 7, 8)$

We will first show $\pi_1(X) = 0$ in the case $G = E_6$. Suppose $\pi_1(X) = \mathbb{Z}/2$. There is a fibration $X \rightarrow X \rightarrow RP^\infty$, and hence we have two cases:

(1)
$$
H^*(X) = \frac{\mathbf{F}_2[t]}{(t^4)} \otimes \Lambda(x_5, \overline{x}_6, x_9, x_{15}, x_{17}, x_{23})
$$
 or
\n(2) $H^*(X) = \frac{\mathbf{F}_2[t]}{(t^{16})} \otimes \frac{\mathbf{F}_2[x_3]}{(x_3^4)} \otimes \Lambda(x_5, x_9, x_{17}, x_{23})$

As for case (1), by the same reasoning about \bar{x}_6 as in §1 one deduces such a cohomology is impossible. When $G \equiv E_7$ or E_8 , x_5^2 obstructs this argument. In case (2), x_3 is primitive as in case (2) of §2, and also is $x_{17} (= Sq^8Sq^4Sq^2x_3)$. The next lemma shows the present case is impossible.

Lemma 5 *Assume* $PH^{33} = PH^{34} = QH^{16} = 0$. If dimPH¹⁷ = 1 *and* $PH^{17} \rightarrow$ QH^{17} *is isomorphic, then* $QH^{15} \neq 0$

Proof. Suppose QH¹⁵ = 0. Let x_{17} be the primitive generator of degree 17, then there exists a_{18} lying in $H^{18} (P_2 X)$ which is mapped to x_{17} . Since $Sq^{18} =$ $Sq^1Sq^1Gq^1 + Sq^2Sq^1G$ and $PH^{33} = PH^{34} = 0$, $a_{18}^2 = Sq^{18}a_{18} = Sq^1\lambda(a) + Sq^2\lambda(b)$ for some *a* and *b*. Then $Sq^1a + Sq^2b = x_{17} \otimes x_{17}$ mod Im \varPsi . However this is impossible because $\mathrm{QH^{15}}$ $\!=$ $\mathrm{QH^{16}}$ $\!=$ $\mathrm{0}$

Q. E. D.

Second, we will show $\pi_1(X) = 0$ or $\mathbb{Z}/2$ for $G = E_7$. For this purpose we shall prove two facts: (a) $\pi_1(X) \neq \mathbf{Z}/2 \times \mathbf{Z}/2$, and (b) $\pi_1(X) \neq \mathbf{Z}/4$. In a similar

H-spaces 657

way as in the beginning of §1, fact (a) ensures $\pi_1(X)$ contains at most one factor and then fact (b) implies the required result. We now suppose $\pi_1(X)$ $\mathbf{Z}/2 \times \mathbf{Z}/2$. We have from the Serre spectral sequence for $\widetilde{X} \rightarrow X \rightarrow \mathbf{R}P^{\infty} \times \mathbf{R}P^{\infty}$

$$
H^*(X) = \frac{\mathbf{F}_2[t_1, t_2]}{(t_1^4, t_2^{16})} \otimes \frac{\mathbf{F}_2[x_5, x_9]}{(x_5^4, x_9^4)} \otimes \Lambda(\overline{x}_6, x_{17}, x_{23}, x_{27}),
$$

where deg $t_1 = \deg t_2 = 1$ and other generators are obvious elements. From Lemma 4 we can set $\Psi(x_5) = \alpha t_1 \otimes t_2^4 + \beta t_2 \otimes t_2^4$ (α , $\beta \in \mathbf{F}_2$). Then $x_{17} = Sq^8Sq^4x_5$ is primitive and Lemma 5 is valid in this case. Therefore the cohomology above is not possible and fact (a) follows.

Next we will prove $\pi_1(X) \neq \mathbb{Z}/4$. If $\pi_1(X) = \mathbb{Z}/4$, the spectral sequence deduces

$$
H^*(X) = \Lambda(t_1, u_2) \otimes \frac{\mathbf{F}_2[x_5, x_9]}{(x_5^4, x_9^4)} \otimes \Lambda(\overline{x_6}, x_{15}, x_{17}, x_{23}, x_{27})
$$

where the suffices refer to the degrees. (Note that x_3 is not a permanent cycle by Lemma 5.) u_2 has an inverse image a_3 in $H^3(P_2X)$. There exists a' lying in $(A^* \otimes H^*)^3$ such that $\lambda(a') = Sq^2a_3$. Since $\lambda(Sq^1a') = a_3^2$ we have $Sq^1(a') = t_2 \otimes t_2$ mod Im λ . This relation is a contradiction since $Sq^1 t_1 \equiv t_1^2 \equiv 0$. We conclude that $\pi_1(X)=0$ or $\mathbf{Z}/2$.

Last, we will show $\pi_1(X) \neq Z/2$ when $G = E_8$. If it is not the case, we have

$$
H^*(X) = \frac{\boldsymbol{F}_2 \left[\boldsymbol{t} \ \right]}{(t^4)} \otimes \frac{\boldsymbol{F}_2 \left[x_5, \overline{x_6}, x_9, x_{15} \right]}{(x_5^8, \overline{x_6}^8, x_9^4, x_{16}^4)} \otimes \Lambda(x_{17}, x_{23}, x_{27}, x_{29}).
$$

(In the spectral sequence x_{15} does not vanish by Lemma 5.) Since $H^*(X)$ is primitively generated in dimensions less than 15, Lemma 4 deduces

$$
\overline{\Psi}(x_{15}) = \alpha x_5 \otimes x_5^2 + \beta x_9 \otimes \overline{x}_6 \qquad (1)
$$

We will show such a coproduct cannot occur. The next lemma states the corresponding coproduct in $H^*(X)$. Here we set

$$
H^*(\widetilde{X}) = \frac{\boldsymbol{F}_2[y_3, y_5, y_9, y_{15}]}{(y_3^{16}, y_5^8, y_9^4, y_{15}^4)} \otimes \Lambda(y_{17}, y_{23}, y_{27}, y_{29}).
$$

We may suppose each x_i is mapped to y_i except for $i=3$.

Lemma 6
$$
\Psi(y_{15}) = y_5 \otimes y_5^2 + y_9 \otimes y_3^2 + y_3 \otimes y_3^4
$$

Proof. We only sketch the proof. Since the cohomology is primitively generated in dimensions less than 15, we can set $\bar{\Psi}(y_{15}) = \alpha y_5 \otimes y_5{}^2 + \beta y_9 \otimes y_3{}^2$ $\gamma_{y_3} \otimes_{y_3} (\alpha, \beta, \gamma \in \mathbf{F}_2)$. Note that $Sq^2 y_{15}$ and $Sq^2 y_{15}$ lie in the Hopf subalgebra *A* generated by primitive elements y_3 , y_5 , y_9 and y_{17} . Thus $Sq^1 \varPsi (y_{15}) = \alpha {y_3}^2$ $y_{5}{}^{2}+\beta y_{5}{}^{2}\otimes y_{3}{}^{2}\!\in$ Im $\varPsi|\bar{\texttt{A}}.$ It is then easy to see that $\alpha\!=\!\beta$. In a similar way we

deduce $Sq^2 \Psi(y_{15}) = \alpha y_5 \otimes y_3^4 + \gamma y_5 \otimes y_3^4$ and $\alpha = \gamma$. Thus $\alpha = \beta = \gamma$. We now quote the following theorem.

Theorem 7 $([7])$ *Let Z be a 1-connected mod* 2 *finite H*-*space satisfying the following conditions, where* $n \geq 3$.

(a)
$$
H^*(Z) = \mathbf{F}_2[x]/(x^4) \otimes R
$$
 as an algebra, and $x \in PH^{2n-1}$.

(b) $QR^{2^{n-1}} = 0$, dim $QH^{2^{n+1}-3} = \dim QH^{2^{n+1}+1}$.

*Then H * (Z) is not primitively generated.*

Assume α =0. Because $Sq^1Sq^2Sq^4Sq^8y_{15} = y_{15}^2 \neq 0$, we have primitive generators $Sq^{o}y_{15}$, $Sq^{a}Sq^{a}y_{15}$, and $Sq^{z}Sq^{a}Sq^{s}y_{15}$. This is inconsistent with Theorem 7, which completes the proof.

Q. E. D.

It is clear that the coproduct (1) cannot be mapped to the coproduct of y_{15} . Thus $\pi_1(X) \neq Z/2$ and *X* is simply connected.

Summing up all, we conclude that $\pi_1(X) = 0$ when $G = E_i(i=6, 8)$ and that $\pi_1(X) = \mathbb{Z}/2$ or 0 when $G = E_7$. Except the case for E_7 , $H^*(X)$ is isomorphic to $H^*(G)$ as a Hopf algebra over the Steenrod algebra. For more detailed arguments about the Hopf algebra structure we refer to [8].

> GENERAL EDUCATION AKASHI COLLEGE OF TECHNOLOGY

References

- [1] F. Borel, Sur les groupes fondamentaux des H-espaces, Comm. Math. Helv., 53 (1978), 73-91.
- [2] K. Ishitoya, A. Kono and H. Ioda, Hopf Algebra Structures of Mod 2 Cohomology of Simple Lie Groups, Publ. RIMS Kyoto Univ., 12 (1976), 141-167.
- [3] R. Kane, The Homology of Hopf Spaces. North-Holland Math. Library #40, 1988.
- [4] J. Lin, The Mod 2 Cohomology of the Exceptional Groups, Topology and its Appl., 25 (1987). 137-142.
- [5] J. Milnor, and J. C. Moore, On the Structure of Hopf Algebras. Ann. Math.,81 (1965), 211-264.
- [6] M. Mimura, and H. Toda, Topology of Lie Groups, 1 and 2, AMS Translations of Math. Monographs #91,1991.
- [7] A. Ohsita, On the non-cocommutativity of the mod 2 cohomology ring of certain finite H-spaces, J. Math. Kyoto Univ., 29 (1989), 459-462.
- [8] A. Ohsita, Master's thesis (1987).
- [9] E. Thomas, Exceptional Lie Groups and Steenrod Squares, Michigan Math.J., 11 (1964), 151-156.
- [10] A. Zabrodsky, Hopf Spaces, North-Holland Math. Studies #22, 1976.