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On H-spaces and exceptional Lie groups

By

Akihiro OHSITA

O. Introduction

A n H- space i s  a  space w hich adm its a  continuous product w ith unit. F.
Borel [1 ] showed its fundamental group is restricted by the  rational cohomol-
ogy  a lg e b ra  u n d e r  a  c e r t a in  associativ ity  c o n d itio n . In  p a r tic u la r , if  a n
H- space X  satisfies H*  (X ; Q) '=" H* (G: Q) as an  algebra where G is an  excep-
tional Lie group, then zi (X )  is a  subgroup of the group in the following table.

G = G2 7rj (X ) C Z 1 2

F4 Z/8 x Z/8
E6 Z/8 x Z/8 x Z/3 x Z/5
E7 Z/8 x Z/8
ES Z /8  x Z/8

As for the mod 2 cohomology, J.Lin showed

Theorem 1 ( [4] ) Let X  be a  1 - connected H - space such that H* (X ;
F 2 )  is f inite and associative. If  H* (X  ; Q) ---=---- H*  (G ; Q) as an algebra for an ex-
ceptional Lie group G, then H* ;  F 2 )  H* (G ; F2) as an algebra over the mod 2
Steenrod algebra.

B y adding S e rre  spectral sequence argum ents w e can  re fine  these . The
purpose of this paper is to prove the following theorem.

Theorem 2 Let X  be a connected homotopy associative H - space such that
H* (X  ; F2) is f inite. A ssume that H* (X ; Q):7= H*  (G ; Q) as an algebra, where G
is an exceptional Lie group. Then E1(X ) and H*  (X  ; F2) are  as follows.

r i  (X ) = 0,
1 H * (X  ; F2) —LI' H*  (G ; F2)

G = E6j  i t i  (X ) C Z/3 x Z/5,
1 H *  (X  ; F2) H* (E6 ; F2)

r i (X )  = 0,
1 H *  (X  ; F2) 7=1" H* (E7 ; F 2 ) o r

(X ) = Z/2,
t H*  (X  ; F2) "=- H*  (A d (E7) ; F2)
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The four isomorphisms between the cohomologies preserve the Hopf algebra structure
over the mod 2 Steenrod algebra.

For our sake w e recall here the projecitve plane and the associated exact
sequence

A
—  (x) (x) ® (x) ' (pa)( x )

In  the sequence P2X is  the projective plane of X and qf is  the  reduced copro-
duct. Our plan to prove Theorem 2 is as follows. §1  is devoted to the proof for
the case G= G2 and explains our method. §2 and §3 deal with the cases G =F4
and E, (i=  6, 7, 8) , respectively. In  these sections w e shall m ake use of the
above exact sequence to compute r i  (X ) as is stated in Theorem 2. Note that in
most cases Theorem 1 will be applicable.

Throughout this paper a  space is assumed to have the homotopy type of a
CW complex localized at 2. The symbol X is reserved for the space in Theorem
2. Let H* denote 1-1* ( ; F 2 ), or on apparent occasions H * (X ; F 2 ) . Last let Tc
— •X be the universal covering.

Especially for th e  reason o f  ra ther heavy  tasks in  m y previous office I
needed to recover. I am  very  gra tefu l to  P rofessor A kira  Kono. Throughout
preparation of this paper he advised and encouraged me kindly. Also I would
like to thank Dr. Kouichi Inoue, a  kind friend who helped me to study.

1. Case G =  G2

This easiest case illustrates our method. A t first w e notice a lemma about
the associativity of a covering space.

L em m a 3 Let p  :  E  1 3  be a covering where B is  a connected homotopy
associative H- space and E  is connected. T hen E  is  also  a  hamotopy associative
H- space and p  is an H- map.

Proof. A n easy application of the lift theorem, Since E  is  homeomorphic
to ii/M, where h-  is the universal covering space and M is  a  subgroup is a  sub-
group of r i (B), it is easy to see E is  an H- space and p  is  an H- map. Thus for
a  CW- complex K , [K , ir 1 (B) [ K ,  E ]  [ K ,  B ]  is  an exact sequence of
algebraic loops. Note that the first and the last term s are groups. Each element
x lying in  [K, E] has a unique right inverse — x ([10]). Let p denote the mul-
tiplication map of E. Because r i  (B)/M is discrete, it is immediate to see g(ti x
1) — (p (1 x p) ) is trivial.

Q.E.D.

Suppose H* (X ; Q) H* (G2 ; Q ) a s  a n  algebra. I f  7 1  (X ) *  0, we can
assum e 71- 1 (X ) =  Z / 2  b y  rep lac in g  X  w ith  a n  ap p rop ria te  co ve rin g  space  if
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necessary. Lemma 3 ensures X  is  s till homotopy associative after such an ex-
change. We will show the assumption 2r1 (X) = Z / 2  leads to a contradiction.

By the hypothesis we have a librationw h e r e  ii-er is  homotopy
associative by Lemma 3. Because :Y and X  are  rationally homotopy equivalent,

fulfils the condition of Theorem 1 and its m od 2 cohomology is isomorphic
to that of G2

H * ( )  _  F2 [X31 0  A(x 5 ) ,

(x3
4)

where deg x ,= i ,  and Sq2 x 3=x 6 . Set H*R1)- :=F2 [t ],  where deg t = 1. Since X
is mod 2 finite, all elements lying in  FI*  (X ) are  of finite height. Thus because
of the theorem of Hopf-Borel, the Serre spectral sequence deduces that

H* (X) = F 2 [ t] A (x5,..T6) ,(0)

w here t  and 1 5 a r e  obvious elem ents and  .F 6  =  Sq 1x 6 .  H* (X )  is primitively
generated. In  particular there exists a7 ly ing  in  H7 (P2X) such that c (a7) =F6.
W e now  have a,' = Sea, = S eS q 4 a7 ,  and c  (S ea 7 )  = O. Hence Sq4 a 7 h a s  a n  in-
verse image Ea' O a" by  2. Sq3 (Ea' Oa") has Y6 0 1 -.6 a s  a  summand, which is
inconsistent with the Steenrod action on QH*. Therefore X is 1-connected. We
fin d  th a t H* (X ) is  isom orph ic  to  H* (G2) a s  a n  a lgebra  over the Steenrod
algebra by Theorem 1. The Hopf algebra structure is described in  [8].

2. Case G = F4

Assume ri (X) =Z/2 (, which is equivalent to the  assumption r1 (X) O ) .
In the present case

H* (Y) = F 2 [ x d A(—  ‘ ./5, /15, X23) •
(13 4 )

From the Serre spectral sequence for Y - 'X - .R P -  w e  have two cases about H *

(X ) :

F 2  [ t  ( 1 ) H* (X )  - .,0* 
A  (1 5, x 6 , /15, 1 23) , or

(t4 )

F 2  [ t ] F 2  4 3 ] ((2) H* (x )  = ® A  ./.5, 123).(06) (134)

W e find the form er case is im possible in  a  sim ilar w ay a s  in  §1. Suppose the
latter case. To show 1 3 i s  primitive, we need the following useful lemma.

Lemma 4 ( [6] Lemma 1. 11 in  §1, Chap. 7, [2] ) Suppose that a  con-
nected Hopf algebra A  over a f ield k  satisfies A= Li (111, Y2, • • . ,  y n )  in  dimensions
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less than N, where yi's are primitive and d denotes the simple system of generators.
Then A • X +  ( P A  OPA ) = A  in dimension N, where PA  denotes the submod-
ule of the primitive elements and X  the augmentation ideal. In particular we can
choose indecomposable elements of degree N from (PA  OPA).

If .x.3 is not primitive we can assume Tf-  (r3) =1- 01-2 T h u s  w e  g e t 1'(Sq lx3) = t2

t2 . A s is easily seen, this cannot happen. Therefore 13 is  primitive. Again by
Lemma 4, x23 is  a lso  primitive. Let a2.1 be  an inverse image of  1 23 b y  c. Note

t h a t  S q 2 4 .=  
s e s q l6 s q 23sq  1 +  s q 22sq 2 se° ,

q .3
4

Since PH39= pH24=pH25,pH27,

0, there are a, b, c, d lying in  H *0  H* such that a242 = S e  (a) (b)
s c i 22/1 (c.) ±sti202 (d) . Therefore Sea+ Sq2ab+sque+ a, moda  —  23 2 3  m u

Since x23  X23 does not lie in Im?, by passing to QH*OQH*, one sees this re-
la tion is impossible. Therefore X  is 1 - connected. T he remaining p a rt is veri-
fied as in  §1.

3. Case G = E, (1 -= 6, 7, 8)

W e w ill first show  r i  (X) 0  in  the  case G -= E6. Suppose ir I (X ) = Z/2.
There is a  fibration Y .-+X—.R P - , and hence we have two cases:

F2 [t] e 2 , ((1) H * (X )  = xs, X15, 117, 123) Or
(t 4 )

F2 [t] F2 [X3]  ,fon. A ((2) H *  (X ) = k X 5 ,  1 9 ,  1 . 17, 1 23)(116) (X34)

As for case (1), by the  same reasoning about i 6  a s  in  §1 one deduces such a
cohomology is  impossible. W hen G = E7 or E g, x5 2 obstruc ts  th is  argument. In

case (2), x 3 is  primitive as in case (2) of § ,  and also is x17 (=S eS eS tex 3) . The
next lemma shows the present case is impossible.

Lemma 5 Assume PI132 p=  H 34 = Q H ).6 = O. If  dimP1417 = 1 and PI117 — .

QI117 is isomorphic, then Q1-11 5 *0.

Proof. Suppose Q1115 = 0 . Let x 17 b e  the primitive generator of degree 17,

then there exists a18 ly in g  in  H18 (P 2X ) w hich is m apped to x17. Since S e  =
s q  ls q  16sq  1 ±  s e s q l6  a n d  p H 33 = H i m =  0 ,  a l 8 2=  s e a m =  s co  (a ) ± s q 2c1 f•0 )  for

some a and b. Then Sq l a+S q 2 b=x1 7 Oxi, mod 1m ?!7. However this is impossible

because QH15,QH16,_-0

Q. E. D.

Second, w e w ill show  z i (X ) = 0 or Z/2 for G = E7. F or this purpose we
shall prove two facts: (a) r i (X) *Z/2 x Z/2, a n d  (b) 7z- 1 (X) *Z/4. In a similar



H- spaces 657

w ay a s  in  th e  beginning o f §1, fa c t  (a )  ensures r i  (X ) contains at m ost one
factor and then fact (b) implies the required result. W e now suppose t i  (X)

Z/2 X  Z/2. We have from the Serre spectral sequence for .5(- -x-.RP"' x RP -

F2[1 - 1, t2] F2 [1 5 , x 9 ]A  (H * (X ) =
(t14  , t216)

V i ) ,(x54 117, 123, 127, x 9 4)

where deg ti=deg t 2 = 1  and  other generators are obvious elements. From Lem-

ma 4 we can se t r (x 5) =crt i et 2
4 +,8/-

2 0t 2
4 (a, s  E  F 2 )  .  Then x 1 7 =S eS ex 5  is

primitive and Lemma 5 is va lid  in  th is  case. Therefore the  cohomology above
is not possible and fac t (a ) follows.

Next we will prove zi (X ) *Z/4. If 7r1 (X ) =Z /4, the spectral sequence de-
duces

x9AH* (X) =  A (ti, 14 2 )  ®  
F24.5, 

\ 
i
 ' 4

,o s

4+ 11 (.C.6, 116, 117, 123, 1 27)
(x 5 , 1 .9. )

where the suffices refer to the degrees. (Note that 13 is  n o t a permanent cycle
by Lemma 5.) u2 h a s  an inverse image a3 in  H3 (P2X ). There exists a ' lying in

(H* 0 H * ) 3 s u c h  th a t  (a') = Sea 3 . S in c e  (Sq l a') =a 3
2 w e  have Sq l  (a') =t 2 ®t2

mod Im A. This re la tion is  a contradiction since Sql ti = t1 2  = 0. We conclude
that 2r1 (X)=0 or Z/2.

Last, we will show 7r1 (X ) ±Z/2 when G = E g .  If it is not the case, we have

F2 [ t  ]F 2  [ X 6 ,  X 6 ,  X 9 ,  1 1 5 ] AH* (X ) -= 123 , 127 , 1 29) •(0.) (158,.F.68, /- 94 , x164) 
,oN zi

(In the spectral sequence 1 15 does not vanish by Lem m a 5.) Since H* (X ) is
primitively generated in dimensions less than 15, Lemma 4 deduces

0--(x15) = ax5 x 5 2 +  f3 x9 Z 6 (1)

W e will show such a  coproduct cannot occur. The next lemma states the  cor-

responding coproduct in  H* (2 ). Here we set

H* (2)F 2  [ Y 3, Y5, Y9, 1/151(

4  \ I 

A

 ky17, Y23, Y27, Y29) •16 8 4
Y5  Y 9 ,  Y 1 5  )

We may suppose each x i is mapped to y , except for i=3.

Lemma 6 ?(y15) = y 5  0  y 5 2 + y9  O  y3 2 +1,3 0  y3 4 .

Pro o f . W e o n ly  sk e tc h  th e  proof. S ince th e  cohomology is primitively

generated in dimensions less than 15, w e can set C y 15) = ay 5
y® 52 +13y 9 O y 3 2

TY3 OY34 (a, fi, rEF2). Note that Sq1y15 and Sq2y 15 lie  in  the  Hopf subalgebra
A  generated by primitive elements y3, y5, ys and y17. Thus Sa l  -C y 's )  =---ay 3

2

y s
2 + y s

2 0y 3
2 ElrnIA  It is  then  easy  to  see  tha t a= 13, In  a  similar way we
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deduce Sq2 qi. (y 1 5 ) = ay 5 y 3
4 + ry 5 y 3

4 a n d  a= T. Thus a =  = T. We now
quote the following theorem.

Theorem 7 ( [7 ])  L et Z  be a  1 - connected mod 2 f in ite  H- space satis-
fy ing the following conditions, w h ere  n  3.

(a) H*  (Z ) =  F 2[X ] / (r 4 ) R as an algebra, and x  E  PH2 n - 1

(b) = 0, dim QH2 1 - 3  =  dim

Then H* (Z ) is not primitively generated.

Assume a= O. Because Sq l Sq2 Sq4 S ey 1 5 = y1,5
2 *0 , we have primitive generators

Sey 1 5 , S eS ey i s , and Sq2 Sq4 Sq8 y 1 5 . This is inconsistent with Theorem 7, which
completes the proof.

Q. E. D.

It is  c lea r  th a t th e  coproduct (1) cannot be m apped to th e  coproduct of yis.
Thus 7r1 (X ) *Z /2  and X  is simply connected.

Summing up all, we conclude that (X ) =0 when G = E,(i= 6, 8) and that
ri (X ) =Z /2  o r 0 when G= E 7. Except the case for E7, H* (X) is isomorphic to
H*  (G ) a s  a  Hopf algebra over the Steenrod algebra. F o r  more detailed argu-
ments about the Hopf algebra structure w e refer to [8] .
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