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2. A family of 1-dimension maps

In this section, we construct a family of unimodal maps whose first bifurcation
is a period doubling bifurcation.

2.1. A piecewise linear map. Let foxx: R—R be a piecewise
linear map given by
Kzx for r€ (— 0, q)
. Ka+K (r—a) for x € [a, %)
fakx (x) = (1)

Ka+K (1—x—a) forzx€ [% 1—a]
K(1—x) for x€ (1—a, ),
where 0<a<% and O0<K'<K.

The mapf = faxx is continuous on R and C* on R—{q, 1—q, %}, which

is unimodal and convex, and satisfies f (0) =0 and f (1—x) = f (x).

Lemma 1. For any 0<a <%, there exist K>K' >0 such that

fa,K,K’(%) =1 and thatfa,K,Kr has a 2-periodic sink.

Proof. Let K and K’ be the numbers as follows.

4

1+,/1—=za _

K= 5 ' K'=1 Ka‘
2a 1_

2

It is easy to see that 0<K' <K andfa_K,K'%):l.
If we show the existence of a 2-periodic sink, the lemma is proven.
Since K (1—Ka) =% and K>%, we have 1—Ka<%a <a, and therefore,

72(a) = f (Ka) =K (1—Ka) =é>a.

Sincefz(a) >a andfz(%) =0<%, there exists a 2-periodic point p in (a, %)
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It holds that
172 ) =12(3) =72 @)/ (3=a) I <1,
since f2 is linear on (a' %) Therefore, p is a 2-periodic sink.

Remark 1. K, K’ chosen in the proof of Lemma 1 satisfy that

K*K'>1, KK’<% K>5 and Ka>1—a.
In the rest of this paper, we assume that 0<a <% and K, K’ are as in the proof

of Lemma 1.

2.2. Smoothing the piecewise linear map. In this section, we
modify the map f to f on neighborhoods of a, 1 —a so that f becomes C' on

1
R—{3).

We can choose a small positive number ¢ such that K (a—48) >1— (a—9),
K(1—K(@a—9)) <%, and p€E (a+9, %) where p is the 2-periodic sink of f

obtained in Lemma 1.
We define f as follows:

g (x) forr€[a—0-, a+0,]
flx)=y9(1—x) forx€[1—(a+d;),1—(a—0-)]
f (x) otherwise,

where ¢ (x) =cilog(x+cs) +es.  for some real numbers ci, ¢z, ¢3, and positive
numbers 0-, 0+.

Lemma 2. We can choose ¢y, 2, ¢3, 0_, 04 so that fis C* on R— {1] and
that 0_, O+ are less than O.

Proof. Let c1=K0, then
c1
(k)9
One can find suitable ¢z, cs, -, 0+ such that g (x) =cilog (x +c2) +c3 satisfies
9ga—08-)=F(—0.),9a+d:)=f(a+d),
9'(a—0-)=K g9 (a+0+) =K

‘1

(crlog 1)’ |z=s= 5 =K', (cilog x) '|x="7'f5=

=K.
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These conditions clearly imply that f(x) is C* except at x=%.
Finally, one has 0_, 0+ <6 since 0<d-+6+= (a+8d4) — (a—0-)

—5_ K
=0—"70<4.

In what follows, we fix 0-, 0+, c1, cz, 3, as above.

2.3. A family of 1-dimensional maps. A 1-parameter family
{ fi}1<ts10 is defined as

filx)=t-f(x),

where to: =K—@l—_5—)_'

Remark 2. It holds that to <J since K(a—8)>1—a>2. As
commented in Remark 1, one have KK’<%, and therefore,
bk + toK <BKK' <38 - 2<1, |
Let A, and Q(f,) be the maximal invariant set of f; in [0,1] and the

nonwandering set of f;, respectively.
Obviously, for t=ty, f;, equals to the tent map with slope toK, —t:K on

fil((—o0,1]), and hence,f,lA, is conjugate to the one-sided 2-shift.
Proposition 3. For t>1, Q(f) CA,.

Proof. Firstly, we show that Q(f,) lies in R+. Choose any <0 and let

U= <£§x %.r) Since tK>% one has r€U. For arbitrary n=>1,

i) n U=< (tKZ)nH.L, (t]zf)"l) nNu=4g.

and hence, € Q(f)).

If x>1, then f,(x) <0, and hence, f:(x) €Q(f). Since the non-
wandering set is f,-invariant, x&Q(f,) if ff(x) € [0,1] for some n.
Therefore x €f;"([0,1]) for arbitrary n>1if x€Q(f,).

Lemma 4. For t>1, fflioun has a unique fized point p, and (/%) (py) is

continuous, where I (t) = fr? ((% 1)) n (0, %)
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Proof. Io(t) is not empty since 'f,(%) =t>1 and f; maps (O, %) to (0, fi (%))

diffeomorphically.
Since (f)l0.3>0 and (f:)'|d 1 <0,

Fliwcr: In ©—(0.5(%)) 2 0.1

is an orientation reversing diffeomorphism. This implies that ﬁ|10,m has a
unique 2-periodic point p,.
The continuity of (f2)’(p,) follows, because

(2=id) |0 (@) = () Troueo (@) =1 <= ((tK") 24+1) <0,
and hence, by the implicit function theorem, p; is a C' function.
2.4. The bifurcation of the 2-periodic point p,. In this section, we

prove that p; undergoes a period dounling bifurcation which is characterized
by the following proposition.

Proposition 2 (See [6, pp. 220]). Let {Gy: R—R} be a 1-parameter
family of functions, and assume thet G: (x, t) =G (x) is C" (r=3) and satisfies
the following conditions for some (xo, to) ERZ

1. G (1'0, to) =Xy,
2. g—g(xo, to) =-—1,

s a= a5 (53)] w0

4 B= [éb 3303 <:7}r ff,ii)z] (o, to) #O0.

Then the 1-parameter family {G.} undergoes a period doubling bifurcation at
t=to. Move specifically, there is a differentiable curve of fixed points, x (t),
passing through xo at to, and the stability of the fixed point changes at to. There
is also a differentiable curve 1 passing through (xo, to) so that 7—{(xo, to)} is the
union of hyperbolic 2-peviodie orbits. The curve 7 is tangent to the line R X {to}
at (xo, to), so 1 is the graph of a function of x, t=m (x) with m’(x,) =0 and
m” (xo) = —2B/a+#0.

In order to verify the assumption of the proposition, we estimate the
orbits of p, and a—0-_.

Lemma6. Fort>1,f(p) >1—(a—4-).



Horseshoe-breaking family 501

Proof. fi(py) >% since pE 1o (t).

Suppose f; (pr) <1—(a—0d-). f,l(%_ 1 is orientation reversing and hence,

pe=frp) 2f,(1—(@—0-)) = fila—0d-) =tK (@a—0-) >1— (a—3,) >%,
which contradicts p,EIOIC<O, %)

Lemma 7. For t>1, fi(x) >1— (a—0-) and

£ f(x) = —IK, ifa—5_<x<%.

Proof. Since ft|(o_%) is increasing, f: (x) > fi(a—0-) >1— (a—45-), and hence,
fi(fe(x)) =—tK.

Lemma 8. Fort>1, f2(a—6_) <%.
Proof. Since tK(a—0_) >K(a—0d-) >1—(a—0-),

fla—0_)=tKk(1—tK(@—6.))
=tK(1—t) +t*K (1—K(a—d-))

The last term of the inequality is less than % since 1<t<% and
K(1—K@—0d.))<t.

Let ty=minssrod| (/)" (prr)|>1 for all £ >t}. Notice that t,>1 since p; is
a sink if ¢ is near 1.

Lemma 9. (1) For any t,<t<to, p,€ [0, a+8,].
(2) pgle (0_5_, a+5+).

Proof. Notice that | f; (f; (p:))|=tK from Lemma 6. if p,E<a+5+, %) then

|(ftz)’(f’t)|:|ﬂ(ft<Pt))||ﬁ(Pt)|:tK < tK'<1.

Therefore t>t; implies p,€ [0, a+04].
1f p,€ [0, a—5_], then

|(f?),(pt)|=|fll(ft<pt))"f: ()| =tK + tK>1.
P € (a—0d_, a+0,) since | (A (py)|=1.
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Proposition 10. {5 has a period doubling bifurcation of p; at t=t.

Proof. Let G(x,t)= f?(x). From Lemma 6,
Glx, t) =tK(1—tf(x))

for (x, t) near (py, t1). G is C®in a neighborhood of (py, t1).
We calculate @ and 8 in Proposition 5.

a2 (5]

1.2

= =20 (p) =5 K2 (1=21 £ (b)) £ (p).

£ (p) >0 and f” (p,) <O since f is a logarithmic and increasing function in
l[e —0-, a+ 8+] and ps is contained there by the previous lemma. These

estimates and the inequality £ (pr,) >% imply a<0.

Since f;, is logarithmic near py, so is G(+, t;), and hence has positive
Schwarzian derivative. Since —6f is the Schwarzizn derivative of G (¢, t;) at
P, one has 5<0.

Therefore, we have shown that G(xr) = ff(x) and (pn, t) satisfy the
conditions in Proposition 5.

2.5. Hyperbolicity before the period doubling bifurcation.

Proposition 11. Ifl ()" (p) |>1. then there exists a>1 such that for
any x€A, | (1) ()| >a for some n=1, 2, 3, 4.

This proposition implies that f; is hyperbolic for t>t;, and hence , the
period doubling bifurcation at t=t, is the first bifurcation of { f}.

Proof. Fix a point x in A, — {p;}. We have only to consider the case x<%
since f;(x) = f;(1—x). Notice that f; (f; (x)) = —tK for p, Sx<% from

Lemma 6 and that | f; (x) | =tK’ for all x#&%.

Suppose p: € [a+04, %), then

LA G =1 £ @1 (fe (o) =tk - k=1 KK'<1.

This inequality contradicts the assumption of the proposition. Therefore, we
may assume p, € (0, a+6,).

Firstly, f;(x) =tK>1 for r€[0,a—0-]. Secondly, suppose that
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p€[0,a—6-] and that rE€ [a—d_, %) Then f; (f; (x)) = —tK and f}(x) <p,
because p;<x, f; ((ps, %)) c (%, o) and f; is monotone on the both sides of %

The second inequality f%(x) <p: implies f: (f?(x)) =tK. Therefore,

() @I=1A@N A @ f(f @) | ZtK - tK - tK=1KK'>1.
Since the proposition holds if x€ [0, a—0d-] or p,€ [0, a—5_], let p,E
(a—0-,a+0d,) and x€ (a—6_, %) in the rest of proof.

Since x € (a—0_, %),f, is increasing on (0, %) and (@—6_)>1—(a—0-),

fi(x) >1—(a—3d-). This implies f; (f: (x)) = —tK.
If f} (x) <a—d_, then f; (ff (x)) =tK, and hence,

() @I=1A@) @) f (@) [ 2K - tK - K=K > 1.

Now we consider the case ff(x) >a—6-. Notice that
Flia—s-arsn = —Cy log (x+Cz) +C; for some Cy, Cs, C3ER, since fila—s.ass.) is
a logarithmic function and f |ja-s.asson is linear. Since f?|a_s-gsrsa is
decreasing, C;> 0. Since f? is defined at r=a—96_, C*>—(@a—0J_). We

denote G (x) as —C log(x +C2) +Cs. Since p; is a fixed point of f? and is
contained in [a—d-, a+d+] | p: is also a fixed point of G..

Since G is negative and increasing, 0>G;(y) >G;(a+84) = (/) (y) for
any y>a+04, and hence, (f?)’ (x) <G; (x) and (f?) (x) <G, (x) for any
x>a—0-. Therefore, if x, f2(x) >a—0_, then

(75 (fix)) <Gi (fi(x)) <G: (G: (x)), because G’; is increasing. These
inequalities imply

() @ =1 () 2@ A (Aa)|2I6: @) ] 61 (G ()= (G ()],

if x, (f?) (x) >a—6_and p,€E [a—6_, a+0.,].

Proof of the proposition is completed if we show inf |(G?)'| is bigger than
1, which follows from the following lemma.

Lemma 12. For a positive number C, and real numbers C, Cs, we
assume that
¢ (x) = —Cilog (x+C3) +Cs has a fixed point p.
¢ @) |>1, then infrpms>—cl (67 (x)|>a for some a>1.

Proof. By translating the coordinate, we may assume that p=0. Then, ¢ (x)
is given by ¢ (x) = —Cllog%zgl for some C;, C2>0.
Choose x so that ¢?(x) is defined, then
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(¢)' (@) =Cly iy and (69" @) =t

—h (x)
(h(x))?
where i (x) = (x+Cy) (¢ (x) +C,).

Since ¢ is a decreasing function, so is #’. In fact, h’' (x) =¢ (x) +C2—C\.
Let zo=Caexp(£2—1) —Cy. Since zo+C2>0 and ¢ (o) +C2=C1 >0,

¢%(xo) is well-defined. Since h’(xo) =0 and h’ is decreasing,

x<xo==h'(x) >0=—= (¢?) " (x) <0
x>xo=—=h'(x) <O= (¢?)" (x) >0,

This means that x =x, is the minimal point of (¢?)".
We estimate the value of (¢?)’ (xo).

Cz<exp(g—;— )) (%f)
Since ¢/ (0)|=|—Ciga | = -

(¢%)" (xo) =g (0) lexp (1—[g' (0)|74).
Therefore, |¢" (0)|>1 implies that inf (¢?)'= (¢2)" (o) >1.

3. A family of 2-dimensional maps

In this section, we define a family of 2-dimensional maps {F} and prove
that the assertion in the main theorem holds for the family.

3.1 Constructing a horseshoe-breaking family. Similarly as in
the case of 1-dimensional maps, we first construct a 2-dimensional
diffeomorphism F and define a family {F} as F(x,y) =y:°F(x, y), where
yi(x, y) = (x, ty).

Fix t, such that 1<t,<t;. Since f;,(x) = (tf).f, () = fi, (x) for any t=t,,
we can take a small positive number € such that f; (%—6) >1 for any t=t,.
We define a smooth function & as follows:
0 (x€ (=, a—n))

MO =i et i),

and

h(l—x)=h(x),
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where 7 is a small positive number.
Let 0 <b<min [a, %} The following lemma is necessary to verify that

the diffeomorphism F given below is well-defined.
Lemma 13. There exists a positive number 7 which satisfies

b(1+7) +h(y) <%—€f01’ any yé%—e.
Proof. Since b+h(y) <a+ (y —a) =y S%— €, the assertion follows for a

sufficiently small 7.

Now we define a diffeomorphism F. F: R?®— R? is given by a
diffeomorphism of the form

br+h(y),fy)  ((r,y) €(—0, 1+7) X (=00, 1))
Flx,y) = )
(1=bx—h(y).f(y)) ((x,y) € (=, 147) X (34¢ ),

(@)

which satisfies the filtration conditions:
(F1Y F([1+7, ] XR)<(0,1) X (=09, 2),

(F2r F(l—7 1+7) X [j=¢ 3+d) € (0.1) X [f(3—0), ),
(F3) F((—o0, —7] X [5—¢, %+6])CR>< [f (%—e), ).

From Lemma 13, a map of the form (2) is a diffeomorphism on
(o0, 1+7) X (=00, %—E) U(=o, 147 X (%"'E, ), and hence, is
extended to a diffeomorphism F on the whole plane R%

The diffeomorphism F,, defined by F (x, y) = y.°F(x, y) ., has similar
properties, namely, it has the form

(b th (). i) (@ y) € (=00, 147) X (=00, 1—¢))
F(r, y)= 1
(I=bx—h ). fi(y)) ((x,y) E (=, 14+7) X (5+¢ 2)),

(3)
and satisfies the ﬁltration conditions for any t=>t;:
(F1) F([1+7y, ] XR)<(0, 1) X (=0, 2),
(F2) E([—7 147 X [3—e 3+€)C(0,1) X (1, ),
(F3) F((—o0, —7] X [—¢ 5+€]) CRX (1, ).
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We note that F; is semi-conjugate to f; on [0,1] x ([0, %—6] u [%-i—e, 1]),

Ty = fiomy,
where m, is the projection to the y-axis.
For t=to, Fy, is an affine horseshoe diffeomorphism, since f;, is conjugate
to a tent map on f5' ([0,1]).

3.2. Non-wandering set of F. Let A, and Q(F) be the maximal
invariant set of F; in [0,1] X [0,1] and the non-wandering set of F;
respectively. In this subsection, we prove that Q(F;) is contained in A;. For
this purpose, we use a sequence of filtrations associated to A;.

For a small positive number g which satisfies 0<u<y, we define the
filtration M (z) as follows.

M(ﬂ)(): g,

M () =I X (—oo, —u],
M(,U)ZzluXR'
M(,Ll)ssz.

where I,= (—pu, 1+p).

Lemma 14.  For any p(0<u<y), M(u) is a filtration. The invariant
set associated to the filtration, U%_;N.ez F*(M (1)), is contained in 1,% [0,1].

Pioof. We check that F(M(x);) C Int M(x); and calculate the maximal
invariant set of M (g) ;—M () ;_; for i=1, 2, 3.
If (r, y) EM(p),, then F (x, y) €EIntM (g) 4, since bx €Int (11,) and

fily) =tKy<y. Since f;((—o0, —pu]) = (oo, —tKpu] ,
NM(pw,=90

ez
From (3) and (F2), F,(M(g),) is contained in Int (M (z) ).
For (x, y) €1,X (—,0), F?(x, y) = (b"x, (tK)"y), and hence,
F?(x,y) EM(y), for sufficiently large n. For(x, y) €1,X (1, ),
F(x,y)=(bx, tK(1—y)) €1,X (=0 0). Therefore, F(x, y) EM (1), for
sufficiently large n if (xr, y) €I, X ((—o0, 0) Y (1, 0)). This implies
N F? (M(ﬂ)z_M(ﬂ)l) S PR [0,1].

nEZ
From (3), (F1) and (F2), we have F;((1, ) XxR) € [0,1] XRCM () ,
and F; ((—o0, —u) X (1, 0)) C (1, ) XR. which imply
FZ2((—oo, —u) X (1, ©©)) CM (). Therefore, the maximal invariant set of
R*—M () 2 is contained in (—o0, —y) X (—oo, 1].
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Since Fil((—o0, —x) X (=00, 1]) C (—o0, —gxb™!) X (—o0, 1] for any
x>0, F*((—oo, —p) X (—o0, 1]) C (=00, —pub™) X (—o0, 1] for any n=>0.
This implies

NFIR*~M(y),) = NFP((—o0, —py) X (—o0, 1]) =0.

nE€Z nEZ

From the above arguments, the invariant set associated to the filtration,

Ud1N,ezF?(M(u);), is contained in I, X [0,1].

Proposition 15.

Q(R) A,

Proof. From the above lemma,
n€Z
Since g is an arbitrary small positive number less than 7,
Q(FR) < NF([0,1] x [0,1]) =A,.
n€Z
3.3. Bifurcation of the 2-periodic point. Recall that p, is the

2-periodic point of f, given in Section 2.3. FZwouxps: [0,1] X {p}—
[0,1] X {p,} is a contraction map, hence, there exists a unique 2-periodic point
of F}, g1, in [0,1] X {p,} with

DF?I:I::DElF:(q:) ° DFllq.

_(—b * )(b *)
NI AT A NACEATD

(7 o)
0 (A )/

Since 0<b2<1 and the period doubling bifurcation of p; occurs at t=t; in the
family {f:}, the period doubling bifurcation of ¢; occurs in the family {F}.

3.4. Transversality of the stable and unstable manifolds. For
any t € [ts, to] , the local stable manifold Wi (0; F}) and the local unstable

manifold W¥%, (0; ;) are respectively contained in the x-axis and the y-axis.
The following lemma shows the transversality of W*(0) and W*(0).

Lemma 16. For t,<t<t,, there exist closed cone fields C* and C°* on
TR2|4, such that for any rEA,,
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1. (DR),(Cc*0))cc“(R),
(DE);H(Cs () cCs(Ft(r),
2. C*(r) Ncsr) =10},

3. (?)EIntC“ (r) and ((1) )EIntCS (r).

Proof. Let

cen) = [ (”‘ )e T/R*|[v| S%I”zl]
Va2

| (7 Jere
V2

Obviously, they satisfy the second and third assertion of the lemma. We
check the first assertion.

and

4
|1)1| 2?|1)2|]~

o
For r€ A, and v=<1 )EC“ (r), we have

DF) ()_(ib h')(a>_(iba+h'>
t)r\v) — 0 jjt 1 - ﬂ .

Since | fil =K and

3

|+ba+n'|<bla|+|n| <b: 4o

+1<1+1<3,
C* satisfies the first assertion.

1
Similarly, for 7€ A, and v=< )ECS (¥), we have
o

v A w1 \_ 1 (fitan

Ih’lzx'—KT=3—f—<b,

Since

| fixan'| 2] fil —|a
C® also satisfies the first assertion.

3.5. Hyperbolicity before the period doubling bifurcation. Let
E*(r) = N,ezF? (C*(F;*(r))) and ES(r) = N,ezF? (CS(F7™(7))).
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We prove that E¥ @ E° is the hyperbolic splitting for F for 1 <t<ty.
Once it is done, the period doubling bifurcation at t=#; is the first bifurcation
of the family {F}, and hence, the proof of the main theorem is completed.

Lemma 17. For any r € Ay, E*(r) and E*(r) ave 1-dimensional vector
spaces.

Proof. We prove the lemma by the contraction principle (c.f. [4]).

We define two spaces of line fields

o= ot
Ny alr)
and L5=’7*~> <<B<17) )> lﬁec" (A, R)].
< <u1 (1’ >>
For line fields I; r—
vy (7)

and [": r— <<U1 ) >> ,letd (1, l/)u=SUpreA;v_2_v,2

vz (1) V1 1

o

aGCO (A[, R) ]

if [, '€L" and
v

—=Lif,reLs. (L% d,) and (L%, ds) become complete

v
d(l, 1) s= suprea| =
Uz vz

metric spaces.

Let LI={1€L°i(r) C°(r) for any rEA,} for 6=u, s, which is a closed
subset of L°.

If we prove that DF (resp. DF™') is a contraction on L¥ (resp. L{), then E*
(resp. E®) is the image of a unique DF-invariant line field in

L% (resp. LY).

e (2w (e

+ba(r) £’ +bB() £i “
fi fi

d (DF, (u), DF; (v’)u=sup[

reA:

=sup|| &l ) =B} <5 0, ),

r€AL

/i

and hence, DF; is a contraction of L¥

(5] e )
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d (DF*(v), DFi* (")) s:SUp{

reA:

balr) __ bB&) I}
fixa)n'  fixB@n!

_ b _
TR (1) B0EY O EO

sincelal, 161 <5, n1<1, [l 2 K'and b<a <,

2
d (DF'(v), DF7*(v')) sSb<i§—) d (v, v')s<§8-7‘d (v, )

and hence, DF™! is a contraction of L.

Lemma 18. E* (r) ® E* () is the hyperbolic splitting of TR? |4 for
1 <t<to.

Proof. 1f there exist C>0 and A>1 such that| (DF?) ,v,/|>CA*|v.[and
[ (DF) wel| > CA%|vsllfor any rE A, v.EC*(7), vsEC* () and nEN,
then E*®E® is the hyperbolic splitting.
Fix a point *= (x, y) in A, Since it is in A, y is in the maximal
fi-invariant set of [0,1].

(oF), =TI (DF) —nﬁl(ib ) )_(ibn ’ )
P TN 0 AR W) 0 (M /

From the hyperbolicity of f;, there exist positive constants C and A>1 such
that | (f7)’|>CA”, and hence, we can choose #o such that

| (ﬂ”’)’|>2<1+<1§,)2>. For any v,= (:1 )EC“(r),

o)
(f1)" (r) * v2)

V1
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