
J. Math. Kyoto Univ. (JMKYAZ) 493
37-3 (1997) 493-511

A natural horseshoe-breaking family which has a
period doubling bifurcation as the first bifurcation

By

Masayuki ASAOKA

1. Introduction

L e t F: M— *111 b e  a  d iffeom orph ism  on  a  m anifo ld  M .  W e  s a y  th a t  F  is
Cr - structurally  stable i f  th e re  is  a homeomorphism h: M— >M  which satisfies
h - 1 0G .h =F  for any diffeomorphism G near F  in C r - topology.

F  is  ca lled  hyperbolic o n  an  F - invariant com pact set A  if  the re  ex is t a
splitting o f the  tangen t bundle  TMIA=PIEDE s  a n d  c o n s ta n ts  C > 0  a n d  ii> 1
which satisfy that

II DFn  ( v a ) u p ,  D F (v s)II C

for a n y  & N and any v u EE", v s E E s . W e  c a ll  F  a  hyperbolic diffeontorphism if
the non - wandering set of F  is hyperbolic.

T he hyperbolic ity  and  the  stab ility  a re  v e ry  im portant concepts in the
research of dynamical systems and they are  m utua lly  re la ted . For example, it
is known that F  is C ' - structurally  stable , if and only if F  is hyperbolic and F
has some additional conditions (e.g. [7 ] and  [3 ] ).

Sm ale 's h o r s e s h o e  [8 ]  is  a  typ ica l dynam ica l sy stem  w h ich  has the
s ta b ili ty  a n d  th e  h y p e r b o l ic i ty ,  A  h o r s e s h o e  is  d e f in e d  a s  a  p la n e r
diffeomorphism w h ic h  m a p s  D  t o  F ( D )  a s  i n  F i g u r e  1 .  a n d  w hich  is
hyperbolic on A=- n„e7F 1 (D ). W e call horseshoe diffeom orphism  an affine
horseshoe if it maps the rectangles A  and B  to A ' and B ' affinely.
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Figure 1: Smale's horseshoe
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How does a  horseshoe lose its stability  ? O ne of the typical deformation
F i o f  a  horseshoe is that F r(D ) is pushed dow n a s  a  param eter va ries until
Ft (D ) becomes contained in D .  like in  F ig u re  2 . W e call such a  1 - parameter
fam ily a  horseshoe - break ing  f am ily . W e  d o  n o t a t te m p t to  g iv e  a  precise
definition f o r  i t .  O n e  m a y , how ever, take th e  family {Ft=yr°F}o<tgi a s  a
natural horseshoe - breaking family, where y r (x , y) =  ty )  and where F  is  an
affine horseshoe that expands along the y - axis and contracts along the x - axis.

fln
t=T T'<t<T

(affine horseshoe)
t decreases

t=T'
(the first tangency)

Figure 2: A horseshoe - breaking family

We are interested in the bifurcation set of such a horseshoe - breaking family.
Let {Ft} TO TI b e  a  horseshoe - breaking  fam ily  w here  Fr i i s  an affine

horseshoe and FT (D) is assumed to lie in D.
W e say that the family {Ft } undergoes a bifurcation at to when Fr o loses its

stability , T h e  f ir s t  bifurcation i s  the b ifurcation th a t o c c u rs  a t  th e  largest
parameter value, namely, at t b i t

=
 inf{tiFe is stable for all t' > t}.

Since FT, is  a  horseshoe, one finds a  hyperbolic fixed point p , so that some
segments in its  stable and unstable manifolds 1/17s (1); Fr i )  and  Wu (p; FT ,) give
the boundary of D .  W e assume that the  hyperbolic fixed point p  persists for
all t  and denote it by pr. The first tangency of {Ft }  is a  tangency of WS (Pt; Fr)
and Wu  (pt ; Fr )  that occurs at the largest parameter value, namely, at ttan =
inf{tI Ws (Pe) intersects W u (pc) transversely for a ll r> t} .

It is know n that a  tangency of the stable  and the unstable manifold of a
hyperbolic periodic poin t generically  g ives rise  to  a  complicated bifurcation
(see  [5 ]) . T here fo re , tbif is larger than o r equal to tran.

Palis and Takens [5] posed the following question:
" I s  th e  first tangency generically  th e  f i r s t  b ifu rca tion  fo r horseshoe -

breaking families ? "

K i r i k i  [ 1 ]  fo rm ula ted  a  c la s s  o f  horseshoe - b re a k in g  fa m ilie s  and
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constructed a n  example o f  a  horseshoe -  breaking fam ily  in  w hich th e  first
tangency is the first b ifurcation. The basic  set of the horseshoe in his family
has large  frac ta l d im ension . In  [2], he also constructed a horseshoe-breaking
family in  which the  first tangency is the  f irs t bifurcation, w ith  an  additional
p rope rty  tha t th e  b a s ic  se t  has a rb itra rily  sm a ll fractal dim ension. N otice
that the latter family has more than one folded parts.

One can consider a  similar problem for the Hénon-like family:

F (x, y) -= (af (x) — by , x).

Smillie [9] showed that the first tangency is the first bifurcation in the Hénon
fa m ily  (i.e . f (x ) =  x  (1 — x ) ) .  M oreover, Y a n g  [1 0 ] ob ta ined  t h e  same
conclusion for any f  w hich  is  0 -near to  x (1 —  x) .

In  th is  paper, w e  construc t a  na tu ra l 0  horseshoe - breaking fam ily in
which, as the first bifurcation, a period doubling bifurcation occurs before the
f irs t  ta n g e n c y . T h e  b a s ic  se t  o f  th e  horseshoe in  th is  fa m ily  h a s  a  small
fractal dimension.

M ain Theorem. There  is  a  C 1 diffeomorphism F such that the
1-parameter family Ft = y r ° F, (where yr(x, y) =  (x, ty )) satisfies the following
properties:

1. Ft is an affine horseshoe on [0,1] x [0,1] for sufficiently large t>1.
2. A periodic point with period 2 undergoes a period doubling bifurcation and

it is first bifurcation.

W e divide the  proof in  tw o parts , T he  proof o f each p a r t  is outlined as
follows:

Proof of the 1- dimension part. 1 .  W e construct a  piecewise m a p  a,K,K ,  a s  in
F igure 3 .  W e p rove  tha t f =-  a,K ,I f ' h a s  a  2 -period ic  sink  a n d  th e  critical
value o ff  is  e q u a l to  1 for some a, K, .  Obviously, the map ft (x ) = t • ( x )
is  affine and uniformly expanding  o n  [0,1] n i t-

1 [0,1] for sufficiently large t.
Therefore the family { f el sa tisfies the desired properties in the sense that:
(a) f t is  a  1-dimensional affine 'horseshoe' for sufficiently large t>1.
(b) T h e  2-periodic  p o in t  in  th e  horseshoe in v a ria n t se t h a s  to  change its

stability before t = 1 and hence before the tangency.
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1
Ka

0 a 1/2 1-a  1

Figure 3: Graph of f  a,K,K'

2. We modify J in to  a C 1 function f  in  neighborhoods o f a  and  1 -a  by using
th e  logarithm ic  function . W e show  th a t  in  th e  family { f t ( x )  = t  • f (x )}  a
2-periodic sink appears after a sub-critical period doubling bifurcation.
3. W e  check the hyperbolicity of f t  before th e  period doubling bifucation.
O nce  th a t  is  d o n e , w e  c a n  c o n c lu d e  th a t  f t  i s  a n  a f f in e  horseshoe for
sufficiently la rg e  t> 1  a n d  th a t  th e  period doubling bifurcation i s  th e  first
bifurcation in this family.

Proof of  the 2-dim ension part. 1. W e extend  the 1-dim ensional map f  t o  a
2-dimensional diffeomorphism  F : R 2— R 2 a s  F ig u r e  4 .  N o t i c e  th a t  F  is
semi - conjugate to f  on a dynamically important set by the projection to y-axis.
The family Ft is given by Ft -=y t .F.

Figure 4: F: R2
— >R2

2. It can be shown that the non-wandering set of Ft is contained in
[0,1]  X  [ 0 ,1 ] .  W e  use a sequence of filtrations to prove it.
3. W e  sh o w  th a t  a  2 -period ic  p o in t  o f  Ft u n d e rg o e s  a  period doubling
bifurcation at some t>1.
4. W e verify  the hyperbolicity  of Ft  o n  th e  non-w andering s e t  before the
bifurcation of the 2-periodic point o c c u r s . T h is  completes th e  proof of the
main theorem.
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2 .  A family of 1- dimension maps

In th is section, we construct a  family of unimodal maps whose first bifurcation
is a  period doubling bifurcation.

2.1. A piecewise linear map. L et ja,x,x, :  R— dEt b e  a  piecewise
linear map given by

Kx

Ka - 4- 1( (x — a)

for xE  ( - 0 0 , a)

for xE  [a, 1
2' )

f  a,K ,K ' (x )  = (1)
Ka+K (1 — x — a ) for x E  1— a]

K (1 — x) for xE  (1 — a ,  0 0 ) ,

where 0<a and 0 <K' <K.

The map f = f a,K ,K ' is continuous on R and C1 on R— { a, 1 — a, which
is unimodal and convex, and sa tisfies] (0) = 0  a n d ]  (1 — x) =  (x ) .

Lemma 1. For any 0 <a<*, there exist K>K' >0 such that

a,K ,K '(21 )
=  1 and that f,  a,K ,K ' has a  2- periodic sink.

Proof. Let K and K' be the numbers as follows.

41+ 1— a 1 — K a  K=  K '=2a ' 1
2 a

It is easy to see that 0 <If' <K and *1 a,K ,K 4 ) =  1.
I f  w e  sh o w  th e  e x is te n c e  o f  a  2- period ic  sink , th e  lem m a is  proven.

Since K (1—  Ka) =-- t  and K >  L  we have 1—  Ka Ga < a , and therefore,

1 2 (a) = 1 (Ka) = K (1 — Ka)

Since »  (a) >a and / 2 (-1
2
- ) = 0 < , there exists a 2- periodic point p in  (a,
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It holds that

I ( iT  (p) 1=1(P( ) — '12 (a)) /( - 4 <1,

s in c e  2 is linear on  (a, Therefore, p  is  a  2-periodic sink.

Remark 1. K, K' chosen in the proof of Lemma 1 satisfy that

K2K'>1, 3 K > 5 and K a>1 — a.

In the rest of th is paper, we assume that 0<a and K, K' are as in the proof

of Lemma 1.

2.2 . Smoothing the piecewise linear map. I n  t h i s  section, we
modify the map i  to f  on neighborhoods of a, 1 — a  so that f  becomes C I  on

R - { } .

We can choose a  small positive number 5 such that K (a —  5) >1 —  (a — 5) ,
K (1 — K (a —  5 ))  <1 , and pE (a+5, )  ,  where p  i s  th e  2-periodic  sink  of f
obtained in Lemma 1.

We define f  as follows:

g (x) for x E [a - 5_, a+ .M
f  ( x )  = g (1 — x )  for x c [1— (a+ 5+ ) , 1 —  (a —  5_)]{

f  (x) otherwise,

where g  (x) = cilog(x±c 2 ) +c 3 . for some real numbers ch  c2, c3, and positive
numbers 5_, 5+ .

Lemma 2. We can choose e l , c2, c3, 5-, 5+ so that f  is on R— N  and

that 5_, 5+ are less than 5.

Proof . Let c1 =K5, then

(cilog (cilog x )'1 ,p= /1 )  =K .
5K

One can find suitable c2, c3, 5-, 5+ such that g  (x)=cilog(x±c2) H- c3 satisfies

g (a - 5 4  =  (a 5-), g (a+ 5+ )  =  (a+ 5+ ) ,

g' (a - 5-) =K, g ' (a ± 5+ ) =K'.
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These conditions clearly imply that f  (x ) is C' except at

Finally, one has 5_, 5+<5 since 0<5_+5.,=--  (a +54-) — (a - 5 4

= 5 - -
K '

5<5K •

In what follows, we fix 5_, 15_F, CI, c2, c3, as above.

2 .3 .  A family of 1-dimensional maps. A 1-parameter family
{ft}i<t6to is defined as

f (x) = t • f  (x),

where to: = K (a - 5)*

Remark 2. It h o l d s  t h a t  t o since K (a - 5) >1 —a>f t . As

commented in Remark 1, one have K K  4  and therefore,

toK • tcK ' <tCK K ' <2 • *<1.

L et At a n d  Q ( j 1) b e  the  m axim al invariant set of f t i n  [0 ,1 ] and the
nonwandering set of f t , respectively.

Obviously, for t =to,fto equals to the tent map with slope toK , — toK on
1701 ( ( — oe, 1] ), and hence, ftln, is conjugate to the one-sided 2-shift.

Proposition 3. For t > l ,  (ft) cAt.

Proof. Firstly, we show tha t Q(ft) lies in R+ . Choose any x < 0 and let

U = (
tK

x  
1

x
5

2  ' 2  ) •  Since tK > -

2 '  
one has xe U .  For arbitrary

f t i ( u )  n  u = ((tK) 1( t K 2 )% ) n U =  ø.

and hence, x EP ( f t ) .
I f  x > 1 , th e n  f t (x )  < 0 , a n d  hence, f t (x )  gr2 ( f t ) S in c e  t h e  non-

w andering  s e t  i s  f t -invariant, x 52(f1) i f  f l(x) EE [0 ,1 ] f o r  so m e  n.
Therefore xefTn ( [0,1] ) for arbitrary rt. 1 if x e  ( f t ) .

Lemma 4. For t > 1, f9—Li (t) has a unique fixed point p t and  (f )' (p1)  is

continuous, where 101(0 = (( )) n (0,

1
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1
Proof. '01 (t) is not em pty since f t ( )  =  t>1 and f t maps (0, to  (0, f  ( i ) )

diffeomorphically.
Since ( f t) 'I co, > 0 a n d  (ft)1(,1) <0,

filroi(t): /In (t) - -  (0, f t ( ))  D (0,1)

i s  an orientation reversing diffeomorphism. T h is  im plies that a—1.101(0 h a s  a
unique 2-periodic point pt .

The continuity o f  ( 4 )  (Pt) follows, because

( f i — id ) 110,(t)(x) = (4)1101(t)(x) - 1< —  (410 2 +1) <0,

and hence, by the implicit function theorem, p, is a C1 function.

2 .4 .  The bifurcation of the 2-periodic point pt . In th is  section, we
prove that p t undergoes a  period dounling bifurcation which is characterized
by the following proposition.

Proposition 2  (See [6, p p . 2201). L e t {Gt : R—*R } be a  1-parameter
family of functions, and assum e thet G: (x, t) (x ) is (r 3) and satisfies
the following conditions for some (x o , to ) E R 2 .

1. G(10, to) =xo,
aG 2. a x  (x o, = —1,

_ [  02 G  j _1(  ac a2G  
2 \ at i \ a x  2 )]

3  
a  L a tax (X0, t0) 0 0,

1  a3G ( 1  a2G)24. 13= [ 31a x 3 ±  2 !  a x  2 I (X0, t0) 0  0.

Then the 1- parameter family {Gt} undergoes a period doubling bifurcation at
t= t o . M ore specifically, there is a  differentiable curve of  fixed points, x (t)
passing through x o at to , and the stability of the fixed point changes at to . There
is also a differentiable curve y Passing through (xo, to) so that y—  {(x o , to )} is  the
union of  hyperbolic 2- periodie orbits. The curve r  is tangent to the line R X {to}
a t (x o , t o ) , so r  is  the graph of  a function of x, t = m (x) with m' (x0) =0 and
m" (10) =  213/a ± 0.

In  o rd e r  to  v e r ify  th e  assum ption o f the  p roposition , w e estim ate  the
orbits of pt and a- 5_.

Lemma 6. For t> 1 , (p ) >1— (a —  5_).
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Proof. ft (Pt) >  since pt E  /01 (t) .

Suppose f t (Pt ) —5-). ftI4, o is orientation reversing and hence,

P t =  (Pt) >-ft (1 — (a — 5-) ) = ft (a —  _ ) =  tK (a - 5 ) >1 —  (a - 56 )

1
which contradicts P t E / 01 OE (0, —

2
)

.

Lemma 7. For t > 1, ft (x) >1 —  (a —  5_) and

ft(ft(x )) =  — tK, if a - 5_<x< -1.

Proof. Since ftl (o is increasing, f t (x) > ft (a —  54 >1 —  (a —  ô-), and  hence,

f; ( f t (x)) = — tK .

Lemma 8. For t> 1, f' (a —  5_) < 1
2 .

Proof. Since tK (a —  5_) K  (a —  &) >1 —  (a —  5_) ,

—J(a ô_) =tK (1 —  tK (a — 5_))
=tK (1 — t) +t2K (1 — K (a —  5-))

1 .6The last term of the inequality is less than since 1 <t and

K(1 — K(a —  5)) < 1
4 .

Let ti =mintto{l(A)' (Pr)1> 1 for all t' > I- 1. Notice that t1> 1 since pt is
a sink if t is near 1.

Lemma 9. (1) For any ti < t <to, P t e [0, a+ 5-F].
(2) p t i e  (a - 5_, a+ 5,) .

Proof. Notice that I (  ft (P t))I=  tK from Lemma 6. if pt c ( a + 5 + , then

1( f i r  (Pt)1=1h (h(Pt))11h(Pt)1= tK • tK' <1.

Therefore t > t i implies pt E  [0, a+ 5+] .
If pt E  [0, a—  5_] , then

I (4 )' (POI= fr ( f t (P t)) (P t) = tK • tK > 1.

PtiE (a —  5_, a+5 + )  since I ( fir (Pti) I = 1.
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Proposition 10. 01) has a period doubling bifurcation of Pt at t=

Proof. Let G (x, t) = 4 ( x ) .  From Lemma 6,

G (x, t) = tK (1 —  tf (x))

fo r  (x, t) n e a r  (po, t1). G is C 3 in  a  neighborhood o f  (Pri,
We calculate a and 13 in Proposition 5.

a = [aa2taGx +  21 ( aaGt ) ( a
ax

2G2 )] (p ti,

=  —21" (pti) ex' (1— 2t1 f (PrI)) f '  (Ph).

f(p 1 )  > 0  a n d r  (p, 1) < 0 since f  is  a  logarithmic and increasing function in
[a — 5_, a +  5 + ] and p t, is  con ta ined  the re  by  th e  previous lem m a. These

\ 1estimates and the inequality ft, (Pt,)i m p l y  a< 0.

Since f t , is logarithm ic near ph , so is G(• , t1) , a n d  hence  has positive
Schwarzian deriva tive . S ince  — 6,6 is  the Schwarzizn derivative of G (• , t1 )  at
Pt', one has 13<0.

Therefore , w e h a v e  show n  tha t G (x) = f  ( x )  a n d  (Pri, ti) sa tisfy  the
conditions in Proposition 5.

2.5. Hyperbolicity before the period doubling bifurcation.

Proposition 11. (P t )I> 1 . then there exists a>1 such that for
any x E A , I (Jr)' (x)I> a for some n=1, 2, 3, 4.

This proposition im plies that f t is  h y p e rb o lic  fo r t>ti., a n d  hence ,  the
period doubling bifurcation at t= t i  is  the first bifurcation of { fil .

1Proof. F ix  a  point x  in  A t — {p i}. W e have only to  consider the case x < -
2

since f t (x) = f t (1 — x) . Notice that f t (f t (x) ) = — tK for p t x< -- from

Lemma 6 and tha t ift (x) I tK' for all

Suppose pt E  [a + 5 + , then

I (4) (Pr) I = I it(Pt)11f; (ft (p t))I=  t i c  tK=t 2  KK ' < 1.
T his inequality contradicts the  assumption o f the  p roposition . Therefore, we
may assume p t E (0, a + 5 + ).

Firstly, f t (x) = tK >1 for x E  [0 , a— 5 _ ] .  Secondly, suppose that
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PrE [0, a — 5_] and that x E [a — 5_, Then J't (ft (x)) = a n d  (x)

because Pt <x, ft((Pt, —21 ) ) c°) and f t  is monotone on the both sides of

The second inequality fi (x ) < p , implies f t (  (x )) = tK .  Therefore,

(fi)' (x ) I = I (x) ( ft (x))Ilf; (x)) I • tK  • tK = t 3K 2K'> 1.

Since the proposition holds if xE  [0, a —  5_] or pi e  [0, a—  5_] , let pt e
(a —  5_, a+ 5.4.) and xE (a - 6_, in the rest of proof.

Since xe  (a —  5- , f t  is increasing o n  (0, a n d  (a —6_) >1— (a— 5-) ,

ft (x) >1—  (a —  5 _ ) .  T his impliesfr( f r (x))= —tK.
If (x) 5_, then fr (x )) = tK , and hence,

I (fD  (x ) I = I f; (x )) (ft (x )) Oft (fi (x )) • tK  tK  = t3K2K' > 1.

Now we consider the case fl (x) >a — 5 _  Notice that
is
is

decreasing, C1 >  0 . Since 1,2
 

is defined at x =a - 5_, C2 > — (a — 5 _ ). We
denote Gt (x) a s  — CI log (x +C2) +C3 . Since p ,  is a  fixed point of f ?  and is
contained in  [a— 5_, a+ 5+ ] , p t is also a fixed point of Gt.

Since Gr is negative and increasing, 0>G; (y) >G; (a + 5+) = (fi)' (Y) for
any y> a + 5 + ,  a n d  hence, ( (x) G  (x ) a n d  (f1) (x) G t  ( x )  fo r  any
x>a — 5 _. Therefore, if x , ft2 (x) >a - 6_, then
( f i ) '  ( f é ( x ) ) G ; (fl (x )) (G  (x ) )  ,  because G '1  is increasing. These
inequalities imply

I (ft)' (x ) I = ( f i) (X)I1 (.4) ' (11(X)) l IG; (x) II Gr (G (x) ) I = I (Gi) (x) I,

if x  (f?) (x ) >a - 5_and pr E [a - 5_, a+ 5-F].
Proof of the proposition is completed if we show inf (GWI is bigger than

1, which follows from the following lemma.

Lemma 12. For a positiv e  number C1 a n d  real numbers C2, C3, we
assume that

(x) = — Ci log (x +C 2 ) + C3 has a fixed point p.

(p)I> 1, then infx.cri>-c21(0 2 )' (x )I> a for some a> 1.

Proof. By translating the coordinate, we may assume that p = 0 . Then, 0(x )

is given by 0(x ) = —Cilog
x + C 2

C 2
 f o r  some C1, C2>0.

Choose x  so that 02 (x) is defined, then

fil[a-6-,a+5,1
= C 1  log (x + C2) +C3 fo r  some C1, C2 , C3 e R, since ftlta-a-,a+6+]

t f t0 a -o, I ,a + .3 .0 ) i s  linear. Since 12 a-a-t  L A-Ed-0a  logarithmic function a n d  f
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(02)  (x) = C h (1x )  and  (02)"(x) =Ci ( is
h(.: ()x))2,

where h (x) = C2) (0 (x) + c 2 ).

Since 0 is a  decreasing function, so is h'. I n  f a c t ,  h' (x ) =  (x ) +C 2

Let x 0 =C 2exp( - 1) — C2. Since x 0
-FC2 > 0  and 0 (xo) +C2=C1 >0,

0 2 (x 0 )  is w ell-defined. Since h' (x0) = 0  and h' is decreasing,

x < x 0  (x ) >  0  (02) " (x) <0
x > xo  h ' (x) <0 > (02) " (x) > 0 ,

This means that x = xo is the minimal point of (02)' •
We estimate the value of (02)' (x0).

1 e x p (1 —  C 2 )
C1 ( 0 2 ) ' ( x 0 ) = C 1

C2 (exp P - 1))
2

Since 10' (0) 1 =1 c i  10-1- C2
I

(02) (xo) =10' (0) lexp (1 - 10' (0) 1- 9

Therefore, 10' (0)1>1 implies that inf (02) '=  
(ç52)'

 ('e) >1.

3. A family of 2-dimensional maps

In  th is  section, we define a  family of 2-dimensional maps {Ft }  and prove
that the assertion in the main theorem holds for the family.

3 .1  Constructing a  horseshoe-breaking family. Sim ilarly a s  in
t h e  c a s e  o f  1-dimensional m a p s ,  w e  f i r s t  c o n s t r u c t  a  2-dimensional
diffeomorphism F  and  define a  family {Ft }  a s  Ft (x, y )  = yt OF  y ) ,  where
lit  (x , y) -= (x, ty) .

F ix  t2 such  tha t 1 < t2 < t1 . Since f t2 (x) ( t; ) , f  t (x ) f r2 (x) for any
Iwe can take a small positive number c such that f t

(  -  €) > 1 fo r  any

We define a smooth function h as follows:

(— 0 0  , a — )7))
h (x) = f

x — a (a - H7, 6)) ,

and

h (1 — = h (x) ,
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where 77 is  a  small positive number.
K 'Let 0 <b <m in la , T 1 .  T he following lemma is necessary to verify that

the diffeomorphism F given below is well - defined.

Lemma 13. There ex ists a positive number r which satisfies

b (1+ y) h (y) <+ —  € for any — E.

Proof. S i n c e  b ± h (y) < a  +  (y — a)  = y — c, the  asse rtion  follows for a

sufficiently small r.

N o w  w e  d e f in e  a  diffeomorphism F .  F : R2— > R2 i s  g i v e n  b y  a
diffeomorphism of the form

(bx - Fh(y ),f  (y )) ((x, y) E ( — (3 0 , i +r) X ( — oe,
F (x, y ) =

(1 — bx — h(Y ), f (Y )) ( (x , y) E  ( — e°, 1+r)  X  ( d-E, co)),
(2)

which satisfies the filtration conditions:
(F1)' F([l+r, 00] x R) c  (0,1) x (—co, 2),

(F2)' F a — r,1 - H x q — E, +€1)c  (0 ,1 ) x  [f 0, 0 0 ) ,

F(( — co, —  x - FED cR x [ f co) .

From Lemma 13, a  map of the form  (2 ) is  a  diffeomorphism on
(—oc, 1 + r )  x  (— oc, —  c )  u  ( - 00 , 1 + r )  x + c, o c ) ,  a n d  hence, is

extended to a  diffeomorphism F on the whole plane R 2 .
T h e  diffeomorphism Ft ,  defined  by  Ft(x , y )  = y r °F(x, y )  ,  has sim ilar

properties, namely, it has the form

(bx+h (y ),ft (y )) ((x , y) ( -00 , 1-1-r) X  (-00, — E))
Ft (x, y) =

(1 —  bx h ( y ) , f t (y ) )  ( ( x ,  y )E  ( - 00, 1+7-) x( +E, co)),

(3 )

and satisfies the filtration conditions for any t _t2:

(F1) Ft ([1- co ] x R) c  (0 ,1 ) x  ( —co, 2),

(F2) Ft ([—T, x [— E -F .E ])c  (o ,i) x (1 co ),

(F 3) Ft ( ( - 0 9 , —r] +ED cRx (1, 00).
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We note that Ft is semi-conjugate to f t o n  [0 ,1 ] x  ([0 , u 1] ),

Try °Ft =  f to  7-Cy,

where 7ry is  the projection to the y - axis.
F o r t = t o , Ft  i s  an affine horseshoe diffeomorphism, since f t o  is conjugate

to a tent map  on f 1 (  [0 ,1 ]) .

3 .2 .  Non- wandering set of F . L et At a n d  Q (Ft ) b e  the maximal
in v a r ia n t  s e t  o f  Ft i n  [ 0 , 1 ]  x  [ 0 , 1 ]  a n d  th e  non-w andering s e t  o f  Ft ,
re spec tive ly . In this subsection, we prove that Q (F t )  is contained in A .  For
this purpose, we use a sequence of filtrations associated to A .

F o r  a  sm all positive num ber g  w hich satisfies 0 < it< T , w e define the
filtration M (g )  as follows.

M (P) o= 0 ,
M (p )1 = I  x  ( - 00, - P],
M (p)2=1»<R,
M(p)3= R 2 ,

where (- i i ,  1+ g) .

Lemma 14. For an y  tt(0< it< r) , M (11 ) is  a f iltration. The invariant
set associated to the f iltration, U 7=1 CI „Ez F7 (M (p) i), is contained in I,x  [0 , 1] .

Pioof. W e  check  th a t  Ft (M (p) t) C  lu t  M  (p) a n d  calculate  the maximal
invariant set of M M i-1 for i = 1, 2, 3.

If (x, y) E M (g )i, then Ft (x, y) E IntM (p) 1, since bxe Int (4,) and

f t (y) = tK y < y .  Since f/ (( - oe, - /.1]) =  ( 0 0 , - tK,cd

n (1 ) 1= 0
E Z

From  (3 ) a n d  (F2), Ft (M (p) 2) is contained in Int (M (p)2 ).
F o r  (x, y) E / , x  (-0 0 , 0 ), (x, y) = (Jin x ,  (tK) n y ), and henc e,
F7 (x, y )  11/1(p)1 for sufficiently large n. For (x, y) E/, X (1, oc),

Ft (x, y) = (bx, tK (1 -  y )) E  X  ( -  co , 0) . Therefore, F7 (x, y) E M ( R ) l  fo r
sufficiently large n if (x, y ) G / ,x  ( (-0o , 0 ) u  (1 , 0 0 ) ) .  T his implies

n P t' (M (a) 2 (P) 1) cr u x [0,1].
n e  Z

F rom  (3 ) , (F 1 )  a n d  (F 2 ), we have Ft ( (1, 0 0 ) x c  [0 , 1] x RcM (ji) 2
and Ft ( ( -  0 0 , -  x  (1, 00)) c (1, 00) x R .  which imply

( ( -  ° ° ,  - a )  X  (1 , co)) 1111(p) 2. Therefore, the maximal invariant set of
R 2 - M (R)2 is contained in  ( - 0 0 , - /..t) x ( - 0 0 , 1] .
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Since F7 '( (— — x) x  (-0 0 , 1 ])  C  (— 00, x  (-0 0 , 1 ] fo r any
x > 0 , F n ( ( — ° C ) , —p) X  (— 00 , 1] ) ( -0 0 , —,teb- n) x (— o0, 1] for any n  O.
This implies

n F7 (R2 -31  (p) 2) n F7( ( — 00, —p) ( — 00 , I ] )  =  o.
„Ez Ez

From the above arguments, the invariant set associated to the filtration,

U i(1„Ez.F7 (M , is contained in /„X [0,1].

Proposition 15.

Q (Ft) cAt.

Pro o f . From the above lemma,

Q ( f )  c  n p t=(1 x  [o , ) .
ez

Since p  is an arbitrary sm all positive number less than 7-,

Q ( p ) c  n F7( [o , x  [0 ,1 ]  )  =At.
E Z

3.3 . Bifurcation of the 2-periodic point. R eca ll tha t pi i s  the
2-periodic point of f t g iven in Section 2.3. Fil[0,1]5{pt}: [0,1] X {Pt} - 4

[0 ,1 ] x  f l  is  a contraction map, hence, there exists a unique 2-periodic point
of Ft , qt , in  [0 ,1] x {Pt } with

DFiL =D Ft l Ft wo • DFt k,
( — b

O  f r ( f 4: ( P t ) ) ) ( 01)* f it (Pt) )
( — b2*

O( 4 ) ' ( p t )

Since 0 <6 2 < 1 and the period doubling bifurcation of Pt occurs at t= t i  in the
family {ft}, the period doubling bifurcation of qt occurs in the family {Ft}.

3.4 . Transversality of the stable and unstable manifolds. For
any  t G  [t2 , to] ,  the  local stable  m anifold  Wioc (0; F t )  and  the  loca l unstable
manifold Wiloc (0; F t ) are  respectively contained in the x -a x is  and the y-axis.

The following lemma shows the transversality of Ws (0 ) and Vr (0).

Lemma 16. For t2 < t< t o ,  there ex ist closed cone fields Cu and Cs  on
TR 2 IA, such that for any  rE At,



and

1,1 „4 421}.Cs (r )  = { ( v  1 )E  Tr R 2

v2
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1. (DFt) r (Cu (r)) C u  (Ft (r)) ,
(DFt) T1 (Cs (r)) c Cs  (Ft- 1  (r))

2. Cu (r) n C (r)  = {Or },

1 )
E IntCu (r) and ( 1 ) intCs (r) .

0

P ro o f . Let

Cu(r) = ( v i  )E Tr 112

V2
1,1 K

3,1,21}

O bviously, they satisfy th e  seco n d  an d  th ird  a sse r tio n  o f  th e  lem m a. W e
check the first assertion.

For rEA t and v= (
a  

)E C u (r) , we have
1

( ± b  h ' \ / a \  ( ± - ba - kh'
(DFt) r(y) =

0  f t1

Since 1.61-.K.' and

ba +h'i b lal + 1111 b • K3 ,+ 1 1 + 1 < 3,

Cu satisfies the first assertion.

Similarly, for rEA t and v
1

= E  (r) , we have
a

1  ( ft ± h 1 ( 1 ) =   1   ( ft ± ah'
(D.Ft) T1 (v) =

lb.4  0  ±- b a 'bid ± b a ) .

Since

— K
4

'  — 3
4
1 (  <b,

C5 also satisfies the first assertion.

3.5. H yperbolicity before the period doubling bifurcation. Let
Eu (r) n „ ezPti (Cu (FT" ( r ) ) )  and Es (r) = n „EzF7 (Cs (F—r  (r))) .
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VI I);
if 1, l' Li' and

a n d  (L s , d5) become complete
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W e p ro v e  th a t r  E s  i s  th e  hyperbolic  splitting fo r  Fr f o r  t i < t < t o .
Once it is done, the period doubling bifurcation a t t = t i  i s  the  first bifurcation
of the family {Ft ) , and hence, the proof of the main theorem is completed.

Lemma 17. For any r E A t , EU ( r)  and Es ( r)  are 1- dim ensional vector
spaces.

Proof. W e prove the lemma by the contraction principle (c f . [4]).
We define two spaces of line fields

L u r1 - 0< (a r) )> a E C° (A t , R)l( 

and Ls=114
- 4 <( P (

i
r ) )> iS'E C° (A t, WI.

For line fields 1; rl-- < ( Iv: ((rr) )>

and
/ (v1 (r) )>

I': r i- ÷ u—s-,rA,e, let d (1, 1') ll n
\  \  1/2(r)

s --,Y E,“d (I, 1') slin " vv 2i, I )V2 if 1, 1
,
 E  Ls. (Li', du)

metric spaces.
Let I f  =  E L U 1(r) (r)  for any r E A t l  fo r a= u, s, w hich is a  closed

subset of L'.
If w e prove that DF (resp. D r ' )  is  a contraction on 1,1̀  (resp. , then E U

(resp. E s )  is the image of a unique DF- invariant line field in
Pc'  (resp.

For v= <( a ) >  and v'= <( 1 )>  E L",

±ba (r) ±h' ±  1 ) 13 (r) ±  
f; f;

b I 01 } 1— s u p  —, ar — p r  < — d (v  1/)
rEnt 3 ' '

and hence, DEt is  a contraction of

For v= < (a )> and v'= <( P  )>  ELs,1 1

d  (DFt (u) , DFt (7)') u= suPf
reAt
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> b  I v
V2

510 Masayuki Asaoka

ted (DFV(y) , DF71 (0 ) s=suP b a (r)b  ( r )  
rEiit{ f't± a (r )h ' f± 13(r)h'

. 1 2 T , r  ?  h ' )
b( 1 ± _ ( , 1 , , , ) la (r) — IS (r)i}.

{  ( 1 +   a (

\f t  1 \ ft 1

1 1 1K ' 1 i I, 1Sincelal, ISI . 4 , Ih'I l, Vtl K'and b<a<-,

d (DPI' (y), DPI' (y ')  s ' b ( ) 2 d (v, v') s < P7 c/ (v, v') 3,

and hence, DF- 1  is a contraction of L .

Lemma 18. Eu (r) ED E s (r) i s  the hyperbolic splitting o f TR2 In, for
ti<t<to.

Proof. If there exist C>0 and 2>1 such thatli(DP)rvull>C2n Ilvulland
II (DF - n ) rvs11>C2 n IlvslIfor any YEA, vu E0 (r) , v s e  CS (r) and n G N,
then P e E s is the hyperbolic splitting.

Fix a  p o in t r = (x, y )  in  A t . Since it is in  A t , y  is in the m axim al
f t

- invariant se t o f [0,1].

(DM  r = nr? (DFi) v(,)) + * ±bn
k=0 k=0 O t (A  (y ))

From the  hyperbolicity of f t , there exist positive constants C  and 2 >1 such

that (f7) 'I a n d  hence, we can choose n o such that

I (f70)1 >2(1 + ( K
3 ,) 2). For any vu = )ECU (r)

v2

II (DPP) rvull=
fr)' (r) • y2)* )11

t) (r) • v2I >2(1±( 13 -) 2)1Y21 11Y.1 1.

*
( .f7)' (y )  I

vi
For any vs = ( ) e  (r) ,

V2

— • +  • vh1—1 h' 

11( ±  b b f t  v 2 1

Since114 1 (1+ ( I,I ' ) 2) • iviI < 4 1vil and

II (DF -t-
1 )  rush =
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II(DF7 1 ) rysil >,1  • 6 •
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