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The transverse structure of Lie flows of codimension 3
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Blas HERRERA and Agusti REVENTOS

1. Introduction

This paper deals with the problem of the realization of a given Lie
algebra as transverse algebra to a Lie foliation on a compact manifold.

Lie foliations have been studied by several authors ([E.H.S], [EN], [F],
[H.M], [M], [Ma], etc.). The importance of this study was increased by the
fact that they arise naturally in Molino’s classification of Riemannian
foliations [M].

To each Lie foliation are associated two Lie algebras, the Lie algebra § of
the Lie group on which the foliation is modeled and the structural Lie algebra
#. The latter algebra is the Lie algebra of the Lie foliation % restricted to
the closure of any one of its leaves. In particular, it is a subalgebra of 9.
We remark that although # is canonically associated to %, 9 is not.

Thus two interesting problems are naturally posed: the realization problem
and the change problem.

The realization problem is to know which pairs of Lie algebras (4, #),
with # subalgebra of §, can arise as transverse and structural Lie algebras,
respectively, of a Lie foliation & on a compact oriented manifold M.

This problem is closely related to the following Haefliger's problem
[Hal: given a Lie subgroup I" of a Lie group G, is there a Lie G-foliation on a
compact manifold M with holonomy group I'? E. Ghys [Gh] and G. Meigniez
[Mg] also studied this problem and they gave necessary conditions for a pair
(G, I') to be realizable.

Our formulation of the realization problem is a little different: We shall
say that the pair (9, q) is realizable if there is a compact oriented manifold
endowed with a Lie foliation transversely modeled on ¢ and with structural
Lie algebra of dimension q. We also say that 9 is realizable as transverse to a
Lie foliation.

This formulation of the realization problem has been considered in [L1],
[H] . [G, R] and [H.LLR] making a very detailed study of Lie flows of
codimension 3 (cf. §8). But a complete classification was not obtained
because of the following open question:
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Let 9% be the family of Lie algebras for which there is a basis e;, es, es
such that

[6’1. ez] =0, [el. 63] =ez, [62, 03] =—ei1the,, hE(0,2).

For which & is there a Lie %-flow on a compact manifold with basic
dimension 27
We solve this problem here, showing that there is no algebra of the

family 9%, h # 0, realizable as transverse to a Lie flow of basic dimension 2
(Theorem 5.1). .

The change problem is to know if a given Lie %-foliation can be at the
same time a Lie 9¥'-foliation, where ¥ and ¥ are two non isomorphic Lie
algebras. The only a priori restriction is that the structural Lie algebra #
must be a Lie subalgebra of ¢ and 9.

A first example of this situation was given by P. Molino [G.R]:

Let 0°, 6!, 67 6° denote the canonical coordinates in T3X T'. The vector filed
X=0/06°+ ad/ 06"+ B0/06? with a,B rationally independent, admits 8/96°,
0/06", 3/06° as an abelian parallelism. But

e =cosl93i-|-sinﬁ31

06° 00!
. 0
= _Sln03ﬁ+C0803801
___ 0
REPTT
is a new parallelism with [e), e2] =0, [e1, es] =ea, [e2 e3] = —ey, ie. the flow

is also transversely modeled on %3.

A systematic study of the change problem was first made in [H]. The
case of Lie flows of codimension 3 and basic dimension 1 was made in
[HLLR] (cf. §8).

In this paper we complete the classification, in relation with the change
problem, of Lie flows of codimension 3. The cases of codimension 1 and 2 are
easy (cf. §3). We expect that this study becomes usuful in order to attack
the general case.

The main results of this paper are the following.

Theorem 5.1. (1) The Lie group G§ admits, for countable many values
of h, a closed Lie subgroup H which is the closure of a finilely Jenervated subgroup
and such that the homogeneous space G/H is a compact manifold of dimension 2.

(2) For these h the pair (9%, 1) is realizable as transverse to a Lie foliation.
(3) The pair (9%, 1) is not realizable as transverse to a Lie flow for any h#0.

Theorem 6.1. Let & be a codimension 3 Lie flow of basic dimension 2 on



Lie flows of codimension 3 457

a compact oriented manifold M. Then

(1) & can be modeled exactly on one or exactly on two Lie algebras. This second
case arises if and only if F is modeled on 9, and 93 or on Y4 and Ys.

(2) F is modeled on 9, if and only if it is modeled on Y.

(3) If F is modeled on Ys then it is modeled on Y.

(4) There ave 94 Lie flows which are not Ys Lie flows.

Theorem 7.1. Let F be a codimension 3 Lie foliation on a compact
oriented manifold M with compact leaves. Then
(1) F can be modeled exactly on one or exactly on two Lie algebras.
(2) F can be modeled on two Lie algebras if and only if it is modeled on 9. In
this case the pairis (4., 93).

(3) There ave Lie 93-foliations that can not be modeled on 9.

We wish to thank Professors G. Hector and G. Guasp for their helpful
comments during the development of this work.

2. Preliminaries

Let # be a smooth foliation of codimension n on a differentiable manifold
M given by an integrable subbundle L € TM. We denote by T% the Lie
algebra of the vector fields tangents to the foliation, i.e. the sections of L. A
vector field YEX (M) is said to be F-foliated (or simply foliated) if
[X, Y] ETF for all X € T¥. The Lie algebra of foliated vector fields is
denoted by £(M, ). Clearly, T# is an ideal of £(M, #) and the elements
of ¥ M/F)=% M, F)/TF are called transverse (or basic) vector fields.

If there is a family {X; ..., X,} of foliated vector fields on M such that the
corresponding family {Xi ... X,) of basic vector fields has rank n everywhere
the foliation is called transversely parallelizable and (X 1..X . is a
transverse parallelism. If the vector subspace 4 of ¥ (M/%) generated by
{X,...X,) is a Lie subalgebra, the foliation is called Lie 9-foliation and we

say that & is transversely modeled on the Lie algebra 9.
We shall use the following structure theorems:

Theorem 2.1. ([M]). = Let F be a transversely parallelizable foliation on
a compact manifold M, of codimension n. Then
a) There is a Lie algebra H of dimension q<n.
b) There is a locally trivial fibvation m: M—W with compact fibve F and

dimW=n—g=m.

¢) There is a dense Lie #H~foliation on F such that:
i) The fibres of T are the closures of the leaves of F.
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ii) The foliation induced by F on each fibre of m: M— W is isomorphic to ohe
Lie# -foliation on .

# is called the structural Lie algebra of (M, F), m the basic fibration and

W the basic manifold. The foliation given by the fibres of 7 is denoted by 7.
Note that the basic dimension (ie. the dimension of W) is

dim W=codim % =codim ¥ —dim #

Theorem 2.2 ([F]) . F is a Lie Y-foliation on a compact connected
manifold M if and only if there exists a homomorphism h: m (M)—G, where G is
the connected and simply connected Lie group with its Lie algebre G, a covering

map p: M—M, and a locally trivial fibration D: M—G such that
i) D: M—G is equivariant under the group Aut (p).

ii) The fibres of D are the leaves of the lift foliation F =p*F of F.
Condition i) means that

D(y-x)=h(y) -D(x) VYxrEM VyEm(M).

We also say that & is a Lie G-foliation. The subgroup I'=Im h is called
the holonomy group of the foliation.

For a Lie $-foliation the structural Lie algebra # is always a subalgebra
of 9.

The basic cohomology H* (M/%) of a foliation % on a manifold M is the
cohomology of the complex of basic forms, ie. the subcomplex
Q*(M/F) CQ (M) of the De Rham complex given by the forms a satisfying
ixa=0 and Lxa=0 for any vector field XETZ.

For a Riemannian foliation on a compact manifold M it is well known
[E.H.S] that H*(M/%) =0 or R, where n is the codimension of the foliation.
If H*(M/%) =R the foliation & is called unimodular.

We have the result

Theorem 2.3 ([L1.R.2]). Let F be a Lie 9-foliation of codimension n on
a compact oriented manifold M.
i) If F is unimodulay then H" (9) =R and H? (9) CH® M/ F).
i) If H'(9) =R and the structural Lic algebra is an ideal of 9§ then
H"(M/F) =R.

We shall also use the following results on unimodularity.
Theorem 2.4 ([LLR.1]). Let F be a s1(2, R) Lie flow of codimension 3

and of basic dimension 2 on a compact orviented wmanifold. Then F is nol
untmodular.
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Theorem 2.5 ([LL.R.2]). Let F be a Lie 9-foliation with G a nilpotent
Lie algebra on a compact oriented manifold. Then F is unimodular.

Now we recall the definition of commuting sheaf associated to a foliation
[M]. Let U be an open subset of M and let ZyEX (U/%) be a local transverse
field. We will say that Zy is a local commuting transverse field if, for all

XEX (M/F), the restriction of X to U commutes with Zy. The set of these
local commuting transverse fields forms a subalgebra C(U) of X (U/%).
These subalgebras, together the natural restrictions, can be considered as a
presheaf of algebras. The commuting sheaf is then the sheaf associated to this
presheaf.

For instance, in the case of dense Lie foliations, where the transverse Lie
algebra can be identified with the Lie algebra of left invariant vector fields on
G, the commuting sheaf is nothing but the germs of the right invariant ones.

Theorem 2.6 ([M.S]). Let F be a viemannian flow on a compact oriented
manifotd M. Then F is unimodular if and only if the commuting sheaf is
globaly trivial.

We shall use the following classification of the 3 dimensional Lie
algebras:
* % (Abelian):
le1, e2] = [ey, es] = [e2, €3] =0
* %, (Heisenberg):
le1, e2] = [en, ea] =0, [ez' es] =e
e Y(s0(3)):
ler, e =e3,  [ez, 3] =er, [es, 1] =e,
* 9,(s1(2):
ler, ex) =es, [ez, es) =—er, e e1] =e
e 9. (Affine):
ler ex] =e1,  [e1, es] = [ez, €3] =0
* gei
le1, e2] =0, [en, esl =er e es] =eite,
*  The family %
[e1. ez] =0, [61, e3]=e1 [ez, 83] =ke, k¥F0

The algebras %% and 9% are isomorphic if and only if k=F or k=%.

From now on we consider that the family is parametrized by
he[—1,0) U (0,1].

e The family %%
le1, e2] =0, [e1, es) =ea, [ez, €3] = —erthe,  h2<4
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The algebras 94 and 9% are isomorphic if and only if h=h" or h=—h'.
From now on we consider thet family is parametrized by 4 € [0, 2). Notice
that for k224 we obtain an algebra isomorphic to %s.

The Lie algebras 9, 92, 93, 9, are unimodular. The Lie algebras %;, Y
are not unimodular. The only unimodular Lie algebra in the family 4; is 47!
and the only unimodular Lie algebra in the family 9s is 93.

The connected simply connected Lie groups corresponding to ¥s, 9%, 94
are given by

t

e x
Gs= 1y |:;xy tER
1
et 0 =z
Gi=1l 0 e* y |:x,y. t€ER
0O 0 1
c(t)cos(p+t)  —c(t)sint x
Gt= ¢ (t)sint ct)cos(p—t) y |;x, y. tER
0 0 1
_2 o
where ¢ () = o O 4—h? and ,B—tango—a.

They can also be described as R*=R2?X R with the product
B t) - @ )= @pte ™, t+1)

where

0 1
A=< ) for G4
—1 h

In §7 we shall use the following result concerning semisimple Lie groups.

Theorem 2.7 ([G]). Let I be a lattice in a semisimple Lie group G that
has no compact semisimple factors, let W=G/T, and let G' be a Lie group acting
transitively and locally effectively on W. Then G’ is locally isomorphic to G.
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We shall also use the following results obtained in [H.LLR.]:

Proposition 2.8. Every no dense Lie abelian foliation of codimension 3
on a compact manifold M is also a Lie 94="-foliation.

The converse is not true. Nevertheless it is true for basic dimension 2
(and also for Lie flows of basic dimension 1):

Proposition 2.9. Let F be a Lie 9E="foliation on a compact manifold M
with basic dimension 2, then ¥ is also a Lie abelian foliation.

Proposition 2.10. Let F be a Lie foliation on a compact manifold
transversely modeled on two wilpotent Lie algebras G and K. Then G and K are
isomorphiec.

3. Codimensions 1 and 2

The realization and the change problems are very easy in these two
codimensions. Codimension 1. There is only one Lie algebra of dimension 1,
so that the change problem has no sense in this case. The linear flows on T?
(rational slope for basic dimension 1 and irrational slope for basic dimension 0)
are examples of such foliations.

Codimension 2. There are two Lie algebras of dimension 2: the abelian
and the affine Lie algebras. Examples of the abelian case in basic dimension
0, 1 or 2 are given by linear flows of suitable slope on T3. A dense (basic
dimension 0) affine Lie foliation of codimension 2 was given by A. Haefliger
in [Gh]. This situation is not possible for Lie flows [C].

The flow on the hyperbolic torus T3 induced by one of the eigenvectors of
AESL (2, Z) , tr(A)>2, is one example of an affine Lie flow of basic
dimension 2 and basic dimension 1 [C].

But it is not possible to have a codimension 2 affine Lie flow of basic
dimension 2. This is because in this case the leaves are compact and the
folitation is in fact a locally trivial bundle on a compact manifold. In
particular, since the basic cohomology coincides with the cohomology of the
base space of the bundle, the foliation is unimodular. But this is not possible
because the affine Lie algebra is not unimodular (Theorem 2.3).

On the other hand, since every Lie foliation transversely modeled on the
abelian Lie algebra is unimodular (Theorem 2.3) it is clear that it is not
possible to change the transverse algebra of a given codimension 2 Lie
foliation.

4. Review of some general facts
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First of all we note that the language of Lie algebras can be translated
into the language of Lie groups.

The pair of Lie algebras (4, #) is realizable if and only if the pair of Lie
groups (G, I') is realizable, where G is the comnected 1-commected Lie group
corvesponding to G and I' is a subgroup of G such that the Lie algebra of the

connected component of the identity of I is K.

But we can have subgroups I" and I’ of G, with the same Lie algebra #,
and such that (G, I') is realizable and (G, I"") is not [Gh].

The non-isomorphic Lie algebras G and Y arve transverse to the same Lie
foliation of and only if on the connected 1-connected Lie group (G, *) corresponding
to G there exists another operation of group, %, such that the Lie algcbra of
(G, %) is 9 and there exist a subgroup I'' of (G, *) and an isomorphism @
between the holonomy group I of the given foliation and I” such that y 9= (y) *
g for each YET and 9 €G.

This last condition implies, in particular, that @ can be extended to a

unique continuous isomorphism @ between I and @ (I . Since the holonomy

group I' of a dense Lie foliation is dense in G, ® is an isomorphism between
(G, ) and (G, %), ie. a dense Lie foliation can be modeled only on one Lie
algebra.

Another consequence of this interpretation is that a Lie foliation
transversely modeled on a Lie algebra such that the corresponding connected
1-connected Lie group is compact, can be modeled only on this Lie algebra.
This follows from the fact [F] that the Lie group G is diffeomorphic to the

manifold M /%, which depends only on the foliation, and that compact Lie
groups with the same homotopy type are locally isomorphic [S].

We remark that in the case of Lie foliations on simply connected manifolds
the holonomy group is trivial. Hence, in this case, a Lie G-foliation is also a
Lie foliation with respect to every structure of Lie group on the manifold G.
There are not topological obstructions to the change problem. If the manifold
is not only simply connected, but compact, then the foliation is a locally trivial
bundle over G. In particular the foliation can not be dense and the connected
1-connected group G corresponding to 4 is compact. Hence there are no Lie
foliations of codimension 1 or 2 on compact simply connected manifolds.

5. On the dimension of the foliation

The dimension of the foliation plays an important role in the realization
and the change problems. To see this we shall construct examples of pairs
(9, q) such that they are not realizable as Lie flows but that they are
realizable as Lie foliations of dimension greater than one (Theorem 5.1).
Also, we shall give examples of pairs (9, ¢q) such that one can change the
transverse Lie algebra % on any of their realizations as Lie flows and
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examples of foliations on the same pair (9, ¢) on which it is not possible to
change the transverse Lie algebra ¢ (Example 5.1).

It follows directly from [F] that a necessary condition for a pair (9, q)
to be realizable is that the connected simply connected Lie group G
corresponding to ¢ admits a closed Lie subgroup H of dimension q. Moreover
this H must be the closure of a finitely generated sugroup I" of G. These
conditions are not easy to check up in general and moreover they are not
sufficient (Theorem 5.1). More specific necessary conditions are given in
[Gh]. We begin with the following

Lemma 5.1. The basic manifold of a Lie Gt-foliation of basic dimension
2 on a compact manifold M is diffeomorphie to T? or K2

Proof. For each point x € M there exists a foliated vector field Zy in a

neighbourhood U of x, such that Zy is tangent to . is not tangent to %, and
commutes (modulo T%) with every global foliated vector field, that is, we
consider a local section of the commuting sheaf [M]. Moreover if Zy is
another vector field in a neighbourhood V of x with the same property then
Zv=aZy (modulo T#) where « is a locally constant function.

We can assume that the vector field Zy is

ZU:aUY1+b(1Yz+CUY3

where ay, by, cy are basic functions on U and {Y,, Y, Y3} is a parallelism

corresponding to the basis of 9% considered in section 2. Since [Y;, Zv] ETF
we obtain the equations:

Y, (Cu) =0 Yz(Cu) =0 Ys(CU) =0

We deduce from these equations that cy is constant on U.

Since Zy=aZy (modulo T#), with a a locally constant function, if cy =0
then cy=0. Then there are only two possibilities:

i) for any point y €M and any neighbourhood U of y we have ¢y =0 or
ii) for any point y €M and any neighbourhood U of y we have cy#0. Let us
prove that ii) is not possible:

In this case it is easy to see that Y, Y, are not tangents to F at any
point. Then we have T(M) = TF® (Y, Y, and we define YV as the
component of Y; in (Y3, Y. Then V¥ is a combination of YY and Y% at each
point, i.e. there are basic functions f, ¢ such that

(Y$) o= rp) (YN +9 () (YY), VpeEM

In this case we obtain

Y¥=1[Y, YoJ"=11 () Y¥+Y1(9) Y¥
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then Yi(g) is the constant 1, but this is not possible because ¢ is a continuous
function on a compact manifold.
Thus ¢cy=0 in each neighbourhood U and this means that Y is not

tangent to F at any point. Hence the projection of the foliated vector field Y3
on the basic manifold W is a non-vanishing vector field, i.e. W=T?or K%

Theorem 5.1. (1) The Lie group G§ admits, for countable many values
of h, a closed Lie subgroup H which is the closure of a finitely generated subgroup
and such that the homogeneous space G/H is a compact manifold of dimension 2.
(2) For these h the pair (9%, 1) is realizable as transverse to a Lie foliation.

(3) The pair (4%, 1) is not realizable as transverse to a Lie flow for any h#0.

Proof of (1). Let I' =((1,0,0), (£ 0,0), (0,1,0), (0,0, 7)), £&Q, be a
subgroup of G4 and let H=T"

We shall first prove that dim H=1, for at least countable many values of
h. Note that every element of I" can be written as a product of elements of
type

(a,m, kr) a€R,m, kEZ

But

(a, m, k) + (@', m’, K'm) = (c (kr) (

sinkr cos (¢p—km) m

cos(¢p+km)  —sinkm ) (a')

+<“ ) (b+F) ) =
m

khm khr

=l(atevp * (£a),evios - (Em) +m, (k+E)7)

1 . h 1
Now, as _logn >0, Vn€Z, n>1, there is h€ [0, 2) such that Jiom rlogn

Thus (a, m, k) + (@', m', ¥r) = (— —, xu'm’" +m, (k+F) 7 and
H= RXZ)XrZ.,ie dim H=1.

Moreover the GE/H=T? i.e. itis a compact manifold of dimension two.

Proof of (2). Since I' is a polycyclic, finitely generated subgroup of G%
with G4/H compact, I is realizable [Mg].

More precisely Megniez theorem states that if a finitely generated
subgroup I" of a conected simply connected solvable Lie group G contains a
uniform polycyclic subgroup, then I' is the holonomy group of a Lie
G-foliation on a compact manifold M.

In particular the pair (9%, 1) is realizable.

But the Meigniez construction gives rise to a 2-dimensional Lie

%k-foliation. In fact this realization can be made in the following way:
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Let S= (R?XR?) XR be the Lie group given by
(a, b,c,d,e) » @, b,c,d,e)=(ab)+A) @, b), (. d)+
Ale) (¢, d), ete)

where

A) =c(e) (cos (p+e)  —sine )

sine cos(p—e)
Now we consider the submersion
¢:S —  R*!XR=Gt
(a,b,c,d,e) — (a+&, b+d,e)

It is easy to see that ¢ (yx) =¢ () « ¢ (x), VyYEZ'KrZ, Vx ES and hence
we have a 2-dimensional Lie G-foliation on S/Z*XnZ).

Before proving part (3) we remark that it is the answer to one of the
open questions stated in [GR] and it closes the realization problem for Lie
flows of codimension 3 and basic dimension 2.

Proof of (3). Assume that there is a %, h#0, Lie flow of basic dimension
2 on a compact oriented manifold M. By replacing, if necessary, the basic
manifold W with its double cover we can assume that the basic fibration is a
T? bundle over T2 Using now the classification of such bundles given by
Sakamoto-Fukuhara [S.F] we obtain that M is diffeomorphic to
(T? x R X R) / ~, the quotient space of (T2 X R X R) by the equivalence
relation “~" generated by

(s, t), x.y)~(m(s, 1), x+1, y)
and
(m(s, t), x,y)~(mw(A(s, t) +ax(m, n)), x, y+1)

where m: R*>T? is the canonical projection, m, n€Z and AESL(2,Z).
This description enable us to construct a well defined and injective map
j: T*>M, that we shall use later, by

j(zla, b)) =p(x(0,a),b,0)

where p: T2 X R>—M is the canonical projection.
On the other hand the homotopy sequence of the basic fibration induces
the exact sequence of fundamental groups

0—m (T?)—m (M) — 7, (T?)—0
Since m,(T3) is a free abelian group we have

m (M) =Z*XZ?
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In particular, and because of the injectivity of the holonomy
representation h: m; (M) —G# of a non-compact Lie flow, we have two subgroups
h (Z?1X0) and h (0IXZ?) of G% isomorphic to Z®Z. But it can be seen that if

S is a subgroup of G4 isomorphic to Z®Z then SCR?X {0} or

Sc{a™b"; ab=ba, m, n €Z} for a, bER?X {0}. In this case if a = (ay, as, &)
and b= (b, bs, ), & and 7 are rationally independent. Hence we have four
possibilities:

(1) n(Z*X0) and h(0XZ?) are both contained in R? X {0}. Then the
holonomy group I'=h (m; (M)) , generated by h(Z?IX0) and h (0 X Z?) .
contained in R?2X {0}, which contradicts G4/I'=T2

(2)

h (Z21X0) = {a™b™; ab=ba, m, n€Z} a, bER?X {0}
and

h(0XZ2) =A{c™d™ cd=dc, m, n€Z} ¢, dER?*X {0}

As h (Z*1X0) is a normal subgroup of I" we have cac™*€h (Z?IX0),
i.e cac™'=a™b". This implies m&+un =2E&, and since & and 7 are rationally
independent we have m=1 and n=0, and hence ca=ac. Analogously ad =da,
be = cb, and bd = db. Thus m (M) is abelian and the matrix A in the
Sakamoto-Fukuhara classification is the identity [S.F]. But this implies that
the flow is isometric [A.M] which is impossible because %% h # 0, is not
unimodular.
(3) h(Z*X0) cR?X {0} and h (0IXZ?) ={a™b" ab=ba, m, nEZ}

a, b & R? X {0} or vice versa. By the construction of the map j we have
jx 7] €Z2IX0 and j«[6] €E0XZ2 where [r]. [0] are the generators of m; (T?).
Then h (Gx[7]) = (x, y, 0), (x, y) # (0, 0), and h (x[0]) = (p. q, t), t#0 but
this is not possible because (x,y.0) « (p.q.t)# (p.q. t) + (x,y.0)

We end this section showing, by means of an example, that the dimension
of the foliation plays an important role in the change problem.

First we recall that the Molino’s example in §1 is at the same time a
realization of the pair (93, 2) and of the pair (9, 2).

In fact we have proved in [H.LLR] that any realization of the pair (93, 2)
as transverse to a Lie flow is, at the same time, an abelian flow.

But there are realizations of the same pair (9%, 2) as transverse to a Lie
foliation which are not Lie foliations for any other Lie algebra. To see this
we consider the following example:

Example 5.1. Let I" be the subgroup of G§ given by
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r=1{(1,0,0), (§0,0), (0,1,0), (0,1,0), (0,0, )}

where £ and n€Q. |

Since I'is a polycyclic finitely generated subgroup of G§ the pair (G§, I')
is realizable [Mg], as transverse to a 2-dimensional foliation. Note that the
connected component of the identity of I' is R? X {0}. Moreover, as the

structural Lie algebra # is an ideal of 9% and %% is unimodular, the foliation
is unimodular (Theorem 2.3), and hence it only can be modeled on
umimodular Lie algebras, i.e. on 91, 95, 93, Y94, 97'. But

(1) It can not be modeled on %, because the holonomy group I is not
abelian.

(2) 1t can not be modeled neither on ¥%; nor on ¥, because they do not
have abelian subalgebras of dimension 2.

(3) It can not be modeled neither on 9; nor on 97'. To see this assume
that it is modeled on %, (resp. ¥;'!). That means that on the same
underlying manifold R® we have two structures of Lie group, the
corresponding to G§ and the corresponding to G2 (resp. G7!). Moreover we
have 7+ g =@ (y) *g for all g in the underlying manifold R® where - and *
are the respective Lie multiplications (§4). Then the subgroup H={(1, 0, 0),
(0,1,0), (0,0, m)} of I'is a discrete uniform subgroup of G§ and @ (H) is a
discrete uniform subgroup of G, (resp. Gr7!) isomorphic to H. But this is a
contradiction to the classification of the uniform subgrups of these Lie groups

(87).

6. Lie flows of codimension 3 and basic dimension 2.

The realization and the change problem in basic dimension 1 was first
considered in [G.R] and completely solved in [H.LLR].

In basic dimension 2, the realization problem was also considered in the
above two papers but the case 9%, h # 0 remained open. This case has been
solved here in Theorem 5.1.

So it only remains to study the change problem.

We begin with the following

Lemma 6.1. The basic manifold of a Lie Gs—flow of basic dimension 2 is
diffeomorphic to the torus T2

Proof Let Zy be a local section of the commuting sheaf as in Lemma 5.1.
Recall that if Zy is another section of this sheaf then Zy =aZy (modulo T%)
where a is a locally constant function.

We can assume that the vector field Zy is
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ZUZaUY1+bUy2+CUy3

where ay, by, cy are basic functions on U and {Y,, Y, Y3} is a parallelism
corresponding to the basis of 95 considered in section 2. Since [Y;, Zy] ETF
we obtain the equations:

Yilay) =—by Ya(ay) =ay Yslay) =0
Yi(by) =0 Y2(by) =0  Y3(by) =0
Y1(cw) =0 Yalcw) =0 Y3(co) =0

Thus by and cy are locally constant. As by = ayvby and cy = ayyCy we
have by=0 everywhere or by#0 for each U and the same for cy.

But by # 0 everywhere implies that f—;’ is a global section of the

commuting sheaf which is impossible because this flow is not unimodular
[M.S]. Hence by=0 everywhere.
As the same is true for cy we have Zy=ayY:. In particular Y; and Y3

are never tangent to # and the basic manifold is diffeomorphic to T2

Theorem 6.1. Let F be a codimension 3 Lie flow of basic dimension 2 on
a compact oriented manifold M. Then
(1) & can be modeled exactly on one or exactly on two Lie algebras. This

second case arise if and only if F is modeled on G, and 93 or on 44 and Y5

(2) F is modeled on 9, if and omly if it is modeled on 3.
(3) If F is modeled on Ys then it is modeled on G,
(4) There are Lie 94—flows which ave not Lie 9s-flows.

Proof. First we recall that (2) is proved in [H.LLR].

Proof of (1). It follows from the results on realization in [G.R] and
[HLLR] and Theorem 5.1 that the only Lie algebras that can appear as
transverse Lie algebras to this Lie flow are

Y1, Y2, 93, Ga, G5, s

Also if ¥ is modeled on ¥; it is not possible to change the algebra
because 93 is the only Lie algebra of dimension 3 with compact connected
1-connected associated Lie group.

Assume that F is modeled on 9%;. Then the flow is unimodular [LLR.2]
and hence it can not be modeled on ¥s because the affine algebra is not
unimodular, and it can not be modeled on ¥,, because the Lie flows of basic
dimension 2 on %, are not unimodular [LLR.1]. Finally it can not modeled on
9, because they are both nilpotent [H.LLR].

Assume that F is modeled on %. Since the flow is unimodular [LLR.2],
we have as before that it can not be modeled neither on 94 nor on %s.

Proof of (3). If % is modeled on ¥s the basic fibration is a T? bundle
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over T? (Lemma 6.1). Using now the classification of T? bundle over T2
given by Sakamoto-Fukuhara [S.F] we have that there are a matrix

b
A :(a d ) €SL (2, Z) and numbers m, n €Z such that M is diffeomorphic to
¢

the quotient of R* by the natural action of Z3XZ. This semidirect product is
given by

(s,d) (s',d") = (s+B(s"), d+d')s, S €L’ d,d'EL
and
a b m
B=|c d n
001
That corresponds exactly to the action on the universal covering M of the
fundamental group of M.

—— ~
Set G4=SL (2, R) and G5=Aff* (R) XR. Let D: M—Gs and h: Z}IXZ—G;

be the developing map and the holonomy morphism associated to the given Lie
flow #. Let I'= h(Z3XZ) be the holonomy group. The vector field Y,
considered in the proof of Lemma 6.1 is the projection on M of a vector field
Y1 on M such that D« (Y1) =e; where ey is the left invariant vector field on Gs
given by

0

“=Vor

where the coordinates x, y correspond to the notation

x
Afft (R) ={ v cy >0}
01
Since Y; is tangent to the closure of the leaves and M/% =Gs/T it follows

that '=R X H where H is a subgroup {r =0} in Gs. Since Gs/I" has
dimension 2, H must be a discrete subgroup and hence I'CAff* (R) X €Z for a
given €e€ER. We may assume ¢=1. Next we define

D Gs - Gs
(@ bt) = ala,b) Q)
where @ is a lifting of
¢$: R — SL(2 R)

t — cos2mt —sin2mt
sin2m!  cos2mwt

and & is a lifting of
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a: Afff(R) — SL(2,R)
(a b) L1 (a b a>0
01 va \o 1
to the universal covering G4 of SL (2, R).

Since ¢ (1), n €Z, is in the center of G4+ [P], @ is a morphism when
restricted to I. Then if we define D=®¢°D and h=®-h we have

Dy -®)=0h(y) +Dx))=0((a b n) * (x,y,2)=0lat+bx, by, n+z) =
=alat+bxr, by) - dntz)=al, b) - dpm) alx, y) - plz)=
=h(y) + D(x)

and hence Z is also a 9, Lie flow.

Proof of (4). Let D=T?*# T? be the double torus and let T,D be the unit
tangent bundle over D. It is well known that T,D is diffeomorphic to the
quotient space T:H/m, (D) where the action of the fundamental group of the
double torus m; (D) on the unit tangent bundle of the hyperbolic plane H is by
hyperbolic isometries.

Next we consider the diagonal action of m, (D) on the producxt T,H X S?,
where the action on the second component is the the identity.

As T;H X §' is diffeomorphic to H X S? X S* we can take coordinates ¢, s
on S'X S! and consider the vector field on HX S' X S! given by

f=%+€%, €€ Q. Since the above action is by rotations on the first S and

the identity on the second one, the vector field X induces a vector field X on
the quotient space HX S'X S/, (D) =ZT,D X S

We claim that X is a 9, Lie flow on the compact manifold T,D X S*.

To see this recall that HX S is diffeomorphic to PSL (2, R) and hence we

have on HX S!'X S! vector fields (Y}, 0), (V5 0), (Y3 0) induced by a basis of
the Lie algebra 9, of PSL (2, R). It is worth to say that the identification

between PSL (2, R) and HX S" is given by A— (A7 (i), Aw) where

Az = Z:—ig and # is a unit tangent vector in TsunH with a previous fixed
direction.

Since left invariant vector fields on the group PSL (2, R) correspond to
infinitestimal hyperbolic isometries, the above vector fields induce vector
fields Y1, Y2, Y3 on the quotient space HXS' X S/, (D) =T\D X S

Again because they are infinitestimal isometries we have [Y; X] =0, i.e.
they are foliated with respect to X. Since they are obviously transverse to X,
they are the desired 9, Lie parallelisme.

But X can not be modeled on 95 because the basic manifold is D (Lemma
6.1).
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7. Compact Lie Flows of codimension 3

The results of this section are equally true both for Lie flows and Lie
foliations.

First we shall recall the classification of discrete uniform subgroups of
dimension 3 Lie groups [A.G.H]. This classification directly solves the

realization problem: Only the algebras 91, G2, Y3, Ys, 97", 93 are realizable. We
have:

(1) The only connected 1-connected Lie groups of dimension 3 with
uniform discrete subgroups are those corresponding to the Lie algebras

91,95 93,9, 9", 9
(2) In the abelian case, %), the group is isomorphic to the matrix group
100 X1
01 0 X2

0011‘3
0001

(x1, x2, x3) ER?

and the uniform discrete subgroup I corresponds to

100 n
01 0 n
001 ns
0001

(n1, ny, n3) EZ3

(3) In the non-abelian nilpotent case, %, the group is isomorphic to the
matrix group

1 X X2
0 1 X3 (1'1, X2, 1‘3) ERS
0 0 1

and the subgroup I corresponds to the subgroup generated by

110 100 11%
010] (011 01 o
001/ \oo1/ \ .,

for a given kREN. We call this subgroup I'() and we have
Fe)=rF)or=F.
Moreover Z(I"(k)) / ['(k), F’'(R)] N Z (" (¥)) = Z/KZ, and Z(I'(1)) #0
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[A.G.H].
(4) In the case of 97! the group is isomorphic to

e 0 0 x

0 e* 0y 3 . -
(xr,y, z2) ER® for a fixed kEZ such that e*+e*#2

0 0 1 z

0 0 01

and I corresponds to the subgroup generated by

s 0 00 100 u 1 00 u
1 0 et 00 _ 010 wn 010 vy
e1— €2— e3—
0 0 11 0010 0010
0 0 01 0001 0001
ur U2
with #0. It is not abelian.
V1 V2

(5) In the case %3 the group is isomorphic to

cos(2mz) sin(2mz) 0 x
—sin(2mz) cos(2mz) 0 y
0 0 1 2z
0 0 01

(x,y.z) ER®

and I corresponds to a subgroup generated either by

cos(%) sin(%) 00
—in(2mn (2ﬂ
= sm( ) ) cos b ) 00
0 0 1 &
p
0 0 01
l 0 0 U 1 0 0 Uz
010 v 010 v
Wy — w3=—
0010 0010
0001 0001
ur Uz
with n€Z, p€1{2, 3, 4, 6}and #0
V1 V2
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or to a subgroup generated by

1001 1000 100 u
0100 0101 010w
0010 0010 001mn
0001 0001 0001

with n €Z. It is not abelian.

We shall also use, and this is an strightforward computation, that the
center of IV is trivial and that Z(I'®)/ ([I¥, IYINzZ(I¥)) =Z oni€{l, 3}
where I';! and I are the corresponding uniform discrete subgroups of 97!
and 93.

Using this we can solve the change problem:

Theorem 7.1. Let ¥ be a codimension 3 Lie foliation on a compact
oriented manifold M with compact leaves. Then

(1) & can be modeted exactly on one or exactly on two Lie algebras.

(2) F can be modeted on two Lie algebras if and only if it is modeled on %9,.

In this case the pair is (91, 93).
(3) There are Lie 93-foliations that can not be modeled on 9.

Proof. We study the six possibilities 9, 92, 93, Y4, 97", 93.

(1) # is a Lie %s-foliation.

It is not possible to change the algebra because 93 is the only algebra
such that the corresponding connected 1-connected group is compact.

(2) F is a Lie 9,-foliation.

Let I" be the holonomy group of #. Assume that % is also modeled on
another Lie algebra of connected 1-connected group G’ with holonomy group
I’. Then G’ acts transitive and locally effective on the basic manifold
W=G/I'=G'/I". Moreover G4 is semisimple and has not compact
semisimple factors [A.G.H]. Thus we are in the hypothesis of Gorbacevic
theorem [G] and hence G is locally isomorphic to G', i.e. it is not possible to
change the algebra %,.

Thus it only remains to study the four solvable Lie algebras.

(3) # is a Lie 9,-foliation.

Then it can not be modeled on %, because they are both nilpotent
[HLLR]. On the other hand the above results about the center of the
uniform discrete subgroups of Gz, G7', and G} tells us that it is not possible to
have a uniform discrete subgroup (the holonomy group) which is at the same
time subgroup of two of these three groups. Hence it is not -possible to
change the algebra 9.

(4) F is a Lie 97'-foliation. The same argument shows that neither in
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this case it is possible to change the algebra.
(5) % is a Lie 9,-foliation. It is known [H.LLR] that in this case Z is

also a Lie 93-foliation.

(6) ZF is a Lie 93-foliation. One of the uniform discrete subgroups of 93
described above is not abelian. So it can not be a subgroup of 9;, and hence

there are examples of Lie 93-foliations which are not Lie 9,-foliations.

8. Summary

We sum up here the classification of Lie flows of codimension 3 ([G.R],
[H.LLR] and the present paper).

Realization Problem. (1) Basic dimension 3. Only %, 9, 93, Y.,
971 93 are realizable.
(2) Basic dimension 2. Only 9y, 93, Y3, 94, Ys, 93 are realizable.

(3) Basic dimension 1. 9, 9s, 93 are realizable. 9,, 93, Y., %6, 9% kEQ are
not realizable.

% is realizable if and only if

_lnp

F=1na

REQ

where a, b, aib are positive real roots of a monic polynomial of degree 3 with
integer coefficients.
% h#0 is realizable if and only if

2IlnA
J4w?*+1n?A

where A and w are two real numbers, with A>1 and w#kr (¢! EZ), such that

A % (cosw T isinw) are the roots of a monic polynomial of degree 3 with

integer coefficients.
(4) Basic dimension 0. Only 4, is realizable.

Change Problem. Let F be a codimension 3 Lie flow on a compact
oriented manifold M. Then F can be modeled on one, two, or countable many Lie
algebras.

(1) Basic dimension 3. % can be modeled exactly on one or exactly on
two Lie algebras. % is modeled on two Lie algebras if and only if it is
modeled on %, and the pair is (4,, 93). But there are 43 Lie flows which are
not modeled on ;.
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(2) Basic dimension 2. % can be modeled exactly on one or exactly on
two Lie algebras. % can be modeled on two Lie algebras in the cases (9, 43

or (9, 9). % is modeled on %, if and only if it is modeled on 43. If & is
modeled on 95 then it is modeled on 9,. But there are 4, Lie flows which are
not modeled on ¥%s. .

(3) Basic dimension 1. % can be modeled on one, two, or countable many

Lie algebras. % is modeled on one Lie algebra in the case 95 or ¥%.
F is modeled on two Lie algebras if and only if it is modeled on % or on %3,
and the pair is (9, 93).
% is modeled on countable many Lie algebras if and only if it is modeled on
4% with
_ 2InA
J4 (w+2km) 241022

VEEZ

where A and w are defined as above.
(4) Basic dimension 0. It is not possible to change the Lie algebra.
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