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The mod 3  homology o f th e  space o f  loops on the
exceptional Lie groups and the adjoint action

By

Hiroaki HAMANAKA * and Shin-ichiro HARA

1. Introduction

Let p be a prime number and G be a  compact, connected, simply connected and
simple Lie group. Let QG be the loop space of G. Bott showed H*(QG;Z/p) is
a  finitely generated bicommutative Hopf algebra concentrated in  even degrees,
and determined it for classical groups G  (D i).

Here, let G  be an  exceptional Lie group, tha t is, G =G2, F4, Es, E 7 ,  E g .  In
[2] , K. Kozima and A. Kono determined H*(QG; Z /2 )  as a H opf algebra over
.42, where g i p  is  the mod p Steenrod Algebra and acts on it dually.

Let Ad : G><G—*G and ad : G X  QG — >QG be the adjoint actions of G on G
and QG respectively. In [3], the cohomology maps of these adjoint actions are
studied and it is show n that H* (ad ; Z/P) =H * (Pa; VP) where pz is the second
projection if and only if H* (G; Z) is p - torsion free. F o r  p= 2, 3  and 5, some
exceptional Lie groups have p - torsions on its hom ology. M oreover in [8, 9]
mod p homology map of ad is determined fo r  (G, p) = (G2, 2 ), (F 4 , 2), (E 6 , 2),
(,E7 ,  2 )  a n d  ( E 8 ,  5 ) .  T h i s  re su lt  is  a p p lie d  to  c o m p u te  th e  S 4 5  module
structure of H*(QE s ; Z /5) and  H* (Es ; Z /5 )  in [9].

F or a  com pact and  connected L ie group G , th e  free  loop group o f  G  is
d e n o te d  b y  LG (G), i .  e .  t h e  sp a c e  o f  f r e e  lo o p s  o n  G  equipped with
multiplication as

0 .  (t) =  (t) • 0 (t),

and has QG as its normal subgroup. T hen

LG(G)/QG -=- G,

a n d  identifying elements o f  G  w ith  constant m aps from  S 1 t o  G , LG (G )  is
equal to the semi - direct product of G and Q G . T his means that the homology
o f LG (G )  is  de term ined  by  th e  homology o f  G  and Q G  as m odule  and the
algebra structure of H*(LG(G); z /p) depends on H* (ad ; z/p) where

ad : G X QG — QG
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is  the  ad jo in t m ap . Since the  next diagram commutes where A, A', and f i  are
the m ultip lication m aps o f  QG, L G (G) a n d  G  respectively a n d  co i s  the
composition

( l a c  X  TX  1G) ° (lsacxc x ad X 1G) ° (1DG X ZIG X  1
S2GxG)

Q G X G X Q G X G `
-=

G x Q G X G X G "  Q G X G

LG (G) X LG (G) LG (G)

w e can determ ine directly th e  algebra structure  of H* (LG (G) ; z/p) b y  the
knowledge o f  th e  Hopf algebra struc tu re  o f H* (G; Z ip ), H* (QG; Z ip) a n d
induced homology map H* (ad; z / p ) .  See Theorem 6.12 o f  [8] for detail.

In  this paper w e determ ined th e  Hopf algebra structure  over sg3 of the
homology group 11* (QG; Z/3) for G =F 4 , E6, E7 and E 8  by using adjoint action
and determine the mod 3 homology map of ad for th e m . T he result is shown
in §2.

T his paper is organized a s  fo llow s. W e re fe r to  the  resu lts o f  [4, 5, 6]
for the structure of H* (G ) and compute H* (QG) for the lower dimensions and
their cohomology operations are partia lly  determ ined . T his is done in § 3 . In
§4 w e turn to  their hom ology r in g s .  W e determine th e  algebra structure of
H * (Q G ; Z/3) a n d  w e  p a rtly  d e te rm in e  t h e  Hopf a lg eb ra  structure  and
cohomology operaions on H* (QG; Z/3 ). Finally  in  §5 th e  homology map of
the adjoint action and the re s t o f the  Hopf algebra structure  and  cohomology
operations are de te rm ined . The computations are completely algebraic.

2. Results

Let G (1) be the compact, connected, simply connected and sim ple exceptional
Lie group o f rank  1 w here 1 -=  4, 6, 7 o r  8 .  T he exponents o f G (1) are the
integers n (1) <n (2) <••.n (1 ) which are given by the following table:

n (1) , n (2) , n(i)
4 1 5 7 11
6 1 4 5 7 8 11
7 1 5 7 9 11 13 17
8 1 7 11 13 17 19 23 29

Put E (1) = { n (1) , • , n (1)) and 95 (t) = d * (t) — (t01 + 10 0  where d is
the diagonal map. i s  th e  dua l of the S teenrod operation 9) ". T hen the
results are following:
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Theorem 1. As a Hopf A lgebra over S43,

H*(QG (I): Z/3) ":=-: 
z/3Et2i[fEE ( i ) u {3}]/ (t23 ),i f  1= 4 , 6 ,7

Z / 3 [t E (8) U {3, 9}] / (t23, t63 ) ,  if 1=8

where 11- 2,1=2j.

0 ( t2 2 )  =10, if j*3, 9,

— 620 6  t2 0 t2 2 ,i f  j = 3 ,

I-22 1-62 (342  t2t62 (gt2 2 1 -62 0 t6  t2 2 t60t2t6

t2t60t2 2t6 t 6 l t 6 2 + 6 2 2,4242  - I-  t20t2 2 4 2 , if j —9,

i f  r '3 ,

t2 2 ,  if j = 29,9 )

V 2
.1

0, otherwise

At2, and At2 ;  are given by the following table:

t2 t6 1.8 t10 t14 t16 t18 t22 t26 t34 t38 t46 1. 58 

0 t 2  0 0  6 0  0  Pf f t rt Ft.2.62 - .6 3 -.22 Et103 Et34 Et14 3  t183

0 0 0 0 0 0 t6 0  t14 t22 t26 t34 0

where E and IC are 1 or — 1.

Remark. In  Theorem  1, if  t2,  does no t ex ist in  H* (QG (1) ; Z/3), we
regard •t2j as 0 for such j .

Let Ad: G X G— 'G and ad: G X QG— QG b e  the adjoint actions of a Lie group
G  defined by Ad (g, h) = g h g - 1  a n d  a d  (g, 1) (t) = g l  (t) g - 1  w h e re  g, h E  G,
1 G QG and tE [0, 11. These induce the homology maps

Ad * : H*(G; Z/3)0H*(G; Z/ 3) — qi* (G; Z/3)

ad * : H* (G; Z/3)0H*(QG; Z/ 3) — )H* (QG; Z/3).

Theorem 2. There are generators ys in  H* (G (1); Z/3) for 1=4, 6, 7 and
Y8 and y20 in H*(E s ;Z / 3 ). W e can choose these generators so that ad*(y i0t21)
(i =8, 20) is given by the following table.

t2 j

g ,3
*tai
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ad*(y80t2;)
t10

t14 t10t2 2

t16

/a 6 3

t22

5t83

t26 + 10t6
2

 t2
2

t14t6 2

ad *(y200t .) t2) ad* (y80t2i) ad* (y2o(gt2.0
Et22 t22 t10 3 — ti43

t26 Et22t2 2 t26 t34 t46

t34 t14 3 Et183

t38 t46 t58

1. 34 t46 Et18 3 Et22 3

t58 Et22 3 t26 3

I St22t62 t22 t 2 6 t 6 2

ta i

t2

t8

t10

t14

t16

t18 t38

where 5, E E Z/3Z and  e 0 0. For other generators y  c H *  (G (I) ; Z /3)
ad (y ® t 21) = 0 for all j.

3 .  The mod 3 cohomology groups

W e recall the  results o f [4 , 5 , 6 ] fo r the  struc tu re  o f H* (G (I) ; Z /3 )  as the
Hopf algebra over S i3 .

Theorem 3. There is an isomorphism:

H*  (G (l) ; Z/3)
 -='-{A (x2.1 + E (I) U {3} — (u)) ØZ/3[8]/ (X83 )

A (x21+111» EE (8) U (3, — (11, 29)) OW  [x8, arzo] I (x83, x203) , if 1=8,

the coproduct is given by:

X i ÇOXi

X II / 8 0 X 3

X15 / 8 0 1 7

/17 X 8 0 X 9

X27 X 8 0 X 1 9  ± X 2 0 0 X 7

135 X 80X 27  —  X 8 2 0 X  1 9  ± X 2 0 0 / 1 5 ± X 8  X 2 0 0 / 7

X35 X 2 0 0 X 1 9

X47 — X 8 0 X 3 9 X 2 0 X27  — / 2 0 X 8 0 / 1 9  ±x20 2 0 x 7
others 0

and the cohomology operations are determined by the following table:

X i X3 X7 X8 X9 X11 X15 X17 X19 X20 X27 X35 1 3 9 1 4 7

SX i 0 x 8 0 O 0 — 1 8
2 0 1 2 0 0 X8X20

— X 8 2 X 2 0 —
x 2 0 2

r  8 ' 2 0 2

5°1x i X7 0 0 0 1 1 5 EX19 0 0 0 0 EX 39 0 0

3)3x i 0 1 19 X20 0 0 1 2 7 0 0 0 — X39 X47 0 0

where E i s  1  or — 1.

If  r> 1  t h e n  3 rx i= 0 .

Remark. We consider x i in these tables as 0 when x i El-f * .

if 1= 4, 6, 7,
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Recall a Serre libration:

Q G  (/ )  -4  * G (1) . (A)

First, we compute H* (QG (I) ; Z/3) by the Serre spectral sequence associated
with the fibration (A ) . T h is  sp e c tra l sequence has a  Hopf algebra structure.
W e can proceed to com pute it using degree-reason and  Kudo's transgression
theorem  ( [7 ] )  from  th e  p rev ious theorem . For j e E  (1) -  {9, 11, 291, there
a r e  un iversa lly  transg ressive  e lem en ts a2,EH * (QG ( I )  ; Z/3), su c h  th a t
ra2 ,=x 2 1 +1 . Thus w e can show that for j  =9, 11, 15, 21, 27 and 29, there are
a2, such that satisfy

d (10 ai8) = x a26 , for 1 4, 6, 7,
( 1 0a20) = xo0a10 2 , for / =4, 6, 7,

U1515 a 0a42) -=x180a1.4 2 , for / =8,
dig (10 a 2 2 )  ,x 3 x 8 2 0 a 2 2 ,  for 1 =4, 6, 7, 8,
d o  a ( g a , )  = x i a a 2 18 , for / -8 ,
d47(1 0 a 5 8 ) = x7x20 2 0 a 2 6 , for 1 =8.

a2,'s are  generators of the cohomology group in  the  low dim ensions. The
results are the following:

Proposition 4 .  For the dim ensions less than 2n (I) + 2 , the next isomor-
phism holds:

Z/3 [azili EE (/) U (9}] / (a29) ,

{

if 1=4, 6,

H* (QG (l); 2/3) '-' Z/3 [a2,1/ EE (7) U { 1 5 }] / (a 103) , if  1=7,

Z/3 [a2k E E (8) U {21, 27 }] / (a227 , a143) ,  if  1=8.

Now we start to determine the cohomology operations and the coproducts
on a2,.

Theorem 5. For j  E E (1) - {9, 11, 29} a2 , E H* (QG (I) ; Z/3) is primitive
and cohomology operations are determined by

a2 a8 al() apt a18 a26 a34 a38 a46

a2
3

a14 Ea2
9

a 3 8
a26 a38 a46

If  r>1  then 3'37. a2, =-0.

Proof. For j  E E  (I) -  {9, 11, 291, az ,  is transgressive, therefore Y iazi=
Y i ux2.7+1=0"5°1x2J-Fi. Thus this can be determined by Theorem 3.

a2,
01,

P a y

For the investigation of a2, w hich is not transgressive w e start from  the
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follow ing theorem . In  th e  next theorem , (/) means th e  coproduct of H* (QG;

Z/3) and we set 0(a) =0(a) — (a01+10a).

Theorem 6. For j=  9, 15, 21, 27, ----Oct2 , is given by the following formula:

(714 0(4 4 ' - Fai420a14, if j 2l,
290 a 2 18+ a 2 180 a 2 9, j  2 7 .

P ro o f  T o  beg in  w ith , w e  investiga te  th e  elem ent a ls . L et d2 b e  the
generator of 112 (S2F4 ; Z) . H* (S2F4 ; Z ) has no  torsion  and  is  a commutative
Hopf algebra over Z . Since a29 = 0, there is als such that a'29 =3a'18 and pa.;8 *0,
w here  p  i s  m odulo 3  re d u c tio n . T h e n  w e  c a n  c h o o se  ais a s  pais. T h e
coproduct of ctia is computed as follows:

(Pa;8=1/30d29

=1/3 (1 0 d2 -HZ® 1 ) 9
a 180 1  a '2 3 0 a 2' 6 +12 '23 ±  10d18 (mod 3).

Thus 
0 a 4 8 , a 2 3 0 a 2 6 ± a 2 6 ± 0 a 2 3  

is shown.
Consider the inclusion c: F 4—E 7 , w e  chose a18 E  H*  (QE7; Z/3) so  a s  to

sa tisfy  (Qt)a * ais=a18. Because (S2c)* is  injective for degrees less than 18,

0a,18=a23 0a2 6 - 1- a26 0a2 3 is show n again for th is ale. A nd in  the similar way
w e pu t a30 = 1/3a103 , a42 = 1/3a 14

3 a n d  a54 = 1/3a2
2 7  a n d  obtain th e  coproduct

formulas of the statement.

W e remark that we can assume that an  and a58 are primitive.

Theorem 7. In Proposition 4 we have that 9) l ays= ±a22.

L et G (1) be the 3-connected cover of G (1) and

(/) * (B)

(1) G (1) K (Z, 3) (C)

Q -J . (1) s4  Q G  (1) —+ K (Z, 2) (D)

be Serre librations. T o  p ro v e  T h eo rem  7 we have to compute H* (S2' -; Z/3)
and H* (G— ; Z/3).

L e t  E r2 j b e  (52p) *a fo r  j  0  1. U sin g  th e  S e r re  sp e c tra l sequence
assoc ia ted  w ith  th e  l ib r a t io n  ( D ) ,  o n e  c a n  e a s ily  s h o w  th a t  th e r e  are
genera to rs  Fri7 e  H17 fo r  1 = 4, 6, a n d  C753 E  H53 f o r  1 = 8. W e  have the

3 0a26 ±a26 0a23 , VI= 9 ,

aio 0 a 102 ±a1020aio, j =15,
Oaaai =
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following proposition. Let denote E (1) — 111 as TE-  (1).

Proposition 8. For the dimensions less than 2n (I) ± 2 , the next isomor-
phism holds:

lz / 3 [ a - v ii E E (i) u WHOA ( -cri7), if-1 =4,6,

H* (S2 .-6- (1); Z/3) "=" Z/3[c72;11E É (7) U (15)] / ( a- - 1,3), if 1=7,

Z/3[c7-2Ai E E (8) u {21, 27)] / ( c7143 ) (8) A ( Er 53) , if 1=8.

By computing the Serre spectral sequence associated with (B ), it is easy
to  see  572,, (i *15, 21) is  un iversa lly  transgressive . Let .-f:+1 be rbr i . Then
we have the following:

Proposition 9.
phism holds:

H* ( -6- (/); z/3) -'- '

For the dimensions less than 2n (1) ± 2, the next isomor-

A (1 -.2,-1-11jE É (/) U {9} )  OW [ i - 18] , if  1=4, 6,

A ( zz,+iliE E (7)) , if 1=7,{ 

A ( i -2,_FiljE E (8) U 1271) u z/3 [±- 54], if 1=8.

Proof o f T h ero rem  7 . I t  i s  possible t o  show that 1a18 is  n o t  zero as
fo llo w s . Let a ' denotes the cohomology suspension associated to the libration
(C) for 1= 4. It is  easy  to  see  ±- 16 = 0-733) 3 g) 1 u 3 a n d  i r 23 = a' ($33114-3) 3 , where
U3 is  the generator of H3  (K  (Z , 3); Z/3). So we get J°1 .-x- '19= a'5°1

413Y 3 3)1u3 =
0, 3 ,4s s o u 3 =  a , (061 143 )3 =  . .i.--, 23, and from this, we have (Qp) * 3)1a18=Y1 (Qp) * ais
=  y i Er 18 =  =  0 ) 1 E ,  19 =

suspension associated to ( B ) .  Thus Y l a ia * O . We fix a22 as Y l aia.

4 .  Homology groups

Theorem 10. The homology ring of QG (1) is

H* (Qc (i); z / 3 ) {  
Z/3 [t2Aj EE (i) U {3}] / (t23 ) , if 1=4, 6, 7

(1)
Z/3 [tyli EE (8) U {3, 9)] / (t23 , t63 ), i f  1= 8.

itail =2j. The coproduct is given by

 

0,

- t22 0t2 - t2 (3  242,

t224204.2 #
2

 4-
6# 6  # 2  #6  # 2 ## # 201 ,2 #62 -  2 (2)1, -  2 ® I, 1, 6

- 1.2401 .22 4 -  t601 .62 + 1.22 01'24 2 ± 1.201 .224 2 ,

if j*3, 9, 11, 29,

if j =

if j =9.

15( t2 1)

 

a i". 23 = a22, w h e r e  a  i s  th e  cohomology

where
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Proof. Let t v  be the dual elemet of a2;EH*(QG; Z/3) as to the monomial
basis for j EE (1) — {9) and t 6, .18 be the dual element of a23, a29,  respectively.
It is easy to see t23 = t63 = 0 and to show the coproduct formula for ts and t18.
Thus we can say that statement (1) is true fo r * <2n (1) +2.

N ow  it is possible to  show that there  is no truncation in H* (QG; Z/3)
o th e r than  th e  p a r ts  generated  by t2 a n d  ts an d  t h a t  (1 ) holds fo r  all
dim ensions. S in c e  H* (QG (1) ; Z / 3 ) is t h e  even degree concentrated
commutative Hopf algebra, we may suppose

H* (QG (1); Z/3) = Z/3 [ugli El] OZ/3) [V i[i (VA .

Consider an Eilenberg - Moore spectral sequence:

E2 = EXtH* (52G (I) Z/3) (Z/3, Z/3) E00= § r  (H*  (G (1); Z/3)).

Since E2 .=  A (su ji OA EJ) Oz/3 [OvAi ej] , where deg su:= (1, lui1),
deg sui= (1, k ip , and deg Ovi =  (2, 3"10), the essential differentials have the
forms: dr sui = (evi) 3k1 (le ; 1 )  or cl rm.; = (evy) 311 (/1 1). Because H* (G (I)
Z/3) is a finite dimensional vector space, one can easily show

E.= A E l ' ) (S u  EPOZ/ 3[074 EJ] / ((ev i ) 3"1" Ej) , ( r  c  ,

and +  =La Here the total dimension of E . is 2111±1r13 " " ',  (7n) 1) and
the total dimension of H*  (G (1); Z/3) is 2IE " )1 31 " ) where f (/) = 1 for 1=4, 6, 7
and f  (1) = 2 for 1= 8. Thus the indices J of the truncation part satisfy that

(1 ) and I/I =  IE (1)1. T his means that the  truncation parts of H* (HG;
Z/3) is generated by only t2 and ts.

Therefore H*  (QG (1); Z/3) has the form

z/3 [vt i li E/] Oz/3 [t2] / (t23 ) for 1= 4, 6, 7 and

Z/3 El] Oz/3 [t2, / (t23 , 4 3 ) for 1= 8.

Also Theorem 5 means that for j E E (1) — {9} t2,  is primitive and indecomposable
and ts, t18 are indecomposable. Thus

{t2AjE E(i)} u tuili E n  for 1=4, 6, 7 and

{t2i1jE (1)) U It181 {u ili En for 1=8.

Since I/1=1E (/)I, the theorem is proved.

Dualizing the result of Theorem 5 and Theorem 7, we obtain the statement
o f  Theorem 1  except for 9/141t_ 9118.ct34, 9 t34, t46, n t5 8  a n d  359,14 8 . To
determine these operations, we use the adjoint action of H* (G (1) ; Z/3) on
H*(S2G (1); Z/3) which is introduced in the next section.

Remark. T he computation o f dualizing th e  resu lt o f  Theorem 5 and
Theorem 7 is not difficult except for Y t 18 , because Y lt  is  primitive if t  is
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p r im itiv e . Moreover, it is easily shown

(Y l *t„) = 3 40 (t18) = 0  (- 2t2t6)

and th is  showst i 8 -=  — t2t62 m odulo prim itive elem ents. B y Theorem  5 we
can see 3° 1a14=sa.29 and  th is shows that Ati8=sti4 — t2t62 .

5. Adjoint action

Put y * y '=  Ad* (y Oy') and y * t = a d * ( y 0 t )  where y , y 'E  I* (G; Z/3) and
t E H* (QG; Z / 3 ). The following theorem is the dual resu lt o f  [ 3 ] .  Also see
[9]

Theorem 1 1 .  For, y , y ', y"EH* (G; Z/3) and t, t'EH*(QG; Z/3)
( i  )  1 * y = y , 1 * t = t .
(ii) y *1 = 0 , if  y  > 0 , whether 1 EH* (G; Z/3) or lE H * (QG; Z/3) .
(iii) (yy') *t=y * (y'* t).
(iv) y * (tt') = E (-1) 111" j 1t1 (V t*. ) f y g *  w here d*y= Ey'Oyif.
( y ) a (y * t) = y *  (t) where a is the homology suspension.
(vi) P*(y * t) = Ei (P o )  *  ( 't).

(y *y') = Ei (Aw) * (YVy').
(vii) d* (y * t) = (d*y) * (d*t)

= E  (-1 ) * 0 ®  (v*r.)
where d*y = Ey'Øy" and d * t = E t 'O r.
A nd d * (y  * t)= (d * y) *  (d * t).

(viii) If  t is primitive then y  * t is primitive.

Also the result o f  [3 ] implies the following theorem. See [8].

Theorem 12. We set a submodule A  of H*(G; Z/3) as

A = Z/3 [ye] / (y83 ) for G=F4, Es, E7 and

A =Z /3  [y8, 112o]/ (y83 , y203 ) for G=E8

where yzi is the dual of x2i with respect to the monomial basis. Then there exists a
retraction p: H*(G; Z/3) — A and the following diagram commutes.

ad * 
H*(G; Z/3) OH* (52G; Z/3) H*(QG; Z/3)

113° 1

A OH * (QG; Z/3)-

Remark. By Theorem 3 we can see Yly2o==y8.
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{y2j+21

Y20 * Y2j+1 = -
Y25-1-21

0

for j=3, 7, 9,
for j 13,
others.
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Since A d+ is agreed w ith  the composition tt*  (1  0 ,a*) (1  01 0 4 ) -
(10T) ° (d+0 1 ) where ,tt is  the multiplication of G (1 ) a n d  is  the inverse
map, the next theorem  follow s. See [9].

Theorem 1 3 .  Let y, y 'E H * (G ) .  If y is primitive,

y  * V =
 [y ,

where [y, , y v -  ( - 1 )  411// '  y f y .

Now we give the proof of Theorem 2 and fin ish  the proof of Theprem 1.
Let y, be  th e  dual elem ent of x i  G H*  (G (1 ) )  a s  to  th e  m onom ial basis. By
Theorem 3 and Theorem 13 we see that for jE E  (/) U {3, 9} - {11, 29 }

{y2j+9

Y8 * Y2j+1
=  -

Y2j-1-9

0

for j =- 1, 3, 4, 9, 13,

for j -=- 19,
others

Since 0121=-Y21+1 for jEE (1) U {3, 9) - {11, 29), Theorem 11 (v) implies

a(y 8 )lc t21) *0 for j=  1, 3, 4, 9, 13, 19,

a(y20*t2J) *0 for j=3, 7, 9, 13.
(2)

Then the equations

Y8 *t2 =
t10, (3)

Y 8  *4 = 1 '16,

y8 *t26
=

 t34,

y8 *t38
=  -

t46,

y20* t14 = t34,

y20* t26 = t46

are shown by Theorem 11 (viii). Moreover (2) implies

(4)
(5)
(6)

(7)
(8)

Y8* t6 =
 t14,

y8 * t18 = t26,

y20 * t6 t26, (11)

(9)
(10)

Y20 *t18 :
t 3 8 (12)

modulo decomposable elements. Since

95 (Y8*t6) = (Y8*1-2) 01-2 )01964 $0111'4 ( i f  40: ) I /  * t2-  - 2 -2 .08 -2
2
, -22.-- (  8 - -2,

=  0  ( -
t10t22

)
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one can see that y8*t6 — tiot22 mod primitive e lem ents. B y  th is a n d  (9), we
have

Y8 * t6 =  t14 t l0 t2 2. (13)

The equations

Y8 * 18 26 ± t i o t 2 2t62 t u t6 2, (14)
y20 * t6 =  t26 - (y20 * 1.2) t22, (15)
y20 * t18 = t38 -  (Y20 * t6) t6 2 (16)

are shown in the sim ilar way.
By the equation (13), we can compute y 8

30 t 6 as

y83 *  t6 = Y82 *  ( 1.14-  tl0t22)

= Y82 * t14±t10 3.

Since y 8
3 = 0, y82 * t14 t103 and this m eans y8* t14 is  a non-zero primitive

indecomposable elem ent. W e redefine tzz as

t22 = y8 * t14. (17)

Then we have
4 .

t22 t103Y8 .

By Theorem 7 w e can se t P8d-
22 =Kt63 w here  K =  1 .  Since 34 t 2 2 = Y 1.8 (y8*

t14) =Y8 * t10, we have

118 * t10 = Kt63 .

B y th e  sim ilar m anner, w e can com pute I/ * tY8  -  .,18 a n d  obtain 11 82 *  t26 =
— t14

3. Therefore

y8 * t34 = y82 *  t26 = t143 . (18)

Because t16 and /-4 6 are primitive, we can set

118 * t16 = P2t83. (19)
Y8 * t46 = P3t183. (20)

Operate g i  to  (20) to obtain

Y8 * t34 = gi (118 * t46) = P33 1‘ (t183) = P3Et143.

T hus by  (18), we conclude that p3= — E. yg*t58 will be determined after the
determination of yzo* t58.

Here we apply 3)14 o n  (5 ) , (6 )  and  (14), 34 o n  (5 ) to see

Y 14:t26= 3 ) 4: (y8 *  t18
 t i 0 t62t2 2 +/-1442 )

=  SYS* t 1 4 =  Et22t

A t - 34 = 6/4 (Y8* t26) E 8  *  t 2 2 St103.
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3) 4d-46 (118 * t38) EY 8 * t34 = Et143,

g9t34 = 94 (y8 *t26) =118 *  1-14 = 1-22.

Next we compute y zo * tz i.  First we apply 94 to (15) to obtain

y20 * t2 (1120 * t6) Y I.8(t26 (1120 * t2) t22 ) Et22.

From this, (15) a n d  (16) imply that

y20 * t2 = Et22,
y20 * t6 = t26 Et22t2 2,

y20 
.1 .

t18 = t38±Et22t62t222 t26t6.

Y203 *t6  is computed as

0=y203 *t6=Y20 2 * (Y20*t6)
=  2y20 * 426 — 2E t 2 2 t 2 )

= y202 * t26 ±Et223.

Thus yzo* t46 = 1120 2 * t26 = Et223.
The similar computation of y203 */ -18 implies

y 2e 44 t38 = t2 6 3 .

Thus y 20*/ -38 is a non zero primitive indecomposable element and we redefine
t88 as y2o*t38 . Hence

1120 * t38 t58,

y 20 * t58 = t2 6 3•

By applying 39  to  (22), we have

118 * t58 = 3 )3* (y20 * t58) = r4c (t26 3)  =  at223 .

We obtain also

y20 * t22 = Eg l4c (Y20 * t26) — t46=  t 1 4 3

(21)
(22)

by applying A: to (8).

Since t34 is primitive, we can set y20 * t34 P4t18 3 (p4 E Z/3) . Operating 34
to the both sides of this equation, p4st-143 is computed as follows:

P4Et143 = P43 ) ?ic 4183.)

= gi (Y20 * t34)
= 118*t34+1120*t22
=t143 .

So y20*t34=et18 3 is shown. Now ad* is determined except for y 8 * t 1 6 .
Finally we operate g ‘  to (21) and A :to  (22) and see

n -
58 = 31)11 (y20 * t38) = 1120 *  ( Y l *t38) Y20 * t34 t1 8 3,
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y 20 * (Y 9* 1-58)
 = 3  (y 20 * 48) (1-263) =

These equations imply that

S141-58 = 1.183 , Y 9* 1-58 = 1-22.

T h is  completes th e  proof of Theorem 1.
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