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The mod 3 homology of the space of loops on the
exceptional Lie groups and the adjoint action

By

Hiroaki HAMANAKA® and Shin-ichiro HARA

1. Introduction

Let p be a prime number and G be a compact, connected, simply connected and
simple Lie group. Let QG be the loop space of G. Bott showed Hx (QG;Z/p) is
a finitely generated bicommutative Hopf algebra concentrated in even degrees,
and determined it for classical groups G ([1]).

Here, let G be an exceptional Lie group, that is, G =Gz, F4, Es, E7, Es. In
[2], K. Kozima and A. Kono determined Hx(QG; Z/2) as a Hopf algebra over
A, where 5 is the mod p Steenrod Algebra and acts on it dually.

Let Ad: G XG—G and ad: G X QG— QG be the adjoint actions of G on G
and QG respectively. In [3], the cohomology maps of these adjoint actions are
studied and it is shown that H* (ad ; Z/p) =H* (p2; Z/p) where p; is the second
projection if and only if H* (G; Z)is p-torsion free. For p=2, 3 and 5, some
exceptional Lie groups have p-torsions on its homology. Moreover in [8, 9]
mod p homology map of ad is determined for (G, p) = (Ga, 2), (F4, 2), (Es, 2),
(E;, 2) and (Es, 5). This result is applied to compute the &5 module
structure of H«(QEs; Z/5) and H*(Eg; Z/5) in [9].

For a compact and connected Lie group G, the free loop group of G is
denoted by LG (G), i. e. the space of free loops on G equipped with
multiplication as

¢pt) =¢(t) (),
and has QG as its normal subgroup. Then
LG(G)/QG=G,

and identifying elements of G with constant maps from S' to G, LG (G) is
equal to the semi-direct product of G and QG. This means that the homology
of LG (G) is determined by the homology of G and QG as module and the
algebra structure of H« (LG (G); Z/p) depends on Hx(ad ; Z/p) where

ad : G X QG—QG
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is the adjoint map. Since the next diagram commutes where A, A, and y are
the multiplication maps of QG, LG(G) and G respectively and w is the
composition

(1ge X T X 1g) ° (1ggxe X ad X 1g) ° (196 X A X 1ggxe)

QG X G X QG XG—2-0C X Q6 X G X G25Q6 X6
l=2x= | =

Py

LG (G) XLG (G) LG (G)

we can determine directly the algebra structure of Hx (LG (G): Z/p) by the
knowledge of the Hopf algebra structure of Hx (G; Z/p), H« (QG; Z/p) and
induced homology map Hx(ad; Z/p). See Theorem 6.12 of [8] for detail.

In this paper we determined the Hopf algebra structure over &3 of the
homology group Hx (QG; Z/3) for G=F,, Es, E; and Eg by using adjoint action
and determine the mod 3 homology map of ad for them. The result is shown
in §2.

This paper is organized as follows. We refer to the results of [4, 5, 6]
for the structure of H*(G) and compute H* (QG) for the lower dimensions and
their cohomology operations are partially determined. This is done in §3. In
84 we turn to their homology rings. We determine the algebra structure of
H« (QG; Z/3) and we partly determine the Hopf algebra structure and
cohomology operaions on Hsx (QG; Z/3). Finally in §5 the homology map of
the adjoint action and the rest of the Hopf algebra structure and cohomology
operations are determined. The computations are completely algebraic.

2. Results

Let G (1) be the compact, connected, simply connected and simple exceptional
Lie group of rank ! where =4, 6, 7 or 8. The exponents of G (I) are the
integers n (1) <n (2) <---n (1) which are given by the following table:

l | n(l), n(2), -, n (1)

4 |1 5 7 11

6 |1 4 5 7 8 11

7 |1 5 7 9 11 13 17

8 |1 7 11 13 17 19 23 29

Put EQ)={ (1), -, n (1)} and g(t) =4 1t) — (tQ1+1X¢t) where A4 is

the diagonal map. %% is the dual of the Steenrod operation %*. Then the
results are following:
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Theorem 1. As a Hopf Algebra over A3,

QG (). 7/3) =) PRVSEO U/ W if1=4.6.7
Z/3t i €E®) U3, 0]/ (6 1), if 1=8

wheve |t2j| =2j.
0. if j 3,9,
_ B — 1"t — 1R, Fi=3,
@ (t5) = 122t + ot 2Rt — 1Rt — L2ttt
— ot @2t — te®te2+ 1> Rote? + 1,62, if =9,
Pety; =0, if 123,

0 _|tzz, if j =29,

xbaj = .
! 0, otherwise

Plto; and Pitz; ave given by the following table:

Laj 'tz te ls to tia he t1s taz  t26 l34 tss  tae  Iss
g)gkth ’0 t2 0 0 t O 8t14_t2t52 ICt53 Etys —eti’ Etsy €t143 t133

g)itzj 0 0 0 O O O le 0 tis a2 —twe tas O

where € and K are 1 or —1.

Remark. In Theorem 1, if t,; does not exist in Hx (QG (1) ; Z/3), we
regard t,; as O for such j.

Let Ad: G XG—G and ad: G X QG—QG be the adjoint actions of a Lie group

G defined by Ad (g, h) =ghg™ and ad (g, 1) (t) =gl (t) g~ where g, h €G,
I1€QG and t€ [0, 1]. These induce the homology maps

Ads: Hx (G; Z/3) Q@H«(G; Z/3)—H« (G; Z/3)
adx: Hx (G; Z/3) ®H« (QG; Z/3)—H« (QG; 2/3).
Theorem 2. There are generators ys in Hy (G (1); Z/3) for 1=4, 6, 7 and

ys and ya in Hx(Eg;Z/3). We can choose these generators so that adx (yiQts;)
(i=8, 20) is given by the following table.
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baj ad x (ysQts)) ad % (120t25) ty | ads (ys@tsy)  adsx (y20®tz;)
t2 t1o Et2z taz —tie® —t4

te tia—tiots? tas— Etaats® t26 t34 —l4s

ts l1e — f34 —t1d etig®

tio Kt - t3s —t4e Iss

t1a ta2 t34 tie —ets’ ez’

lis Ots® - tss —et® — s’

ts | bpsttiote’ts? —tate® tasTEtaote’ts® —taets’

where 0, e € Z/3Z and € #0. For other generators y; € Hx (G (1) ; Z/3) ,
ad (y:Qts;) =0 for all j.

3. The mod 3 cohomology groups
We recall the results of [4, 5, 6] for the structure of H* (G (I); Z/3) as the
Hopf algebra over .

Theorem 3. There is an isomorphism:

Azl €E () U B3 ={11) ®Z/3[xs) / (xs?), if 1=4,6,7,
Alzyilf€E(8) U (3, 9 — {11, 29}) ®Z/3 [xs, 220)/ (s, x20’), if 1=8,

the coproduct is given by:

H*(G(1);Z/3) =

X G_D»Ti

Z11 Is®1'3

X15 Ig®1‘7

X7 .rs@l”g

a7 Is®x19+xzo®x7

X35 Is®xz7_x32®119+-1?20®115+1?8 l‘zo®x7

XI39 l'zo®119

47 —xs®1‘39—x20®x27_12M8®119+$202®I7
others 0

and the cohomology operations arve determined by the following table:

Xi X3 | X7 | Xg | X9 | X1 | X5 | Xi7 | X9 | L0 | L7 X35 X39 47
Bri | O |xs| O | 0| O |—xs®| O |xa0| O |xaToo|—xglryy| —X20® aT20]
?1.1‘,' X7 0 0 0 |x15|€&xo 0 0 0 0 EX39 0 0
@3_ri O |xw|x20]| O 0 X27 0 0 0 |—x39 X 47 0 0

wheve €1s 1 or —1.
If r>1 then P%x;

Remark. We consider x; in these tables as 0 when x; € H*.
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Recall a Serre fibration:
Q) — x — GQ0). (A)

First, we compute H*(QG (I); Z/3) by the Serre spectral sequence associated
with the fibration (A). This spectral sequence has a Hopf algebra structure.
We can proceed to compute it using degree-reason and Kudo’s transgression
theorem ([7]) from the previous theorem. For jE€E (1) — {9, 11, 29}, there
are universally transgressive elements a;€H*(QG (1) ; Z/3), such that
Tazi =X2j+1. Thus we can show that for j =9, 11, 15, 21, 27 and 29, there are
az; such that satisfy

d7(1Qais) =x,Qas®, for 1=4, 6,7,

di1 (1Qas) =ru®ai’, for [=4,6, 7,
dis(1Qag) =x15Qa’, for =8,
d1o(1Qaz) =xrurs’®as?, for =4, 6,7, 8,
die (1®854) :1‘19®8218, for [=8,
d47(1®858) =I7.I‘202®2126, for 1=8.

az;’s are generators of the cohomology group in the low dimensions. The

results are the following:

Proposition 4. For the dimensions less than 2n (1) +2, the next isomor-
phism holds:

2/3lazyli €E (1) U{9}]/ (a2”), if 1=4, 6,
H*(QG (1); Z/3) =4 2/3[agyli €E(7) U{15}]/ (a1e?) if 1=7,
Z/3lazli €E(8) U {21, 27}]/ (a7, ais®), if 1=8.
Now we start to determine the cohomology operations and the coproducts

on ay;.

Theorem 5. For j€E (I) —{9, 11, 29}ay; €H* (QG (1) ; Z/3) is primitive
and cohomology opevations are determined by

ag aio a4 die Q26 a34 Qsg Q46
yla 2 a23 0 a4 5(129 0 0 Edss 0 0
P 2 0 0 0 26 0 —daszg Qd46 0 0

If r>1 then &% a,;=0.

Proof. For j €EE (I) — {9, 11, 29}, ay; is transgressive, therefore Pla, =
?iax2j+1=ag"xz,~+1. Thus this can be determined by Theorem 3.

For the investigation of ap; which is not transgressive we start from the
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following theorem. In the next theorem, ¢ means the coproduct of H* (QG;

7/3) and we set ¢ (@) =¢ (@) — (@R1+1Ru).

Theorem 6. Forj=9, 15, 21, 27, _(I—Jazj is given by the following formula:
a:*Q@a,b+a,’Ras®,  if j=9,

a10Ra1’ +a,0°Rayg, if j=15,
a1:Qa1+a1’Ray, if j=21,
a°Qas®+a,*Qas’, if j=27.

gbaagj =

Proof. To begin with, we investigate the element ajs. Let as be the
generator of H? (QFy; Z). H* (QF,; Z) has no torsion and is a commutative

Hopf algebra over Z. Since a;°=0, there is ajs such that a;’= 3as and pays # 0,
where o0 is modulo 3 reduction. Then we can choose ais as pais. The
coproduct of aig is computed as follows:

¢a’13= 1/3(/1(1;_9
=1/3(1Qas+a;X1)°
=315014+a22Ra’+a2*+1Qa1s (mod 3).

Thus ¢a1s=a,*®azf+a,°+®a,® is shown.

Consider the inclusion ¢ Fys—E;, we chose as € H* (QE;; Z/3) so as to
satisfy (Q¢)a*ajs=ajs. Because (Q¢)* is injective for degrees less than 18,
Da1s=a,*Rat +a®a;® is shown again for this a;s.  And in the similar way
we put aso = 1/3a1¢%, as2 = 1/3a14® and asy = 1/3a,*
formulas of the statement.

and obtain the coproduct

We remark that we can assume that aj; and asg are primitive.

Theorem 7. [n Proposition 4 we have that $P*a;s= T ay,.

Let G (1) be the 3-connected cover of G (1) and

QG — % — GO (B)
G > 6 > K23 ()
Q) & ocw) 2 kz 2 (D)

be Serre fibrations. To prove Theorem 7 we have to compute H*(Q G; 2/3)
and H*(G; Z/3).

Let a3 be (Qp)*ay, for j # 1. Using the Serre spectral sequence
associated with the fibration (D), one can easily show that there are

generators @17 € H7 for | =4, 6, and a's3 € H® for | = 8. We have the
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following proposition. Let denote E (1) —{1} as E (1).

Proposition 8. For the dimensions less than 2n (1) + 2, the next isomor-
phism holds:

7/3[@oi €E (1) U{9}]1R®A (a1, if 1=4, 6,
H*(QG (): 2/3) = z/3[@,i €E (7) U{15}]/ (@), if 1=1,
7/3[ali €E ®) U {21, 2]/ (ad) ®A(@ss), if 1=8.

By computing the Serre spectral sequence associated with (B), it is easy
to see @z, (j#15, 21) is universally transgressive. Let X i+1 be 7@ Then
we have the following:

Proposition 9. For the dimensions less than 2n (1) + 2, the next isomor-
phism holds:

A(Tynli€E 1) U{9) ®2/3[F1s), if 1=4, 6,
H*(G (1); 2/3) ={ A(F oyl €E (7)), if 1=1,
A(FynliEE (8) UL27}) UZ/3[Tsl], if I=8.

Proof of Therorem 7. It is possible to show that %'a;s is not zero as
follows. Let ¢’ denotes the cohomology suspension associated to the fibration

(C) for I=4. 1t is easy to see T1o=0 BP*Pu; and T23=0" (BPus) 3, where
us is the generator of H° (K (Z, 3); Z/3). So we get P T19=0'P'BP*P'us=
0’ P BPus=0" (BPus) = T 23, and from this, we have (Qp) *Pla1s=P (Qp) *a1s
=P g5 = Poxo = 0P'T19 = 0T 2 = az, where o is the cohomology
suspension associated to (B). Thus P'a1s#0. We fix as; as Plass.

4. Homology groups
Theorem 10. The homology ring of QG (1) is

Z/3[tili €E1) U{3}]/ (1), if1=4,6,7
Z/3[tli EE(8) U3, 931/ (t:3 ts°), if 1=8.
where |tz,~| =2j. The coproduct is given by

0, ifj#3,9, 11, 29,
— 1,2 Qt, — £, if 1 =3,

t2t62 @ty + ot 62 Rt 2 — 162 Rt — 26t ot

— 1o 6@t s — ts®ts2+1.° Rt st e? + 1Rt 462, i j=9.

H«(QG(1); Z2/3) = (1)

a(lz;') =
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Proof. Let ts; be the dual elemet of az € Hx (QG: Z/3) as to the monomial
basis for j €E (1) — {9} and ts, ti1s be the dual element of as®, az’, respectively.
It is easy to see t:>=t°=0 and to show the coproduct formula for ts and ts.
Thus we can say that statement (1) is true for % <2n(l) +2.

Now it is possible to show that there is no truncation in Hx (QG; Z/3)
other than the parts generated by ¢ and t¢ and that (1) holds for all
dimensions. Since Hx(QG () ;Z/3) is the even degree concentrated
commutative Hopf algebra, we may suppose

H«(QG (1); 2/3) =Z/3[udi€1®2Z/3) wili €1/ T E)).

Consider an Eilenberg-Moore spectral sequence:
E;=Exty,cwz/3 (Z/3, Z/3)=>E==%r (H* (G (1); Z/3)).

Since Ez=A (su;li €1) QA (su;li €J) ®Z/3 [6v;li €J1, where deg su;i= (1, |uil),
deg su;= (1, |v;]), and deg Ov;= (2, 3”|v;|), the essential differentials have the
forms: dysu; = (6v;) % (k;=1) or dysu;= (6vy) 3 (1;=21). Because H* (G (I);
Z/3) is a finite dimensional vector space, one can easily show
Eo=A(suili€I) QA (suli €))®z/3[Owili €)1/ ((Bv)*™i€)), TSI )]

and [I'|+|J|=]I|. Here the total dimension of Ew is 2"'””'32"""’, (m;=1) and

the total dimension of H* (G (1); Z/3) is 2'8"13’" where (1) =1 for 1=4, 6, 7
and f(I) =2 for 1=8. Thus the indices J of the truncation part satisfy that
l/I<f (1) and |I|=|E (1)|. This means that the truncation parts of Hx (QG;
Z/3) is generated by only t; and t.

Therefore Hx (G (1): Z/3) has the form

Z/3[uili€N1®Z/31[t,)/ (t:*) for =4, 6, 7 and
Z2/3[uili€11QZ/3[ts tel / (% t6*) for 1=8.

Also Theorem 5 means that for j €E (I) — {9} ¢, is primitive and indecomposable
and ft, t13 are indecomposable. Thus

{t,iEE YUty Cw,i€l} for 1=4,6, 7 and

{tli€ E WYU{teCluli€l for 1=8.

Since [I|=|E (1)|, the theorem is proved.

Dualizing the result of Theorem 5 and Theorem 7, we obtain the statement

of Theorem 1 except for Pkt Pitss, Pitss, Pitss, Pitss and Pitss. To
determine these operations, we use the adjoint action of Hy (G (1) ; Z/3) on
H+(QG (1); Z/3) which is introduced in the next section.

Remark. The computation of dualizing the result of Theorem 5 and
Theorem 7 is not difficult except for Pktis, because P%t is primitive if ¢ is
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primitive. Moreover, it is easily shown
¢ (Pht1s) =Pk (t1s) = ¢ (—tate®)

and this shows Pktis = — tote? modulo primitive elements. By Theorem 5 we
can see Plais=¢ea;’ and this shows that Pktis=ctis—tats.

5. Adjoint action

Put y %y’ = Ad« (y®y’) and y *t=ad« (y&®t) where y, y'€EHx(G; Z/3) and
tE Hyx (QG; Z/3). The following theorem is the dual result of [3]. Also see
[9].

Theorem 11. For, y, vy’ y"€Hx(G; Z/3) and t,  EH%(QG; Z/3)
(1) 1xky=y, 1kt=¢
(ii) y*1=0,if ly|>0, whether 1EHx(G; Z/3) or 1€EH«(QG; Z/3).
(ii1)  (yy) *t=y* (y' *1).
(iv) y*k @) =2(=1""1"(y %¢t) (y”%kt) where Axy= 2y Qy”.
(v) oly*xt)=y*a(t) where 0 is the homology suspension.
(vi)

Py *t) =2, (Phy) * (PEH).
Pi(y*y) =2 (Phy) * (P5y).
(vi1) A*(y*t) = (A*y) * (Axt)
=2 (=D (y k)R (y" *¢t")

where Axy= 2y’ Qy” and Axt =224’ Q"

And Ax(y *t) = (Axy) * (Aut).
(vit)  If t is primitive then y ¥t is primitive.
Also the result of [3] implies the following theorem. See [8].

Theorem 12. We set a submodule A of H«(G; Z/3) as

A=7/3[ysl/ (ys®) for G=F4, E¢, E7 and
A=17/3lys, yzo]/(y83, y20°) for G=E;

wheve vy is the dual of xa; with vespect to the monomial basis. Then there exists a
retraction p: Hx (G, Z/3)—A and the following diagram commutes.

Hx(G; Z/3) QH« (QG; Z/3)
| p®1
AQH«(QG; Z/3)

H+(QG; Z/3)

Remark. By Theorem 3 we can see P%yz20=ys.
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Since Adx is agreed with the composition gs° (1Qux) c (1 Q1 ry) -
(1QT) - (44«@1) where y is the multiplication of G (I) and ¢ is the inverse
map, the next theorem follows. See [9].

Theorem 13. Let y, y'€EH«(G). Ify is primitive,
y*y'=ly, y]
where [y, y' ] =yy — (—1)"'¥'yy.
Now we give the proof of Theorem 2 and finish the proof of Theprem 1.

Let y; be the dual element of x; € H* (G (I)) as to the monomial basis. By
Theorem 3 and Theorem 13 we see that for j€E (1) U {3, 9} — {11, 29}

Y2j+9 fOI‘ ]=1' 3v 4v 9: 131

Ys ¥ yzi+1= | —y249 for j=19,
0 others
and
Yaj+21 for j=3,7,9,
Y20 ¥ Y2i41= ) —Y2jsz1 for j=13,
0 others.

Since 0t2;=y2j+1 for jEE (1) U{3, 9} — {11, 29}, Theorem 11 (v) implies
O'(yg*tzj> #0 for ].=1, 3, 4, 9, 13, 19,

_ (2)
0 (yakty) #0 for j=3,7,9, 13.
Then the equations

yskta=ti,, (3)
ys¥kts=t1e, (4)
Ys ¥ tag=t3, (5)
Ys¥ts= —t4e, (6)
Y20 ¥ t1a=t3a, (7)
Y20k b= —tss (8)

are shown by Theorem 11 (viii). Moreover (2) implies
ys¥kte=t, (9)
Ys ¥ tig=tss, (10)
YooK ts =t (11)
Y20 K t13=tsg (12)

modulo decomposable elements. Since

a(ys*ts) =- (ys * t2) Qt2 — (ysk t,?) Qt;— 1. (ys * t52) —1,°Q (ys * t5)
=@ (—tiot2?),
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one can see that ys % ts= —tiot2> mod primitive elements. By this and (9), we
have

ys ¥ te=ti— tiots’. (13)

The equations

Ys * tig=tst tiota?te® — trats’, (14)
Y20k te=tas— (Y20 ¥ t2) 5%, (15)
Y20 ¥ tig=tag— (Yoo ¥ t6) te® (16)

are shown in the similar way.
By the equation (13), we can compute ys’®t¢ as

yad K te=ys * (t14—tiot2?)

=y32*t14+t103.
Since ys* =0, ys® % ti4 = — t10° and this means ys % t;4 is a non-zero primitive
indecomposable element. We redefine tz; as

b =ys* by 17)

Then we have
ysktez= —ti’.

By Theorem 7 we can set Pkt = kts’® where K= £ 1. Since Pkt =Pk (ys *
tis) =ys* t1o, we have

ys* tio=Ktg’.

By the similar manner, we can compute yg® % t;3 and obtain ys * ty =
—t1®. Therefore

ys Ktz =ys K= —t1 (18)
Because t16 and t46 are primitive, we can set

ysk tie=Oats’, (19)
Ys ¥ tie=O3t1s”. (20)

Operate #% to (20) to obtain

yskts=P% (ysktss) = 03P% (11s®) = pset1s’.

Thus by (18), we conclude that p3= —e&. ys%*tss will be determined after the
determination of yazo % ¢ss.

Here we apply %% on (5), (6) and (14), P% on (5) to see

Ytos =P (ys* tis— trote’ts? +tiate?)
=eysKti4=é€ln,
Phts=Pk (ysk trs) =cys ¥ tro= —et1o,
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Phtss= — Pk (ys* tss) = —eysktzn=ct1s’,
Y20 =P% (ys ¥ tas) =ysk tia=tz.
Next we compute ygo%kty. First we apply Pk to (15) to obtain

Y20 ¥ t2= Pk (a0 Kk ts) =Pk (t26— (y20 ¥ t2) t22) =t
From this, (15) and (16) imply that

Yoo K b2 =€l g,
Y20 ¥ ts=tas— Etaats?,
Y20 % b1 = t3s+ Ebaate’ts” — taghe’.

Y20 ¥ tg is computed as

0=y20>*k te=y20" % (y20 % t5)
=yt ¥ (b6 Etgats?)
=y202 L3 tze+5t223.

Thus YaoKie= —y202 K= 5t223-
The similar computation of y2® % t1s implies

Y20’ K tsg= —ta’.

Thus y20 % t3s is a non zero primitive indecomposable element and we redefine
tss as Yo k3. Hence

Y20 K L3z =58, (21)
Y20k tsg= —t’. (22)

By applying P% to (22), we have
ys ¥ b5 =Pk (Yoo ¥ tss) = — P (tas®) = —et’.
We obtain also
Y20 K b= Pk (y20 % t2s) = — Pibas= —t14°

by applying Pk to(8).
Since t3 is primitive, we can set Yo% tss = 0st1s° (04 EZ/3). Operating Pk
to the both sides of this equation, ps&t1s® is computed as follows:

046t1°= 0. P% (t 18%)

=P% (y2o k¥ tz)
=ys K3ty ki
=t143.

So yaok tsy=¢t1s is shown. Now adx is determined except for yg ¥ tye.
Finally we operate P% to (21) and P%to (22) and see

Phtss= Pk (Y20 ¥ tss) =yaok (Platss) =€yz0 K tay=t1s"
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Y20 ¥ (Pitss) =Pk (yao ¥ tss) = — Pk (ts6®) = —tid.

These equations imply that

Pltss=t15°, Pitss=t2s.

This completes the proof of Theorem 1.
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