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Absence of diffusion near the bottom of the spectrum

for a random Schrodinger operator on L% (R?)
By

Yuji NOMURA

1. Introduction

Let (R, F, P) be a probability space whose precise definition will be
given later. For each w € £, we consider Anderson type random Schrodinger

operator on L?(R®):

1.1 [Ha,=—A+Vw(x).

Vo (1') = ZiEZ3qi (a))f(x*z)

2
where 4=2%_, 9 7 lqi}iez satisty
al’j
(H.1) {gi} ez are real-valued independent identically distributed random

variables on (2, F, P) with uniform distribution on [0, 1].
We suppose the following conditions:
(H.2) There exist two positive numbers 7, and 7, such that n,<f(x) <n,
for x€ [0, 1)3,
(H3)  x«[0,1)>=f(x) =0.
Hy is considered to be the operator corresponding to the Hamiltonian of
the electron in random metalic media. Let 0(H,) denote the spectrum of H,.
Then the following is a known fact.

Proposition 1.1. (Kirsch and Martinelli).
o(H,) = [0, ) a.s.

For E>0, we shall mean by gg an arbitrary real-valued function which
satisfies the following condition:
(A) ge€CT (R) and supp 9:C (0, E),

where C§ (0) ={f€C~(0)|suppf<0O} for an open set OCR”".
In this paper we are interested in the following quantity:

(1.2) A0 =E| [ lafleuge (1) ¢ ) [z |
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for 9 €L (R®) = {f€L2(R) |<&> ¥ €EL2(R®), where x> =/1+|z]?* and E
denotes the integration in @ with respect to the measure P. gz(H,) ¢ is a
wave function of a electron which is well localized in the sence of L3(R®) and
has energy near the bottom of the spectrum. 7% (t) represents the mean square
distance from the origin of the time—evolution of the electron whose initial
wave function is  g& (Hw) ¢.

When V=0 or V is periodic, 7% (t) behaves asymptotically as

72 (t) ~Ct? (t— ).

But when V is random, we expect by physical consideration that 7% (t) behaves
asymptotically as

7% (t) ~Dt (F—>o0).

D is called the diffusion constant. In [6] J.M.Combes and P.D.Hislop proved
Anderson localization, that is to say, there exists E¥*>0 such that in [0, E¥]
the spectrum is pure point and the corresponding eigenfunctions decay
exponentially. Hence when E is sufficiently small, we expect that D =0. But
this does not follow from Anderson localization (see e.g.[7]).

Our main theorem is the following.

Theorem 1.1. We assume (H.1), (H.2), (H.3) and (A), then there
exists E¥>0 such that if 0<E<E¥, then

tim 5 ar=o

By J. Frohlich and T. Spencer [1], absence of diffusion was proved in the
case of discrete random Schrédinger operators in multidimensions. In the
continuous case F. Martinelli and H. Holden [5] studied random Schrodinger
operator with potential

Vo @) = ) g (@) Xe, (),

€EZ?
where

ci={reRrl—§<z<gii=123]
and X, (x) is the characteristic function of C;.
Our proof relies heavily on [1] and [5].
Let 2 = {w: Z°— [0, 1]} and F be the o-algebra generated by of all
cylinder sets of 2. For a cylinder set I={w|w (i;) €4;i;€2° 4; . Borel set of
R,j=1,2 - n}, we define

(1.3) P =j;lX[o,1|(Zl)dﬂl“'LnX[o,u(Xn)dﬂn,
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where X, (1) is the characteristic function on interval [0, 1]. By E. Hopf's
extension theorem, P is extended to a probability measure on (£, F). If we
define q; (w) = w (i), the random variables {g}iezs satisfy (H.1). We define the
group of measure preserving ergodic transformations T; (i €2°) in 2 by

Tiw(G) =w(i—i), GEZ®)
for w €. Then we have
Hrw=UH,U} GEZ?)
where U; are the unitary operators in L2(R®) defined by
(Uy) (&) =f(x—1) for FEL*(R®),iER".

For technical reasons, we shall rather work in the following extended
probability space:

(Q,F, P)=(Q F, P) x (R*/Z°, B(R*/Z?), )

where B (R?/Z°) is the topological Borel field and p is the Lebesgue measure.
rE€R3 can be written uniquely as follows:

x=x+z, x€Z° €[00, 1)3
[f we define the transformations ’I_} (x€R®) on 2 by
To(w, k) = (T, (x+k) ")
for (w, k) €Q and x ER?, we have the following proposition in [2].

Proposition 1.2 (Kirsch). (1) {T},er is a group of measure preserving
ergodic transformations on (2, F, P),

(2) Hrww =UsHwwpUF for (w, k) €EQ and xER?,
where Uyf( =) =f(+ —x) and Hpp=—A+V,(x—Fk).

We denote by Gy (2; x, y) and Gw.n (2, x, y) the Green functions of H,—2z
and H,,n—2, respectively. It immediately follows that

(1.4) Gww (z x, y) =GCu(z; x—k y—Fk)
and
(1.5) Gt (@ 2, y) =Gz, x—t, y—t).

The proof of Theorem 1.1 can be reduced to the following theorem as is
shown in Section 2.

Theorem 1.2. There exists E*>0 such that

limsf 1(1+|x|)E—[|G(w,k, (E'+ie; x, 0) |4]% dx=0
elo R
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uniformly in E' on any compact set in (0, E¥], wheve E denotes the integration in
(w, k) with respect to P.

In the proof of Theorem 1.2, the following theorem is essential.

Theorem 1.3. For any p>0, there exist E¥>0, N*EN, ;>0 and K,>0
such that if 0<E<E* then

P<|Gw (E+ig x, y)| Se'”‘E”N”E)a""”"max[1, ]—l—xiy }
for any xER® and any yE€ [0, 1) 3) <1 —%
for any N* <N EN uniformly in € #0. Here m (E) =c1E%, L(E)= [Ll] where [ ]
Ez
denotes the integer part.

Theorem 1.3 is proved in Section 6.

2. Proof of Theorem 1.1

It is not difficult to check that the following proposition implies Theorem 1.1
(see e.g. [5, p. 203]).

Proposition 2.1. There exists E¥>0 such that if 0<E <E* then
1 f Trg(t)
;-l_.r?oT a7t dt=0
for any n€ (0, 1).

In this section we shall prove that this proposition, in turn, follows from
Theorem 1.2.

Proof of Proposition 2.1 assuming Theorem 1.2. We denote by ¢ constants
independent of w and €, which may be different according to the situation. For

1
e= T we have

l Tﬂ)_ —l Tet—etflzl@ <€ .2 ® et
(2.1) o M dt—TfﬂTee , dt< ej;e 3 (t)dt

n
__e L~ 1 12 , g.)
sere | B[ lalra(E+5i)os () 0 @)
The last equality of (2.1) will be proved in Appendix 1. Let E* be as in
Theorem 1.2. Let 0<E<E* and ¥,=gx(H,) ¢. We divide the last member of
(2.1) in the three parts as follows:

27em ezj::E [./;le'z

2d.lc] dE’.

Rw(E’+§i) v, (x) zdx]dE’




Spectrum for a vandom Schyidinger operator 643

+27ef77 ezﬁE*E U;Jx|2
+ 27em EZ.[.E;E U;cslxlz

=1+10+1m,

de] dE’

Rw(E’+§i) v, (x)

de] dE’

Ro (E’+§i> v, (x)

where E is a positive number satisfying

supp 9 (E, E).

To begin with, we shall estimate the terms [ and [ll. If we set

fer () =rg_EE—('r_)i8€C3° (R),

we have

Ro (E'+ie) ¥, (x) =fer (Ho) ¢ ().
Then we get

(2.2) j;J|x|2|Ra, (E'+ie) ¥, (x) |dx =j;3|l'|2|f5,5' (Hy) ¢ (x) |dx
<I..er (Ho) -3l pls

where L =L%(R%. For Banach spaces X and Y, we denote by || * [x—~y the
operator norm of the bounded operator from X to Y. By Lemma A.1l, we have

uniformly for E'€ (—oo, E] U [E*, o0)

2.3 e5r (Hy 73 S#v
( ) ”fE( )"L§ L} 14E2

where constant ¢ is independent of @ and ¢. From (2.2) and (2.3) we obtain

2 "4 2 c
F[ fR JalPRa (E'+i€) W () | dx] <

for E'€ (—oo, E] U [E*, o) uniformly in €>0. Then there exists a positive ¢
such that

j;E U;s'x'zmw (E"+ie) U, (x) |zdx]dE’Sc
and
jiE U;,"’ "R (E'+ie) ¥, () |2dr] dE'<c

uniformly in €>0. For this reason, | and [l tend to 0 as e—0.
Next we shall estimate [I. For k€ [0, 1)3, we have

(2.4) Ry (E'+ie) U, (+ —k) =UR, (E'+ie) T,
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=UkRy (E'+ie) UFU gk (Hy) UFUr
=Rw.p (E'+ie)ge (Hww) Urd,

where Ru,x (E'+ie) = (Hwpn— (E'+ie)) ™! by Proposition 1.2,(2) and Hiwo=
Hy. Therefore if we put ¢(w,n=Ux¢ and

Ciw=095 Huwr) Pwn,

then we obtain
j; |alfRw (B +ie) ¥, () [Pdx
= [ Jr—bP{Run (B +i6) 05 () i (2 iz
= fR e = k4R w0 (E'+ie) T () [*dx.
Integrating with respect to P, we get
(2.5) E| [ lellRa (B +ie) 0 (o) x|
=E[ j; |xl|Ro (E+ie) T (x) |2dx]
=B [ e = HelR o (E'+i6) Wi () 'z].
Since k€ [0, 1)3, the last member of (2.5) is bounded by
@.6) E[ [ e+l [ Guonr B +is: 2, 4) Voo ayfi]
SE’U;;(H-lxlz) HJ;JIG(w,k) (E'+ig; x, y) [ Twm (yj)|dyfd:c]

j=12

— — 2
< [ e+l ([ ElGww E+ie: x, ) VBT ) [y ) ax.

The last inequality is obtained by Fubini's theorem and by twice using the

Schwarz inequality. Since Tl, has the measure preserving property by
Proposition 1.2, we obtain

EllGww (E'+ie x, y) |1 =E [|Grywsn (E' +ig; x—y, 0)|*]
=E[|Gwn (E +ig; xr—y,0) 1]

Therefore the last member of (2.6) equals
2.7) j;a(l'HIlz) <j;3E_[|G(w,k) (E'+ie; x—y, 0) ] %E_ (¥ (y) |4]% dy)z dx.
Let

(2.8) K@) =E[|Gwn (E +ie: . 0)]4]5.
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By taking |x|? into the integration with respect to y and using the inequality
lr| <lz—y|+lyl, (2.7) is bounded by

2.9 [ K*ENWuolTd 2 () % B W0l Th? az
+2[ (K% (BT T0nl1)? ax
<([ k@iz)' [ ElWun w9} ay
2 Jelk @ ax)” [ Bl )19} ay
+2<_];3K(x)dx>zj;ﬁ[|y Voo (y)|“]]%dy.

We shall show

(2.10) Sy T @) [Tty <oo.

From Lemma A. 2 we have

|<y>211r(w,k) (y) | = | <y>295 (H(w,k)) Urg (y) | < ||Uk¢”L§SC

uniformly in (@, k) €. Therefore we get

2.11 v, <~
( ) | (,k)(y)l 1+y2

uniformly in (w, k) €Q. We have
LGE [|y Voo (y) H% dy
<([ L) HELS, 0 ot ] )

and from (2.11) we get

_/;3(1+y2)2|y|4|w(w,m (y)|‘dy
sf 14422 ¥, 2 4_C__d
Rl( y) | ( ,k)(y)l |y| (1+Iy|2)2 y
SC" w(w,k)”%,gg ||gE (H(w,k)) |I%%~L§l|Uk¢||l%% <c

uniformly in (w, k) € 2. The last inequality is obtained from Lemma A.l.
Thus we have (2.10). In a similar fashion we can check

(2.12) [ ¥ @)1} ay <o,

By (2.5)-(2.10) and (2.12), to show that Il tends to O as e—0, we have
only to prove



646 Yuji Nomura
5L3(1+|x|)K(x)dr—>0 asel0

uniformly in E'€ [E, E*]. In view of (2.8), this is nothing but the assertion of
Theorem 1.2. Thus the proof of Proposition 2.1 is completed.

3. Proof of Theorem 1.2

In this section we shall give a proof of Theorem 1.2 by using Theorem 1.3
and Lemma A.4.

Proof of Theorem 1.2. To begin with we shall devide R? as follows. Let

(3.1) Ao={zr€RY|x|<1}, A,= xERI1<|2| <R}
and

(3.2) A;={r€RY2R<|x|<27'R)

for N©j=2. For EZ&>0 we define

(3.3)  Vie

={a,

1
® E+ . ., S m(E)(NL(E)3—|z—y|) [1' }
|Go (E+ie; , y) | <e max\ L= T

for any r€R?® and any y € [0, 1)3].
For x €A, from Lemma A .4 we have
1
(3.4) ( f[ , mE[IGw(E+ie; x+k k) |4]dk)“
’em(E)(NoL(EW—III) 1 l c 1
STP (Vi) st (H"‘E)P (V&op)

and for r€A4;(;=>1), we have
1
(3.5) (f E[|Gy (E+ie; x+k, k)l"]dk)4
(0,113

LB WLES-ZD P (15 ) i+ (éﬁ-%)l’ (V&.e) %

where N; will be specified later and V&,z= 2\ V&,k Since we have by (1.4)
and the definition of E

1
4

(3.6) E[|Gw.x (E+ie; x, 0) |4]%=( f[ oy EUCw (Etie 2tk k) Hdk) :
we have by (3.4) and (3.5)

(3.7) e[ QH)EllGwn E+ie z, 014} dx

™M E) (NoL(E)3—|z) L
Sej; (1+|x|)TdJ:P(V?VO,E)I
0
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+SZ.[4, 1+ |x|) oM EYNILE=|z)) . P (Vi,5) 1
j=1

+eifm(1+|x|) (1%[+%)de(1/§,€,5)%.
i=0

By the definitions of A4;, we have

o™ (E) NoL(E)3~|))
(3.8) f (1+]z]) —r—l—de(VNoE) 1 <Ecem(E)NoL(E)3

and

(3.9) Ll(1+lxl)em(E)(NiL(E)3—|x|)dx
e—m(E)zi—zR (] 22)
e—m(E) 0: 1)

3—p2i-2 .
m(E)(N;L(E)3—-R2/-2) (122)

Sem(E)NIL(Eﬂ“ (1 +2f—lR)c (21‘—1R> 3% l
SC (sz—l) 4% {
em(E)(NlL(E)3—1) (]:1) )

Since, from Theorem 1.3

P( N}E) L]\fﬁ_

p)

we have

6.10) [ el (G E)ap (vice)

< {c|Aj|+c|Aj|2j_lR%]Eﬁ- (R277Y) —i— for j=1
N}

J

and

(3.1) e (P +5)azp (v i< K

13

3,4%,_

y (3.7)-(3.11), it follows that

(3.12) 8L3(1+Ix|)E[|G(w,k) (E+ie; z, 0)|[*]ddx
SECem(E)NOL(E)3+€CR4em(E)N0L(E)3—1+€CZ (sz—l) 4em(E)(N}L(E)3—RZi'2)

j=2
+c—%+cz (R~ 1)
j=1

—I+]]+]]]+IV+V.



648 Yuji Nomura

For j 20 if we put

(3.13) N,-=[ R2" ]

2L(E)?®
then we have

(3.14) N,L (E)*—R2-?< —%sz-l

and

R22
AL (E)®

If we take p=17, then it follows from (3.15) that

(3.15)  (R2IY)Nj4< (R2Y) 4( )_%= (R2FH*4 (8L (E)) %,

1 oo
(3.16) V<cKk$ (8L (E)?) %R-%Z (27%) 71,
j=1

For any & >0 if we take R sufficiently large, by (3.13) and (3.16) we have
£ £
| V< 5 and V< 3
independent of €. Then if we take € sufficiently small, it follows that
& £ &
I<5. [[<5 and ]]]<5.
Therefore if € is small enough, then we have

e[ A+laD EG w0 (E+ie z, 0) [z <e.

This estimate holds uniformly in E € [E,E*] because there exist two positive
numbers ¢, ¢’ such that for any E € [E, E*]

0<c<m (E) <¢" and 0<c<L(E) <¢'.
We have thus proved Theorem 1.2,

4. Singular sets

In this section we give the notion of singular sets and a theorem concerning
them which will be used essentially in the proof of Theorem 1.3 in Section 6.
We denote by E a small but arbitrarily fixed positive number in the sequel.
We define the basic length scale:

LE)= [%]
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where [] denotes the integer part. We choose E sufficiently small so that
L(E) 21 in the sequel. Let Z°(E) =L (E) Z° and for j€Z°(E), Q) =Q&(0) +
j where

Q:(0) ={xeR0<x;<L(E),j=1, 2, 3}.

And we define the norm:

| jle= max

ML (E)
for j€EZ°(E).
We fix >0 and 3 satisfying
1<a’<B
and
JZ<B<2

in the sequel.
Definition. A site j€Z°(E) is said to be singular if and only if

A1 (HYz (w)) <2E.

Here H¥:y (®) is Hs |r2@egn with Neumann boundary conditions and
A1 (HY: ) (w)) denotes the lowest eigenvalue of HY:y (w). We define a
sequence of the singular sets inductively.
So=1{j€Z°(E)|singular}
Si+1:Si\Sf
S¢,= U ,D¥: maximal union of components Df satisfying the following condition
A (i)
Condition A (i):
(a) D¥CS;
(b) diamgD¥<d;
(c) distg (D¥,S\D¥) >2d 4,

1
(d) dist (o (Hewwrsam) E) =exp (—d12>
where

do=do(E) =L (E), d;=d¥'
and
W (D, r) ={j22°(E) |dists (j, D) <1},
0 = J @=0)

jE€ED
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for any D C Z° (E). We denote by diamg and distz the diameter and the

distance measured by the norm| . |E HQE(W(D;,,M,), is H, lLZ(QE(W(D’fAdg))) with
Dirichlet boundary conditions.

The main theorem of this section is the following.
Theorem 4.1. For any p>0 there exists E'>0 such that if 0<E<E’ then
P (i€5f) <d;’
for any i €EZ°(E) and any j =0.

For proving this theorem we shall prepare some notations and some lemmas.
We define the set of n-cubes n=>1):

€.={C,|Co={y ER} max|x;—yi| <2" 'L (E)} for some xE2"'Z*(E)}
i=1,2,3
and the set of O-cubes:

Let DCZ3(E) be finite set. We denote by no(D) the smallest no such that there
exists an no-cube Cy, including D and fix one #no(D) -cube Cyuop) including D.
We define €ny) (D) ={Cuon) and for n<no (D) let

Vn (D) =min{ # €,|%, is a family of n-cubes which cover D}

and €,(D) be a family of n-cubes which attains this minimum. We shall fix
one sequence of covers of D:{%, (D) }s=1.2.nw. We define

(D) ={C, €%, (D)|dists (Cu, C;) =2d528" for any G,E%€,(D), Co#Cy)
for no(D) >n>0 and €,(D) =9 for n=ny(D). We define

V(D)= ) #6.(D), V(D Z (D). and %o (D) =%; (D) =D.

n=1

We denote by Xp(w) the characteristic function of the set:

(4.1)  Qp={w<8)| there exists k such that D is a component of S§}.

Lemma 4.1. Let D be a finite set of Z°(E). For n=>1 let j(n) be the
smallest integer such that djm =>de2". For CE€, (D) we denote by Xn. n>0) the
charactevistic function of the set:

1
{we Qldist (0 (Hswicnp.adgion) , E) <exp(—din)}

and for n=0 let Xoc be the characteristic function of the set {w € Q|CES,}. Then

E (xo) <E( H [T uc)

n=0 CE€%,(D)
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Here if €,(D) = @, then we set lceqmXnc=1.

Proof. For w€E §2p it is sufficient to prove that

1
dist (o (H3swicnpadgom) » E) <exp (—dZm)

for any CE%,(D) (n>0) and that CES,(w) for any CED (n=0).
Let w € 2p and D be a component of S§. First we consider the case n=0;

CED is contained in Sp because D is a component of S§C So. Next we consider
the case n>0. We show that if CE %, (D), then C N D satisfies Condition A (j
(n)) (a), (b) and (c). Noting the definition of €»(D) and a?<p it follows that

4.2) diamg (D) 2> 248287 > 2452 =2 (d§2°") * > 2d %y = 2d jon) +1.
The last inequality follows from
(4.3) d§2"" >d

which can be easily seen by contradiction. Let i (n) be the largest integer such

that di <d§2°". Then we have dim >d§2°" by contradiction and by a? <B.
Because of this inequality and (4.3), we get j (n) +1<i(n). By the definition
of i(n), (4.2) and Condition A (k) (b), it follows that

d,,ZdiamE (D) 22(1,’(").
So we have i (n) <k. As a consequence we obtain
i) <i(n) <k.

From this inequality it follows that D €ES§C S, CSj. Therefore CN D satisfies
Condition A (j (n)) (a). Because of the definition of j (), diamg C=2" and do=
L(E) 21 it follows that

diamg (CND) <2"<d (),

which is Condition A (j (n)) (b) for CND. We show Condition 4 (j (n)) (¢) for
CND. 1t follows that

k—1
(4.4) Sj(n)=Sk+ Z Si‘.

i=j(n)
If D¥ is a component of S¥ for i=j(n), j (n) +1, +-*, k—1 then we have that
(4.5) diste (DY, CND) 2diste (D,S:\DY) =2di+1>2djm+1
by CNDCDCS,CS;\D% Since D is a component of S§, we have that

distz (CN D, Si\D) 2distg (D, Si\D) =2d 41> 2d jim+1.
Because of CE%, (D) it follows that
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distz (CND, D\(CND)) =2d82°">2d jy 1.
Hence we have
(4.6) dists (CND, S\ (CND)) 22dj0041.
From (4.4), (4.5) and (4.6), we conclude that
distz (CND, Sjm\(CND)) 22d;(n+1,

which is Condition A (G ()) (¢) for C N D. Therefore if C N D satisfies
Condition A (j (n)) (d), then CND is a component of S4. But this contradicts

the fact that D is a component of S§ because j (n) <k. As a consequence we get
that

1
dist (6 (H3zwicnp.agiomn) » E) <exp(—dZm).
We have thus proved Lemma 4.1.
In order to estimate E (X)), we need the following two propositions.

Proposition 4.1 (Wegner estimate). Let Q (7)) =Q(0) +j, j €E2Z° and Q(0)
=[0, 1)%. For a finite J”Z®, let

A=U,;e,00),
and JTZB be a finite subset such that
A=U;eQ (7)

is the smallest cube containing A. Let

H} () = — A4+ V|2

with Divichlet boundary conditions. Then we have

-1 _
P ({w|dist (0 (HB (w)) . E) <k}) Szc—;zllllzk (E—k+2n7' k)3

for k=0,

This proposition will be proved later. The following proposition has been
proved by [4].

Proposition 4.2.
P (21 (HgE(O) ((D)) SE) Sexp (_CE_%) )

From these two propositions we can show the following lemma.

Lemma 4.2. If E> 0 is sufficiently small, then there exists ¢>0, ¢'>0
such that
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E (Xp) <exp(—cE":#D—cE~iV'(D)).
Proof. For n>0 and for Cy, C;€%, (D) (C:1#C>),

distg (W(C:ND, 4djm), W(C:ND, 4d;im))
> 2d825" —8d jm) = 2d 525" — 234 § 247
= 24825 (1— 224§ P25%) > 24828 (1—22457)
by the definition of €,(D) and (4.3). If E is sufficiently small, then the last
member of the above inequality is positive. Therefore we have

W(ClﬂD, 4dj(n)) N W(Can, 4dj(n)) =¢.

Then {X,c}cesm are independent by (H.1). By the definition of Xoc¢ and
(H.1), it follows immediately that {Xoc}cep=¢w) are independent. Hence by
Lemma 4.1 and the independence of X,,c, we have for 0<r<1

4.7) E(X,) SE[ ﬁ I1 X,,,C]

<(T1 #tea) ([ IT T1 el
ceﬁ’uo)w n21 ceg,(D)
g...gl_[ H (E [Xncl)™a-n,
n=0 Cce¥,(D)

For n>0, by the definition of X, it follows that

1
E [X,.c] =Ploldist (6 (HBewicnp.aamm) , E) <exp (—dim)).

Since Qs (W(CND, 4dm)) is included in a cube with sides of 10d;mdo by CE
%.(D), djy=2"do and do=1, we have by Proposition 4.1

1
(4.8) (E[Xnc]) "7 < (cd§imdSexp (—d2m) )"0,

If E is sufficiently small, then it follows that

1
4.9) (dnd$ exp (—dfm) ) ™07
1 1
< (exp (—cdZm) ) ™" < (exp (—cd§25) ) ™07,

1
>y>— i
Choose 1>7r 5 then it follows that

(4.10) the last member of (4.9) <exp(—cE~1(/Z7)"*(1—7)) <exp(—cE%)
uniformly in n>1. Therefore by (4.8), (4.9) and (4.10) we have that

(4.11) (E [X,c]) ™" <exp (—¢E).
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For n=0 and CED, it follows that

(4.12) E [Xoc]
=P (CESy) =P (A, (HYz o) (w)) <2E)

=P (A (H3z 0 (w)) <2E) Sexp(—cE'%)
from Proposition 4.2. From (4.7), (4.11) and (4.12) we obtain that

E[Xp] <exp(—cE2#D—cE%V (D)).
This completes the proof of Lemma 4.2.
In order to prove Theorem 4.1 we need the following lemmas.

Lemma 4.3.
V(D) Zc(logE™)2#D+c'V' (D).

This lemma will be proved later. The following lemma has been proved by

[1].
Lemma 4.4. For VEN, we have
#{DCZ*E)|V(D)=V and 0€D} <exp(10V).

Proof of Theorem 4.1. Because of the translation invariance by (H.1), we
have

PGES$)=P(0ESY)
for i€EZ*(E). We have
(4.13) P(0ES?) £ZP (D is a component of S%)
D>

Let Pp; =P (D is a component of S¥). If diamgD>d;, it immediately follows
that Pp; =0 because of Condition A (j) (b). Therefore we shall estimate as
follows:

(4.14) P(0ES%)
SZ Z PDJ"*'Z Z PD,j=I+H.
V=1D30,V(D)=V V=1 D30,V(D)=V
diamgD<d,-, dy-y <diamgD<d,

Let D be component of S¥ (w). As a first step, we consider the case where
diamEDde_l. Since S;-,=S%_,+S;, it follows that

distg (D, S;-,\D) =min (distz (D, S§-,), distz (D,S;\D)) =24
by Conditions A (j—1) (¢) and A () (c). Suppose that

1
dist (0 (H3eww.4a;-0) , E) 2exp(—df-1),
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then D would satisfy Condition A (j—1). But this contradicts the fact that D is
a component of S§. Therefore we have
1
dist (0 (H3ewwaas-) , E) Sexp(—df-1).

Consequently we can estimate Pp; as follows. Let X'(w) be the characteristic
function of the set:

1
{wldist (o (H3;wwaa,n) . E) <exp(—dZ,))

and Xp is the characteristic function £p. Since Qz (W (D, 4d;_,)) is included in
a cube with side of 10d;-.do, by Proposition 4.1 we have

1
E [X"]c(dj-1do) Pexp (—d}-1).

Hence we have

(4.15)  Pp,<E[X' () Xp (@)1 < (E[X (@)])Z (E[Xp(w)])?
<eal dtexp(—gdfa) B DX @),

On the other hand
(4.16) Py;<E (Xp(w)).
From Lemma 4.3, we have that
cE"3 # D+c’E73V (D)
> (c(logsE™")2# D+c'V' (D)) cE->cE~3V (D).
Hence by Lemma 4.2, it follows that

(4.17) E (Xp()) <exp(—cE-1V (D).
From (4.15), (4.17) and 4.4, we have

N 1
(4.18) ISZ Z cd?_ld%exp<—%d}_1)exp(—cE‘%V)

V=1D>30,V(D)=V
diamgD<d,_,

S 1
< ch?_ld%exp<—%df_l)exp((10—cE‘%) V)
V=1
° I AP
Scd,’ exp _Edj Sgd,

provided E>0 is sufficiently small because d;=do and do is large when E is
small. It is easy to see that
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(4.19) V(D) 2n(D) 2logzdiameD.

Since we have (4.16) from the definition, it follows from (4.17), (4.19) and
Lemma 4.4

(4.20) I
< Z exp ( (IO_CE_%) V) Scexp((lO—cE‘%) logad;—1)

IiZlogzd/_.
Sgdj_p
provided E>0 is sufficiently small. From (4.16), (4.18) and (4.20), we have
completed the proof of Theorem 4.1.

Proof of Lemma 4.3. Let 7 (x) = [% {.r —1—log, (4d8 +3)” .Forn€N
such that 7 (1) >0, we claim

(4.21) v,,s%

where V=V, (D)= #%, (D) and V5, =V, (D) = # €, (D). In fact, let €=
En (D) =%n(D)En(D). If CEE7m, then there exists C' € Gy such that distg
(C, C') <2d82°F™™ and C#C'. It follows that

diamg (CUC’)
<2 27(n)_|_2d;3237(n)
< (2 + ng) 2870 = 257(n)+1ogz(2+2d@)

4
Vr(n) + Vr(n)

By the definition of 7(n), we have By () +log: (2 +2df) +1 <. Hence there
exists an n-cube C” such that CU C'CC”. And if C,, Cz and C3 € €y and

distg (C1, C2) <2d8287™ and distg (Cy, Cs) <2d§257™ | then it follows that

diamg (C1 U C2:U C3)
<3 2r(n) +4d6?2/97(n)
< (3 +4d‘3) 28T — 237(n)+loaz(3+4d@)

and By () +log, (3 +4df) +1 <u. Therefore if {Cy, Ca, ***, Ci} = Grm, there
exist at most [%] pieces of n-cubes which cover {Ci, Cz ***, Ci}. Hence we

have that
]' " ’ 1 4
Va= # gn S§ # (gr(n) + # (gr(n) S'Z_Vr(n) + Vr(n)-

mtimes

——

Thus (4.21) is proved. Let 7™ () =7 (y-y(y(®)) ). For n such that y(n) >
0, M (n) denotes the largest natural number such that ™ (n) >0 and for n
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such that 7(n) <0, we define M) =0. If 7(n) >0, we can iterate (4.21)
M (n) times and we get

N M I\m-1
V,,S (g) Vru(m(,,)‘{‘ Z (E) Vrrn(n).
m=1

Hence we have

(4.22) Vn—<%>mn) Vot E ( ) Vimm.

m=1

If ¥ () <0, this inequality (4.22) holds for M (n) =0 and for the 2nd term of
the right hand side of (4.22) =0. Therefore we have

no(D) no(D no(DYM (n)
M) 1 m—1 ,
(4.23)  v=v(D)= ZV,,_ Z (—) Vot Z Z(E) Vimo.
n=0 n=0 m=1

We put d =1-+1log,; (4d§+3). Since %(x—d) —-1<7() S%(x—d) and 7(x) is

a monotone increasing function, we have by induction

aan (r-aBl)-T3) smw <(@)e-a L)

j=1 j=0 j=1

3

From (4.24) we have
(4.25) 7™ (n)

-5 F oy
>(%>mn Bll(d+ﬁ’)

For kZﬁ(d +8), we denote by lo(k) the largest integer (=0) such that

(4.26) (1)“’“"1@ L_(a+p) >0
| g) FTp-1eTRI=0
Hence we have 7°® () >0 and then M (k) >1,(k). Then we have
0 for O<k<ﬁ(d+ﬁ)

4.27) M(k) 2> [
ogr————
Fo1@+h)

From (4.27), we have

(logzP) '1] for kZF(d-I-B).
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l)M(n)
(4.28) Y (3
n=0
- l)M(n)
<)(3
n=0
B—ll(d +B) +1+ Z ogz_:l_'_ﬂ) (log:ﬂ)"'f']‘
kzﬂl d+8)
We have
—logs k (logsB) '+l —of __= (logz6)71 —(logz28)-1
@) 2o 2 B ~@+B) k .
Since d = 1+log2< > [E ] and 42 <B<1, we have
(4.30) ﬁ(d +B) <clogsE™!
and
1 (logz8)-1 2 2
(4.31) 2 F(d+ﬁ) <cd?<c(logE™Y)
for sufficiently small E>0. From (4.28)-(4.31) and log; 8<1, we have
no(D) 1 Mo
(4.32) Z <§> <clog:E ¢ (logzE™) 2<¢" (logeE ™)) 2
n=0

for sufficiently small E>0. For m €N and j €Z, let N, = (k€ Z|y™ (k) =j}.
Let k4 be the largest integer such that y™(ky) =;j and k_ be the smallest
integer such that 7™ (k-) =j. By (4.24), we have

e - T e

e (o8

and then

()" et = Z( J=550-()")

Therefore it follows that
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1

(4.33) #Nm,,=k+—k_+1SB_1,B'”“.
We have
no(D)M (k)
1 m—1 ,
(4.34) E Z (E) Vimao
k=0 m=1

no(D) no(DIM (k)

S 0

j=1 k=0 m=1
From (4.33) and B<2, we have

no(DIM (k)

(4.35) Z Z (%)m-larm(k),j

k=0 m=1
i (e
m,k=0 m=0
s u (8=

From (4.34) and (4.35), we have
no(DIM (k) 1 m—1

(4.36) Z Z (E) Vima <c'V' (D).
k=0 1

From (4.23), (4.32), and (4.36), we proved Lemma 4.3.
Proof of Proposition 4.1. Let

HR (i €)== A+ ) xf (- =)

jieJ

with Dirichlet boundary conditions. For A>0, let

L2(A)

N(A; x;, j€J) = # {eigenvalues of H} (x;; j EJ) <A}.
Since A= A< (A—A)nat ffor A=A by (H.2), we have

(4.37) Nz, jE))

=NQA'+A—=1 x5, 1€))

SN 2=t (A=), j€)).
Let X1 (x) be the characteristic function of the interval [0, 1]. From (H.1)
and (4.37) we have

(4.38) EIN(4; ¢;(w),7€)) =N g5 (@), 7E€D)]
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=L,,(N(X; x;,j€)) =N 2, €])) HXm,u () dex;

je
< - N5 ;=15 A=), jED N 25, jED) H X (x;) dx;
jeJ
= [ Nz ep ([ [ o @it a=20) = [ [ ane)) [T as
i€l jeJ jeJ

SNQ;=ng* (A=) j€)) 205t A= '||A]
SN;—=nat (A=) j€]) 2n;

where |A| and |A] is the volume of A and A respectively. Let I (A) =|/T|%. We
have by (H.2)

(4.39) N =0 (A=), j€]
<N<x'+nalm(z—z' ;0,7€))

= #] Z L <A Hnitn (=10

<in (1(7/[1) (W +n5 m(ﬂ—}’)))

=L Gt -3

3
2

Let A=E-+k and A’=E—F. From (4.38) and (4.39), we have

(4.40) P (dist (0 (Hx (w)), E) <k)
<E[N(E+E; gi(w) jE)) —N(E—F q;(w),jE))]
< 2co!

<302 (E—k~+205'n:k) 7.

We have proved the proposition.

5. Sufficient condition of the exponential decay of the Green functions
Definition. For ACZ*(E), let A=Z°(E)\A4,

0inA = {r EA|There exists y EAC such that distz (z, y) =1}
and

OouA = {x EA°|There exists y €A such that distg (x, y) =1}.
We define 0A as follows:

0A=0inA U 0puiA.

ACZ?(E) is said to be k-admissible if
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OANW(DY 4d;) =0

for any component Df of S§ and for i=0, 1, ---, k.
ACZ?(E) is said to be admissible if A is k-admissible for all £>0.

Let A, A, and A, CR? be of the form U ;e;Qg (j) for some JCZ3(E) such that
ANA;=0 and A,UA,=A. Let G4 (w, E+ig; x, y) be the Green function of
operator Hy,— (E+ie) =H,— (E+ig) |22y on L2(A) with Dirichlet boundary
conditions and G4, (@, E+ig; x, y) be the Green function of operator Haydoo
— (E+ie) =H,— (E+ie) |ruyerray on L2(A) =L2(A,) ®L?(A;) with Dirichlet
boundary conditions on 9A; U @A,. Let 8,,G4(w, E+ie: x, z), x EA, zE A be
the outward normal derivative at z of G4 (w, E +ie; x, y). Then form Green’s
formula it follows that

(5.1) Galw, E+ig x, y)
=G . (w, E+ig x, y)

—fM 0nGayaz (W, E+ig; x, 2)Ga(w, E+ig; 2, y)dz

ifr€A, yEA,UA; and x#y. We have

(5.2) Gaya:(w, E+ig x, y) =G4, (w, E+ig; x, y)
ifx,y€A;,j=1, 2 and
(5.3) GA1|A2 ((D, E+1«8, X, y) :0

ifx€A;, y€Ay, j, k=1, 2 and j Fk.
The main theorem of this section is the following theorem.

Theorem 5.1. For x €R® we denote by j (x) the element of Z°(E) which is
uniquely determined by x EQg (j (x)). There exists E,>0 such that for 0<E<E,
if ACZP(E) is k-admissible and A NSy =@, then it follows that

|Gaew) (E+ie; x, y) | <exp (—m (E) |x—yl)

provided distg G (x), j(y)) Z%dhl and 0 <e <E. Here m(E) =clE% and ¢y is
mdependent of A, k and E.

Proof. We denote by O the following assertion:
If Ais (k—1)-admissible and ANS,= @, then it follows that

|G oz (E+ig; x, y) | <exp (—my (E) |lx—yl)
provided distz (j (x), 7 (y)) Z%d,, and 0<e<E.
Here my (E) =3 E3T1454 (1—77d19) and mo(E) =1gh

By putting cl=%l_[?°=o(l—77d,-(E1) 1) Theorem 5.1 follows from ©y41.
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We shall prove @y for =0 by induction.
Step 1: Proof of 6.
Since ANS,= 0, we have A, (— 43,5+ V,) >2E for jEA. Then we have

HgE(A) (CU) = _—AgE(A)-'_ sz _AgE(A)-'_ sz @ (_AgE(i)-'_ Vw) >2E.

jEA

From Lemma A .3, the exists E'>0 such that if 0<E<E’, then we have

. 1 1
|Gozn) (E+ie; x, y)| Sexp<—gEélx—y|>

for any x and y such that distz ( (z), j (y)) 2 do and 0<e<E. This completes

the proof of ©,.

Step2: Proof of O+1 under the assumption of Oy.

Let A be k-admissible and A N Syr1=¢. If ANS,= 0, then Oy follows
from O
Hence we shall consider the case of A NSy @ . In order to prove @41, we
distinguish the following two cases:

(1) ldk+1<dlamEA de+1
5 3
(11) dk+1<dlamEA
We first study the case (i).

Lemma 5.1.Let R CZ°(E) be a k-admissible set containing some D} € S§
such that

1 3
5dk+1 <diamgR < de+1

Then we have

IGasr (Etie; x, y) | <exp{— (mi (E) —pe (E) ) | —yl}
provided distg (G (x), 7 (y)) = dk+1 Here py (E) =75my (E)d}

Proof. For simplicity we denote D=D}. We fix r €EQz(R) and y €Qz(R)

such that distz G (), (y)) = édk If diste (j (x), 7 ()}, D) >4d,, we put D;=

Dand Dy,=1{z€E€R|diste (z, D) <3dys). If dk<dlstE({] (x),7 ()}, D) <4dy, we

put D;=D and D,= {z€R|distE (z, D) S—dk}. If distg{j (x),j (y)}, D) <§dk, we

put D, = {z € R|distg (z, D) < k} and D,= {zE€R|distz (z, D) <3d,}. Then for

sufficientely small E>0, from Lemma B.1 it iollows that there exists a (¢—1)
-admissible set BCZ®(E) such that
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DCBC W (D, 4dy), distz (0B, § (x),j (y)} =dy
and
distg (Bc, D) g?)dk.

Let Q=R\B, r=0Q« (B) and 7=0Qz (W (D, 4dy)).
Case (i, 1). Let x and y in Qe(Q).
From (5.1), we have

(5.4) Gesw (x, y)
=GQE(Q)|QE(B) (I, z) _j;an,cog(o)los(m (l', Z) GQE(R) (2, y)dz

=G (x, y) + fr 0.Gaesw (x, 2) fr Gasw (2, 2) 0n,Gos@ (2, y) d2dz.

Since R and B is (k—1) -admissible, so is Q. Moreover by the assumption of R
and Condition A (k) (c¢), RN (S,\D) =@ . Then we have QN Sy= @. Hence by
applying O to @, we get

(55) |GQE(Q) (u, v)|Sexp{—mk (E) |u—v|}
if distz G (), ()) 2%@. Since distg (0B, {j (x), j (y)} =d, diste ({i (x),j (y)},

j(2)) —1>d,— lZldk for z € 7 for sufficiently small E> 0. Therefore from
5

Lemma A.5 and (5.5), we obtain for z, 2 €7

(5.6) 10:G e (x, 2)| <ch exp{—mu (E) lx—yl}
and
(5.7) 0 Gos (2, y) | <cs expl{—my (E) |z —yl}

since there exists a positive 8 such that m,(E) <J uniformly in k and
sufficiently small E>0. Next we shall estimate the term Gezw) (2, 2°) in (5.4).

Lemma 5.2. Let u, wEQr (B). Then we have

. 1 , 1
|GQE(R) (E+ie u, w) | SH-FC,, exp (d?)

Heve cy is independent of R, B, u, w, E and e.

Proof of Lemma 5.2. From (5.1), we get
Geem (u, w)
= Gu (W(D40,)) Qs (RI\Qs (W (D 40U W)

—fa,,,,GQE(w(md.))Ior_(m\oz(ww.u.)) (u, 21) Gozw (21, w)dz1
7

=G oewaaen (1, w) _j;au..GQs(W(DAdk)) (u, 21) Gopm (21, w)dz1.
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Because 21€E7CQ:(Q), it follows
Gosr) (Zl, w)

=G oe@lge® (21, W) _j;annGQE(Q)lQE(B) (21, 22) Goew) (22, w) dz»
= _j;an,,GQE(Q) (21, 22) G oew (22, w) d 2.

Hence we get

Gosm (1, w)
=Gorwaapn (U, w)

+j;a"nGQE(W(D.4dk)) (M, 21) ﬂa’lnGQE(Q) (21, 22) GQE(R) (22, w) dzxdz.

Because 2: € 7C Qe (W (D, 4dy) ), it follows

Gosm (22, w)
=G oW aaen (22, W) —j;a;x.,GOE(W(DAdk)) (22, 23) Goery (23, w) dzs.
Therefore we obtain

Goem (1, w)
=G ee(WwD4dr) (M, w)

+La,,,,GQE(W(D,4dk))(u, 21) ‘];au,,GQE(Q) (21, 22) Goewpaaw) (22, w) dzad 21
—'[;an,.GQE(W(D,Mk)) (u, 21) j;au“GQE(Q) (21, 22)
Xj;anucos(ww,um (22, 23) Gosw) (23, w) dzad zad 21

Inductively we obtain

(5 8) GQE(R) (14. w)

=G ee(WD 4di) (u, w)

2n
e e,
N n—1
+Zf7f,fff,< I I 00 G as W ad0) (221, 2241) 0., Gas@ (2241, 22j+2)>
n=1 j=0
2n

X G gs(w aan» (22nw) I Idz,-

j=1
2(N+D

D e
N
+j;j;j;j;< l I a»x,.,.,GQs(W(D,Mk))(szy22j+l) am,,..GQE(m (22j+1, sz+z)>
j=0

aN+2
X G s (22n+2,0) I Idzi
j=1

where zo=u. From Lemma A.6, it follows
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(5.9) |G osww,aam (E+ie; t, s)|

<f=rt )
SU dist (0 (HEewwaan) E‘Hé‘)

1 1
Sm‘*‘u exp (d,%)

The last inequality follows from Condition A (k) (d).If t€E7UQe(B) and sE€7, it
follows

lt—s|>|t—s| —1>d,L (E) —l>%L (E)d,>1

for sufficiently small E>0. Hence by Lemma A.5 and (5.9) we have
(5.10) |0nsG oz waaen (¢, s)|
1 1 o 1
Sc3<]t—_—s-|__—1+c4 exp(d?) <cs(BL(E) “'dg'+cq exp (dE))

1
<cs5 exp (d})
for t€7UQg(B) and s€7. From (5.9) we have

(5.11) L/;GQE(W(D,MH) (2anw) d 22|

1 1
<
_j;(m'i‘m exp (d/%))dz;m
_ 1 3
—frmdzh-l'm exp (d?)|7].

By the shape of Qz(B) = U;Qg(j), we can estimate as follows:

1
<
fT ]——[ZZn_ " dz2n <ce|7]

where c6 is independent of y=0Qg (B) and w. Then the last member of (5.11)
is bounded by

(5.12) cr exp(@d) 7l

Since 23741 €7 and z,j42 €7, it follows

(5.13) 19....G 0x @ (22541,2242) |
<c3 IS_S;EESI|GQE<O) (z2j41, )|
<cszexp _m"%d’)

by Lemma A.5 and (5.5). From Lemma A.6 it follows

1

. 1
|G osry (E+ie; t, $)|=|Copem (¢, S)|SH+;
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and then

1
(5.14) j;|GQE<R) (zziven, ) |dzzven < (Ce+;)|7’|o
From (5.8)-(5.14), we obtain
(5.15) G o (u, w)| <|Goswpaam (u, w)]

+ i: <03cs|7’”7’|exp (d%) exp<_mk£%dk>>nc7 €xp (dk%)
n=1

<0365|T||r|exp d%)exp(—mk L(E) )>N+1<CG+%>-

Since |7l171<csd§ and it follows

1
cd$exp (d}) exp< mk%d,) %

if E>0 is sufficiently small, then the last term of the right hand side of (5.15)
converges to 0 as N—oo, Therefore we obtain

(5.16) |GQE(R) (u w |<|GQE(W(D4dk)) u, w)|+c exp(d? )

—H+C4 exp (di%)
by (5.9). We have thus proved Lemma 5.2.
We return to the proof of Lemma 5.1. Noting the continuity of the Green

function, it follows from Lemma 5.2

, 1 1
(5.17) 1Gosm (2, z)|Sm+C4 exp(d?)

for z,2 €7. Using (5.4)-(5.7) and (5.17), we get

(5.18) |Goewm (x, y)l
<exp (—my (E) lx—yl)

_'_(Cé)zj;ﬁexp(_mk (E)|x—2l) exp (—m (E) |z’—y|)d

[z—2|

zdz

+eq(c3)? exp(d%)frfrexp(—mk(E) le—zl) exp (—m (E) |2’ —yl) dzdz’
<exp (—my (E)|x—yl)

expmy (E) (lx—yl—lx—2z|—lz'—y]) ,
X [1+c9frfr | T dzdz

Z2—Z2
1
+cloeXp(d£)£Lexmk(E) (|x—y|—Ix—zl—lz'—y|)dzdz’].
Since z, 2 €r=0Qg (B), it follows
lx—yl—le—zl—lz —y|<|lz—2|<V3 (7d,+1) L (E) <14d,L (E).
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And there exists positive constants ci1, ¢1z2 which are independent of 7, such
that

frj;Tz_lj-dzdz'SclJﬂzSclzdﬁ.
Then the right hand side of (5.18) is bounded by
(5.19) exp (—mi (E) |x—yl)
X {1+cysl7l%exp (d%) exp (my (E)14d,L (E))}
<exp (—mi (E)|x—yl)c1a exp (de%) exp (my (E)14d,L (E)).
Since there exists 0>0 such that
miL (E) 26>0

uniformly in k and sufficiently small E>0, it follows

1
(5.20) c14 exp (2d%) exp (my (E) 14d,L (E))
<exp (15m (B) il (E)) = exp (e (E) ol (E))
Here we used the definition of g (E) = 75m, (E)di™®. By (5.18), (5.19) and
(5.20), we obtain
IGQE(R) (l‘ y) | S€‘XD(_ (mk (E) — Uk (E) ) |x—y|)

if distz (G (x), 7 (y)) Z%d,m for sufficientely small E>0 uniformly in k.

Case (i.2). in the case of x €Q(Q) and y € Qz(B), the proof is in a similar
fashion in case 1.
We have completed the proof of Lemma 5.1.

Next we shall study the case (ii).
Lemma 5.3. Let ACZ?(E) be a k-admissible set such that ANSg= 6,
ANSy# 0 and diamgA >%d,,+1. If xy €Qe(A) and distz (G (x), 7 (y)) Z%dkﬂ,

then we have

|G oecar (E+ie; x, y) | <exp (—mysr (E) [x—y).
Proof. Let py, p2 € Qe(4) such that distz G (p1), j(pa)) 2%(1“1. If distg
. ‘ 1
G (1), 7 (p2)) <5disr, then we put

. . 2
D,= [ZeAidIStE (2,7 (1)) Sﬁdk+l]

and
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D,= {zeA diste (2, j (p1)) S%dm].
If distz G (p1). 7 (b)) >%dk+1, then we put

D, = {zEA distz (z, 7 (1)) ldkﬂ]

and

D,= [ZEA distz (2, j (p1)) —40dk+1]

For sufficientely small E> 0, from Lemma B.1 it follows that there exists
k-admissible set Rp, CA such that

(5-21) Plean dlStE({] (P ] (PZ } aRPl\A) > 80dk+1
and

. 3
(522) dlamERmégdkH.

Let B,1=A\Rm. Then it follows Qz(4) = Qg (Ry,) +Qr(B,,) . Since distg (j (x),
jly))=> d“l, by putting p1 =x, p»=y there exists a k—admissible set R;C A
satlsfymg (5.21), (5.22). From (5.1) we have

Gosw (z, y)

=G srolQeBn (X, Y) _f 0..G eeRolee B2 (T, 21) Gorw) (21, y)dzy
9QE(Rz)
=Gosrnies o (T, Y) —fmm‘)\mgw5,1,.GQE(Rx) (x, 21) Gaza) (21, y) dzy

where we used the fact Gosw) (21, ¥) =0 if 21€0Qg(4). Because z; €0Qr (R) \

0Qz(A), we have distz (G (z1), 1 (y)) = 5dk+1 Hence by putting py=2z1, p2=y

there exists a k-admissible set R, CA satistying (5.21), (5.22). We have
Gorw (x, y)

=G x, —f 0..G (x, 21) Go, koo (21, y) dz
QE(R.:HQE(BI)( y) 20s (R\3Qs () " QE(Rz) 1) Qi (R4 1Qk ,)(1 y) 1

+f 0..G (x, 21)dz
305 (RINGQs (4) 1 QE(RD

X
faoE(R,.)\aoﬁ (A)am,GQE(R,.) (21, 22) G (gea) (22, y) d 2.

Inductively we have

(5-23) Gos(m(I. y)
=Gorrolesn (T, Y)
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N n—1
+E —I"H(f 0..,.Gaos vy (25, 2j41)d2zj )
( ) 30: (R)\3Qs (4) Q4(R,,)( j ;+1) j+1

n=1 j=0

X G oy (ka0 B2) (Zn, Y)

N
+(—1)N+! H <f60 T (A)an,,..Gos(R,» (2, Zi+1)d21‘+1)

=0
X Gosw) (zv+1, y)

=T+I+1

where zo=x. First we estimate [. If y € Qr(R,), then we have I=0. Hence we
have only to study the case where y € Qr (Rz). We have Gorroiessn (x, y) =
Geosro (x, y). By the definition of Ry, Ry is k-admissible set and Rz N Si+1= ¢
because of A NSy = @ . Therefore if Rz N Sy= @, then by the assumption of
induction we have

(5.24)  |Gorwn (z, y) | <exp (—mi (E) lr —yl) <exp(—mi (E) |x—y|)
and if RN S, @ then by Lemma 5.1 we have

(5.25) |Goswa (. y) | <exp (—mi (E) lx—yl)
where mi (E) =my (E) —ux (E). Next we estimate [[. By Lemma A.5 we have
(5'26) |au,,..GQ,;(R,,) (Zj, Zj+1) | Scal SU[l) |GQE(R,,) (Zj, 14) |

2y —u| <1

From (5.21) we have

(5.27) distg (G (z), j (u))
>distg (7 (2), j (zj41) ) Hdists (G (zj41), j (1))

17 1
Z%dk+l_1>§dk+l

for sufficientely small E> 0. From (5.26), (5.27), Lemma 5.1 and the
assumption of induction as we obtained (5.24) and (5.25) we have

(5.28) 19...Gox v (27, 2i41) <ez sup exp (—my (E) |z;—ul).

20—l <1

Since |z; — zj411=|z; —u|— 1 and there exists 6> 0 such that mj(E) <&
uniformly in k for sufficiently small E>0, we have

(5 -29) |an,,‘.GQE(R,) (Zjv Z;‘+1) | SCQQXP (_m;c (E) |Zi_2i+1|) .
Since distg (j (z), 7 (y)) 2%dk+l, it follows similary to (5.24) and (5.25) that

(5 -30) |GQE(R,.)IQE(B,.) (Zn, y) SEXD (_mi (E) |zn—y|) .

From (5.29), we have
(5.31) |1
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N n-1
< Z (wa(RH)\aQE(A)céexp (—mi (E) |zf—zj+1|)dzj+1)eXD (—mi (E)|za—yl).

n=1 j=0

Let vi (E) =my (E)dy® and m', (E) =m} (E) — v (E). We have
(5.32) exp (—my (E)|zj—2j|) =exp (—m's (E) |z—zj41]) exp (— vy (E) |2;— zj11])

and

(5.33)
exp (—m’k (E) |Zi_2j+1|)>eXP (=m" (E)lzn—yl) <exp (—m# (E)|lx—yl)

(11

Since ~°
lzf_zj+1|
> (diste (j (27), j (zj+1)) —1) L (E)
><£d —1)L(E)>ld L(E)
= 80 k+1 5 k+1

for stfficiently small E>0, we have
1
€xp (— v (E) |2j_Zj+1|) <exp (— v (E) gdk+1L (E)).

(5.34)
From (5.31)-(5.34) we have
(5.35) |1

<Y T (c0@e (R:)\6@e (4) lexp (— 11 (B) Eduant. () Jexp (—mi (B) e ).

By (5.22) we have |0Qk (R.,) \0Qr (A) | <6L (E) 2(%dk+l>3:ClﬁL (E)?d3+,. Since

there exists 0>0 such that vi (E)L (E)dg+1> 6dy uniformly in k for sufficiently
small £>0, there exists 0<d"<1 such that

(5.36) 400z (R2) \0Qs (4) lexp (= v (E) gduuL (E))

, 1
<chersL (E)2diexp (— v (E) gdkﬂL (E))

<J
uniformly in k for sufficiently small E>0. From (5.35) and (5.36) we have

(5.37) || <ciexp (—m (B) |x—yl)

for sufficiently small E>0. Finally we estimate [I[. From Lemma A.6 we have

(5.38) G oea) (zn1, ¥) | =1Gaew (E+ig; zps, v)|

1

S]—l_—[-f-cﬁ_ .
Zn+1 Y



Spectrum for a random Schridinger operator 671

In a fashion similar to that used to estimate I, we have

(5.39) 10|

N
<10
Q= (R,)\0Qx (A)
j=0

0n,.Gaxir) (25, 2j41

)dzj+1> G esar (zv+1, 9) |

, 2 +1 1 -1
S(6'301514 (E)%d g+1exp (—mj (E) dk+lL (E))) (%dkHL ) teqe )
: (6/)]“1(%‘1“114 (E) +C45_1>

where we used (5.38). Since 0<4’ <1, the last member of (5.39) converges
to 0 as N—0. Hence from (5.23), (5.24), (5.25) and (5.37) we have

(5~40) |GQE(A) (x y)'
<exp (—mj (E)|x—y|) +cieexp (—m (E) |z —yl).

Since my41 (E) =mi (E) —2u, (E) =mi (E) —vi (E), from (5.40) we have

(5.41) |Goew (x, y)|
< (exp (= (E) lx—y|) +ci6) eXD(_Vk (E) |x—y|)exp (_mk+l (E) |1'_y|)‘

Since
6.42) (Bl —y|2me (E)d}*Fdpnl (B) =gy (E)dil (B),
we have

(exp (— vy (E)lr—yl) tews) exp (— vy (E) lx —yl) <1
uniformly in k for sufficiently small E>0. We have thus proved Lemma 5.3.

From Lemma 5.1 and Lemma 5.2, we complete the proof of step 2.

As a result we complete the induction and then we have proved Theorem
5.1.

6. Proof of Theorem 1.3

For >0, we denote by B, the following condition on A CZ*(E):

Sm1n|b|E<max|b|E<l
bedA

2

Let ¢; be as in Theorem 5.1, m (E) =c1E% and 0<e<E. Let

Fi=Ug_olw € 2|There exists a k-admissible set 0€ A CZ*(E) satisfying
B[ and
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IGosw (w, E+ie; x, y) | <exp(—m (E) |x—yl) for lx—y|=L (E)1"}.
and a>71>0. We can prove Theorem 1.3 by the following theorem.

Theorem 6.1. For any p> 0, there exists E*>0 such that if 0 <E <E¥,
then we have

P(F)=1—1"*
for 12 (4 )%
or [ = 5 o) .
Proof. Let p’>%(3 +p) be fixed. Let E'>0, E,>0 be the constant which
is given in Theorem 4.1 with p=p" and Theorem 5.1 respectively. For 0 <E

<min(E’, E,), let k=Fk(l) be the largest natural number such that l’>%dk Let

Fi={w€E Q| There exists a (k—1) -admissible set
0€ACZ®(E) satisfying B;and ANS,=@}.

Because of %L (E)d,<L(E)!I" and Theorem 5.1, we have
(6.1) P(F) <P(F)).

1l a
Since é %(l) d%-1>12d,_, for sufficiently small E>0, from Lemma B.1 we

have
6.2) P(F)=P{w|lBNS,=@ for any BCZ®(E) satisfying Bi})

2P< N zesm (wlr GESk})

lxlz <1
=1—- P(Uzﬁrsw){a)lx Esk})
>1— (214+1)°P ({w|0€SL))
where we use

(6.3) P ({olr€sy) =P ({w|0€S4)

which follows from the translation invariance of P. We have

6.4  Pwloesy) SZP({wIOESﬂ) FP(w|0€ N5osy).

i=k

We need the following Lemma which is proved in a similar fashion as in [1]
and [5].

Lemma 6.1. We have P ({w|0€ N§=0Si}) =0.

By the definition of k, we have dy+;=d%>5!" and then
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(6.5) dp2cla,
From Lemma 6.1, (6.4), (6.5) and Theorem 4.1, we have

(6.6) P ({w|0€Sy}) < Zd,’”gcd;"'sc’z—%’”

j=k
where ¢’ is independent of E € (0,E*] and I. Therefore from p'>% (3+p),
there exists L >0 independent of E€ (0, E*] such that if I>L, then
(6.7) TR LI,
From (6.2), (6.6) and (6.7) we have

P(F)=>1—cB & >1—1"*

for I>L. We have proved the Theorem by (6.1).

Proof of Theorem 1.3. Let p> 0 be given. For this p, let E* be the
constants which are given Theorem 6.1. For NE N we fix a constant R>1
satisfying

(6.8) RL(E*) —/3> (42R)"L (E¥),

(6.9) R>2L(E)

and

(6.10) 23k (NR4*)3exp (—Do(NR4*)") <1 for any kEN
where Do=info<z<pm (E)L (E) >0. We put

(6.11) I;=NR4 for j=0, 1, 2---

We note that from (6.8) it follows

(6.12) LL(E) =3 2154.L (E) for j=0, 1, 2+

For 0<E<E™ and ¢#0, we put
Fi,={w|There exists k-admissible set 0EA CR® satisfying By, and
(Gaew (@, E+ie; x, y)| exp(—m (E) lz—y)) for le—y|>L () ).

Since l,~>%L (E) from (6.9) and 0<E<XE* by Theorem 6.1 we have
(6.13) P(F,) 21—17? for j=0,1, 2, -+
Hence we have

o 00

(6.14) P( N Fy)=21-Y
0

j=0 j=
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o

=1—N—PR—DZ4-N:1_£LL
NP

j=0

where K, (E) = R™? 24'”. We fix w € NZoF,. Then there exists a
k-admissible set OGA,-C;g (E) satisfying By; and
(6.15) |Goruy (w, E+ic; z, y) | <exp(—m (E)|x—yl)
forle—y| =L (E)I";. We put
A={x ER}x|> 1oL (E)}.
For x €A, let jo be the smallest natural number satisfying

(6.16) 2] s%zjoL (E).

By (5.1) we have inductively

6.17) G(xy)
=GQE(A/m) (1’, y)

M n
+ Z (_1)"_j° H (f aﬂnGQE(Ak) (Zk—l. Zk)d2k>GoE(Anm (Zn, y)
Tk

n=jo+1 k=jo+1
M+1
+ (_I)M_hﬂ H (ﬁkan,.GQE(Ak) (Zk-l, Zk) de>G (2M+1v y)
k=jo+1

for y € [0, 1)3, where ;= 0Qe(4;), G (u, v) =G (w, E+ie; u, v), Galu, v) =
Galw, E+ie; u, v) and zj,2=x. Since

ly =2l 2 Ljo-1L (E) =3 2UunL (E),
we have
(6.18) G astanen (@, y) |<exp (—m (E) |x—yl).
Since from (6.12) it follows for |u —z <1
lzk—1—ul =|zk1— 2] —1
2110 (B) — 1L (B)—1

Zlk_lL (E) —1 ZlTkL (E)
for k25,11, by Lemma A.5 we have

(6.19) 18,.G s an (zk-1, 210 |
SI SUID IGQE(Ak) (Zk—ly M)|S| sup eXp(—m (E) |Zk—1_u|)
u—z|<1 n—zyS1

<exp(—m (E) (|zxe1—2zi —1)) <exp (—m (E) ;L (E))
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for k2jo+1. Similary we have

(6.20)  |Gorum (zn y) | <exp (—m (E)|za—yl) <exp (—m (E)|x—yl).
By Lemma A .4, we have

1 _ _
(6.21) lG (ZM+1. y) | Sm—F%SlMTHL (E) l+%

From (6.19), (6.20) and |7:/ <2%3L (E)? we have

(6.22) l—[ _fnlanszoE(Ak) (2k-1, 21) ldzx

k=jo+1

< [ 2L ® exp (=m B 1L ) S%

k=jo+1

where we used (6.10). From (6.20) and (6.22) we have

(6.23) ' i ﬁ (fnan,.coxmn (zk-1, zk)dz>GQE(An) (zn, y)|

n=jo+lk=jo+1

<exp (—m (E)|x—yl) Z %E_)Z)”:i

n=jo+1

Tewy

=exp (—m (E)|x—yl) nl

n=1

From (6.19), (6.21) and (6.10), we have

(6.24) | ﬁ (ﬂkallnGQE(Ak) (Zk—l. zk)dzk)c (ZM+1, y)|

k=jo+1
M+1

<( [T 22 ® exp (—m €)1 ©)) ) (17l (B) 1+

k=jo+1

(L(E)HMHI—Sof i
Sm(hﬁi (E) 1+E>—>0 as M— oo,

From (6.17), (6.18), (6.23) and (6.24), we have

(6.25) G (, y) | <exp (L(E)?) exp (—m (E)|x—yl)

for any x€A and y € [0, 1)3.
For t€ER*\A and y € [0, 1)3, we have from (5.1)
(6.26) G l(x,y)

=Gosun (T, y)
M n
+ Z (=)™ H (ﬂka»l,.GQE(Ak) (zk-1, zk)dzk)GQE(An—l) (zn y)
n=1

k=1
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M+1

+ (_1)M+l H (ﬁkaﬂnGOE(Ak) (Zk—l, Zk)dzk>G (ZM+1, y).

We put

F={oldist (6 (Hosun (w)), E) Zexp (—m (E)NL (E)?)}.
From Proposition 4.1, we have
(6.27) P(F) >1—c(2NRL(E))%xp(—m (E)NL (E)?)

where ¢ is independent of N € N and 0 <E <E¥* Since there exist positive
numbers 0i, 0z and d3 such that

(6.28) Do<m (E)L (E) <6,
and
(6.29) 0,ET<L (E) <8,E%

for E>0, we have

(6.30) exp(—m (E)NL(E)?) Sexp(—Do5zNE'% .

From (6.29) and (6.30) there NyEN and K,2>0 such that N> Ny, then we
have

(6.31) ¢ (2NRL (E) )®exp(—m (E)NL (E)?)

<¢ (2NRO,E7) Sexp (— Do0,NE~Z)

<Ko
<%

for any 0<SE<E* Let w€EFN (N{eF};) be fixed. From Lemma A .6, we have
1
(6.32) |Goean (x, y)l£m+c exp(m (E))NL(E)?).

In a similar fashion as in (6.23) and (6.24), we have

(6.33) 'i ﬁ (Lkarxg.GQs(Ak)(zk—ly zk)dzk>GQ£(An+1) (zn y)

k=1

<exp (L (E)?) exp(—m (B) lx—yl)

and
M+l
(6.34) 1}41_.[20 g <~fna""GQE(A“ (zk-1, Zk)dzk>G (zm+1, y) =0.

From (6.32), (6.33) and (6.34), we have
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(6.35) G (xy)l
SE_I_—y[-l-c exp(m (E)NL (E)?) +exp(L(E)?—m (E) |lx—yl)

for 0<E<E* and N=>N,. There exists E¥*>FE;>0 such that if 0<E<E,, , then
we have

L(E)?
2

In the following let 0 <E <E,. There exists N;=N; such that if N=N,, then it
follows

(6.36) —L(E) >2R.

(6.37) lr—y|<NRL(E) +/3 <2NRL(E).
Hence by (6.36) there exists N3s=N, such that if N>N3, then we have
(6.38) exp (m (E) (NL (E)? |x yl)

>exp(m (E) (NL(E)®*—2NRL(E)))
>exp (DoN (L (E)2—2R) 2>3.

There exists Ny=Nj3 such that if N>N,, then

exp(Do%L (E) 2) exp(%m (E)L(E) 3)
2NRL (E) < 2NRL (E)

(6.39) <

where ¢ is as in (6.35). Then we have

(6.40) 3c exp(m (E)NL (E)?)
< expm (E) (zgij éL)(E) 2NRL(E))) (. (154) and (151))
Sexp(m (E) NL(E —|x—y|))' (by (152))
r—y ‘

In a similar fashion we have

(6.41)  Sexp(L(E)?—m (E) |z —y|) < X2 (ELOVLL ?3 e=yl))

for sufficiently large N>0. From (6.35), (6.38), (6.40) and (6.41), we have

(6.42) G (z, y)| < xR (m (E) (f\;L_(b;)s—Ir—yl))

for any x €R*\A and any y € [0, 1)° satisfying |x —y| =1 for sufficiently large
N>0 and 0<E<E,. From (6.25), (6.42), there exists N5>0 such that if w €

FN (O}LOF,,), 0<E<E; and N=Ns, then we have

(6.43) |G (x, y)|<exp(m (E) (NL (E)3—|x—y|))max{1, ﬁ[]
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for any x €R® and any y € [0, 1)3. From (6.14), (6.27), (6.31) and (6.43),
Theorem 1.3 is proved.

A. Appendix 1

Proof of the last equality of (2.1). Let ¢ € L2(R®) and let X,(x) be the
characteristic function of {x ER3|x| <1} for 1>0. We have:

(¢, X1|x|j;we‘5’eme"'”“’Ufwdt)
= [T, Xl w,) ar
where U, =gz (H,) ¢ (x). Therefore by using the Plancherel theorem, we get:
fm| (¢, Xilxle™ste " *Ho W) |24t
f (¢, lexlf g=stg= Mo W, dt) |%d A

=L [71(¢. Xilel Ra (A+i6) W) a2,

Let {¢,)5=1 be a complete orthonormal system of L2(R®). By putting ¢, =¢ in
the above equation and summing up with respect to », we have

(A.1) o [ kel Ry (2-+i6) W lead

= [ lele o, ar,

If we let o0 and integrate the both sides of (A.1) with respect to P, then it

follows from the monotone convergence theorem and the definition of 7% (t)
that:

j; me‘“'ﬁ’; (t)dt

=L [" BlllelR, (+ie) WolFlan

Lemma A.1. Let V=0 be a bounded function on R* and H=—A+V on
L?(R®). Then there exists a constant ¢ >0 such that for fECy (R) we have

b0 L
<dsupph{i+] £ )

where h(x) =xf and k=x% (x).

iz

£
| 22
dx3
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Proof of Lemma. Since
f(H) =)~ (H) x>~ 3x)?,

{x>? is unitary operator from L3 to L? and {x> 2 is a unitary operator from L?
to L%, we have

(A.2) lF CED lzg—z5= 11 <> % (H) <> o se.
Let g (1) = (1+2)% (1) €C5 (R). We have
(A.3) e (H) x> 2

=¥ H) (H+1)2(HA1) 2 x)?
={>% (H) (H+1) ¥g)>?

=7;_; j; T % (HA+1) (x>,
where §(R) :/__;—7—[: Jre™*%g (x)dx. We have

(A.4) (2™ (H41) 2> 2
— [<x>2' eilH] (H+1) —2<1>—2
+e™M ) (H+1) 2> 72

where [,] is commutator. First we shall estimate the 2nd term of right hand

side of (A.4). We shall show that <x>2(H+1) “2<{x> ~? is a bounded operator
on L2(R?®). Since we have

[{x>2 (H+1)71]
=(H+1)'[H 2} (H+1)!
=6(H+1)?—4(H+1)"'V - x(H+1) !

and

[z, H+1)1=H+1)[H 2] (H+1)?
=—2H+1)V (H+1),

it follows immediately that <x>? (H+1) “2<{x> ~2 is a bounded operator on
L?(R®). Next we shall show that

(A.D) ||[<.r>2, Pl (H+1)"2(x>‘2||3c(1+22).
We have
(A.6) [{x>?, e'*H]

:eiAH (e—iAH<1.> zei/lH_ <l‘>2)
:,ieilele—iuH [xz H]eiuﬂdﬂ
0 f
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a
=ie“”j; <—6+4e""‘”V . xe“‘”)dﬂ
and

(A.7) e HHY o potH (H41) "2y 2
=¢ Y o r(H+1) 8 (H+1) )2
=¢ 4y « ([xr,(H+1) ]+ (H+1) %)
X e (H41) "z 2
Since [x,(H+1)"Y)=(H+1)"(—2V) (H+1) ", it suffices to show that
(A.8) e (H41) x> 2| <c (1+p).
Since
[I, eiuH]
— i, iuH “ —itH iTH
te“j;e [x, Hl '™ 4t
and [x, H] =2V, we have
(A.9) I (x, e™H] (H+1) Y[<cp.
1 Since
iy (H4+1) g2
et [x, (H+1D) ]+ (H+1) ") >,

we have [e"#x (H+1) *{x)>"%|<c. Then (A.8) is shown. From (A.6), (A.7)
and (A.8), we have (A.5). Therefore we have

(A.10) I1<x>% (H) <x) | Lemre
scflg“(x | (1+2%)d2a
R

=, 1+,12‘”> (@ |2(1+32)3d/1>%

¢ (an,zzd’I) (flg @I HZG)‘“)%
We have

(A.11) [le ez

= [ s @ Pdz= [ | @) (1+2) iz
<clsuppA (e +|hle+ k) 2

and

[ e 2
R
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=L|(:—x>3f(x) (1+x)22dx
<clsupf (| () A+ () »

Then we have proved Lemma A.1l.

G

Lemma A.2. Let V>0 be bounded function on R® and H=—A+V on L*(R®).
If fECT (R), then f(H) is a bounded operator from L5 to L5 .
Proof. Noting that H? (R®) CL”(R?), for u€L%(R®) we have
(A.12) K>y (H)ul,-
<[ (—A+1) ¥ (H) ull
Ll (HA1) <> (H) <x> 2> 2ulla+cl|V <> 2 (H) <) ~2<ad 2ul);e.

Since it follows from Lemma A.1, V<x>?% (H) {x> “% is a bounded operator on
L% we have only to show that (H+1) <x>? (H) <x>? is a bounded operator on
L*(R®). From Lemma A.1l, we have that <x>2(H+1)f(H) <x> % is a bounded
operator on L?(R®). It is sufficient to show that [H,<x)> %] f(H) {x) % is a
bounded operator on L?(R®). Noting that [H,{x>%] =6—44 + x, we have only
to study V * xf (H) <x> % We have

Vexf(H) 2=V (H)xlxd> 24V [z, f(H) ] (x> 72
Let f(H) = (H+1) g (H), we have
[x, fH)]=(H+1)'[H, ] (H+1) g (H) + (H+1)  (xg9 (H) —g (H)x)

and xg (H) <x> ~% is a bounded operator on L2(R®). Hence V - xf (H) <x> % is
bounded operator on L?(R?®).
Lemma A.3. Let 2C R? be a domain and the let 0 <V be a bounded

function on R®. Let H’> = — A+ V with Dirichlet boundary conditions on L?(Q). If
inf ¢ (HP?) >2E>0, then we have

Ly E
| (HP—E—ie) Mz, y)| SSexp(——“/4:|x—y|>
forx, y€ER, lx —yl=1 and E>|e|. Here (H? —E—ic) ' (x, y) is the Green
function of H® —E —ie.
Proof. Using the resolvent equation twice, we get
(A.13) (H°—E—ie)™!
= (H?+E+ie) '+2(E+ie) (HP+E+ie) " (HP—E—ie) ™!

= (HP+E+ie) '+ 2(E+ie) (HP+E+ie) 2
+4 (E+ie)2(HP+E+ie) Y (HP—E—ie) "' (HP+E+ie) ~..
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First we shall estimate the first and second terms of (A.13). We have

» =y exp(—VElx—yl)
(A.14) | (HP+E+ie) ' (x, y)|< Il —y
and

X s &P [lx y|
(A.15) | (HP+E+ie) 2 (x, y) 9Elx— y|

In fact by Feynman-Kac formura, we have
Oﬁexp(-tHD) (x, y)
x— |2
CP\T Ty

<exp(—tHR) (x, y) <exp(—tH,) (x, y) = 3
(Amt)z

Here Ho=—A on L?(R?®). Therefore it follows that
| (H?+E+ie) 'z, y)lsfo exp (—Et)exp(—tH?) (x, y)dt

_le—yl
Sj:exp(—Et) eXP((4 t)tt )dt
t) 2

= (Hot+E) 'z, y) = €xXp (4nL‘{'_l;—yl)

and

| (HP+E+ie) 2 (x, y)|£j;wtexp(—Et) exp (—tH?) (x, y)dt

— |2
= exP<_ i )
gf t exp(—Et) s dt
0 (47rt)f
2( Q) exD [lx yl
SE\Btg) ) =y

since texp(—%t)é%. Thus we have (A.14) and (A.15).

Next we shall estimate the third term of (A.13). Let ¥ be a bounded and
C=-function such that |V¥ |<1 and (8/0x)®¥ are bounded for all
multi—index |8]<2 and let @ € C. Noting that exp (a¥) is bounded, we
estimate the norm of the following operator:

e ¥ (HP+E+ie) "'¢®e ™" (H? — E—ie) "'¢®%e ™" (H*+E+ie) 7" L' (Q)—L" (Q)



Spectrum for a random Schridinger opevator 683

Since |V ¥1<1, it follows that |¥(x) — ¥ (y) |<|x —y|. Then by (A.14), we
have

(A.16) le=* (HP+E+ie) e (x, y)|

cexp(=R@¥ @) —¥(y)))) exp(=yE|xr—yl)

47l —yl
<exp(= WE—|a])|lx—yl)
- dmix—y
E
exp(— 3 =)
Arlx—yl =Cla—y)

if la|$§. We have
(A . ].7) ||e"w (HD+E+1.€) _leawlll_x(g)_.l_zm) < ”G”Lz: (471') _%E_%
and
(A.18) le=2® (H? +E+ie) el 200y -1y <Gl = (47) ~2E7i.

Next we estimate the norm of the following operator:
eV (HP—E—ie) 1" | L2(Q)—L%(Q).

Noting that the operator ¢™®¥ is bijective and bounded on Dom (H?) =H}(2) N
H%(8), for u €Dom (HP) we have

(A.19) [ " H " —E—ie) ulllul
>| ((e®"H Y —E—ie)uu) | =R (e *YHe*Y—E —ie)u, u)
=R((Ve ™, Ve )+ (Vu, u) — (E—ei) [ulP)

Here it follows

(A.20) (Vea”u, Ve_"wu)

=(Vu, Vu) + @V u, —a(V¥)u)
+{(a(VQu, Vu)+ (Vu, —a(VOu)}

and
(@(V®)u,—a(VOu)=—|a?llV Plult= —|al?ul?.

Since the third term of the right hand side of (A.20) is pure imaginary, the
last member of (A.19) is bounded from below by

(A.21) (Vu, Vu)+ (Vu, u) —|a|?ul?—Elul?
> (info (HP) —|af?—E) ul?
> (E—|al?) [l
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. E
Therefore if |a|< 5. we have

"e_aur(HD _E—ig)e"wu" 2%"“"

and the operator ¢ *Y (H? —E —i¢g)e®? is surjective on L2(£2). Then

2

(AZZ) "e—allf (HD—E_iE) _leaw"p(g)_.u(g)gf.

Hence from (A.17), (A.18) and (A.22), it follows

“e_aW(HD +E+’L€) -1 (HD_E_IS) -1 (HD+E+18) _leawlll_l(g)_.]_n(g) S%
2nE?
From this we have
|« @@-TW) (P4 E+ig) = (HP— E—ie) " (HP+E+ie) 7 (z, y) | <——
2nE2

and then
| (HP+E+ie) Y (HP—E—ie) " (H?+E+ie) "' (z, y)|
< exp R (a(T(x) —¥(y)))

- 3

2nE?

for any a€C such that |a|<§ and any bounded function FEC*(R), |V ¥1<1

and (8/0x) ¥ are bounded for all multi—index |B|<2. Therefore since for
fixed x and y we have

infexp 8 (a(W() = ¥(y))) =exp( — ¥ le =)

we have

(A.23)

| (HP+E+ie) ' (H°—E—ie) ' (H°+E+ie) ' (x, y)’S L 3exp(—§|x—y|>.
2mE?

From (A.13), (A.14), (A15) and (A.23), we obtain

(A.24) |(HP—E—ie) ' (z, y)| <5 exp(—{E—h—yl)

for any x and y such that |r —y|=1 and 0<e <E. We have thus proved the
lemma.

Lemma A.4. Let E* and E be two positive numbers such that E <E*. For
any zEC such that Re(z) € [E, E*], Im (2) #0 and |Im (2)| <1 it follows that
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-1 1 1
|(Ho—2) 7' (&, y)|< [x—yl te Im () |

where ¢ is independent of z and .

Proof. As is shown in the proof of Lemma A.3, we have

(a.25) | (Ho—w) ™ (z, )| < e"p(;ﬂ@'jfy')
and

. exp(—lx—yl)
(A.26) | (Ho—w) =2 (z, y) | < Sl =

for w<0. From (A.24) and (A.25) in a similar fashion to that used in the
proof of Lemma A.3 we have

—1 -1 —ap) 1 ;
(A.27) | (Ho—w) ™" (Ho—2) " (Ho—w) (x'y)|gﬂﬂllm(z)l'

Using the resolvent equation twice, we get

(A.28) (Ho—2)"!
=(Hy—w) '+ (z—w) Hy—w) ' (Hy—2) !
= (Hy—w) '+ (z—w) (H,—w) 2
+ (z—w)*(Hy—w) 2 (H,—2) %
From (A.24)-(A.27), we have

1 1 1
|(Hw_z) (.I‘, y)|g|x—y|+bllm(z)|

Lemma A.5. Let vE0A be not one of the corners. Then

10,,G 4 (E+ie; u, v)|<cs sup Ga(E+ie u, v)|

o' —v|<1
for any u such that lu—v|=1. Here cs is independent of A, E and e.
Proof. This lemma has be shown in [5] (Lemma 3.1).

Lemma A.6. Let ACR? 0<V be a bounded function on R® and H=— A+
V. Let Ha=H|124) with Divichlet boundary conditions on L*(A). If uwE A, then it
follows

| 1 2
- <
|GA (E+15. u, ’U) | - |1/t _Ul + dist (U(HA) N E+15)

wheve cq is independent of A, u, v, E and €.

Proof. This lemma is shown a fashion similar to that used in the proof of
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Lemma A .4.

B. Appendix 2

Lemma B.1. There exists E">0 such that for 0<E <E" it follows that if

Dy, D, € Z°(E), Dy C D, and distg (D1, D) = 12d,, then there exists a -
k—admissible set A such that D1 CACD,.

Proof. We denote by Py in the following assertion:

If D,CD,CZ*(E) and distg (Dy, D§) >12d,, then there exists a k-admissible set
A such that D;CACD,.

We shall prove P, for 20 by induction.
Step 1. Proof of P,.

We have only to show the case that there exists a component Dj such that
DiN W (D, 4do) # 0.
Let
K={k|W (D}, 4do) ND,) # @}
and
A=DU U,exW (D, 4do+1).

Then A is 0-admissible and D, CA CD, by Condition A (0).

Step 2. Proof of Pyy1 under the assumption of Py.

By the assumption of Py, there exists k-admissible set A such that D, C A C
W(Dl, 12dk) Let

K={k|ANW (D¥s1, 4dysr) # 0}
For k€K, by the assumption of Py, there exists k-admissible set A* such that
W (D¥+1, 4d i1 t1) CA*CTW (D¥s1,4d k1 +12dy) .

Let A”=A U U,egA”. Then by Condition A (k+1), A’ satisfies the assertion of
Pk+l'
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