On a property of Nirenberg type operator

By
Haruki NinomiYa

§ 1. Introduction

Let X be a nowhere-zero C^{∞} complex vector field in R^{n}. Let $S^{X}=\left\{f \in C^{\infty}\left(R^{n}\right) ; X u=f\right.$ has a C^{1} solution near the origin. $\}$ and $S_{X}=$ $\left\{f \in C^{\infty}\left(R^{n}\right) ; X u=f\right.$ has a C^{1} solution near the origin such that $\left.d u(0) \neq 0\right\}$.

The following facts are classically well known:
(1) $\mathscr{A} \subset S_{X}$ if X is real-analytic, where \mathscr{A} denotes the set of real-analytic functions in R^{n}.
(2) $S_{X}=C^{\infty}\left(R^{2}\right)$ if $n=2$, and $X(0), \bar{X}(0)$ are C-linearly independent (In this case, X is an elliptic operator).

And we can easily obtain the following fact owing to Hölmander [1] and Treves [4]:
(3) $S_{X}=C^{\infty}\left(R^{n}\right)$ if X is a solvable operator at the origin.

Though it is trivial, we also know the following fact:
(4) $\mathscr{A} \subset S_{X} \subseteq C^{\infty}\left(R^{n}\right)$ if X is a non-solvable operator at the origin and realanalytic.

We thus see $S_{X}=S^{X}$ in each case of the above. Does there exist a nonsolvable vector field X such that $S_{X} \subsetneq S^{X}$?

This paper aims at showing that the answer is "Yes". We shall give such vector fields L_{α}, which we call Nirenberg type:

Let $\alpha(t, x)$ be a real-valued $C^{\infty}\left(R^{2}\right)$ function satisfying the following conditions:
(A.1) $\alpha(t, x) \geq 0$ in a neighborhood ω of the origin.
(A.2) There exist positive constants c, d, and a monotonously increasing sequence $\left\{p_{n}\right\}$ of positive integers such that

$$
\iint_{D\left(p_{k}\right)} \alpha(t, x) \mathrm{d} t \mathrm{~d} x>\frac{9}{\left(p_{k}+d\right)\left(p_{k}+c\right)}
$$

for every sufficiently large k, where $D\left(p_{k}\right)=\left(0, \frac{1}{p_{k}}\right) \times\left(0, \frac{1}{p_{k}}\right)$.
We shall define L_{α} in the following manner:

$$
L_{\alpha}=\partial_{t}+i(2 t+\alpha) \partial_{x} .
$$

Then we assert the following

Theorem A.

$$
S_{L_{\alpha}} \subsetneq S^{L_{\alpha}}
$$

Example (This is obtained by modifying an example of Nirenberg [3] (p. 8)). Let $a_{n, p}=\frac{1}{(n+p-1)(n+p)}(n, p=1,2, \ldots)$ and $\left\{B_{n, p}\right\}$ the set of non-overlapping open discs in the (t, x) plane satisfying the following conditions:
(i) The ordinate of the center of $B_{n, p}$ equals $\frac{1}{p+1}+\frac{1}{2 p(p+1)}$.
(ii) The abscissa of the center of $B_{n, p}$ equals $\frac{1}{p}-$ $\left(a_{1, p}+a_{2, p}+\cdots+a_{n-1, p}+\frac{a_{n, p}}{2}\right)$.
(iii) The radius of $B_{n, p}$ equals $\frac{a_{n, p}}{2}$.

Next let $\left\{f_{n, p}\right\}$ be the set of C^{∞} functions having the following properties $(n, p=1,2, \ldots)$:
(i) $0 \leq f_{n, p} \leq \frac{64 \cdot 18}{\pi(n+p+1)^{2}}$.
(ii) $f_{n, p}$ vanishes outside of $B_{n, p}$ and equals $\frac{64 \cdot 18}{\pi(n+p+1)^{2}}$ inside of the closed disc $C_{n, p}$ with radius $\frac{a_{n, p}}{4}$, where the ordinate of the center of $C_{n, p}$ equals that of $B_{n, p}$ and the abscissa of the center of $C_{n, p}$ equals that of $B_{n, p}$.

Next we define a C^{∞} function $r(t, x)$ as follows:
(i) $r(-t, x)=r(t, x)$.
(ii) $r(t, x)=f_{n, p}$ in $B_{n, p}$.
(iii) $r(t, x)$ vanishes outside of the union of all the $B_{n, p}$.

Finally we define $\alpha(t, x)$ by $\alpha(t, x)=r(t, x)$.
Then we can check that the conditions (A.1) and (A.2) are satisfied. The proof is given in $\S 4$.

Now, to prove Theorem A, we first derive a necessary condition on $f(t, x)$ for $\partial_{t} u+i a \partial_{x} u=f(t, x)$ to have a C^{1} solution near the origin such that $u_{x}(0) \neq 0$ under the following assumption:
(a.1) $a=a(t, x)$ is a real-valued $C^{\infty}\left(R^{2}\right)$ function.
(a.2) $a(0, x)$ vanishes identically.
(a.3) There is a neighborhood ω of the origin such that
(a.3.1) $t\{a(t, x)-a(-t, x)\}>0$ in $\{t \neq 0\} \cap \omega$
and
(a.3.2) $a(t, x)+a(-t, x) \geq 0$ in ω.

Hereafter for a function $F(t, x)$ we shall denote by F_{e} and F_{o} the even part of $F(t, x)$ with respect to t and the odd one.

Now we have the following
Lemma 1 ([2]). Assume (a.1) and (a.3.1). Then there exist a neighborhood Ω_{w} of the origin and a function $w(t, x) \in C^{1}\left(\Omega_{w}\right)$ such that

$$
\min \left(\inf _{\Omega_{w}} \operatorname{Re} w_{x}, \inf _{\Omega_{w}} \operatorname{Im} w_{x}\right)>0 \quad \text { and } \quad\left(\partial_{t}+i a_{o}(t, x) \partial_{x}\right) w=0 \quad \text { in } \Omega_{w} .
$$

Hereafter we shall set $m\left(w, \Omega_{w}\right)=\min \left(\inf _{\Omega_{w}} \operatorname{Re} w_{x}, \inf \Omega_{\Omega_{w}} \operatorname{Im} w_{x}\right)$. Then, we obtain the following

Theorem B. Assume (a.1), (a.2), and (a.3). Let w and Ω_{w} be any one of the couples of a function and a neighborhood satisfying Lemma 1. Let a $C^{\infty}\left(R^{2}\right)$ function $f(t, x)$ be given. Assume that

$$
L_{a} u \equiv \partial_{t} u+i a \partial_{x} u=f(t, x)
$$

has a C^{1} solution near the origin such that $u_{x}(0) \neq 0$. Then, there exist positive constants C_{1}, N, and T_{0}, where T_{0} is independent of w and Ω_{w}, such that, for any simply connected domain D contained in $\left(0, T_{0}\right) \times\left(-T_{0}, T_{0}\right) \cap \Omega_{w}$ with piecewise smooth boundary ∂D, the following holds:
(i) In case of $f_{e}(0) \neq 0$,

$$
\begin{gathered}
\iint_{D} a_{e} \mathrm{~d} t \mathrm{~d} x+C_{1} \iint_{D}\left\{\operatorname{Re} f_{e}(0) \operatorname{Re} f_{e}+\operatorname{Im} f_{e}(0) \operatorname{Im} f_{e}+\operatorname{Re} f_{e}(0) \operatorname{Im} f_{e}\right. \\
\left.\quad-\operatorname{Im} f_{e}(0) \operatorname{Re} f_{e}-\left|f_{e}(0)\right|^{2}+\frac{2}{N}\right\} \mathrm{d} t \mathrm{~d} x \leq \frac{\sup _{\partial D}|w| \cdot|\partial D|}{m\left(w, \Omega_{w}\right)} .
\end{gathered}
$$

(ii) In case of $f_{e}(0)=0$,

$$
\iint_{D} a_{e} \mathrm{~d} t \mathrm{~d} x+C_{1} \iint_{D}\left(\frac{2}{N}+\operatorname{Re} f_{e}+\operatorname{Im} f_{e}\right) \mathrm{d} t \mathrm{~d} x \leq \frac{\sup _{\partial D}|w| \cdot|\partial D|}{m\left(w, \Omega_{w}\right)},
$$

where the N can be replaced with ∞ and the T_{0} is independent of N when $f \equiv 0$.
This is proved in $\S 2$ and by making use of the estimate in Theorem B, Theorem A is proved in §3.

§ 2. Proof of Theorem B

Case $f_{e}(0) \neq 0$. We shall set $u^{I}=-\bar{f}_{e}(0) u$. Multiplying u^{I} by a suitable constant $e^{i \theta}$, where θ is a real number, we can assume that $\operatorname{Re}\left(e^{i \theta} u_{e}^{I}\right)_{x}(0,0)$ and $\operatorname{Im}\left(e^{i \theta} u_{e}^{I}\right)_{x}(0,0)$ are positive, so from beginning we can assume that $\operatorname{Re} \partial_{x} u_{e}^{I}(0,0) \equiv \alpha$ and $\operatorname{Im} \partial_{x} u_{e}^{I}(0,0) \equiv \beta$ are positive. Let us set $\delta=\min (\alpha, \beta)$. Let N be a positive constant. Then, since
$\operatorname{Re} f_{e}(0) \operatorname{Re} f_{e}+\operatorname{Im} f_{e}(0) \operatorname{Im} f_{e}-\left|f_{e}(0)\right|^{2}+\frac{1}{N}, \quad \operatorname{Re} f_{e}(0) \operatorname{Im} f_{e}-\operatorname{Im} f_{e}(0) \operatorname{Re} f_{e}+\frac{1}{N}$ are positive at the origin, we take a positive constant T_{1} small such that

$$
\operatorname{Re} f_{e}(0) \operatorname{Re} f_{e}+\operatorname{Im} f_{e}(0) \operatorname{Im} f_{e}-\left|f_{e}(0)\right|^{2}+\frac{1}{N}
$$

and

$$
\operatorname{Re} f_{e}(0) \operatorname{Im} f_{e}-\operatorname{Im} f_{e}(0) \operatorname{Re} f_{e}+\frac{1}{N}
$$

are positive in $\left(-T_{1}, T_{1}\right) \times\left(-T_{1}, T_{1}\right)$
Next we take a positive constant T_{2} such that

$$
\begin{gathered}
L_{a} u^{I}=-\bar{f}_{e}(0) f \quad \text { in } \quad U_{T_{2}}=\left(-T_{2}, T_{2}\right) \times\left(-T_{2}, T_{2}\right), \\
\operatorname{Re} \partial_{x} u_{e}^{I}>\frac{\delta}{2}, \operatorname{Im} \partial_{x} u_{e}^{I}>\frac{\delta}{2} \quad \text { in } \quad U_{T_{2}}=\left(-T_{2}, T_{2}\right) \times\left(-T_{2}, T_{2}\right) .
\end{gathered}
$$

Then we take a positive constant T_{0} such that $T_{0}<\min \left(T_{1}, T_{2}\right)$. By setting $u^{I I}=$ $u^{I}+\left(\left|f_{e}(0)\right|^{2}-\frac{1+i}{N}\right) t$, it follows that

$$
L_{a} u^{I I}=-\bar{f}_{e}(0) f+\left|f_{e}(0)\right|^{2}-\frac{1+i}{N}
$$

Then setting $v=\left(2 u^{I I}\right) / \delta$, we see $\inf _{U_{T_{0}}} \operatorname{Re} \partial_{x} v_{e} \geq \frac{\delta}{2} \cdot \frac{2}{\delta}=1$ and $\inf _{U_{T_{0}}} \operatorname{Im} \partial_{x} v_{e} \geq$ $\frac{\delta}{2} \cdot \frac{2}{\delta}=1$.

Now we remark $\partial_{x} v_{o}(0, x)=0$. And also, from

$$
L_{a} v=(2 / \delta) L_{a} u^{I I}=(2 / \delta)\left(-\bar{f}_{e}(0) f+\left|f_{e}(0)\right|^{2}-\frac{1+i}{N}\right)
$$

we have

$$
\begin{equation*}
\left(\partial_{t}+i a_{o} \partial_{x}\right) v_{o}=-i a_{e} \partial_{x} v_{e}+(2 / \delta)\left\{-\bar{f}_{e}(0) f_{e}+\left|f_{e}(0)\right|^{2}-\frac{1+i}{N}\right\} \tag{2.1}
\end{equation*}
$$

So we see

$$
\partial_{t} v_{o}(0, x)=\frac{-2(1+i)}{N \delta}
$$

Here taking N sufficiently large and T_{0} sufficiently small, we can assume that

$$
M=\max \left(\sup _{U_{T_{0}}}\left|\partial_{t} v_{o}\right|, \sup _{U_{T_{0}}}\left|\partial_{x} v_{0}\right|\right) \leq \frac{1}{2} .
$$

As it has been remarked,

$$
\inf _{U_{T_{0}}} \operatorname{Re} \partial_{x} v_{e} \geq 1, \quad \inf _{U_{T_{0}}} \operatorname{Im} \partial_{x} v_{e} \geq 1
$$

Now we obtain the following
Lemma 2. For any simply connected domain D contained in $\left(0, T_{0}\right) \times$ $\left(-T_{0}, T_{0}\right) \cap \Omega_{w}$ with piecewise smooth boundary,

$$
\begin{align*}
& i \iint_{D} a_{e} w_{x} \partial_{x} v_{e} \mathrm{~d} t \mathrm{~d} x+\iint_{D}(2 / \delta)\left\{\bar{f}_{e}(0) f_{e}-\left|f_{e}(0)\right|^{2}+\frac{1+i}{N}\right\} w_{x} \mathrm{~d} t \mathrm{~d} x \tag{2.2}\\
& \quad=\int_{\partial D} w \partial_{t} v_{o} \mathrm{~d} t+w \partial_{x} v_{o} \mathrm{~d} x .
\end{align*}
$$

Proof. From (2.1),

$$
-w_{x}\left\{\left(\partial_{t}+i a_{o} \partial_{x}\right) v_{o}\right\}=i a_{e} w_{x} \partial_{x} v_{e}+(2 / \delta)\left\{\bar{f}_{e}(0) f_{e}-\left|f_{e}(0)\right|^{2}+\frac{1+i}{N}\right\} w_{x} .
$$

And hence we have

$$
\begin{aligned}
& \iint_{D}-w_{x}\left\{\left(\partial_{t}+i a_{o} \partial_{x}\right) v_{o}\right\} \mathrm{d} t \mathrm{~d} x \\
& \quad=\iint_{D} i a_{e} w_{x} \partial_{x} v_{e} \mathrm{~d} t \mathrm{~d} x+\iint_{D}(2 / \delta)\left\{\bar{f}_{e}(0) f_{e}-\left|f_{e}(0)\right|^{2}+\frac{1+i}{N}\right\} w_{x} \mathrm{~d} t \mathrm{~d} x .
\end{aligned}
$$

The left-hand side above $=$

$$
\iint_{D}-\left\{w_{x} \partial_{t} v_{o}-w_{t} \partial_{x} v_{o}\right\} \mathrm{d} t \mathrm{~d} x=\iint_{D} \mathrm{~d}\left\{w(t, x) \mathrm{d} v_{o}(t, x)\right\}=\int_{\partial D} w \partial_{t} v_{o} \mathrm{~d} t+w \partial_{x} v_{o} \mathrm{~d} x,
$$

ending the proof of Lemma 2.
From this lemma we have, by setting $C_{1}=2 / \delta$:

$$
\begin{align*}
& \iint_{D}\left[a_{e}\left\{\operatorname{Re} \partial_{x} v_{e} \operatorname{Im} w_{x}+\operatorname{Im} \partial_{x} v_{e} \operatorname{Re} w_{x}\right\}\right] \mathrm{d} t \mathrm{~d} x \tag{2.3}\\
& \\
& \quad+C_{1} \iint_{D}\left[\left\{\operatorname{Re} f_{e}(0) \operatorname{Re} f_{e}+\operatorname{Im} f_{e}(0) \operatorname{Im} f_{e}-\left|f_{e}(0)\right|^{2}+\frac{1}{N}\right\} \operatorname{Im} w_{x}\right. \\
& \left.\quad+\left\{\operatorname{Re} f_{e}(0) \operatorname{Im} f_{e}-\operatorname{Im} f_{e}(0) \operatorname{Re} f_{e}+\frac{1}{N}\right\} \operatorname{Re} w_{x}\right] \mathrm{d} t \mathrm{~d} x \\
& \quad \leq \int_{\partial D}\left|w \partial_{t} v_{o} \mathrm{~d} t+w \partial_{x} v_{o} \mathrm{~d} x\right|
\end{align*}
$$

Denoting $\min \left(\inf _{U_{T_{0}}} \operatorname{Re} \partial_{x} v_{e}, \inf _{U_{T_{0}}} \operatorname{Im} \partial_{x} v_{e}\right)$ by m_{0}, from (2.3) we have

$$
\begin{align*}
& m\left(w, \Omega_{w}\right)\left[m_{0} \iint_{D} a_{e}(t, x) \mathrm{d} t \mathrm{~d} x+C_{1} \iint_{D}\left\{\operatorname{Re} f_{e}(0) \operatorname{Re} f_{e}+\operatorname{Im} f_{e}(0) \operatorname{Im} f_{e}\right.\right. \tag{2.4}\\
& \left.\left.\quad+\operatorname{Re} f_{e}(0) \operatorname{Im} f_{e}-\operatorname{Im} f_{e}(0) \operatorname{Re} f_{e}-\left|f_{e}(0)\right|^{2}+\frac{2}{N}\right\} \mathrm{~d} t \mathrm{~d} x\right] \\
& \leq
\end{align*}
$$

Since $m_{0} \geq 1$, and $M=\max \left(\sup _{U_{T_{0}}}\left|\partial_{x} v_{0}\right|, \sup _{U_{T_{0}}}\left|\hat{\sigma}_{x} v_{0}\right|\right) \leq \frac{1}{2}$, we obtain the following inequality:

$$
\begin{aligned}
& \iint_{D} a_{e} \mathrm{~d} t \mathrm{~d} x+C_{1} \iint_{D}\left\{\operatorname{Re} f_{e}(0) \operatorname{Re} f_{e}+\operatorname{Im} f_{e}(0) \operatorname{Im} f_{e}\right. \\
& \left.\quad \quad+\operatorname{Re} f_{e}(0) \operatorname{Im} f_{e}-\operatorname{Im} f_{e}(0) \operatorname{Re} f_{e}-\left|f_{e}(0)\right|^{2}+\frac{2}{N}\right\} \mathrm{d} t \mathrm{~d} x \\
& \quad \leq \frac{\sup _{\partial D}|w| \cdot|\partial D|}{m\left(w, \Omega_{w}\right)},
\end{aligned}
$$

which gives the assertion (i).
CASE $f_{e}(0)=0$. The reasoning is nearly same: First we may assume that

$$
\operatorname{Re} \partial_{x} u_{e}(0,0) \equiv \alpha>0 \quad \operatorname{Im} \partial_{x} u_{e}(0,0) \equiv \beta>0
$$

Let us set $\delta=\min (\alpha, \beta)$. Let N be a positive constant. Since

$$
\frac{1}{N}+\operatorname{Re} f_{e}, \quad \frac{1}{N}+\operatorname{Im} f_{e}
$$

are positive at the origin, we take a positive constant T_{1} small such that $\frac{1}{N}+\operatorname{Re} f_{e}$ and $\frac{1}{N}+\operatorname{Im} f_{e}$ are positive in $\left(-T_{1}, T_{1}\right) \times\left(-T_{1}, T_{1}\right)$. We shall set $u^{*}=-u$ $-\frac{(1+i) t}{N}$. Then we take a positive constant T_{2} such that

$$
\begin{gathered}
L_{a} u^{*}=-f-\frac{1+i}{N} \quad \text { in } \quad U_{T_{2}}=\left(-T_{2}, T_{2}\right) \times\left(-T_{2}, T_{2}\right), \\
\operatorname{Re} \partial_{x} u_{e}^{*}>\frac{\delta}{2}, \operatorname{Im} \hat{o}_{x} u_{e}^{*}>\frac{\delta}{2} \quad \text { in } \quad U_{T_{2}}=\left(-T_{2}, T_{2}\right) \times\left(-T_{2}, T_{2}\right) .
\end{gathered}
$$

Setting $v=\frac{2 u^{*}}{\delta}$, we have

$$
\left(\partial_{t}+i a_{o} \partial_{x}\right) v_{o}=-i a_{e} \partial_{x} v_{c}+(2 / \delta)\left(-f_{e}-\frac{1+i}{N}\right) .
$$

So,

$$
\partial_{t} v_{o}(0, x)=\frac{-2(1+i)}{N \delta}
$$

Then we take a positive constant T_{0} such that $T_{0}<\min \left(T_{1}, T_{2}\right)$. By the same reasoning as in the preceding proof, we find the following:

We can take positive constants T_{0} (which is independent of w and Ω_{w}), and N such that

$$
\begin{gathered}
M=\max \left(\sup _{U_{T_{0}}}\left|\partial_{t} v_{o}\right|, \sup _{U_{T_{0}}}\left|\partial_{x} v_{0}\right|\right) \leq \frac{1}{2} \\
\inf _{U_{T_{0}}} \operatorname{Re} \partial_{x} v_{e} \geq 1, \quad \inf _{U_{T_{0}}} \operatorname{Im} \partial_{x} v_{e} \geq 1
\end{gathered}
$$

and for any simply connected domain D contained in $\left(0, T_{0}\right) \times\left(-T_{0}, T_{0}\right) \cap \Omega_{w}$ with piecewise smooth boundary,

$$
i \iint_{D} a_{e} w_{x} \partial_{x} v_{e} \mathrm{~d} t \mathrm{~d} x+\iint_{D}(2 / \delta)\left(f_{e}+\frac{1+i}{N}\right) w_{x} \mathrm{~d} t \mathrm{~d} x=\int_{\partial D} w \partial_{t} v_{o} \mathrm{~d} t+w \partial_{x} v_{o} \mathrm{~d} x
$$

Thus we obtain the asserion (ii). When $f \equiv 0$, the conclusion stated in the last part of the assertion (ii) is easily obtained, completing the proof.

§ 3. Proof of Theorem A

Assume

$$
S_{L_{x}}=S^{L_{x}}
$$

Since $S^{L_{x}} \ni 0, L_{\alpha} u=0$ has a C^{1} solution near the origin such that $u_{x}(0) \neq 0$. Setting $a_{o}(t, x)=2 t$, we easily find that

$$
w=(1-i)\left(t^{2}+i x\right) \quad \text { and } \quad \Omega_{w}=R^{2}
$$

satisfy Lemma $1 ;$ in this case we see $|w|=\left\{2\left(t^{4}+x^{2}\right)\right\}^{1 / 2}$ and $m\left(w, \Omega_{w}\right)=1$. Taking a positive integer N_{0} such that $N_{0}^{-1}<T_{0}$, for every integer p such that $p>N_{0}$, from Theorem B we get the following:

$$
\iint_{D} \alpha(t, x) \mathrm{d} t \mathrm{~d} x \leq 8 p^{-2}
$$

by taking $D=\left(0, \frac{1}{p}\right) \times\left(0, \frac{1}{p}\right)$. But this contradicts our assumption (A.2), ending the proof of Theorem A.

§4. Proof of Example

We have only to prove that the $\alpha(t, x)$ satisfies the condition (A.2). First we shall set $c=1, d=2$, and $p_{k}=1,2, \ldots$ By putting $p_{k}=p$, the left-hand side of
the inequality of (A.2)

$$
\begin{aligned}
& \geq \sum_{n=1}^{\infty} \iint_{C_{n, p}} \alpha \mathrm{~d} t \mathrm{~d} x+\sum_{k=p+1}^{\infty} \iint_{C_{1, k}} \alpha \mathrm{~d} t \mathrm{~d} x \\
& =\sum_{n=1}^{\infty} \frac{\pi a_{n, p}^{2}}{16} \cdot \frac{64 \cdot 18}{\pi(n+p+1)^{2}}+\sum_{k=p+1}^{\infty} \frac{\pi a_{1, k}^{2}}{16} \cdot \frac{64 \cdot 18}{\pi(k+2)^{2}} \\
& =\sum_{n=1}^{\infty} 18 \cdot\left[\frac{2}{(n+p-1)(n+p)(n+p+1)}\right]^{2}+\sum_{k=p+1}^{\infty} 18 \cdot\left[\frac{2}{k(k+1)(k+2)}\right]^{2} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{2}{(n+p-1)(n+p)(n+p+1)} & =\frac{1}{(n+p-1)(n+p)}-\frac{1}{(n+p+1)(n+p)} \\
& =\frac{1}{n+p-1}-\frac{1}{n+p}-\left\{\frac{1}{n+p}-\frac{1}{n+p+1}\right\} \\
& =\frac{1}{n+p-1}-\frac{2}{n+p}+\frac{1}{n+p+1}
\end{aligned}
$$

and

$$
\frac{2}{k(k+1)(k+2)}=\frac{1}{k}-\frac{2}{k+1}+\frac{1}{k+2},
$$

we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} 18 \cdot & {\left[\frac{2}{(n+p-1)(n+p)(n+p+1)}\right]^{2}+\sum_{k=p+1}^{\infty} 18 \cdot\left[\frac{2}{k(k+1)(k+2)}\right]^{2} } \\
= & 18 \sum_{n=1}^{\infty}\left[\frac{1}{(n+p-1)^{2}}+\frac{4}{(n+p)^{2}}+\frac{1}{(n+p+1)^{2}}-4\left\{\frac{1}{n+p-1}-\frac{1}{n+p}\right\}\right. \\
& \left.+\left\{\frac{1}{n+p-1}-\frac{1}{n+p+1}\right\}-4\left\{\frac{1}{n+p}-\frac{1}{n+p+1}\right\}\right] \\
& +18 \sum_{k=p+1}^{\infty}\left[\frac{1}{k^{2}}+\frac{4}{(k+1)^{2}}+\frac{1}{(k+2)^{2}}-4\left\{\frac{1}{k}-\frac{1}{k+1}\right\}\right. \\
& \left.-4\left\{\frac{1}{k+1}-\frac{1}{k+2}\right\}+\left\{\frac{1}{k}-\frac{1}{k+2}\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
= & 18\left[\sum_{n=1}^{\infty}\left\{\frac{1}{(n+p-1)^{2}}+\frac{4}{(n+p)^{2}}+\frac{1}{(n+p+1)^{2}}\right\}\right. \\
& \left.-\frac{4}{p}+\left\{\frac{1}{p}+\frac{1}{p+1}\right\}-\frac{4}{p+1}\right] \\
& +18\left[\sum_{k=p+1}^{\infty}\left\{\frac{1}{k^{2}}+\frac{4}{(k+1)^{2}}+\frac{1}{(k+2)^{2}}\right\}-\frac{4}{p+1}-\frac{4}{p+2}+\frac{1}{p+1}+\frac{1}{p+2}\right] \\
= & 18\left[\sum_{n=1}^{\infty}\left[\left\{\frac{1}{(n+p-1)^{2}}+\frac{4}{(n+p)^{2}}+\frac{1}{(n+p+1)^{2}}\right\}-\frac{3}{p}-\frac{3}{p+1}\right]\right. \\
& +18\left[\sum_{k=p+1}^{\infty}\left\{\frac{1}{k^{2}}+\frac{4}{(k+1)^{2}}+\frac{1}{(k+2)^{2}}\right\}-\frac{3}{p+1}-\frac{3}{p+2}\right] \\
= & 18\left[12 \sum_{k=p+2}^{\infty} \frac{1}{n^{2}}+\frac{1}{p^{2}}+\frac{6}{(p+1)^{2}}-\frac{1}{(p+2)^{2}}-\frac{3}{p}-\frac{6}{p+1}-\frac{3}{p+2}\right] .
\end{aligned}
$$

So we have only to prove that, for sufficiently large p,

$$
\begin{aligned}
& 12 \sum_{n=p+2}^{\infty} \frac{1}{n^{2}}+\frac{1}{p^{2}}+\frac{6}{(p+1)^{2}}-\frac{1}{(p+2)^{2}}-\frac{3}{p}-\frac{6}{p+1}-\frac{3}{p+2} \\
& \quad \equiv S(p) \\
& \quad \geq \frac{1}{2(p+1)(p+2)} .
\end{aligned}
$$

Now we see the following Lemma 3 holds, which shows that the above statement is valid, ending the proof.

Lemma 3. For every positive integer p,

$$
S(p)>\frac{1}{2(p+1)(p+2)} .
$$

Proof. We shall show this by mathematical induction. First,

$$
\begin{aligned}
S(1) & =12\left(3^{-2}+4^{-2}+5^{-2}+\cdots \cdots\right)+1+\frac{3}{2}-\frac{1}{9}-3-3-1 \\
& =2\left[6\left\{\left(1^{-2}+2^{-2}+3^{-2}+4^{-2}+\cdots \cdots\right)-1^{-2}-2^{-2}\right\}\right]-\frac{9}{2}-\frac{1}{9} \\
& =2\left[6\left(\frac{\pi^{2}}{6}-1-\frac{1}{4}\right)\right]-\frac{9}{2}-\frac{1}{9} \\
& =2\left(\pi^{2}-6-\frac{3}{2}-\frac{9}{4}\right)-\frac{1}{9} \\
& =2(9.86960440 \ldots \ldots-9.75)-0.1111 \ldots \ldots \\
& =0.1196 \ldots \ldots
\end{aligned}
$$

On the otherhand $\frac{1}{12}=0.083 \ldots \ldots$. And so surely,

$$
S(1)>\frac{1}{2 \cdot 2 \cdot 3}
$$

Next assume $S(p)>\frac{1}{2(p+1)(p+2)} . \quad$ Then
$S(p+1)-\frac{1}{2(p+2)(p+3)}=12 \sum_{n=p+3}^{\infty} \frac{1}{n^{2}}+\frac{1}{(p+1)^{2}}+\frac{6}{(p+2)^{2}}-\frac{1}{(p+3)^{2}}$

$$
\begin{aligned}
& -\frac{3}{p+1}-\frac{6}{p+2}-\frac{3}{p+3}-\frac{1}{2(p+2)(p+3)} \\
= & 12\left[\sum_{n=p+2}^{\infty} \frac{1}{n^{2}}-\frac{1}{(p+3)^{2}}\right]+\frac{1}{(p+1)^{2}}+\frac{6}{(p+2)^{2}}
\end{aligned}
$$

$$
-\frac{1}{(p+3)^{2}}-\frac{3}{p+1}-\frac{6}{p+2}-\frac{3}{p+3}-\frac{1}{2(p+2)(p+3)}
$$

$$
>\frac{1}{2(p+1)(p+2)}+\frac{3}{p}+\frac{6}{p+1}+\frac{3}{p+2}+\frac{1}{(p+2)^{2}}
$$

$$
-\frac{6}{(p+1)^{2}}-\frac{1}{p^{2}}-\frac{12}{(p+3)^{2}}+\frac{1}{(p+1)^{2}}
$$

$$
+\frac{6}{(p+2)^{2}}-\frac{1}{(p+3)^{2}}-\frac{3}{p+1}-\frac{6}{p+2}
$$

$$
-\frac{3}{p+3}-\frac{1}{2(p+2)(p+3)}
$$

$$
=\frac{1}{(p+1)(p+2)(p+3)}+\frac{3}{p(p+1)}+\frac{6}{(p+1)(p+2)}
$$

$$
+\frac{3}{(p+2)(p+3)}+\frac{7}{(p+2)^{2}}-\frac{5}{(p+1)^{2}}-\frac{1}{p^{2}}-\frac{13}{(p+3)^{2}}
$$

$$
=\frac{A_{1}}{p(p+1)(p+2)(p+3)}+\frac{A_{2}}{[p(p+1)(p+2)(p+3)]^{2}}
$$

$$
\equiv S
$$

where

$$
A_{1} \equiv p+3(p+2)(p+3)+6 p(p+3)+3 p(p+1)=12 p^{2}+37 p+18
$$

and

$$
\begin{aligned}
A_{2} \equiv & 7\{p(p+1)(p+3)\}^{2}-5\{p(p+2)(p+3)\}^{2} \\
& -\{(p+1)(p+2)(p+3)\}^{2}-13\{p(p+1)(p+2)\}^{2} \\
= & 7 p^{2}\left(p^{2}+4 p+3\right)^{2}-5 p^{2}\left(p^{2}+5 p+6\right)^{2} \\
& -13 p^{2}\left(p^{2}+3 p+2\right)^{2}-\left(p^{3}+6 p^{2}+11 p+6\right)^{2} \\
= & 7 p^{2}\left(p^{4}+8 p^{3}+22 p^{2}+24 p+9\right) \\
& -5 p^{2}\left(p^{4}+10 p^{3}+37 p^{2}+60 p+36\right) \\
& -13 p^{2}\left(p^{4}+6 p^{3}+13 p^{2}+12 p+4\right) \\
& -\left(p^{6}+12 p^{5}+58 p^{4}+144 p^{3}+193 p^{2}+132 p+36\right) \\
= & \left(7 p^{6}+56 p^{5}+154 p^{4}+168 p^{3}+63 p^{2}\right) \\
& -\left(5 p^{6}+50 p^{5}+185 p^{4}+300 p^{3}+180 p^{2}\right) \\
& -\left(13 p^{6}+78 p^{5}+169 p^{4}+156 p^{3}+52 p^{2}\right) \\
& -\left(p^{6}+12 p^{5}+58 p^{4}+144 p^{3}+193 p^{2}+132 p+36\right) \\
= & -\left(12 p^{6}+84 p^{5}+258 p^{4}+432 p^{3}+362 p^{2}+132 p+36\right) .
\end{aligned}
$$

And so

$$
\begin{aligned}
S= & {\left[\left(12 p^{2}+37 p+18\right) p(p+1)(p+2)(p+3)\right.} \\
& -\left(12 p^{6}+84 p^{5}+258 p^{4}+432 p^{3}+362 p^{2}\right. \\
& +132 p+36)] /[p(p+1)(p+2)(p+3)]^{2} .
\end{aligned}
$$

And the numerator

$$
\begin{aligned}
= & {\left[\left(12 p^{2}+37 p+18\right) p\left(p^{3}+6 p^{2}+11 p+6\right)\right.} \\
& -\left(12 p^{6}+84 p^{5}+258 p^{4}+432 p^{3}+362 p^{2}+132 p+36\right) \\
= & p\left(12 p^{5}+72 p^{4}+132 p^{3}+72 p^{2}+37 p^{4}+222 p^{3}+407 p^{2}+222 p\right. \\
& \left.+18 p^{3}+108 p^{2}+198 p+108\right) \\
& -\left(12 p^{6}+84 p^{5}+258 p^{4}+432 p^{3}+362 p^{2}+132 p+36\right) \\
= & 25 p^{5}+114 p^{4}+155 p^{3}+58 p^{2}-24 p-36 \\
\geq & 292,
\end{aligned}
$$

completing the proof.

References

[1] L. Hölmander, On the existence and the regularity of solutions of linear pseudo-differential equations, L'Enseignement mathém., 17-2 (1972), 99-163.
[2] H. Ninomiya, On local integrability conditions for nowhere-zero complex vector fields, J. Math. Kyoto Univ., 33-4 (1993), 899-908.
[3] L. Nirenberg, Lectures on linear parrial differential equations, Reg. Con. Series in Math., 17 1973.
[4] F. Treves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, Ecole Polytechnique Centre de Mathématiques, 1981.

