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Some categories of lattices associated to a
central idempotent

By

Osamu Iyama

0. Let R be a noetherian integral domain with field of quotients K. An R-lattice
is a finitely generated torsion free R-module. An R-order is an R-algebra A which
is an R-lattice. For an R-order A, a A-lattice is a left A-module which is an R-
lattice. Let lat A4 denote the category of A-lattices.

Let e be a central idempotent of the K-algebra A := K ® g 4, so that e is
an R-order in the K-algebra ed. The category lat ed can be viewed as a full
subcategory of lat A via the ring homomorphism 4 — ed, (1 — eAd).

0.0. A purpose of this paper is to investigate the quotient category € :=
lat A/lateA. By definition, ¥ has the same objects as lat A4, and Hom¢(X,Y) =
Hom,(X,Y)/I(X,Y), where I(X,Y) is the totality of A-morphisms f: X — Y
which factor through some object of lat e4. By 2.1.1, Homg(X, Y) = (1 —e)
Hom, (X, Y) holds.

Let 2 be the full subcategory of € formed by X € € satisfying the following
condition (x).

(*) There exist a projective A-lattice P, eA-lattice £ and an exact sequence
02 —>P— X —0inlata.

0.1. Theorem (Proof in 2.5). Assume that P has an additive generator Q
(i.e. any object in P is isomorphic to a direct summand of Q"=Q@® ---®Q for
some n). Put I''= Homy(Q, Q), FX:= Homg(Q, X) for XelatA. Then I' is an
R-order and F induces a categorical equivalence from € = latA/lateA to latr.

0.2. Assume that R is a complete discrete valuation ring. Then latA
is a Krull-Schmidt category, and any X elatA has a projective cover 0 —
Q(X)—> P(X) > X —0. In this case, the above £ can be described as
{Xe¥|Q(X)elated}.

Let ind 4 denote the set of isomorphism classes of indecomposable A-lattices
and put

2:={Xeind4 — inded |Q2(X)elated}.

If 2 is a finite set, by the additivity of projective cover, # has an additive
generator 0 =P, _, X.
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0.2.0. Further assume that A is a semi-simple K-algebra. Then lat A has
almost split sequences and the Auslander translation 7. Since K®zQ(X) ~
K®pr1tX as A-module, the above 2 can be described as

={Xeind4 — inded|tX eindeAU{0}}
= (¢~ '(ind ed) U proj A) — ind eA.

Here, projA4 is the set of projective lattices in ind 4. Hence we have a
simple sufficient condition for the validity of O.1.

0.2.1. If inded is finite, then 2 of 0.1 has an additive generator.

0.2.2. Recall that an R-order 4 is called an Auslander order (resp. generalized
Auslander order) if it satisfies the following conditions (i), (ii) and (iii) (resp. (ii) and
(iii)):

(i) 4 is semi-simple.

(i) gldim4 < 2.

(iii) For a minimal projective resolution 0 — P} — Py — Homg(4,R) — 0,
Py is an injective lattice.

By [AR], an R-order 4 is an Auslander order if and only if there exists an R-
order A such that lat A has an additive generator L (i.e. A is of finite repre-
sentation type) and 4 ~ Hom,(L,L) as R-algebra.

0.2.3. Corollary of 0.1. Let A4 be an Auslander order and ¢ be a central
idempotent of A = K®gA. Then ¢d is an Auslander order.

Proof Since A is of finite representatlon type, 4 is necessarily semi-simple.
Hence 4 is Morita equivalent with 4, and a central idempotent of A can be
naturally identified with a central idempotent of 4. By this identification, put e :
1—¢eA. Then ed = (1 —e)Hom,(L,L) = Homg(L, L) with € = lat A/ lateA.

By 0.1, there is an R-order I' such that ¥ ~latI". Since L is an additive
generator of lat 4, L is also an additive generator of %, hence of latI", and we
have ¢4 = Homg(L, L) ~ Hom(L, L), showing that ¢4 is an Auslander order.

0.3. Assume that R is a complete discrete valuation ring and A is a semi-
simple K-algebra. Let e be a central idempotent of A such that 2:=
{Xeind4 —inded |tX =indedU{0}} is a finite set, say indeA is a finite set.

Let I" be an R-order associated to (4, e) by Theorem 0.1, lat I" ~ lat A /lateA.

Then the Auslander-Reiten quiver (") of I' can be described from A(A) by
a very simple way (Proposition 3.1).

If ind eA is small, then 2(I") is not much different from A(4). For example,
A(A) of some Bickstrom order A in a non-connected A is very similar to A(I)
of some tiled order I" in a simple I". This is, in fact, the first motivation of this
study—to explain the reason why apparently very different orders have similar
Auslander-Reiten quivers.

Several examples of such (A,e,I')’s will be given in §3.
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0.4. Let R be a complete discrete valuation ring. For R-orders A and A’,
according to [DK], we say that A’ is an over ring (resp. over order) of A if there is
an R-algebra homomorphism ¢ : A4 — A’ such that ¢: A — A’ is surjective (resp.
bijective). If A’ is an over ring of A, we can naturally consider as lat A’ < lat 4,
ind 4" < ind 4.

Therefore it is a basic problem to characterize a subcategory ¢’ of € := ind A
(or equivalently a subset & of ind A4) which has the form ¢’ = ind A’ (resp. & =
ind 4 — ind A’) by some over ring A’. We call the problem as Rejection Lemma
since it is a (wide) generalization of the Rejection Lemma of Drozd-Kirichenko
([DK]), which gives a solution when & is a singleton set.

0.4.1. Assume that 4 = K ® g 4 is semi-simple. Then general cases can be
reduced to the following two fundamental cases.

(a0) A’ is an over order of A. A

(al) A’ =ed by some central idempotent e of A.

Rejection Lemma for the case (a0) is given in our previous paper [I], where &
is called a rejectable subset if it has the form & = indA4 —ind A'.

Restricting to the case where A is of finite representation type, a similar
Rejection Lemma for the case (al) will be given in Theorem 4.2, in terms of 2(A)
and some numerical invariants.

In the final subsection 4.3, a few remarks on related topics, in particular a
relation to a result of [RV], will be stated without proof.

1. In this section, let ¥ denote an arbitrary additive category, and Homg (X, Y)
will be denoted by €(X,Y). For fe¥(X,Y) and ge 4(Y,Z), we write their
composition as fge €(X,Z).

1.0. Recall that g is a cokernel of f if the following sequence of abelian
groups is exact for any T:

0-%zT) Loy, T)Lex,T1)
Dually, f is a kernel of g if the following is exact:

0 %(T.X) L #T, )% %T.2)

As is well known and easily seen, cokernel (resp. kernel) is unique up to
isomorphism if exists, so that it is not too confusing to write X 2 Y ok, Cok f,
indicating that Cok f is an object and cok f is a morphism which is a cokernel

of f.

1.1. (i) An object P € & will be called quasi-projective (in €) if for any f and
o, there is o’ which makes the following diagram commutative:

f cok f

X

Cok f

P
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By definition, zero object in € is quasi-projective. Obviously, a direct sum
P =@X is quasi-projective if and only if each summand X is quasi-projective.
(i) A morphism g: P — X will be called a Q-covering of X if P is a direct
summand of Q" for some n > 0 and moreover g is a cokernel of some h: Y — P.

1.2. In the rest of this section assume that & is a pre-abelian category (i.e.
any morphism f has a kernel and cokernel). Fix a quasi-projective object Q of ¢
and put

I:=%(0,0), FX:=%(Q.X) for X €%,
Ff:FX = FY (¢ ¢f) for feG(X,Y).

Consequently, I" is a ring, FX € Mod I" := (the category of left I'-modules)
and F:% — Mod I is a functor.

1.3. For fe®(P',P), put g:=cokf and a:=kerg. Since fg =0, there
exists a unique g’ which makes the following diagram commutative:

P’ . p 2, x
lg’ /
X/

Since Q is quasi-projective, we have

0—FxX' 2 P P FX 0 (exact).

Since Cok Fg' = FX'/Im Fg' ~Im Fa/ImFf < FP/Im Ff = Cok F f, we have
Cok Fg' = Cok Ff. (1

It is easily seen that the following conditions (2) and (3) are equivalent:
Cok Ff ~ FX (2)
Cok Fyg' =0 (3)

1.4. Lemma. Let € be a pre-abelian category, Q be a quasi-projective object
of € and assume that any object X of € admits a Q-covering. Then the functor
F:% — ModTI is fully faithful.

1.4.1. Any object X of % is isomorphic to Cok f for some f: P’ — P, P and
P’ are isomorphic to direct summands of Q" for some n > 0.

Proof. By assumption, there is a Q-covering g: P — X, g =cokh, h: X' —
P. Take a Q-covering g’ : P’ — X' and put f :=g'h, then we have

0—%X,T) 2 €(P.T) L5 €(X'.T) (exact)

0—GX'.T) LGP T) (exact).
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Hence we have

0—@X,T) 2 &P, T) L5 6P, T) (exact).
Namely g = cok f.

1.4.2. By 1.4.1, for given X € 4, we can take f: P’ — P such that X ~
Cok f, P and P’ are isomorphic to direct summands of Q" for some n > 0. Put
g = cok f.

(i) Firstly we assume that both of P and P’ are direct summands of Q.

We shall show that any « € Homp(FX, FY) has the form o(¢) = ¢t (¢ € FX =
%(Q,X)) by the unique t e ¥(X,Y). Then we have ¥(X.,Y) ~ Homp(FX, FY).

Let p: Q— P, p': Q— P’ (resp. i : P — Q) be splitting epimorphisms (resp.
monomorphism) such that ip =1. Since fg=0,0=p'fge FX and p'fie I, we
have 0 = a(p’fg) = a(p'fipg) = p'fia(pg), so that fia(pg) = 0. Since g = cok f,
there is some ¢: X — Y such that ia(pg) = gt. For any ¢ € FX = €(Q, X), since
Q is quasi-projective, there is some ¢q: Q — P such that ¢ = gg. Then a(g) =
a(qg) = a(qipg) = qia(pg) = qgt = ¢t.

If ¢t = 0 for any ¢, taking ¢ = pg, we have pgt = 0, so that gt=0 and t =0
since g is a cokernel.

(ii) In general, P and P’ are direct summands of Q' = Q" by some n.
Consider I'' := 4(Q', Q") ~ M,(I') and F'X := 4(Q’,X) ~ (FX)". By the same
reasoning as (i), we have ¥(X,Y)~Homp (F'X,F'Y). While the latter is
isomorphic to Homj(FX, FY).

2. Let R K, 4, /f=K®RA and e be as in §0. For X elatA, put
X =K@pX=K®@p(A®4X) = (K®rA) @4 X ~A®,X.
By the canonical injection x — I ® x, we identify as X < X, and put
Xli=eX, X2:=(1-e)X, X':=eX, X*:=(1-¢e)X,
X =X'nX, X,=Xnx.

In particular, ed4 = A", (1-e)4= A%, A=A"® A% A" is an R-order of Al
X'emodA’ and X', X;elatA’.

2.0. We have the following commutative diagram (4) of A-modules for
(,7)= (1,2) or (2,1):

0 — X — X'@ex*? — X' — 0
7 7 T

0o — X — X'ex* — X' — 0
T T I

o0 — X — X — X' — 0
l 1 T

0 — X, — XX, — X — 0 (4)
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where horizontal arrow is the inclusion and each row is exact, and splits except
perhaps the third one.

2.0.1. The correspondence X — X = K ® g X induces functors:
lat A — mod A ~ mod A' @ mod 42 — mod A’

For f: X > 7, f: 1 ®f:/\~’~—> Y is the unique extension of f, then f
uniquely splits into the direct sum /= f'@® f2, f': X' - ¥'. One may identify
Hom,(X,Y) as a subset {¢|X¢ < Y} of Hom (X, ¥).

2.1. As in §0, let € be the quotient category latA/latA'. By definition, %
has the same objects as lat A4, and
€(X,Y)=Homy,(X,Y)/I(X,Y)
where /(X Y) is the submodule of Hom (X, Y) consisting of all morphisms which

factor through some object of latA'.
Let f:X — Y be a morphism in latA, and f be its image in ¥(X,Y).

21.1. f=0in % if and only if f2=0 in mod A%2. Hence we have the
following commutative diagram (5) of exact sequences of abelian groups:

0 0 0
l | !

0 — I(X.,Y) — Homy(X,Y) — 6(X,Y) — 0
| l !

0 — Homj(X',¥') — HomiX,¥) — Homp(X? ¥?) — 0

(5)

Moreover, ¥(X, Y) = (1 —e)Hom,(X,Y), F(X,Y)= Hom/i:(/\n, Y?),
%(X,Y) is an R-lattice and 4(X,X) is an R-order (or zero).

Proof. Obviously inclusion Hom,(X,Y) — HomA-(}?, Y) induces I(X,Y) —
Hom ;i (X', ¥!). This shows that f =0 implies f>=0. Conversely if f* =0,
YoXf=Xf=X(f'®f%) <Y sothat Xf < Yy, and f factors through Y; e
lat A%,

This implies 1(X, Y) = Hom,(X, Y)nHomj (X, Y!) and exactness of (5).
In particular, we obtain (X, Y)=(1 —e)Hom,(X, Y) and é(X,Y)= Homj,
(X2, Y2

We have to show that (X, Y) is a finitely generated R-module. Take an
exact sequence of R-modules R" — X — 0, then Hom,(X,Y) < Homg(X,Y) <
Homg(R",Y) = Y". Since R is noetherian, Hom,(X,Y) is finitely generated,
hence ¥(X,Y) is also finitely generated.

2.1.2. (i) f is an epimorphism (resp. monomorphism) in % if and only if f? is
an epimorphism (resp. monomorphism) in mod A2. N
(i) If f is an isomorphism in %, then so is 2 in mod A2.
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Proof. By definition, f is epic (resp. monic) in % iff the following (*) is
satisfied for any a: Y — T (resp. a: T — Y).

(x) fa=0 (resp.af =0) = a=0

While, by 2.1.1, fa =0 < f2a> =0, and a = 0<>a®> = 0. Hence f is epic iff
f? is epic.

(i) If f is an isomorphism, f is epic and monic. By (i), f? is epic and
monic, so that f? is an isomorphism.

2.2. € is pre-abelian. Let f:X — Y be a morphism in latA, and f =
1@ 2 Let g@: Y2 ¥V (resp. h? : W — X?) be a cokernel (resp. kernel) of
f? in mod A2

221. Put y=1@¢®:v=V'@¥?-Y' @V, Z:=VYyelatd, g:=
yly: Y = Z. Then we have

(i) g is onto. (ii) ¢g' is bijective. (iii) g

(iv) g is a cokernel of f in %.

2 s a cokernel of f? in mod A>.

Proof. (i) (ii) (iii) Immediate from definition since ¢' = 1, g% = g® = cok /2.

(iv) Since g2 is epic, so is § by 2.1.2.

Let a: Y — T be a morphism in lat A such that fa=0. By 2.1.1, f2a? =0,
and there is 5@ : ¥V — T? such that 4> =g¢@p@ . Put pf:=a' ®@b®:.Z=
V'@V ->T'@T*=T. Then pf=(1@¢?)(a' ®@b?)=a' @a*=a, and
Zp=(Yy)p=Ya=YacT. Hence there is b:=p|,: Z — T satisfies gb = a.

222 Puty:=1@h? . X'@W - X'® X? = X,Z := (inverse image of X
by y), and h:=y|,:Z — X. Then we have

(i) h is one-to-one. (ii) A' is bijective. (iii) 4% is a kernel of f2 in mod A°.

(iv) h is a kernel of f in ¥.

Proof. Similar to 2.2.1.

2.3. Recall that 2 is the full subcategory of ¢ formed by We® which has
an exact sequence 0 — Q S P2 W0 in lat4 such that P is projective and
Qelated. Assume that 2 has an additive generator Q (i.e. any object in 2 is
isomorphic to a direct summand of Q" for some n).

2.3.1. Quasi-projectivity of Q. If We2, then W is quasi-projective (1.1) in
%. In particular, Q is quasi-projective in %.

Proof. Given X IR Yy % Z, g=cokf and a: W — Z, we shall construct
a': W — Y such that a = a'g.

0 Q p -, w — 0
Jb/lu
x L. v 2, z
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By 2.2.1, we may assume that g is onto and g¢' is bijective.

Since P is A-projective and g is onto, there is b: P — Y such that pa = bg.
Since ibg = ipa = 0, we have (ib)'g' = (ibg)' = 0. Since g' is bijective, we have
(ib)] =0, while (ib)2 =0 since QelatA'. Consequently, ib = 0, and since p=
coki in latA, there is a’: W — Y such that b = pa’. Since p is onto, we have
a =a'g as wanted.

2.3.2. Existence of Q-covering. For X elatA, take an exact sequence
0—-Q—P= X — 0 such that P is A-projective. Let p’': P — W := P/Q, be
the canonical projection and p: W — X be the unique map such that f = p/p.

Then p: W — X is a Q-covering of X in €.

Proof. Let ij : Q) — Q be the inclusion, and we have the following com-
mutative diagram in mod A:

'

0—>'Ql———+PL>W——+0(exact)

Fl
6 — Q — P — X —— 0 (exact)

By snake Lemma, we have coki; ~ ker p, while cok i} ~ Q? by 2.0, i.e. 0 —
Q* L w2 x50, This implies, first of all, that W is a A-lattice. Moreover,
since Q, elatA!, We 2.

We shall show that p = coki in €, which will complete the proof. Since p is
epic in lat 4, p? : W? — X? is epic in mod A%, hence p: W — X is epic in € by (i)
2.1.2.

Let a: W — T be a A-morphism such that 7@ = 0. Then (ia)> =0 by 2.1.1
and (ia)' =0 by Q2 elatA? so that ia=0. Since p=coki in latA, there is
b: X — T such that a = pb, and a@ = pb as required.

2.4. Assume that § =cokf, a=kerg and g'a=f.

f g

P — P— X

e

Then the cokernel object of €(Q, P') 9, %(Q,X') is a torsion R-module.

Proof. By 2.2.1 and 2.2.2, we can assume g2 = cok f2, a2 = kerg? “and
(9')%a* = f? in mod A%. This obviously implies that (¢')? is epic in mod A>.
Take an exact sequence 0 — Q(Q) — P(Q) — Q — 0 such that P(Q) is

projective in lat 4 and 2(Q) e latA'. Then Q2 = P’(‘é)z, hence Q7 is projective in
mod A2, By 2.1.1, Cok(-§')=Cok(%(Q, P') -5 4(Q, X")) = Cok(Hom ;2(0? P"?)

), Hom ;»(Q% X'?)) = 0. This shows Cok(-§’) is torsion.
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2.5. Proof of Theorem 0.1. Let € be the quotiont category lat A/lat A', Q be
an additive generator of 2, FX = 4(Q,X) for X €4, I' = (0, Q) as in §0.

2.5.1. (i) € is a pre-abelian category by 2.2, Q is quasi-projective and any
X € € admits a Q-covering by 2.3.

By Lemma 1.4, the functor F: % — Mod I is fully faithful.

(i) I'=%(Q, Q) is an R-order and FX = €(Q, X) is a left I'-lattice for any
X e % by 2.1.1. Thus in fact Fis a functor from € to latI". Therefore it remains
to see the following.

(*) Any L elatlI" is isomorphic to FX for some X € 4.

2.5.2. For a given Lelatl’, take a I'-projective resolution

S
Fak ;F'"—)L—*O.

By 14, there exist f:Q"— Q" such that f=Ff. Put X =Cokf,
g=cokf, a=kerg and §'a={f.

Q" f in g- X

%

XI

Since Cok Ff ~ L is R-torsion free, Cok Fg' is also R-torsion free by (1) 1.3.
While Cok Fg' is R-torsion by 2.4, we get Cok Fg' = 0. Equivalence of 1.3 (2)
and (3) shows L = Cok Ff ~ FX, establishing (x).

3. Let R be a complete discrete valuation ring, (A,I") be as in 0.1 and
—:lat4 — latI" be the natural full functor.

For Xeind A, let tX 5 60X £ X be the complex of the sink map to X (i.e.
u is the sink map to X and v is the kernel of u) in lat A.

3.1. Proposition. We can obtain W(I") from A(A) by the following.

Remove all vertices in ind(eA) and all arrows which start or end in ind(ed). If
tXeind(ed) (resp 17" X eind(ed)), we regard X is a projective (resp. injective)
vertex in A(I).

Proof.  We only have to show that for any Xeind A — indeA, the complex
of the sink map to X in latl" is given by

xLox A ¥

(i) We will show rad,(Y,Z) =rad,(Y,Z) for any Y. Z.
We may assume Y, Zeind A. If Y (resp. Z) is contained in ind eA, then this
is obvious since ¥ =0 (resp. Z=0). If Y,Z¢inded, rad,(Y,Z)21(Y,Z)
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where I(Y,Z) is as in 0.0. Hence preimages in lat A4 of any isomorphism in latI”
are isomorphisms, this shows radr(Y,Z) 2 rads(Y,Z). On the other hand, the
image of any isomorphism in lat A is obviously an isomorphism in lat I, this shows
radr(Y,Z) crad,(Y, Z).

(i) From (i), & is right almost split.

(ii1)) We will show that the following is exact:

Homp( ,7X) > Homp( ,0X) -5 Homp( , X)

Obviously this is a complex. Assume o€ Hom,(Y,0X) satisfies aue
I(Y,X). Then there exists Selated, f: Y — S, y: S — X such that ou = fy.
Then since XeindA —inded and Selated, yerad (S,X), so there exists
y': § — 60X such that y=y'u.

y -, s

sl
X — x L5 X
Since (o — By")u = By — By’ = 0, there exists p” : ¥ — X such that a — fy' =
y”v.  This shows & = 7"7.

(iv) To show the right minimality of 7, assume §e Homp(0X,0X) satisfies
gii = . Then (iii) shows there exists g such that g—1=g'v. Since Ve
rad;(tX,0X), § is an automorphism of OX. By (i), 0X £ X is the sink
map.

(v) We will show that v is the kernel of fi.

If 7X =0, this is trivial by (iii).

Assume tX #0, so v is the source map. X # 0 and (i) show 6X #0. Hence
v # 0 since v is irreducible and tX, X ¢lat ed. Let K % 6X be the kernel of .

v #0 shows K #0. _(iii) and the definition 9f kernel show that there exist f
and g such that k = fv and v = gk. Hence k = fgk, so fg =1z Since K #0
and tX is indecomposable, f is an isomorphism, hence v is the kernel of f.

3.2. Examples. For a several pairs of (A4,e), we shall exhibit what I is and
how A(I') differs from A(A).

In examples, ¢ or O; always denote a maximal order in some division K-
algebra and p or p; denote the radical of ¢ or 0.

(1) For n>0, let A={(s,)e 0D O|s=1t(modyp")}. Then A(A) is the
following, where P is projective injective and tL = M, tM = L, and for any other
vertices, t is the identity. There are n + 2 verices.
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o0 0
pn (9
projective injective and removed vertex from (A) is M.

Let e =(1,0). Then I' = < ) and A(I) is the following, where L is

(2) For n> 0, letA:{<(Z £>(w)>e(;9n ﬁ)@((p) vzw(modp)}.

Then A(A) is the following, where thin arrows indicate 7, the L at the left end is
identified with the L at the right end. There are 2n + 2 vertices.

A VA VAV SR VAV AVANS

o 0 0
(i) Let e=<<g g)(l)>. Then I = (p" 0 (9) and A(I) is the
p 0

n

following, where removed vertex from A(A) is L.

VA VAVAV VAV AV AN

1 .
(i) Let e= (( 0 ?)(0)). Then I' is a basic hereditary order of matrix

size n+ 1 and A(I") is the following.

L L

o o o o o ° o o

(3) For even n>0, let A={<(f¢ £>(w))e(;9n i)@(@)

w (mod pz)}. Let Q be the following translation quiver, where 7 is the left shift.

V=

Then A(A) = Q/{¢)>, where ¢ is the composition of ‘the reflection by the central
dotted line’ and "+Y/2.  There are (n? + 3n + 4)/2 vertices. (For simplicity, let
n=23.)

RIS
VOO 900909000000
664?,6,6:6,6¢¢¢¢¢¢‘6¢6‘g::::

NN N N NN N NN NS




498 Osamu Iyama

0o 0
o tee= (0 D)), The ( ;
pn so2

S

) and A(I") is the

following.

EDOOOOOENEDOOE
KIRRIRRRAAKISISISIES
SIS
 SORIELIIIIIR

N N
N N

o

(i) Lete:<<(l) ?)(O)). Then

0o 0 0 0o 0 0

p 0 0 0o 0 0

p: P O o 0 0
r=|: s :

P> P’ P 0o 0 0

P> P’ P p O 0

P> Pt P’ P’ p O

(matrix size is n+ 1) and A(I") is the following.

o o o

o o o

O O o
SOOI SO AN
0207000700070 0 e
 ERRKKKRKKRKKKS
020 %% % %% K
00%‘ 2SS

o o

SELBALHEL

o

(4) For i=1,2,3,4, let ¢; be a copy of O and p; be the maximal ideal of
O. Let A=010,1 031 0:={(s.0u) e, @O DO U4|s=1=u=
v (modp)}, e=(1,1,1,0) e A. It is well known that #ind 4 = co.

By 0.2.0, we can take 2 =t~!(inded)UprojA, Q = @?zlLi» where

Li=0, 010, Li=0,10; 0, Li=0,10,10,

Li=03 104 Ls=0,10, Li=0,10,,

L1 ={(x,».2,a,b) e 0O, @O0, @ O: @ O4 D Os|x=a,y=b, x+y+z=0},

Lg=04 Li=0, 10,1010,
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Hence, we get

Os pa s Os ps Os ps 04 04 o
pa Oy pa Oy Oy ps Os ps O4 g4
ps pa O4 ps Oy Oy a a 04 pq4
P4 s s Os ps ps s s O4 4
Ps s pa P Os ps ps ps Oz 4
Ps Pa pa P pa Os ps ps Os a4
Ps Pa pa b Oy ps ¢ ps Os g4
pa s pa b ps Os ps ¢ O g

P4 P2 P4 P4 P Pa pa pPs Os 4
Oy Of Of Of 04 Of Of Of 04 04

where a, da’, b, b', ¢, ¢’ are elements of O such that a+a'=0, b=b', ¢c=
¢’ (mod gp4).

4. Let R be a complete discrete valuation ring and A be an R-order in a semi-
simple K-algebra 4 = K®pz A. In this section, we consider a full subcategory ¢’
of € = lat A, which is closed under isomorphism, direct sum and direct summand.
In other words, such %’ bijectively corresponds to a subset &’ of indA by
¢ =add¥’, ¥ =€ Nind 4.

Let ¢={e,...,&,} be the complete set of orthogonal irreducible central
idempotents of A, so that A is the ring direct sum A= @ eAd with g4 simple.

Put ¢ :={eeceles #{0}} and e:=3,.,e Then ¥ clated, ¥'c
indeA. It is straightforward to observe: i

(A) ¢ =lated < &' =inded & For X eind4, (X e ¥ & (1 —e)X =0).

(B) If ¢’ #lated and X e inded — &', then Homg/¢ (X, X) is a non-zero
R-torsion module.

4.1. To apply a result of [I], we sometimes identify the category ¢ = lat A
with the set of non-isomorphic objects of lat A, so that lat 4 > ind 4. By Krull-
Schmidt Theorem, we consider lat A as a free monoid N ind 4 generated by the set
ind 4, embedded in its quotient group Zind 4, lat4 =Nind 4 < Zind 4.

Any map ¢:indA — A (resp. any monoid homomorphism ¢:latA =
Nind A — A) into an abelian group 4 uniquely extends to a group homomorphism
f :Zind A4 — A.

By this convention, the complex of source map X — 6~ X — 7 X from X €
ind 4 determines Z-endomorphisms 6,7~ of ZindA and ¢~ :=1-0"+1" €
Endz(Z ind 4).

The map of rational length [:= (L+— length/f(i,)), the action of central
idempotent  &:= (L — ¢L) determine  Z-homomorphisms /:Zind 4 — Z,
e:Zind A — ZindeA.

4.1.1. Lemma. Assume that ind A is a finite set. Let | :latA =Nind A4 — N
be a monoid homomorphism such that lo ¢~ = 0.

Then I(L) =" ail(eL) for any LelatA, by some a; € N.
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Proof. Let £ be a maximal order containing A. Then Q= @i &9,
Inde2 = {Y;} with [(Y;) = 1.

Hence QL = 3"/, ¢;Y; by some ¢; € N, and E,Z = s,??L =¢;Y; and i(s,-L) =q.

Since ind A4 is finite, ind 4 — ind Q is a rejectable subset and by Theorem 5.4
of [I], there are some by € N such that

QL=L- Y by X

Xeind A —ind 2

Since /o¢™ =0 by the assumption, we have /(L) = /(QL) =>"", ¢l(Y;) =

Son l(eiL)a; with a; :=[(Y;) e N.

i=1

4.2. Theorem. Let €' = NS’ be a full subcategory of € =latA = Nind 4.

Assume that ind A is a finite set. Then the following three conditions are
equivalent.

(i) There exists a central idempotent e of A such that €' = lateA.

(ii) There exists an R-order I' such that /%' ~latTl.

(iii) There exists a map I :ind A — N such that 1) lo¢™ =0 and 2) I(X) =
0 Xed.

Proof. (i) = (ii) : By Theorem 0.1.

(i) = (i) : If ¢/%' ~latI", Homg e (X,X) is torsion free for any X e
ind4 —.%'. Then by (B), ¢’ =lated.

(i) = (iii): Put /:=lo(l —¢):lat4 — N. Then obviously / has the
required property.

(i) = (1) : By 4.1.1, I(L)=>", ail(e;L) by some a;eN. Put e:=
Ya—oti> then for X eindA, Xe¥ & 1(X)=0& (1 —e)X =0, hence &' =
inded by (A).

4.3. Remarks. Rejection Lemma is also studied, explicitly or implicitly, in
some cases other than (a0) or (al) of 0.4.1:

(b0) R is a commutative artin ring. A is an artin algebra over R. A’ is a
quotient algebra of 4. % = mod A (resp. €' = mod A') is the category of finitely
generated A-modules (resp. A’-modules) ([1]).

(b1) R is a 2-dimensional integrally closed complete noetherian domain. A
is a tame R-order (i.e. A is a reflexive R-module and moreover R,®@z 4 is a
hereditary Rg-order at any height one prime ideal p of R). A’ is a tame over
order of 4. % =ref A (resp. €' = ref A’) is the category of finitely generated A-
modules (resp. 4’-modules) which are reflexive as R-modules (|[RV]).

In these examples, one finds strong similarity in the relation of € with €’. As
a matter of fact, one can construct an abstract theory of Rejection Lemma which
specializes to each of the above cases.

4.3.1. In the cases (a0) and (b0) (where €/%’ is of dimension zero), /%’ is
not exactly a category of modules, although it is quite similar to a category of
modules.
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While in (al), where %/%' is one-dimensional, as was shown in 4.2,
€/€¢'(~latl) is a lattice category.

We can find a similar phenomenon also in the case (bl), which will be
recorded in 4.3.2, without proof. To state the result, it is more convenient to
consider an additive category as a ring in a usual way, then describe the corre-
sponding condition in terms of generalized Auslander orders (0.2.2). Note also
that the equivalence of (i) and (iii) in 4.3.2 is already proved for a general tame
order A in [RV] Theorem 3.9.

4.3.2. Proposition. Let k be a field, R =k[[x,y]], A4 be a tame R-order,
€' =N’ be a full subcategory of € = ref A =Nind A, where ind A is the set of
isomorphism classes of indecomposable objects in ref A. Assume that indA is a
finite set. Then the following three conditions are equivalent.

(i) There exists a tame over order A' of A such that €' = ref A'.

(ii) There exists a complete discrete valuation ring R’ such that €/€' is a
generalized Auslander order over R'.

(iii) There exists a map | :ind A — N such that 1) lo¢™ =0 and 2) I(X) =
0o Xes' ’
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