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Some categories of lattices associated to a
central idempotent

By

Osamu IYAMA

O. Let R be a noetherian integral domain with field of quotients K .  An R-lattice
is a finitely generated torsion free R-module. An R-order is an R-algebra A  which
is an R-lattice. For an R-order A , a  A -lattice is a  left A-module which is an  R-
lattice. L e t la t A  denote the category o f  A-lattices.

Let e be  a central idempotent of the K-algebra A  := K OR  A , so  that eA is
an R-order in the K-algebra ezii. The category lat eA can be viewed as a full
subcategory o f  la t A  via the ring homomorphism A  —> e A , 1—>

0 .0 . A  purpose o f  this paper is to investigate the  quotient category  (6 :=
lat A/lat e A .  By definition, (6 has the same objects as lat A , and Homw(X, Y) -=
Homn (X, Y)/I(X , Y), where /(X, Y ) is  the  totality of A-morphisms  f : X  —> Y
which factor through som e object o f  la t  e A . By 2.1.1, Hom w (X , Y) = (1 — e)
Hom,(X, Y) holds.

Let Y  be the full subcategory of cg formed by X e(6 satisfying the following
condition (*).

(* )  There exist a projective A-lattice P , eA-lattice Q and an  exact sequence
0—>52—>P—>X—*Oinlat A.

0.1. Theorem (Proof in  2 .5 ) .  A ssume that Y  has an additiv e generator
(i.e. any  object in Y  is isomorphic to a direct summand o f  Q" = Q • • •  Q  for
some n ) .  Put F :=  Hom w (Q, Q), F X := Horme (Q, X ) for X e lat A . T h e n  T  is  an
R-order and F  induces a  categorical equivalence from (6 lat A /lat eA to lat F.

0.2. Assume th a t  R  i s  a  complete discrete valuation r in g .  Then lat A
i s  a K rull-Schm idt category, a n d  a n y  X e  la t A  has a  pro jective  cover 0 —+
Q(X) —> P(X) —> X —> O. I n  th is  c a s e , th e  ab o v e  Y  c a n  b e  d e sc r ib e d  as
{X eW I Q(X)elat

Let ind A  denote the set of isomorphism classes of indecomposable A-lattices
and put

:= {X e ind A  — ind eA I Q(X)e lat

If is a  finite set, by  the additivity of projective cover, Y  has an additive
generator Q = CD x  X.
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0 .2 .0 . Further assume tha t A  is a semi-simple K-algebra. Then tat A  has
almost split sequences and the A uslander translation 2. Since K O R  S2(X)
K O R  TX as ii-m odule, the above .2 can be described as

Pi = {X E ind A  — ind eA  TX ind eA U {0 } }

= 1 (ind eA) u proj A) — ind eA.

Here, proj A  is  the set of projective lattices in ind A .  H ence w e have a
simple sufficient condition for the validity of 0.1.

0 .2 .1 . If ind eA  is finite, then of 0 .1  has an additive generator.

0 .2 .2 . Recall that an R-order d  is called an A uslander order (resp. generalized
A uslander order) if it satisfies the following conditions (i), (ii) and (iii) (resp. (ii) and
(iii)):

(i) A  is semi-simple.
(ii) gl.dim A  < 2.
(iii) F o r  a  minimal projective resolution 0 —> P1 —> Po --> Hom R (A, R) —> 0,

Po is  an injective lattice.
By [AR], an R-order d  is an Auslander order if and only if there exists an R-

order A  such that lat A  h as an additive generator L  (i.e. A  is  o f  finite repre-
sentation type) and d  H o m A (L ,L ) as R-algebra.

0.2.3. Corollary of 0 . 1 .  L e t  d  b e  an A uslander order an d  e  be  a  central
idempotent of  d = K O  R d. T h e n  e d  is  an A uslander order.

P ro o f  Since A  is of finite representation type, A-  is necessarily semi-simple.
Hence A is M orita equivalent w ith A , and  a  centra l idem potent of -A  can be
naturally identified with a central idempotent of A . B y  th is  identification, put e :=
1 —  E  A- . T h e n  EA = (1 — e) Hom A (L , L ) = Homw (L, L )  with (e = lat A 1 lat eA.

By 0.1, there is an R-order F  such that (6 l a t  F .  S i n c e  L  is an additive
generator of la t A , L  is also an additive generator of (6, hence of lat F , and we
have cd =H onke (L ,L) - H om r(L ,L ), showing that e d  is  an Auslander order.

0 .3 .  Assume tha t R  is  a  complete discrete valuation ring and A  is  a  semi-
sim ple  K -algebra . L e t  e  b e  a  c e n tra l id e m p o te n t  o f  A  s u c h  th a t  .2  :=
{X e ind A — ind eA 1TX = ind eA U {0}} is  a  finite set, say ind eA  is  a  finite set.

Let F  be an R-order associated to (A , e) by Theorem 0.1, lat F  ta t  A / la t  eA.
Then the Auslander-Reiten quiver 11(F) of F  can be described from 2I(A) by

a  very simple way (Proposition 3.1).
If ind eA  is small, then 21(F) is not much different from 9I(A). For example,

2I(A) of some Bdckstr6m order A  in  a  non-connected A is very similar to 9.1(r)
of some tiled order F  in a sim ple f .  This is, in fact, the first motivation of this
study—to explain th e  reason why apparently very different orders have similar
Auslander-Reiten quivers.

Several examples o f  such (A ,e ,F)'s  will be given in §3.
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0.4. Let R be a  complete discrete valuation ring. F o r  R -o rd e rs  A  and A ',
according to [DK], we say that A ' is an over r in g  (resp. over order) of A  if there is
an R-algebra hom om orphism  : A A ' such that 0 : A —> A' is surjective (resp.
bijective). I f  A ' is an  over ring of A , we can naturally consider as lat lat A,
ind A ' g ind A.

Therefore it is a basic problem to characterize a  subcategory W' of (6 := ind A
(or equivalently a  subset .g)  of ind A ) which has the form (6' = ind A ' (resp. =
ind A  — ind A ') by some over ring A '.  We call the problem as Rejection Lemma
since it is a  (wide) generalization o f the  Rejection Lemma of Drozd-Kirichenko
aDK1), which gives a solution w hen .9 ' is a singleton set.

0 .4 .1 . Assume that A  = K OR A  is semi-simple. Then general cases can be
reduced to the following two fundamental cases.

( a 0 )  A ' is  a n  over order o f A.
(ai) A '  = eA by som e central idempotent e o f A.
Rejection Lemma for the case (a0) is given in our previous paper [I], where 99

is called a rejectable subset if  it  h a s  the form 99  =  ind A  — ind A'.
Restricting to the  case  where A  is  o f  finite representation ty p e , a  similar

Rejection Lemma for the case (al) will be given in Theorem 4.2, in terms of 2I(A)
and some numerical invariants.

In the final subsection 4.3, a  few remarks o n  related topics, in  particular a
relation to  a  result o f  [RV], will be stated without proof.

1. In  this section, let denote an  arbitrary additive category, and Hom w (X, Y)
will be denoted by ,e(x, Y ) . F o r  f  e ,e(x, Y ) and  g  e ce( Y, Z ),  we write their
composition as f g  E W(X, Z).

1.0. Recall that g  is  a  cokernel of f  if  th e  following sequence of abelian
groups is exact for a n y  T:

0 —> (6(Z, T)( Y ,  T ) ce (X ,T)

Dually, f  is  a  kernel o f g  if  the  following is exact:

0 —> ( T , X ) —> (T , Y) 2 >.( T  Z )

A s is w ell know n and  easily seen, cokernel (resp. kernel) is unique up to
co k fisomorphism if exists, so that it is not too confusing to write X Y  --> Cok f ,

indicating that Cok f  is  a n  object and cok f  is  a morphism which is a cokernel
of f

1.1. ( i )  An object P G f  will be called quasi-projective (in  (62 ) if for any f  and
a ,  there is a '  which makes the  following diagram commutative:

X
cok f  

LOK J
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By definition, zero object in  (6 is  quasi-projective. Obviously, a direct sum
P  =  @ X  is quasi-projective if and  only if  each summand X  is  quasi-projective.

(ii) A  morphism g : P X  will be called a Q-covering of  X  if P  is a direct
summand of Qn  fo r  some n >  0 and moreover g  is a cokernel of some h: Y  —> P.

1.2. In  the rest o f this section assume that (6' is a  pre-abelian category (i.e.
any morphism f  has a  kernel and cokernel). Fix a  quasi-projective object Q of
and put

F W (Q , Q ), FX  := W (Q , X )  for X  e ( ,

F f : FX —> FY ( 1—> Of) for f E (6(X  , Y ).

Consequently, F  is  a ring, EX  E Mod F  := (the category o f left F-modules)
and F :  f  —> Mod r  is  a  functor.

1.3. F o r f (P' , P), p u t g := cok f  and  a := ker g. Since f g  = 0 , there
exists a unique g ' which makes the following diagram commutative:

 P

 

X

   

X '

Since Q  is  quasi-projective, we have

  

0 —* EX ' 2 -1 >i F P EX0  (exact).

Since Cok Fg' = FX  Ilm  Fg' Im  Fa Ilm  F f  g FP Ilm  F f  = Cok Ff  , we have

Cok Fg' g Cok Ff . (1)

It is easily seen that the  following conditions (2) and  (3) are  equivalent:

Cok F f  E X (2)

Cok Fg ' =0 (3 )

1.4. Lem m a. Let (6 be a pre-abelian category , Q be a quasi-projective object
of (6 and assume that any  object X  of (6 adm its a  Q-covering. Then the functor
F: (6 —> Mod T is fully  faithful.

1 .4 .1 . Any object X  of (6' is isomorphic to Cok f  for some f : P' — > P, P and
P ' are isomorphic to direct summands o f  Q " for some n >  0.

P ro o f  By assumption, there is a  Q-covering g : P X, g -= cok h, h : X ' —>
P .  Take a  Q-covering g ' : P' X ' and put f  :=g 'h ,  then w e have

0 —> (6(X , T) (P, T) (X ',  T )  (exact)

0 —÷ (6(X ', T)( P ' ,  T )  (exact).
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Hence we have

o —> (6(X, T) (6(P, T ) 1 -> (6(P' , T )  (exact).

Namely g = cok f.

1.4.2. By 1.4.1, fo r given X  E (6, w e can take f :  P' — > P such that X
C o k f , P and P' are isomorphic to direct summands of Q" for some n > O. Put
g = cokf.

(i) Firstly we assume that bo th  o f P  and  P ' are direct summands o f  Q.
We shall show that any a c Hom r  (FX, FY) has the form a(0) = 0 1 (0 e FX  =

(6(Q, X ) )  by the unique t E ''(X ,  Y ) .  Then we have (e(X , Y) H o m r  (FX. FY).
Let p :  Q —> P, p' : Q — > P' (resp. j :  P —> Q) be splitting epimorphisms (resp.

monomorphism) such that ip = 1. S in c e  f g  = 0, 0 p' f g e FX  and p' f i e F, we
have 0 = a(p' f g) = a(p' f ipg) = p' f ia(pg), so that f ia(pg) O. S in c e  g = cok f ,
there is some t : X  —> Y such that ia(pg) = gt. For any 0 e FX  =  W(Q, X ), since
Q  is  quasi-projective, there is som e q: Q —> P such that 0 -= q g .  Then a(0) =
a(gg) = a(qipg) = gia(pg) = qgt = qt.

If Ot = 0 for any 0, taking 0 = pg, we have pgt = 0, so that gt 0  and t = 0
since g  is  a cokernel.

(ii) I n  general, P  a n d  P ' are  d irec t summands o f  Q ' = Q " by  som e n.
Consider F' := (6(Q' ,Q') M n (F )  and F' X  := ' (Q ',  X) (FX) n . By the same
reasoning a s  ( i ) ,  w e  have ' ' ( X ,  Y ) H om r(F' X  ,F' Y ). W hile  th e  la t te r  is
isomorphic to Homr (FX, FY).

2. Let R , K, A , ii = K OR A  and e  be  a s  in  § 0 . F o r  X  c lat A, put

X := K OR X =K O R  (A 0 A X) -= (IC OR A) 0 A  X  -= A-
 A  X.

By the canonical injection x 1— >  1 0  x , we identify a s  X  c  ,  and put

X 12 - 17- 2 :=  (1 - e)X-, X ' := e X , X 2 := (1 — e)X,

:=Ic i n x ,  x2 : = Î 2 nx.
In particular, eA =- A ', (1 — e)A = A 2 , = A - ' C) A-2 , A ' is an R-order of

A-4  e mod and X i ,  X i e lat A i .

2 .0 .  W e  h av e  th e  following commutative d iagram  (4) o f  A-modules for
(i f) = (1 ,2 )  or (2, 1):

0  — > 0 n AT- i0

0 X i x ' x 2X ' 0

0 X Xi 0

0 X I 8 x2 - - - + 0 (4)
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where horizontal arrow  is the inclusion and each row is exact, and splits except
perhaps the third one.

2 .0 .1 . The correspondence X 1—* X = K OR X  induces functors:

lat A  mod ii m o d  A l C) mod A2 —+ mod A i

F o r  f : X — Y ,  f = l 0 f : X T - - - Y  i s  the unique extension of f ,  then f
uniquely splits into the direct sum f = C )  f 2 , : Î '  O n e  may identify
HomA  (X , Y ) a s  a  subset {0 I X0 g  Y } of Hom,i(X- ,

2 .1 .  As in §0, let ce be the quotient category lat A/lat A I . B y definition,
has the same objects a s  lat A , and

(6(X, Y) = HomA(X, Y)/I(X, Y)

where /(X, Y) is the submodule of HomA(X, Y) consisting of all morphisms which
factor through some object o f lat A '.

Let f : X Y b e  a  morphism in  lat A , and f  be  its  image in '( X ,  Y).

2 .1 .1 . f  =  0  in  (6 if  a n d  only if  f 2 =  0 in  mod /12 . Hence we have the
following commutative diagram (5) of exact sequences o f abelian groups:

0

0 /(X, Y) HomA (X , Y) (6(X, Y) 0
1 I 1

O ,  H o m 4 ,(A2-1 , k ' ) ,  H o m Â (k- , k) - - ,  Hom,i2(Î 2 , k 2 ) - ›  0

(5 )

Moreover, ( '(X , Y) = (1 — e) HomA (X , Y), e' (X , Y ) = HomA-2(x- k2),

(6(X, Y ) is a n  R-lattice and ce(X, X ) is  a n  R-order (or zero).

P ro o f  Obviously inclusion HomA (X, Y) —> Hom0 ,  17 )  induces /(X, Y)
Homi p (X-  I , i " ). T h is  sh o w s  that f  = 0  implies f 2 =  0. Conversely if f 2 =  0,
Y D X f X f  =  X  (f  I f  2 ) c  1's, so  th a t X f and f  factors through Y1 E
lat A l .

T his implies /(X, Y) = HomA (X, Y)n Hom, (X 1, 1
)  a n d  exactness o f  (5).

In  particular, w e  o b ta in  e (X , Y) = (1 — e)Homn (X, Y ) and  i (X ,  Y) = Hom;i 2
i,- 2) .

W e have to  show t h a t  '(X , Y ) is  a  finitely generated R-module. Take an
exact sequence o f R-modules R" —> X —> 0 , then HomA (X , Y) g Hom R (X, Y) OE
HomR (R", Y) =  Y n . Since R  is  noetherian, Hom A (X, Y ) is finitely generated,
hence ''(X , Y )  is also finitely generated.

2.1.2. (i) f  is an epimorphism (resp. monomorphism) in i f  a n d  only if f 2
 is

an  epimorphism (resp. monomorphism) in  mod /P .

(ii) l f  f  is  a n  isomorphism in  (6, then so is f 2 i n  mod /1-2.
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P ro o f  By definition, f  is epic (resp. monic) in  ce i f  t h e  following (*) is
satisfied for any a: Y  —> T (resp. a :  T —> Y).

(*) f  = 0 (resp. -= 0) = 0

While, by 2.1.1, fa = O f  2 a2 = 0 , and a  = 0 -4.> a2 =  O. Hence f  is epic if
f 2 is epic.

(ii) If f  is  an isomorphism, f  is epic and monic. By (i), f 2 is ep ic and
monic, so that f 2 i s  an isomorphism.

2 .2 . 66  is pre-abelian. Let f : X —> Y b e  a  morphism in  lat A , and rt =
f l f 2 . L e t  g( 2 ) : Y 2

 — 4  V (resp. /7 ( 2 ) : W —> il) . 2 ) be a  cokernel (resp. kernel) of
f 2 i n  m o d i 2 .

2.2.1. P u t  y := 1 g(2 ) : = 0 ' 0 V , Z :=  Yy E lat A,
y Y  —> Z. Then we have

(i) g  is  o n to .  (ii) g l i s  bijective. (iii) g 2 i s  a  cokernel of f 2 in
(iv) is  a  cokernel of f  in  ce.

P ro o f  ( i )  (ii) (iii) Immediate from definition since g  = 1, g 2 = g( 2 ) = cok f 2 .
(iv) Since g2 is ep ic, so  is g by 2.1.2.
Let a : Y T be a morphism in lat A  such that fa = O.

a n d  th e re  is  13( 2 ) :  V —> t 2 s u c h  th a t  a 2 =  g(2 ) b(2 ) . Put
(DI1 , 1 I". Then yfi o  g (2))(a  0  b(2))

Zfi =(Y y)fi= =  Y u  T .  Hence there is b := filz  : z
2.2.2. Put y := 1 C) h ( 2 ) : I C) W —> AT-1 (i) 2t 2: =  (inverse image of X

by y ), and h := : Z —> X. Then we have
(i) h is one-to-one. (ii) id  is bijective. (iii) h 2 is  a  kernel of f 2 in  mod JP.
(iv) h  is  a  kernel of f  in  ce.

P ro o f  Similar to 2.2.1.

2.3. Recall that is the full subcategory of ce formed by We '  which has
an exact sequence 0 —> P L  W  0  in  lat A  such that P  is  projective and

E lat e A .  Assume that g) has an additive generator Q (i.e. any object in is
isomorphic to a direct summand o f  Q" for some n).

2.3.1. Quasi-projectivity o f  Q .  If We / , th e n  W is  quasi-projective (1.1) in
ce. In particular, Q is quasi-projective in  W.

f gP ro o f  Given X —> Y Z, =  c o k f  and a : W —> Z ,  we shall construct
a' : W —> Y su ch  th a t a = at- 4.

PW — >

Z e r:  ta
Y  — >  Z

g :=

mod / 2 .

By 2.1.1, f 2 a2 = 0,
13 := a l C) b(2 ) : Z  —
a i a 2 = and

T  satisfies gb = a.
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By 2.2.1, we may assume that g  is on to  and g 1 i s  bijective.
Since P  is A-projective and g is onto, there is b : P —> Y such that pa = bg.

Since ibg = ipa 0, w e have (ib) 1g 1 = (ibg) 1 =  0. Since g 1 i s  bijective, we have
(ib) 1 =  0 , while (ib) 2 =  0 since Q e lat A l . Consequently, ib = 0 , and  since p =
cok i  in lat A , there is a' : W — ' Y  such that b = pa'. Since p  is  onto, we have
a = a'g  as wanted.

2 .3 .2 . Existence of Q-covering. F o r  X  e lat A ,  ta k e  a n  e x a c t  sequence
0 —> S2 —> P —> X —> 0 such that P is A-projective. L e t p' : P W  : =  P IS21 be
the canonical projection and p : W —> X be the unique m ap such that f  = p /p.

Then p : W —> X is a Q-covering of X  in  ce.

P ro o f  Let i1 : Qi —> Q be the inclusion, and w e have the following com-
mutative diagram in  mod A:

0  , •  Q1 P W 0  (exact)

11

0 X 0  (exact)

By snake Lemma, we have coki 1 k e r  p , while coki1 5 2 2 by 2.0, i.e. 0 —>
Q 2  1 .> W L X —* 0. This implies, first o f  a ll, th a t W  is  a  A-lattice. Moreover,
since Q1 e lat A l , W  e

We shall show that 15 = co la  in (e, which will complete the
epic in lat A , p 2 : i,z2 2  is epic in mod A-2 , h ence  :  W  X
2.1.2.

Let a : W —> T be a A-morphism such that i =  0. T h e n
a n d  (ia) 1 =  0  by Q 2 E lat A 2 ,  s o  th a t  ia = 0. S in c e  p = cok i
b : X  —> T such that a =  p b , and a = pb a s  required.

2 .4 .  Assume tha t g = cokf , a = k e r  and  g'd = 7.

P X

X'

Then the cokernel object o f ce(Q, P') ''(Q , X ')  is  a torsion R-module.

P ro o f  B y 2 .2 .1  and  2 .2 .2 , w e  c a n  assume g 2 =  cok  f 2 ,  a 2 = ker g 2 a n d
(g') 2 a 2 f 2 i n  mod 1 2 . This obviously implies that (g') 2 is  e p ic  in  mod A- 2 .

T a k e  a n  e x a c t  sequence 0 —> 52(Q) P ( Q )  —> Q —> 0 such that P (Q )  is
projective in lat A  and Q(Q) c lat A l . Then 0 2 =  P(Q) 2 , hence -0 2 is  projective in
mod 1 2 . By 2.1.1, Cok(•  =  C o k (  P') - - + ' ( Q ,  X ')) = Cok(Hom  A-2 (0 2 , 1-5'2 )
(g') 22 ( 0 2 ,  -x- 72--> Homx )) 0 .  This shows Cok(• 0') is  torsion.

proof. Since p  is
is epic in ce by (i)

(ia) 2 = 0  by 2.1.1
in lat A , there is
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2.5. Proof of Theorem 0.1. Let ce be the quotiont category tat A /lat A ', Q be
an additive generator of EX  = (6(Q, X ) for X  E 6 , F = (6(Q, Q) as in §0.

2.5.1. (i) ce is  a pre-abelian category by 2.2, Q  is quasi-projective and any
X  e a d m i t s  a Q-covering by 2.3.

By Lemma 1.4, the functor F : (6 —+ Mod F  is fully faithful.
(ii) F = (6(Q, Q) is an R-order and  EX  = W (Q, X ) is a  left F-lattice for any

X  E CC by 2.1.1. Thus in fact F is a functor f ro m  to  ta t  F. Therefore it remains
to see the following.

(*) Any L e latF is isomorphic to FX  for some X E (6.

2.5.2. F o r  a  given L  e tat F ,  take a F-projective resolution

F" L

B y  1 .4 , th e re  e x is t  f : Q " Q m  s u c h  th a t  f  = F f . . P u t  X  = C okf , ,
= cok f , , a  = ker 0 and j 'a  =7.

Q X

Since Cok F f  L  is R-torsion free, Cok FO' is also R-torsion free by (1) 1.3.
While Cok F a ' is R-torsion by 2.4, we get Cok FO' = 0. Equivalence of 1.3 (2)
and (3) shows L  = Cok F f  F X ,  establishing (*).

3. L e t  R  b e  a  com plete discrete valuation ring, ( A T )  b e  a s  in  0 .1  a n d
— : lat A  —> lat F  b e  the natural full functor.

F o r X e ind A , let TX L>'  OX 4 X  be the complex of the sink m ap to X  (i.e.
,tt is the sink m ap to  X  and  y  is  the kernel of ,u) in ta t  A.

3.1. Proposition. W e can obtain 91(F) f rom  9I(A) by  the fallowing.
Remove all vertices in ind(eA) and all arrows which start or end in ind(eA ). I f

TX e ind(eA) (resp X  e ind(eA)), w e regard X  is a projective (resp. injective)
vertex  in 11(F).

P ro o f  W e only have to show that for any  X e ind A — ind eA , the complex
of the sink map to in ta t  F  is given by

(i) W e will show radr ( Y, Z ) = rad A  ( Y, Z )  for any Y, Z.
We may assume Y, Z e ind A. If Y (resp. Z ) is contained in ind eA , then this

is obvious since  Y  0  (re sp . Z  =  0 ) . I f  Y , Z  ind e A , rad A  ( Y, Z ) I ( Y  , Z )
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where I(Y  ,Z ) is a s  in  0 .0 . Hence preimages in tat A of any isomorphism in lat F
are isomorphisms, this shows radr( Y, Z )  radA ( Y, Z ) .  O n the other hand, the
image of any isomorphism in lat A is obviously an isomorphism in lat T , this shows
rad r  (17 , 2) g radA ( Y, Z).

(ii) From (i), f i is right almost split.
(iii) We will show that the  following is exact:

Hom r (  ,  X) 4  H o m r ( , OX) H o m r ( , X )

O bviously  th is is a complex. Assume a e HomA ( Y, O X ) satisfies aft E
I(Y  , X ) .  Then there exists S  c lat eA, 13 : Y —> S, y :  S  X  such that aft = fly.
Then since X e ind A — ind e A  and S E  lat e A , y e radA (S, X ) ,  so there exists
y' : S —> OX such that y = y' p.

Y 6--+ S

TX OX X

Since (a — fly')ft = fly — fly' = 0, there exists y" : Y —4 TX such that a — fly' =
y " v .  T h is  sh o w s  =  7"v.

(iv) To show the right minimality of assume g E Hom r (OX, OX ) satisfies
= f t .  Then (iii) show s there exists q ' such  th at g - 1 = g'y). Since

racir (TX  ,OX ), a-  i s  an  au tom orph ism  of O X . B y  (ii), OX X ' is  t h e  sink
map.

(v) We will show that 17 is  the kernel of
If  TX =  0 , this is trivial by (iii).

—Assume TX 0 0, so y is the source m ap. g  0 0 and (ii) show OX  0 0. Hence
0 0  since y is irreducible and TX, O X  lat e A .  Let K  ex  be the kernel of rt.

17 0 0  shows K  O. (iii) and  the  definition of kernel show  that there exist f
a n d  0-  such that k  = p and 17 = OTC. Hence k  = hf c, so fq = lk • S in c e  K o 0
a n d  T X  is indecomposable, le-  is  an isomorphism, hence 17 is  the  kernel of

3.2. Examples. F or a  several pairs of (A, e), we shall exhibit what r  is and
how 2I(T ) differs from 21(A).

In  examples, (9 or (0 i always denote a m axim al order in  some division K-
algebra a n d  p  o r  p , denote the radical of or

(1) For n >  0 ,  le t A = {(s, t) E ( )  C i s  t (mod p " ) } .  Then 9I(A) is  the
following, where P  is projective injective and TL =  M , TM = L , and for any other
vertices, T is  the  identity. There are n + 2 verices.

M

 P
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Let e =  ( 1 ,0 ) .  Then r =  ( 6  6 )  and 91(F) is  the following, where L  iso n

projective injective and removed vertex from 91(A) is  M.

P

0  0
(2) For n > 0, le t  A  =  { ( ( s t ) (w ))  e  ( )  0  ( (9 )  y  ---- w (mod 0 )}.

u  v o n  0

Then 91(A) is the following, where thin arrows indicate r, the L at the left end is
identified with the  L  a t  the  right e n d .  There are  2n + 2 vertices.

0  0
(i) L e t  e  = ( ( 0

° ) ( 1 ) ) .  T h e n  F  =  pn a n d  91 (F ) i s  the
o n o

following, where removed vertex from  91(A) is  L.

°

(ii) Let e  = ( ( o
l ° .1 )  ( 0 ) ) .  Then F  is a  basic hereditary order o f matrix

size n + 1 and  91(F) is  the  following.

•

o

(3) F o r  e v e n  n > 0, let A =  { ( ( S \
t ( W ) )  (  

6  6

) ((9)o n cU  V

w (mod 0 2 ) Let Q be the following translation quiver, where r  is the left shift.

Then 91(A) = w<o>, w h e r e  is  the composition of 'the reflection by the central
dotted line' and r (n+1) /2 . There are  (n2 + 3n + 4)/2 vertices. (F or simplicity, let
n = 8.)
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(9 0
T hen  I" =  V  0  ( 9

(  0  0  (

I )
„ ) .

0 )
V 0 2  (9

(i) L e t e =

following.

a n d  91(T) i s  the

0 ) ( 0 ) )
(ii) Let e  =  ( ( 1

0 1 )
Then

/ 0 C C 0\
0 (9 0 0

2

=
2

P
2

0
2

C

0

2

0

2

0
2

• • 0 (9 ( 9

\ 2 0 2
0

2

'•• 0 2 0 (9 /

(matrix size is n 1) and  91(F) is  the  following.

(4) F or i -= 1, 2, 3, 4, let e i be a  copy of and pi b e  the maximal ideal of
(9g. L e t  A  = C1 I  C2 C3 I  e4  := { (S ,t,14 , v) e l e c 2 ® 6 3 ( : ) , (94
y (mod p )},  e = (1,1,1,0) EA.

By 0.2.0, w e can take .2
It is well known that j in d A  = cc.
r - I (ind eil)U proj A , Q = 0 ,? where

L1= 02 1  C3 I  (94, L 2  = 1  63 1  (04, L 3 = 1 0 2  1  0 4

L 4 = (93 (94 , L 5 = 1 (94, L 6  = 0 2 1  (94,

L 7  = {(x, y, z, a, b) CI CD, O' C3 G  0 4 (94 IX= a, y b ,x+y+z-7 -,0 }.

L 8  = 04 , L 9 = 1  (9 2 1 03 1  C4 .



Hence, we get

F  =

where a, a', b, b ',
c' (mod 04).
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/  (V4 0 4 ) 4 0 4 04 (94 )4 0 4 (94) 4 \

P4 (94 04 (94 (94 04 (94 04 (94 04

P4 04 (94 04 (94 (94 a a' (94 04

) 4 04 p4 (94 04 04 P4 P4 (94 04

04 04 04 P4 (04 04 04 P4 6 4 04

P4 P4 04 04 P4 (94 04 )4 (94 )4

P4 p 4 04 b (94 04 c 04 (94 04

p4 04 04 b 04 (94 04 c (94 04

)4 04 04 04 04 P4 04 04 (94 04

(94 (94 (194 (94 (94 (94 (94 (94 (94 (94/

c, c' are elements o f 04 such th a t  a + a' 0, b '
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c

4. Let R  be a  complete discrete valuation ring and A  be an R-order in a semi-
simple K-algebra A = KO R A .  In this section, we consider a full subcategory W'
of (6 = lat A , which is closed under isomorphism, direct sum and direct summand.
In  other w ords, such (6 ' bijectively corresponds t o  a  subset Y ' of ind A  by

= add .9' 1 , Y ' -.= (6 1 (I ind A.
L et e = {eh ,e,,} b e  the complete set of orthogonal irreducible central

idempotents of A ,  so  tha t A  is  the ring direct sum A -  = ezi  with E,/-1- simple.
P u t  e' := le e 61E9' f  { O } }  a n d  e , e. Then g lat eA, g

ind eA. It is straightforward to observe:
(A )  ce = lat eA <=> = ind eA <=> For X E  ind A , (X e <=> (1 —  e)X = 0).
( B) If et" f lat eA and X e ind eA — 9" , then Homw pg , (X, X ) is a non-zero

R-torsion module.

4 .1 .  To apply a  result of [I], we sometimes identify the category ce = lat A
with the set of non-isomorphic objects of lat A , so that lat A  ind A .  By Krull-
Schmidt Theorem, we consider lat A  as a free monoid N md A  generated by the set
ind A , embedded in  its quotient group Z ind A , lat A  = N ind A  Z ind A.

A ny m ap : ind A A  (resp . a n y  monoid homomorphism : lat A
N ind A  —> A ) into an abelian group A  uniquely extends to a group homomorphism

: Z ind A  —> A.
By this convention, the complex of source m ap X —> O X  —> T-  X  from X E

ind A  determines Z-endomorphisms 0 ,  T -  of Z  ind A  and :=  1  —  0-  +  T  E

Endz  (Z ind A).
The m a p  o f rational length I  :-= (L length (L )) , the action  of central

idempotent e := eL) determine Z-homomorphisms : Z ind A  —> Z,
e: Z ind A  —> Z ind EA.

4.1.1. Lemma. A ssume that ind A  is a f inite set. L e t  1: lat A  = N ind A N
be a  monoid homomorphism such that I o = O.

Then 4 )  = f o r an y  L c lat A , by  som e a ;  c N.
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P ro o f  L et Q  b e  a m ax im al order containing A .  Then Q =
e1S2 = {Y1} with 1( Y1) = 1.
Hence S2L = ci Yi by some ci e N, and ei L = e i S2L =- ci a n d  i(ei L) =  ci .
Since ind A  is finite, ind A  — ind Q is a  rejectable subset and by Theorem 5.4

of [I], there are some bx E N  such that

S2L = L — E  40-x.
XEind A — inclf2

Since / o =  0  by the assumption, we have l(L) =1(QL) = cd( Y,) =
-1-(e1L)a1 w ith  ai : =  1(Y 1) c N.

4.2. Theorem. L et (6' = N.9" be a full subcategory  of  ce = tat = N ind A.
A ssume th at ind A  is  a f inite set. T hen the follow ing three conditions are

equivalent.
( i ) There ex ists a central idem potent e  of  A-  such that lat eA.
(ii) There ex ists an  R -order F such that ( 61(6' lat F.
(iii) There exists a map 1: ind A  —> N  such that 1)! o = 0 and 2) /(X ) =

0 <=> X c

Proof (ii) : By Theorem 0.1.
(ii) (i) : I f  ce/ce' t a t  F, H om e i v (X , X )  i s  torsion free for a n y  X  c

ind A — . Then by (B), = lateA.
(i) (iii) : P u t  / := 1 o (1 — e) : lat A  —> N . Then obviously 1 h a s  the

required property.
(iii) (i) : B y  4.1.1, l(L) = a,-1-(e1L) b y  s o m e  a ;  c N . P u t  e :=

Ea,=O then fo r X e ind A ,  X e <=> 1(X) = 0 .4=; (1 — e ) X  0 ,  hence =
ind eA  by (A).

4.3. Remarks. Rejection Lemma is also studied, explicitly or implicitly, in
some cases other than (a0) or (at) o f  0.4.1:

( b 0 )  R  is a commutative artin ring. A  is an artin algebra over R .  A ' is a
quotient algebra of A. = mod A  (resp. =  mod A ') is the category of finitely
generated A -modules (resp. A '-modules)

(b 1) R  is a  2-dimensional integrally closed complete noetherian dom ain . A
is  a  tam e R-order (i.e. A  is  a  reflexive R-module and moreover Ro ® R  A  is  a
hereditary Ro -order at any height one prime ideal 0  of R ) .  A ' is a  tame over
order of A .  ce = ref A  (resp. =  ref A ') is the category of finitely generated A-
modules (resp. A'-modules) which are reflexive as R-modules ([RV]).

In these examples, one finds strong similarity in the relation of ce w ith  V . As
a  matter of fact, one can construct an abstract theory of Rejection Lemma which
specializes to each of the above cases.

4.3.1. In the cases (a0) and (b0) (where ce/ce l is  of dimension zero), W/ce' is
not exactly a  category of modules, although it is quite similar to a  category of
modules.



Some categories of lattices 501

W hile  i n  (a 1 ), w h e r e  (61(6' is one-dimensional, a s  w a s sh o w n  in  4.2,
(6/(6'( lat F) is  a  lattice category.

W e can  find  a  similar phenomenon also in  the case (b I ), w hich w ill be
recorded in  4.3.2, w ithou t p roof. T o  sta te  the result, it is more convenient to
consider an additive category as a ring in  a usual way, then describe the corre-
sponding condition in terms of generalized Auslander orders (0.2.2). Note also
that the equivalence of (i) and (iii) in 4.3.2 is already proved for a general tame
order A  in  [RV] Theorem 3.9.

4.3.2. Proposition. L e t k  b e  a  f ield, R  k [[x , y 1 ], A  b e  a  tame R-order,
(6' = N Y ' be a f u ll subcategory of  (6 = ref A  = N ind A , w here ind A  is  the set of
isomorphism classes of  indecomposable objects in  ref A .  A ssume that ind A  is  a
f inite set. Then the follow ing three conditions are equivalent.

( i ) There ex ists a  tam e ov er order A ' o f  A  such that W ' = ref A '.
(ii) There exists a  complete discrete valuation ring R ' su c h  th at Ic e ' is  a

generalized A uslander order over R '.
(iii) There ex ists a m ap I: ind A —+ N  such that 1) 1 = 0 and 2) 1(X ) =

0 <=> X  e .
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