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Calculation of traces of theta series by means of the
Weil representation
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Takahiro KUME

Introduction

The purpose of this paper is to calculate the trace of a theta series associated
with a  lattice of a certain quadratic space over Q  using the W eil representation.
As an application, we obtain some information on  the  space of Siegel modular
forms and  the  space o f such theta series.

Let us explain our problems in more detail. Let n be a positive integer. Let
S  b e  a  ra tional positive definite symmetric matrix o f  size  2 n  su c h  th a t the
determinant of S  is a square of a nonzero rational number. L et V  = (Q 2 n  Q )  be
a positive definite quadratic space o f rank 2n over Q  associated with S.

For every integral lattice L  o f V , we define a  theta series 9L by the following
formula:

9 L(3) = exp (27-cV —1 tr( t xSx3))
X E L "

where 3 is a point of ,Y6„, the Siegel upper half space of degree m .  For simplicity,
assume n  is even in  Introduction. If the level of L  devides a positive integer N.
the  theta series OL belongs to th e  space N )  of Siegel modular forms of
weight n ,  degree n i a n d  level N .  L et e „,(V .N )  b e  the  subspace o f  dl„,(n.N )
spanned by such theta series.

F o r any positive divisor N ' o f N  we obtain the inclusion:

0, n ( V  N ')  c 0,„(V ,N ) n ,/d„,(n, N 1 ).

But the equality dose not ho ld  in  general (cf. [B6c931).

Problem V .  W hen does the equality

= 0„,(V ,N)(1,H, n (n, N i )
hold ?

To attack Problem V , w e can use the global trace operator T i;,")
s ,  which is

defined a s  fo llow s. F o r  every y9 E .//1 „,(n, N) put

T ( n )
N N ' = det (c3 + ((a3 + li)(c3+ d) - I ) (3 E clt,„)
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[ a  b]
T'where y = d  ru n s  o v e r  a  complete s e t  o f  representatives of ' (N)\c 

.1-"`" ) (N 1 ). Then we have 7',"" )
N , (yo)E W,„(n,N'). If  we get

( n )  ( 0
m  ( V , N)) 49,n ( V ,N '),

th e  equality in  P rob lem  V  ho ld s. T hus ou r second problem is derived from
Problem V.

Problem L. When does the global trace Ti
(
v

n )
A,, (0L) belong to 0„,(n ,N ') for

every integral lattice L o f V  o f level N?

Remark. Note that, for discussing Problem L, it is sufficient to consider the
case N = N ip  with some prime number p.

These two problems a re  discussed in  several papers [SM89, SM91. B6c93].
T h e  authors o f  these  papers sh o w  th e  equality o f  P ro b le m  L  in  the  case

min {n, s i } where s l i s  an  integer depending only on  L , N  and N ' (see §1.3
for more detail). T h e ir  m e th o d  is  g lo b a l. Namely, they establish some relative
commutation relations of the global trace operators and  Siegel's 0-operators: by
these relations, the above result follows from the  result in  singular weight case
(m >  2n) where the theory of singular modular forms gives an affirmative answer
to Problem L.

I n  contrast to  their global m ethod, w e transform  Problem  L  to a p-adic
analogue by means of the global and local W eil representation.

We organize this paper as follows: In §1 we state our main result as Theorem
V and T heorem  L . In §2, we convert our classical formulation of §1 to an adelic
o n e .  We define a  local trace operator by using the local Weil representation and
formulate a p-adic analogue of Theorem L as Theorem L p  in  § 2 .2 .  Theorem L p

follows immediately from Propositions 3.1, 3.2. Expressing theta series in  terms
of the  g lobal Weil representation (§2.3), we establish a  re la tion  o f o u r global
and local trace operators in §2.4. This relation shows that Theorem L p  implies
Theorem L .  In §3 we prove Propositions 3.1, 3.2. Our method is a  combination
of an explicit formula for local traces and of the classification of quadratic forms
over a local field, its integer ring and its residue field. The local trace has so much
symmetry that it can be calculated straightforwardly with no restriction of degree
m  o r  weight n.

Independently, Funke calculated the global trace in [Fun951. H e uses the
above local method only in the case in =  1 and does not discuss the case in  >  1
and p ) (N ' (see above Remark).

The statement of Theorem L p  is not satisfactory when p = 2 since our method
does not w ork w ell in  th is  case because o f  th e  difference between the  lattice
theories over 2-adic integer ring and over other p-adic (p >  2) integer rings. But,
if p >  2, Theorem L p  is better than the p-adic analogue of the result of [B6c931.
Thus Theorem  L is a  partial improvement of 1136c93].
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Notation

Let m , n  b e  positive in tegers. For an commutative ring A  with identity
element we denote by A x  the group of all invertible elements and by Mat ,,, (A)
the module of all m x n-matrices with all entries in A ; we put A m = Mat,„,1(A),
M a t ( A )  =  M a t ,( A )  for sim plicity. The identity and zero elements of the ring
Mat,n (A) are denoted by l„, and 0,„ (when m needs to be stressed). The transpose
of a matrix g  is denoted by 'g. We denote by tr(x) the trace of a square matrix
x. Let J  be an ideal of A .  We denote by Sym,n ( J )  the module of all m x m-
symmetric matrices with all entries in J. If all entries of a matrix g e Mat,„,(A)
belong to J ,  we write g 0  m od J .  W e put

T =  =  I }  e(c)=  exp (27TV — lc )  (c E C).

For a set E, 1E1 denotes the cardinality of E .  The characteristic function of a
subset E ' of E  is denoted by 1p • F o r  every locally compact Hausdorff abelian
group X , we denote by Y (X ) the space of Schwartz-Bruhat functions on X .

L et oo and h  b e  the infinite place and the set of all fin ite  places of Q.
respectively. We identify the latter set h with the set of all rational primes. For
any place e  of Q , W e denote by Q„, the completion of Q  a t  v .  Let (5 b e  an
algebraic group defined over Q .  For any field k  containing Q , we denote by (5k
the group of k-rational points of 0  and abbreviate (5Q, to (5,, for each place e  of
Q .  We define the adelization (5A of (5 and view 0Q and 0 ,  as subgroups of (5A
as usual. W e then denote by 0 00 and  Oh the infinite and the finite part of (5A,
respectively. For g E  0 A , we denote by g„, go„, and gh its  projections to  6 ,,  (5 ,,
(5h .

W e denote by G('") th e  symplectic group of genus m .  For a commutative
ring R  with identity element, we assume that the group of all R-rational points of
G i n ) o f  G ( m) is given explicitly by

G r ) = { g  E GL2 m (R)
g r l in  i g r  om

1,n  ' , n I _  —1 m  O m  f

a  bWe usually denote every element g of G ' n ) as  g = with m x m-matrices a,c  d
b, c, d. Let ,lf,„ be the Siegel upper half space of genus m .  We define an action
of on Y1',n and  the factors of automorphy j (• , •) as follows:
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g3 = (a3 + b)(c3 + d) -1  , j(g , 3 ) =  det (c3 + d),

where E G
(m)

g  =  [ d] and 3 e Yfm. For a positive integer N , we define aac  b

congruence subgroup F 0
( m ) (N )  by

a  b
r ( N )  =  { [ c  d ]  

Ge L (Z) n G m )  c  0 mod NZ}.

Let F  be a field. W e assume that the characteristic of F  is not equal to 2.
W e denote by (., .) F  the Hilbert symbol of F .  L et V = (V, Q )  b e  a  regular
quadratic space of rank n over F .  We denote by BQ  the nondegenerate bilinear
form  associated  w ith  the quadra tic  fo rm  Q  g iv e n  b y  BQ(x,y) = Q(x + y) —
Q(x) — Q(y) (x, y E V ) .  For a basis {e ,} of V  there exists a  regular symmetric
matrix S = [s,j ]  of size n x n such that Q (E, x,e,) = t x Sx  for any x = [x i ] e F .
W e put

det V = det S mod (Fx) 2  e  Fx/(Fx) 2 .

It is independent of the choice of {e ,} and S .  Furthermore, assume that F  is a
local field. The Hasse symbol of V is denoted by e F (V ).  For a certain basis of
V, w e  can  take  S  to  b e  diagonal; in this case we obtain

6F(V) (s„, SA F .
1< i< j< n

Furthermore assume F  is non-archim edean. Let R, zu and g  b e  the maximal
compact subring, a prime element and the module of F .  For every lattice L  of V,
define the dual lattice L v  with respect to  B Q  by

= Ix e V B Q (x, y) E Ry  c  L ) } .

Then, Lv is also a lattice of V. I f  L  is integral (Q (L )  R )  the R-sub, module of
F  generated by Q(Lv ) can be w ritten as w - i R  for some non negative integer
/. This number is denoted by lev v ( L ) .  Represent the quadratic form Q  as a
symmetric matrix S ' by taking som e R-basis of L .  W e denote by det L  the
element det S ' mod (Rx ) 2 of Fx AR' ) 2 . It is independent of the choice of R-basis
and S '.

Let V = (V , Q ) be  a  regular quadratic space of rank n over Q .  For each
place y of Q , we denote by V, = ( V„, Q) the scalar extension of V over Q , as the
quadratic space. W e put ev ( V ) = EQ ,(V ). For every p e h and every lattice M  of
Vp , we put lev(M ) = lev vp (M ) .  For every p E h and every lattice L of V, we put

= L O z Zp . This module LI,  becomes a  lattice o f VI,. If L  is  an  integral
lattice o f V  (Q (L ) Z ) ,  LI,  is  a lso  an  integral lattice o f  VI,  for every p c h
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and l e v ( L )  =  0  fo r a lm o st a ll p e h. W e denote by level(L ) the integer
I-L e h  p lev,(Lp). We define det V  and det L  similarly as in the local field case.

1. Main results

1.1. Preliminaries. Let N , m , n  be positive integers. F i x  a positive de-
finite symmetric matrix S eSym 2 n (Q ) with det S  e (Qx  )2 . We obtain a  regular
quadratic space V = (Q 2 " , Q ) of rank 2n over Q by Q(x) = xSx (x  E Q 2 "). Let
X  be the direct sum of m-copies of V as vector spaces. We identify this vector
space X  with Mat2„,,n (F ) .  For any x e X, we write x  =  (x i) by column vectors
x, (1 :5_ i 5_ m).

Let (n, N) be a pair of positive integers. For y =  [ a  b ] c r ( m )  (N )  we tLc d ' p u t

z n (y) = (det a, (-1)") Q .

From now on, we make a convention that, if n is odd, N  is divisible by 4. For
such a pair (n, N ), x ,, is  a  character of 1-,-)(N ).

For N  and its positive divisor N ', define a  subset P (V ;N ,N ')  of h  by

P (V ;N ,N ')=  {p eh 1 Np  1 , N  = 0, (— V — 1) 2 ( P ) ep ( V ) =  —1}

where we write the prime factorization of N , N ' as

N pNP , N '  =  H ,
p eh p eh

(0 < Np ,N; E Z )  and set

(5 2 (P ) =  {°  
p 2

1 p = 2

for any p  h.
Since det V  1 mod (Q x  ) 2 ,  we can write

4" det L = p 2 sp  ( L )

p eh

(sp (L) E Z, p e h ) for any lattice L  of V .
We define an action of 1-', m ) (N ) on the space of all holomorphic functions on

X ,  as follows:

( f  Y) (3) Z„ (Y)/(Y , 3) " f  (Y3)

where f  is a holomorphic function on ft",n y  e /" m ) (N ) , 3 e Y (m . We denote by
4 ',(n , N ) the space of a ll holomorphic functions on Ye'n ,  satisfying the condition

f  =  f
m )for any element y of F ( 
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For any integral lattice L  of V , define the theta series associated with L  by the
following formula:

91.(3) = e(tr( i xSx3)) (3  E Y fm ).
xeL

It is well-known that if level(L) divides N  then OL N ) .  Let 0 (V  , N )  be
the subspace of ,1 n i (n, N ) generated by

{9L 1L is an integral lattice of V  with level(L) dividing N}.

For N  and its positive divisor N ', define the global trace operator TN
( n )

N ,  by
the following formula:

E f  II nY  (f  ._/1/ m (n, N)).
y e r '" ) (N)\1- m ) (N ')

Then Tiv n )
N ,  is  a  well-defined C-linear mapping of d i , n (n , N )  onto dé,n (n. N ').

1.2. Statem ent of main results. N ow  w e state our main results.

Theorem V .  Let the notation be as in §1.1. W rite the prime factorizations of
N  and  its positive div isor N ' as

N  = H p N P , N '  =  pN;
1)01 peh

Assume

N2 = > 2 n odd,
N 2= 2 or 1 > N2 > >  0  n  even.

Then we have, for m  > n,

60„,,( V ,N ')=

(ii) Furthermore assume P(V ; N , N ') is em pty . T hen w e hav e, for m  > 1,

0 ( V ,N ') = 0 ,„( V ,N ) n d f m (n, N ').

Theorem L. L et the notation be as in  Theorem  V. A ssu m e  (1.1) on N  and
N '. S u p p o se  L  is  an  integral lattice o f  V  w ith level(L) = N .  Set

(i) W e have, f o r  m  min{n, so(L; N , N )} ,

T i
(
v

n )
N ,(9L ) E 0„,(V  , N').

(ii) Furthermore suppose so(L ; N  , N ')  > 0. W e obtain, for m  >
min{n, so(L: N , N ')} ,

(n)T ( f )  =

(i)

s 2
so(L; N , N') = [i■TH

{

max{
P

(L ) —

1 if  P(V ;N ,N ')  is empty.

p c P( V; N , N ')}  otherw ise.

T i (
v

? , (,9 L ) = 0.
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1.3. Comparison. Now we state the  results of [B6c93] in our notation.

Theorem 1.1. L et the notation be as in §1.1. W rite the prime factorizations
of  N  and its positive div isor N ' as

N  = l l p NP , N '  =  p .
peh peh

(i) Then w e have, for m  > n,

0 ,n ( V ,N ') = , N )n ,,i (n, N ').

(ii) Furthermore assume P(V ; N , N ') is em pty . T hen w e have, for m  > 1,

0 ,7,( V , N ')  =  , n ( V , N) fl .11,n (n, N ').

Theorem  1.2. L et the notation b e  a s  in  T heorem  1.1. S uppose L  is  an
integral lattice o f  V  w ith level(L) = N .  Set

s i (L ; N ,N ')= {
m
1
 a x { s p ( L )  I p  e  P ( V ;  N  ,  N ' ) }

(i) W e have, for m (L; N , N ')} ,

TI;i n k,(9L) e

(ii) Furthermore suppose s i (L ; N , N ') > O. We obtain, for m  >
min{n, si(L; N, N ')} ,

(9F) -= O.

2. Localization of global trace

2 .1 .  Preliminaries. Let F  be a local field of char(F) 2. L e t  1 -  IF  i s  the
standard absolute va lue  o f F .  I f  F  i s  non-archimedian, it is normalized by
IzzIF =  q .  L e t  OF be a non-trivial character of F.

F ix  a  nonsingular symmetric matrix S  e Sym2 n  (F) fl GL2 n  (F ) .  We obtain
a  regular quadratic space V F  ( F 2 n ,  Q )  o f  ran k  2 n  o ver F  b y  Q(x) -=
xSx  (x  e F 2 n). The extention F ( V ( - 1 ) n  det V )I F determines the unique char-

acter of I '  by local class field theory; this character is denoted by coF.
Fix a positive integer m  and  le t X F  be the direct sum of m -copies of VF

as vector spaces. We identify this vector space X F  with Mat2 n ,,,(F). F o r any
X e X F , we write x  = (x ,) by column vectors x, (1 <  i < m).

A  self-duality o f X  is given by (x, y) ifrF (tr(2 f xSy)) (x, y e X F ). A  map
ço ço— (ço E g (X F ) )  denotes the Fourier transformation on the Schwartz-Bruhat
space 9 9 (XF) o f X F with respect to the self dual mesure on XF•

We have the local Weil representation 7rF of Sp,n (F) realized o n  (XF); 7cF. is
characterized by the  following three conditions (cf. [Yos791):

if  P(V ; N , N ') is empty,
otherwise.
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(2.1)
(irF

) (x )(x) =-- tif F  (tr(b 1xSx)) (x),
[ 01 h., J)

(2.2)
(n F  ([ 0a i a0

)yo)(x ) = yoF(deta)Idetal'FI (xa),

(2.3) (gF([____° 0
1 ] )4 9) (x ) Y( 1/Frn V— (x),

(y e ..99 (XF),xe X F ,a e  G L ,„(F ) and b c S ym „,(F )). Here y( VF )  i s  a  complex
number of absolute value 1 depending only on the choice of the quadratic space
V F and of the character IF  (cf. [JL70, Wei64, Yos79]). The mapping

S p ( F )  x  Y (X F ) D (g, y) rtF (g) E 9 9 (X F)

is continuous. If F  is  non-archimafian, the stabilizer of yo e Y (X F )  in Sp„,(F)
under 7rF contains an open compact subgroup of Sp,n (F).

We give some examples of compact subgroups o f Sp,n ( F )  and of semi-
invarivant vectors under the action of these subgroups.

First, suppose F  is non-archimedian. Assume i//F(R) = {1} and iliF (g - 1 R)
{ 1 } .  For any non-zero element A of R, define an open compact subgroup DF(.1)
of Sp„,(R) by

D F ( 2 ')  =  { g  =  L
bi

c d  
e  S p , „ ( R )  c  0  m o d  A R } .

Let L  be an integral lattice of V F with lev vF (L ) =  I. Then we can easily see
that

(2.4) ker coF D (1 + q1R) n R x

(see (2.1), (2.2), (2.3)) and that

(2.5) nF(g)IL»'
f  IL- (I = 0)
l.wF(det a)IL”,( I 1)

for any g =  [
a

lc DF (g 1)  (see (2.1), (2.2), (2.3), [Yos841).c  d
Next suppose F = R . Set i =  V - 1 • l m 6  Y e m . Let U F be the stabilizer of i

under the action of Sp,„(F) on 4 ;„ .  We can immediately see

U F = {14 G SPn,(F) I u =  [  A  1 1— B  A

and that U F is isomophic to  U (m ).  For every 3 e Yt„„ we can define an element
yo3 o f Y (X F )  by

q(x) = e(tr( txSx3)) (x  e  XF).

Then we can show (cf. [Yos841)

nF (u)yoi = det (A — —1 B)" yi
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for any u = B Therefore we obtain[ -A  A B l  E  U F .

(2.6) gF(g)(Pi = i( g , i)_ n çog i

for any g E Sp,n (F).

2 .2 .  Local trace operator. From now o n  in  § 2 , le t  V  a n d  X  be as in
§ 1 . L e t y  be any place of Q .  Vv (resp. X v ) denotes the localization o f V  (resp.
X ) a t y. Define a  nontrivial character : Qt, T  by

o v ( x ) e ( x ) if = oo,
e ( - F r ( x ) )  if y E h,

where Fr(x) (x E Qp , p E h )  is  the  fractional part of the p-adic expansion of x.
As we see in §2.1, we have the local Weil representation of G v o n  99 (X„) with

respect to  F = Q„, = V F = VD ,  a n d  X F = X .  F o r  simplicity, we put
= 7rF, coy = (0F, Dv(2) = DF(2) and Yv (V ) = Y ( VF).

Under our assumptions o n  V, y,,( V) a n d  co v can be easily determined [JL70,
Wei64]:

(V-1)" if y = co,

(2.7) yv(V ) ={ e„(V ) if ye h\{2},

e 2 (V )(-V -1 )"  if y = 2,

(2.8) w (x )  = (x, ( - I)" )Q, (x e Q>„̀  ).

Notice that, for any p E h,

f 1 + 4Z2 P 2

Z ); p  2.

We define a  character x„ of a com pact group D2(2) (2 E Z2 if n  is even or
e 4Z2\{0} if n  is odd) by

{ 1 if n even
(2.10) Zn(g) = (det a, -1) Q 2  i f  n odd

=  [ ac  db ] D 2 ( 2 ) )

Take a non-negative integer 1 and a finite place p u h. F ro m  the assumptions
o n  V , we have det Vp  _= 1 mod (Q; ) 2 . Thus we can write

14"det M ,, =  p - 2 'n( m )

(sp (M) u Z,p E h) for any lattice M  o f  Vp . Notice that, for any two lattices M.
M ' o f  Vp ,

(2.11) M sp( M) > sp(M').

(2.9) ker cop  D
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Let Y ( m) (Vp , / )  b e  the subspace of .99 (Xp )  spanned by all functions of the
form Imm such that M  is an integral lattice of Vp  w i t h  l e v ( M )  1. Notice that

(m) ( Vp ,/) = 0 if p = 2, n is odd and 0 / 1 (see (2.4)) or if p Eh, y (V )  = —1
and / 0  (see (2.3), (2.5)).

From  now  on, we assume that

f l  2  if p = 2 and n is odd,
/ > 0 otherwise.

Under this assumption, we define a C-linear map t " Y ( X p ) by  the following
formula: (see (2.9), (2.5), (2.10), (2.12))

(2.13) (z.(p7;)(0 )(x ) fDp(pi)(7rp(n)ço)(x)dp,i(u)i f  p  f  2 ,

fDp (p i) Xn(u)arp(u)0(x)dp,i(u) if p  -  2,

((pc .99 (Xp ),x E Xp ) where 4,1 is the Haar measure of D (p i ) normalized such that
fD p ( p o dp ,i(u) - -  1 .  The integrals on the right-hand side are essentially finite sum,
and the map Tp

( m
i
) is w ell-defined. W e call this m ap local trace operator.

B y the definition of the local trace operator, w e get r p
( m

i
) (ço) = yo for q) E

-99 ( m )  ( Vp ,i). The following theorem is a local analogue of Theorem L. W e shall
prove later that this theorem implies Theorem L.

Theorem L. L e t  th e  n o ta t io n  be  a s  above. L e t  I ,  l' be integers with
I >  >  0 such that both of  them satisfy (2.12). Take an integral lattice L p of Vp

with le v (L )  =  /  >  1 .
(1) Suppose p f  2  and 1 > > 0. I f  m > 1, we have

rp
( "ni (l L y ,) ) E Y ( '" ) ( Vp , ) .

(2) Suppose that p f  2 a n d !> ! ' = 0, o r that p = 2, 1 = 1 > 1 ' = 0 and  n is
even.

(a) If  y (V ) =  1  and m > 1, we have

T (ni)
p , o  ( I L I(, „0) E ( m) ( VP , 0).

(b) I f  yp ( Vp ) = —1 and m > min { n,sp (L p )

( in )rp , 0  (14„0) = 0.

(c) If  y (V ) =  — 1  and in < min { n, sp (L p )

(nt)
t p o  ( 1 4 . ) 0.

we have

we have

(2.12)

In §3, we show Theorem L p follows from Proposition 3.1 and Proposition 3.2,
and prove Propositions 3.1, 3.2.
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2.3. Construction of theta series via the Weil representation. The global Weil
representation n it  o f  G A realized on Y(XA) is defined a s  fo llow s. Let yo be  an
element of g'(XA) of the form yo = fl, (p„ such that ço = IMat2„ I n ( Z P )  

for almost all
p  e h. F or any g = E G A ,  p u t

7rA(g)40f i  nv(gv)ço,

This action of GA extends by continuity to the representation n i t  of GA on Y(XA).
Let f  be  a n  element of Y (X h ). P u t

(goi 0 f )(x ) =  Ç 9 i(x .)f (xh ) x  =  (x . , xh) E  X A

then we have yoi f  E  9 9 (XA ). F o r  each g E G A ,  se t

( f ; g) = nA(g)(y9; f  )(x ).
X E X Q

W e can show (cf. [Wei64, Yos80, Yos84])
• the  series in  th e  right-hand side converges absolutely a n d  uniformly on

every compact subset of GA; hence T(f ; -) is a continuous function on GA;
• this function W (f;• ) is left G Q  invarian t a n d  right invariant under the

action of some open compact subgroup of G h ;
• the restriction t o  GOE, determines W (f;• ) b y  th e  strong approximation

theorem fo r GA
F or every 3 E Yr,„, take a n  element go,  o f  Gco such that 3  =  g c c i  and set

(2.14) 0(f ;3) = .i(gœ; 1) " v ( f  ; ( g . ,  1h)).

Then we have

(f; 3) =  E  (9 3 f  ) ( x )
X E X Q

= E e(tr(txcoSx.03)).f(xn)•
,(x„,x„) e yQ

Therefore we get a  well-defined function 3 9(f; 3) on .Y6n . Furthermore we can
immediately see that

(2.15) 0 ( f ;Y x 3 )  = l(Y x ,i) "  ( 7rh()Ç 1 )f ;  3)

for any y = (y oo , e GQ  a n d  any 3E .Y67,. Take an  integral lattice L  o f  V  and
put fc.„, =  II„eh W e can easily see f l y ,  G  Y (X h ) and

9 (fL.; .) = 61z.;

2.4. Relation of global and local traces. L et N  be  a positive integer and
N ' its  positive divisor. W e define an open compact subgroup Dh(N) of Gh by
Dh (N ) =  f l p E h  Dp (N )  and set

DQ(N) =  GQ fl G,Dh(N).
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B y a morphism y (y, y, y, . . .), we identify F n (N )  w ith  D Q (N ). Since the
strong approximation theorem holds fo r G , we can easily see that G D Q (N ) is
dense in Goo D h (N ). Thus the im age of DQ(N ) under the  canonical projection
GA D g  = (goo, 90 1- 4  gh e  G h  i s  d en se  in  D h (N ). Therefore w e can identify a
complete set of representatives of TT")  (N )\ r 1 n ) (N i )  with that of Dh (N)\Dh (N' ).

From  now  on, assume (see (2.12))

(2.16) JN ' N  if n even,
41N 'IN  if n odd.

W e regard x n a s  a  character o f  Dh(N ) v ia  the  canonical projection Dh (N)
D2 (N ) .  L et L  b e  a n  integral lattice o f  V  with level(L) N .  W e compute the
global trace T ( n )

N ,OL a s  follows:

(7-', ?:)
N ,OL ) ( g i )  = E gc,i) (fL,„; gaci)

Er',"(N)\.r"' ) (1■T )

(2.17) = Ago°, i r E xnN ')w cf,..;(gco ,y ,3 )) (see (2 .15 ))

(2.18) 9 ( E X u ) n n ( u ) k , - ;( g o o ,1 0 ) ,  (see (2.14))

where y = (y 0 0 , yh ) and u extend over DQ(N )\DQ(N ') in (2.17) and Dh (N ')/D h (N)
in (2.18), respectively. Let the prim e factorization o f  N ' b e  N ' = f l p e h p 1P( N ' ) .
Notice that, since D (N )  = D p (N ')  for almost all p E h , [L e h  -t-p( m

)

p (N , ) (ILr )  is  an
element of Y (X h). The last equality (2.18) shows that, up to the multiplication by
a n  nonzero constant, the two functions

7-' n )
N ,OL, a n d  9 ( IT t p( Mip)  ( N  ) ( 

I
 1,17' ) ; •

eh

are equal o n  1 6 „.  Therefore Theorem Lp implies Theorem L.

3. Calculation of local traces

3.1. Preliminaries. Let F  be a non-archimedean local field of char(F)  2 .
Set E  be a finite field R/rryR of q elem ents. Let ip be an character of F .  Assume

= {1} and 111(q- 1 R) { 1 } . W e keep the notation of the local W eil repre-
sentation as in §2.1, but drop the suffix F  for simplicity. M oreover put y = y( V)
a n d  B = B Q .  L e t L  b e  a n  integral lattice o f  V  with levv(L) = 1. W e now
assume 1> 1 and

(3.1) kerw (1 + R) n .
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Under this assumption, it can easily be verified that

(/ 2)
(3.2)y :

 D ( w i_i )  3  [ a  13
d

1 w(det a)
c 1-4 j1 (1 = 1)
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is a  character of D (r ).
F or the  above lattice L , we define a n  element Ti

m )  o f  Y (X )  by

(3.3) T ( x )  = (x (g)n(g)IL m )(x)dg (x  E X ).
D(.1-))

H ere th e  H aar m easure d g  of the  com pact group D ( t z " )  is normalized by
,f1)(,,,I) dg = 1 .

3.2. C a s e  1 > 2. I n  this subsection, we keep the notation and assumptions
in §3.1, and furthermore we assume that

(3.4) 1 = lev v (L) > 2.

We shall prove the following proposition from which Theorem L p (1) follows
immediately.

Proposition 3.1. L et the notation and assum ptions be as  above.
(i) There exists a lattice K of V  such that K v  OE L " and Q(Kv ) w - 1 ±1R ; we

have

, , ( m )
L  =  E (cm G C),

where the summation on the right-hand side is taken over all the lattices M  of V  with
the conditions LOE MOE K  and  Q ( M V )  OE z - 1 +1 R.

(ii) M oreov er w e assume 2 e . T hen K  is  an  integral lattice such that

/ — 2 l e v v (K) l — 1.

P r o o f  First, w e prove (i). S ince / >  2 , the  subset

[  0 111 0 [10 b ]  [01 1 —10 1 b c Sym m (w i - I R)/Sym m (m i R)}

i s  a  complete s e t  o f  representatives o f  D(ra l - 1 )/D(zzr i ). T h ere fo re , u p  to  a
( [0 11) 

T L

m)non-zero constant multiple, the function n o n  X  is equal to  a1 0 
function

X3X1— (n(b)I(L , )(x ) db
S y m (ta i - IR)

f , R ) (t/i(tr(b t xSx))1 ( L , )(x)s y m . ( w 1 _  
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(db is a  Haar measure of Sym,n (w / - 1 R ) ) .  M oreover, up to a non-zero constant
multiple, the latter function is equal to I o n ) , w here Y (m ) is the open compact
subset of (E V "  defined by

Y(m) = {x e ( L ')
tm

 lifr(tr(b`xSx)) =  1  for all b E Sym,n (m 1 - 1 R)}.

W e can easily show that

Y(m) e{x = (xk) c (L v )m  Q(x k ) (1 _ \ ;11c m )  and

B(xi, xi ) c 'R(1 <  V i < V  j < m)}.

Define a  subset IC  o f Y (I) by

K v  =  f u e  Y (1)1 B(u, Y(1)) c

It is obvious that KY is an open compact R-module of V, i.e. a lattice of V. S e t
K  = (K ")". F o r  any x = (x i ) c Y(m), let (Kv) x  b e  a  lattice in  V  generated by

U {x  I  < i  < m l.  F r o m  the definition of (KY ) x ,  we can easily see that

Y ( m )  =  U  VOX'
xe Y (m)

The assertion of (i) results from this expression.
N ext w e prove (ii). Set LP = L Lv . From  the definition of P ,  it is

an  integral lattice of V. Furtherm ore, w e can easily see that

B((LI')v v)

2Q((L 5 ) v )

since (L IT  =  L " f lw - 1 ± 1 L .  Therefore the assumption 2 e IV< results in  (L IT  c
K" . M o re o v e r , u n d e r  the assumption 2 c  ,  L  and L "  have the following
orthogonal decompositions with some R-basis  1 1 1 < i m l of L:

L  = _q .f i Re, ,

= Rw-r' e,.

Here {r 1 11 < i < 2n}  is a set of non-negative integers with the conditions:

Q(e1) E wr' 12' (1 2n),
1 = ri = r2 = • • • = > r1+1 . • • • > r2 n  >  0  ( 1  < ] t 2n).

From these decompositions, we obtain

(LIT  = K r--- /+le i)1 (1 ," f + ) R w - r'ei ).

The last conclusion of (ii) follows immediately from this expression.

3.3. Case 1  = 1 . In this subsection, besides the notation and assumptions of
§3.1 w e assume th a t 1 = lev v(L) I. U nder th is assum ption , w e have y2  =  1,
since ker IV  (cf. (3.1)). Notice that, if y = —1, the quadratic space V  has no
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integral lattice with lev y  =  0  (see (2.3), (2.5)). W e w rite I4n det LIF = q -2 s  with
some positive integer s. W e can easily see that

(3.5) 1 < s < n.

Proposition 3.2. L et the notation and the assumptions as  above.
(i) Suppose y =  1 .  Then there exists an integral lattice M of V  satisfying the

following conditions:

(3.6) levy(M) = 0,

(3.7) L c  M c .

And for m  > 1, w e can w rite

TL(:" ) A ( L ,m )

with some constant .1.(L, m) E C x  depending only on  L  and  m . Here the summation
on the right-hand side is taken over all the integral lattices satisfying the conditions
(3.6) and (3.7).

(ii) Suppose y =  — 1. Then,

{ 0 for m  > s
T ( m )

a non-zero f unction for m  < s.

Theorem Lp (2) follows immediately from Proposition 3.2 and Theorem Lp  (1)
(see (2.11), (3.5)).

By the following discussion, we reduce the proof of Proposition 3.2 to that of
Lemma 3.3 stated below.

W e have Q ( L v )  TT- 1 R , B (L v  ,L ") wr- 1 R , since lev y (L ) =  1 . Therefore,
setting

-0(x mod L ) = w Q(x ) mod w R  E RI w R =

for any x E LV , w e  have  a  regular quadratic space 1-/- =  (L "/ L , -0 )  over E. Let
h b e  the  nondegenerated bilinear form associated with th e  quadratic  form  -0;

-0 ( +  ri) - Q() - Q(11) e Put

M( V) = { M M  is an integral lattice o f  V  satisfying (3.6) and (3.7)1

and

( 12  ) =1W1 W is a maximal totally isotropic subspace o f  V

and dim W= rank 1 /21.

It is easy to see that

rank 1-/' =-- 2s,

and that

(3.8) M (V ) D M I— , M IL  e l /7 (12)  is  a bijection as sets.
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We can also see that

(3.9) y --- 1 if and only if 17  is a hyperbolic space.

The - if part of (3.9) follows immediately from (2.3), (2.5) and (3.8). A s to the
proof of the "only if" part of (3.9), see [Yos79, pp. 406-4101. After the page 408,
this paper treats the case 2 e R X . B u t  using the discussion of [Yos85, pp. 222-
2231, th e  similar method is applicable to the case 2 6t .

Let X be the direct sum of m-copies of 17 as vector spaces. By fixing a basis,
we identify 17" (resp. X-v) w ith  t 2s (resp. M a t 2 , , m ( P ) )  a s  vector spaces. For any

e X , w e w rite = by column vectors (1 m).
Define a  subspace ((Lv) ?hl , P i ')  of 99 (X )  by

Y ((L v ) rn , Lin) = {yo e (X ) I s u p p  c  (P ) "  and

ço(x + y) = ço(x) (VX E (L v ) m'1 , Vy e Lin)).

For e a c h  e )1" , L in), define the function on X  by
-0(x mod V ')  =  T (x ) (x  E (Lv) !n ),

then (9 is an  element of the Schwartz-Bruhat space Y(X- )  on Ï .  This corre-
spondence yo (o is obviously a vector-space isomorphism of Y ((L v ) m , Lm) onto
Y(X).

Define an open compact subgroup D ' of Sp ,(R ) by

D ' = {g = [ a
c  d

b S p ,„ ( R )  I a  1 d 1  b  c 0 mod tuR}.

It is easy to check that, for any ço e 9'((Lv ) 1" , Lin),

f 7 t (g)y9 e 5 '((Lv) rn ,L '") ( V g  e D(w ° )),
(g)go = (V g D ' ) .

Therefore we can realize the Weil representation i t  of S p ( t )  =  D (o ° )/ D ' on
Y(X- )  by setting

ic(g mod D')0 = n(g)T

where g E D(co ° )  and ço E Y ((L v )" ',  L " ) .  It is now obvious that Proposition 3.2
results from the following lemma.

Lem m a 3.3. L et the notation and the assum ptions be as  above.
(i) Suppose y =  1 .  S et di = „  

(
7) •  I f  m > 1, we obtain

T  n ) = .1(fr , m)0

w ith a constant A(f ,m) E C x depending only  on the quadratic space and m .
(ii) Suppose y =  - 1 .  Then,

{ °
.for m > s

L a non-z ero function for m < s.
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P ro o f  [Step 01 We introduce some notation for the statement of the proof.
Let C(m, m ) be the set of all elements = of Î  w ith  the conditions

{ 0 (4 ) = 0 (1 V k  m),
( „;)  = 0 (V (i, j )  with 1 < i < j  m ) .

For r = 0, 1, . . . , m, define subsets (r )  and C(m ,r) of Î  b y

(r) = e Î = 0 (1 V i  m — r)},

C (m ,r) =  2 (r) n c(m ,m ).

Notice that, for any E C(m,r) M atzs,m (P ), we have

rank min(s, r)

since a  subset R i l l  <  i < m } o f 17  spans a  totally isotropic subspace o f  .
For each non-negative integer N  and each complex number z, define a number

(z;q) N  by

{ 1 (if N = 0),
(z; .1) N = FLN= -0- '(1 - q'z) (if N 1),

and set

Ni l ( T O N ,
N 2  q (q; q)N2 (q; q) N, - N2

for integers Ni, N 2  with N1 > N2 > 0. We can easily see the following formula

(3.10) (z; q) N i u - 0 / 2  [
N ( N  E Z, N 0, z E C)

j=o

by inducton on N.
For each non-negative integer y, let Jr(y) (resp. Iff(y)) be the hyperbolic space

of rank 2v over fr (resp. the set of all the maximal totally isotropic subspaces of
.Y((y)). It is easily seen that

l'ilf (v)1 = ( - 1 ; q)v.

[Step!] First, we suppose y =  1, identify with Yf(s) as quadratic spaces, and
calculate the value of 0  at each point on Î .  F r o m  the definition of 0, we have

s u p p  =  U
WeY1 (s)

By W itt's Theorem, we can easily show that the right-hand side is equal to
C (m ,m ). Now we fix ç = E C(m,m) with t = ran k ().  L e t  U be the totally
isotropic subspace spanned by { ,1 1  <  i < m} in Notice that the dimension of
U  is  t (t m in(s, m )). It is obvious that, for an y  W E IV(s),

l w ,n( ) 0 <=> U OE W
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Thus we have
.0 () = 1{ W  e  Y K(s)1U c  W }1.

W ith  a  basis fed 1 t }  o f  U, I 7  Y e ( s )  h a s  th e  following orthogonal
decomposition:

= (11<1<tUi)-I-Uo•

Here, for 1 < i < t, U 1 i s  a  binary regular quadratic subspace of 17  w ith  a  basis
le i , f i l  satisfying

=  -0 ( f )  = 0  and( e ,  f , )  =  1,

and Uo is isomorphic to Y r(s – t) as quadratic space. F o r each W  e IK (s) with
U  W , the above decomposition of induces that of W :

W =  U_L(U0 n w),
and  U0 n w is a  maximal totally isotropic subspace of Uo Y ( ( s  –  t). Therefore
we obtain

0 ( )  = - (s = ( – 1 ; 9).,--1-

[Step2] Second, we suppose y =  + 1 .  The value of TPn ) at each point of X is
given by the following formulas.

(3.11) supp 11m )O M ,  M ) ,

(m)

(3.12)
L

— sr r(r+1)/1 /71

= (Yq ) r –  t

for a n y  e  C(m ,m ) w ith  ra n k  =  t.

In this step, we shall show that Lemma 3.3 follows from the above form ulas. The
proof of the form ulas (3 .11) and (3 .12) is  g iven  in  th e  nex t step. Fix any

e C(m ,m ) w ith  ra n k  =  t. Setting j  =  r –  t  in the formula (3.12), we get

1 L   ( )  — q —st q t(t+1)12 y t  x E  (_ 1).,(  y q _s+,+, ),e _1)/2[m-t 
] ] .

Combining this formula with (3.10), we obtain
—

(3.13) Ti(m)g) q -st q t(t+1)12 y t y q -s+t+1 ; on ,  t .

For any triple of non-negative integers s, m , and t with 0 < t < min(s, ni) we define
a number Â (y ,s,t,m ) by the right-hand side of the formula (3.13). Then, from the
definition o f  (z;q) N ,  we can easily obtain the value of 2(y ,s,t,m ):

if s m  (t :5_  min(s, m) =  s),

t  M )
.1 .(1 ,s,s,m )(-1;q),_ , for y = 1 and 0 < t < s,

, =
0 for y  = –1 and 0 < t < s,
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if s > m  (t < min (s, m) = m),

{ /1(1, s, m ,m )(-1;q),_1(-1;q) for y =  1 and 0 < t < m,(y, s, t, m) =
a non-zero number for y=  — 1 and 0 < t < m.

Notice that, if s < m  and y =  —1, there is no e lem ent E  C(m, m ) w ith  rank  =  s
(see (3.9)). Lemma 3.3 follows immediately from this computation and the results
of the previous step.

[Step 31 N ow , w e shall prove the form ulas (3 .11) and (3 .12). F rom  the
definition, w e get IL . =  I( o). Put

a  bi e Sp m (P) I c = 0}.{ g c  di

Then, D(ru l )-invariance of IL. implies B,n -invariance o f  4 (0 ) . Thus we have

TL  = E ic(g)4 (0 ) .
geSp„,(t)IB „,

For 0  <  r < m , define a  element w,. of Sp m (P )  by

lm—r O 0 0

0 0 0 lr
Wr

0 0 lm , 0

0 —1 r 0 0

From  the Bruhat decomposition

o< r< n i
SPm(P) B m wr B„, (disjoint union),

we can write
( m ) = E J r ,

0<r<m

J r  = i(g)1,f(0).

To prove the formulas (3.11) and (3.12), we shall find an  explicit formula of
Jr. W e  c a n  ta k e  a  complete se t o f representatives o f BmwrBmIBm as

[ao  t a 0 [01 wr a e GL „,(F)/Pr, b E Symr (P)}

where

P r  =  {a  E G L / n ( P )  a  = [
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denotes the zero matrix of size (r, m —  r), and Symr (P) is identified with the
following set

Thus we have

{b eSym m (É) I b =
[0m _r 01 }

0 *

Jr =
r i

E ïr ([01 t a 0-1 ] )  E  ï / ( [01

b ' \

j) F r (W r ) i

a E G L ,  I P, b eSym,(É)

But, by the definition of the Weil representation it, we get

(it ( [ 0
1 b

1 1).f ) ( ) = E +
j < d

i
g h  . 1 ) )  f  g),

K o
a

 f a
°_,1) f ) ( )  =  M a),

(f t
-([ ° 1

0 ]) g )  =  r g ) ,

fo r f  e 99(k), e At- ,  a E GLm (P )  an d  b = [kJ ] eSym m ( P ) .  Here
nontrivial character of RlwR defined by

ilf(A mod wR) = tp(w - ' A) (A e R),

and the Fourier transform r  of f  is given as

f _  q - s r f (q)q; E hg„10)•

Then we can easily prove that

ft(wr)I — = (yq - s)rI - •

X(0) X(r)

Therefore the above expression of J r  becomes as follows:

j r ( y q -s ) r 49, r(r+ E , ( [ a 0o
a eGL„,(P)/P,

Since

1-k  i s  the

1=(1i)e 1 .1.<177

C (m, r)a C  (m , m)

for 0 < r < m and a E GL,,(fr), this expression of J r  implies (3.11).
L e t  = (c ,) be any fixed element of C(m, m) (t = rank To prove (3.12),

we have only to show the following two properties:
(a) if  r < t ,  no element a  of GL„,(P) satisfies a  e C(m,r).
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(b) if r > t, the number of all the right P r -cosets in GL in (P) which contain

an element a with ca e C(m ,r) is just m  t

r — tl
The first property (a) holds obvious y. Suppose r t .  From  the expression

of J r , we may assume = 0 (i 1, . . . , m — t), and that i = m — t + 1, . ,  m }
is linearly independent in Then, for any a e GL m ( t ) ,  w e have

e C (m ,r ) =  (r )n  c(m ,m )

<=> E  - (r)

<#. a E PtPr.

Therefore the second property (b) follows from a  well-known formula

1P1PrIPri =IPtI(PinPr)1 = [ m  t ir — t J q

Thus we have proved the formulas (3.11) and (3.12).
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