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Calculation of traces of theta series by means of the
Weil representation

By

Takahiro KUME

Introduction

The purpose of this paper is to calculate the trace of a theta series associated
with a lattice of a certain quadratic space over Q using the Weil representation.
As an application, we obtain some information on the space of Siegel modular
forms and the space of such theta series.

Let us explain our problems in more detail. Let n be a positive integer. Let
S be a rational positive definite symmetric matrix of size 2n such that the
determinant of S is a square of a nonzero rational number. Let ¥V = (Q>", Q) be
a positive definite quadratic space of rank 2n over Q associated with S.

For every integral lattice L of V', we define a theta series §; by the following
formula:

3(3) = Z exp 27V —1tr('xSx3))
xelLm
where 3 is a point of J#,, the Siegel upper half space of degree m. For simplicity,
assume » is even in Introduction. If the level of L devides a positive integer N,
the theta series 9, belongs to the space .#,,(n, N) of Siegel modular forms of
weight n, degree m and level N. Let 0,(V,N) be the subspace of .#,(n,N)
spanned by such theta series.
For any positive divisor N’ of N we obtain the inclusion:

Ou(V.N') € 6,,(V,N)N.#,(n N").
But the equality dose not hold in general (cf. [B6¢93]).
Problem V. When does the equality

0,(V.N)=6,(V.N)N.4,(n.N")
hold ?

To attack Problem V. we can use the global trace operator 7,\'\, which is
defined as follows. For every ¢ € .4,,(n, N) put

T\ (9)(3) = 3 det(c3+d) "p((a3 + b)(c3 +d) ") (3 )
-
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where y = [(Cl Z] runs over a complete set of representatives of I'{" (N)\

I"é'")(N’). Then we have T,\(,"}v (p)e Mpy(n,N'). If we get
Tli’nl)\/’ (@I"(Vv N)) < @IH(V7 Nl),

the equality in Problem V holds. Thus our second problem is derived from
Problem V.

Problem L. When does the global trace T,ﬁ,f')v, (9,) belong to @,,(n,N') for
every integral lattice L of V of level N?

Remark. Note that, for discussing Problem L, it is sufficient to consider the
case N = N'p with some prime number p.

These two problems are discussed in several papers [SM89, SM91, B6c93].
The authors of these papers show the equality of Problem L in the case
m > min {n,s;} where s, is an integer depending only on L, N and N’ (see §1.3
for more detail). Their method is global. Namely, they establish some relative
commutation relations of the global trace operators and Siegel’s ¢-operators; by
these relations, the above result follows from the result in singular weight case
(m > 2n) where the theory of singular modular forms gives an affirmative answer
to Problem L.

In contrast to their global method, we transform Problem L to a p-adic
analogue by means of the global and local Weil representation.

We organize this paper as follows: In §1 we state our main result as Theorem
V and Theorem L. In §2, we convert our classical formulation of §1 to an adelic
one. We define a local trace operator by using the local Weil representation and
formulate a p-adic analogue of Theorem L as Theorem L, in §2.2. Theorem L,
follows immediately from Propositions 3.1, 3.2. Expressing theta series in terms
of the global Weil representation (§2.3), we establish a relation of our global
and local trace operators in §2.4. This relation shows that Theorem L, implies
Theorem L. In §3 we prove Propositions 3.1, 3.2. Our method is a combination
of an explicit formula for local traces and of the classification of quadratic forms
over a local field, its integer ring and its residue field. The local trace has so much
symmetry that it can be calculated straightforwardly with no restriction of degree
m or weight n.

Independently, Funke calculated the global trace in [Fun95]. He uses the
above local method only in the case m =1 and does not discuss the case m > 1
and pt N’ (see above Remark).

The statement of Theorem L, is not satisfactory when p = 2 since our method
does not work well in this case because of the difference between the lattice
theories over 2-adic integer ring and over other p-adic (p > 2) integer rings. But,
if p > 2, Theorem L, is better than the p-adic analogue of the result of [B6c93].
Thus Theorem L is a partial improvement of [B6c93].
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The main results of this paper were announced in [Kum96].
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Notation

Let m, n be positive integers. For an commutative ring 4 with identity
element we denote by 4* the group of all invertible elements and by Mat,, ,(A4)
the module of all m x n-matrices with all entries in A4; we put A™ = Mat,, (4),
Mat,,(4) = Mat,, ,(4) for simplicity. The identity and zero elements of the ring
Mat,,(A) are denoted by 1,, and 0,, (when m needs to be stressed). The transpose
of a matrix ¢ is denoted by ‘g. We denote by tr(x) the trace of a square matrix
x. Let J be an ideal of 4. We denote by Sym,, (/) the module of all m x m-
symmetric matrices with all entries in J. If all entries of a matrix g € Mat,, ,(A)
belong to J, we write ¢ =0 mod J. We put

T={eC||{|=1} e(c)=exp(2aV—lc) (ceC).

For a set E, |E| denotes the cardinality of E. The characteristic function of a
subset E’ of E is denoted by Ig.. For every locally compact Hausdorff abelian
group X, we denote by &(X) the space of Schwartz-Bruhat functions on X.

Let oo and h be the infinite place and the set of all finite places of Q,
respectively. We identify the latter set h with the set of all rational primes. For
any place v of Q, We denote by Q, the completion of Q at v. Let ® be an
algebraic group defined over Q. For any field & containing Q, we denote by ®
the group of k-rational points of ® and abbreviate G¢g, to ®, for each place v of
Q. We define the adelization ®, of ® and view Gq and ®, as subgroups of G4
as usual. We then denote by %, and ®; the infinite and the finite part of 64,
respectively. For g e ®,, we denote by g,, g«, and gy its projections to &,, ® .,
®p.

We denote by G the symplectic group of genus m. For a commutative
ring R with identity element, we assume that the group of all R-rational points of

GI(QM) of G s given explicitly by
’g|: Om lm]gz [ Om lm]}
- lm Om - lm Om .

We usually denote every element g of G\ as g = [Z Z] with m x m-matrices a,

G\ = {g € GLm(R)

b, ¢, d. Let 5, be the Siegel upper half space of genus m. We define an action
of Gcg") on J, and the factors of automorphy j(:,-) as follows:
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g3 = (a3 +b)(c3+d)", j(g,3) = det(c3+d),

z Z} e G and 3€ #,. For a positive integer N, we define a
congruence subgroup I’ ém)(N ) by

where g = [

ri"™(n) = { [2’ 3] € GLu(Z) NG | ¢ = 0 mod NZ}.

Let F be a field. We assume that the characteristic of F is not equal to 2.
We denote by (-,-)r the Hilbert symbol of F. Let V' = (V,Q) be a regular
quadratic space of rank n over F. We denote by By the nondegenerate bilinear
form associated with the quadratic form Q given by Bg(x,y) = Q(x+y)—
O(x) — Q(y) (x,ye V). For a basis {e;} of V there exists a regular symmetric
matrix S = [s;] of size n x n such that Q (3, xje;) = ‘xSx for any x = [x;] € F".
We put

det V = det S mod (F*)% e F* /(F*)*.

It is independent of the choice of {¢;} and S. Furthermore, assume that F is a
local field. The Hasse symbol of V' is denoted by ¢x(V). For a certain basis of
V, we can take S to be diagonal; in this case we obtain

er(V) = H (Sii> ) p-

I<i<j<n

Furthermore assume F is non-archimedean. Let R, w and ¢ be the maximal
compact subring, a prime element and the module of F. For every lattice L of V,
define the dual lattice LY with respect to By by

L' ={xeV|Bg(x,y)eR (VyelL)}.

Then, LV is also a lattice of V. If L is integral (Q(L) = R) the R-sub, module of
F generated by Q(LY) can be written as @ 'R for some non negative integer
/. This number is denoted by levy(L). Represent the quadratic form Q as a
symmetric matrix S’ by taking some R-basis of L. We denote by detL the
element det S’ mod (R*)? of F*/(R*)?. It is independent of the choice of R-basis
and S’.

Let V = (V,Q) be a regular quadratic space of rank n over Q. For each
place v of Q, we denote by V, = (V,., Q) the scalar extension of V over Q, as the
quadratic space. We put &,(V) = &q,(V). For every p € h and every lattice M of
V,, we put lev,(M) = levy,(M). For every p € h and every lattice L of V', we put
L,=L®zZ, This module L, becomes a lattice of V,. If L is an integral
lattice of ¥V (Q(L)=Z), L, is also an integral lattice of V, for every peh
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and lev,(L,) =0 for almost all peh. We denote by level(L) the integer
(L), We define det ¥ and det L similarly as in the local field case.
pehp y

1. Main results

1.1. Preliminaries. Let N, m, n be positive integers. Fix a positive de-
finite symmetric matrix S € Sym,,(Q) with detS e (Q*)?. We obtain a regular
quadratic space ¥ = (Q*", Q) of rank 2n over Q by Q(x) = 'xSx (x € Q*"). Let
X be the direct sum of m-copies of V' as vector spaces. We identify this vector
space X with Maty, »,(F). For any x e X, we write x = (x;) by column vectors
xi(l<i<m).

b

Let (n, N) be a pair of positive integers. For y = [Z d

] e I'{"(N), we put

Xn(y) = (deta, (_l)n)Q:'

From now on, we make a convention that, if n is odd, N is divisible by 4. For
such a pair (n,N), x, is a character of I'\"(N).
For N and its positive divisor N’, define a subset P(V;N,N') of h by

P(V;N,N') = {peh|N, = 1.N, = 0,(~vV=1)"Pg,(v) = —1}

where we write the prime factorization of N, N’ as
N:l_IpNI'7 N/: HPN’:w
peh peh

(0<N,,N,eZ) and set

0
52([’):{1 [1;1&22

for any p eh.
Since det ¥ = 1 mod (Q*)?, we can write

4"det L = [ ] p*>»™
peh

(sp(L) € Z,p e h) for any lattice L of V.

We define an action of I'" é'")(N ) on the space of all holomorphic functions on

H, as follows:

S1)@B) = x.(0)J(7.3) " f(73)

where f is a holomorphic function on #,, ye I’ é'")(N ), 3€ #m. We denote by
Mu(n,N) the space of all holomorphic functions on J#,, satisfying the condition

Sy =71
for any element y of I'\"(N).
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For any integral lattice L of V, define the theta series associated with L by the
following formula:

8.(3) = ) _ e(tr('xSx3)) (3 o).

xelLm™

It is well-known that if level(L) divides N then 9; € #,,(n,N). Let @,(V,N) be
the subspace of .#,(n, N) generated by

{8, | L is an integral lattice of ¥ with level(L) dividing N}.

For N and its positive divisor N', define the global trace operator T,&,";V by
the following formula:

TN (f) = > Sl (f€Mu(nN)).

ye I (NN (N')
Then T}\(,t'gv, is a well-defined C-linear mapping of .#,,(n,N) onto M, (n,N').
1.2. Statement of main results. Now we state our main results.

Theorem V. Let the notation be as in §1.1.  Write the prime factorizations of
N and its positive divisor N' as

N:HPN,,’ NI=H1’N';‘

peh peh
Assume
() N,=N;>2 n odd,
' Ny=N;>20r1>Ny>Ny>0 neven.

(i) Then we have, for m > n,
0,(V.N')=6,,(V.,N)OM,(nN").

(ii) Furthermore assume P(V;N,N') is empty. Then we have, for m > 1,
0, (V,N')=0,,(V,N)N Mp(n,N").

Theorem L. Let the notation be as in Theorem V. Assume (1.1) on N and
N'. Suppose L is an integral lattice of V with level(L) = N. Set

1 if P(V;N,N') is empty,
. / p—
So(LiN, N7T) = max{s,,(L) - [ﬁﬂz_—l] ' pe P(V;N,N’)} otherwise.

(i) We have, for m > min{n,so(L; N,N")},
T\ (91) € Om( V. N').

(ii) Furthermore  suppose  so(L;N,N')>0. We obtain, for m>=
min{n,so(L; N,N")},

TN (92) = 0.
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1.3. Comparison. Now we state the results of [Boc93] in our notation.

Theorem 1.1. Let the notation be as in §1.1. Write the prime factorizations
of N and its positive divisor N' as

N:HPNF~ NI=HPN';~

peh peh
(i) Then we have, for m = n,
On(V,N') =60, (V,N)NMp(n,N").
(ii) Furthermore assume P(V;N,N') is empty. Then we have, for m>1,
0,(V,N')=6,,(V,NYNMynN").

Theorem 1.2. Let the notation be as in Theorem 1.1. Suppose L is an
integral lattice of V with level(L) = N. Set

L:N.N') = 1 if P(V;N,N') is empty,
si(L;N,N") = max{s,(L) | pe P(V;N,N')} otherwise.

(i) We have, for m > min{n,s|(L; N,N")},
T\"%(91) € ©,,(V,N').

(ii) Furthermore  suppose s,(L;N,N')>0. We obtain, for m=>=
min{n, s;(L; N,N")},

T\ (82) = 0.

2. Localization of global trace

2.1. Preliminaries. Let F be a local field of char(F) # 2. Let |-|p is the
standard absolute value of F. If F is non-archimedian, it is normalized by
|w|p =¢7!. Let Y be a non-trivial character of F.

Fix a nonsingular symmetric matrix S e Sym,,(F)NGLy,(F). We obtain
a regular quadratic space Vr = (F?",Q) of rank 2n over F by Q(x)=
'xSx (x € F?"). The extention F(y/(—1)"detV)/F determines the unique char-
acter of F* by local class field theory; this character is denoted by wr.

Fix a positive integer m and let Xy be the direct sum of m-copies of Vi
as vector spaces. We identify this vector space Xr with Maty, ,,(F). For any
x € Xp, we write x = (x;) by column vectors x; (1 <i < m).

A self-duality of X is given by (x,y) — Yp(tr(2'xSy)) (x,y € Xr). A map
o+ 9 (pe L (Xr)) denotes the Fourier transformation on the Schwartz-Bruhat
space & (Xfr) of Xr with respect to the self dual mesure on Xr.

We have the local Weil representation g of Sp,,(F) realized on & (Xr); nF is
characterized by the following three conditions (cf. [Y0s79]):
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@) (7([o 7])e)e0=vrtwxsmo,
22 (e ([g o] ) ) = wrtaeta) cetalz o (xa
03) (me ([ 5 5])e) 0 =nmermerco,

(pe S (Xp),xe Xp,ae GL,,(F) and beSym,(F)). Here y(Vr) is a complex
number of absolute value 1 depending only on the choice of the quadratic space
Vr and of the character . (cf. [JL70, Wei64, Yos79]). The mapping

Spm(F) X ty("YF) 3 (gv(p) = np(g)(pe y(XF)

is continuous. If F is non-archimedian, the stabilizer of p e ¥ (XF) in Sp,,(F)
under mr contains an open compact subgroup of Sp,,(F).

We give some examples of compact subgroups of Sp, (F) and of semi-
invarivant vectors under the action of these subgroups.

First, suppose F is non-archimedian. Assume ¢/(R) = {1} and yr(¢"'R) #
{1}. For any non-zero element 1 of R, define an open compact subgroup Dg(4)
of Sp,,(R) by

Dr(d) = {g - [‘C’ Z] €Sp, (R)|¢ =0 mod uz}.
Let L be an integral lattice of Vg with levy,(L) =/. Then we can easily see
that
(2.4) kerwr > (14 ¢'R) N R*
(see (2.1), (2.2), (2.3)) and that

Ipn (I=0)
wr(deta)lym  (I21)

2.5) we(o)ten = {

for any g = [z Z] e Dr(q') (see (2.1), (2.2), (2.3), [Yos84]).

Next suppose F =R. Set i=+v—1-1,,€ 4, Let Ur be the stabilizer of i
under the action of Sp,,(F) on J,. We can immediately see

UF:{uespm(F)luz[_AB j]}

and that Uf is isomophic to U(m). For every 3 € #,, we can define an element
9, of S(Xr) by

9,(x) = e(tr('xSx3)) (x € Xr).
Then we can show (cf. [Yos84])

np(u)g; = det (4 — V—1B)"p,
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A B

for any u = [—B 4

] € Ur. Therefore we obtain

(2.6) nr(9)oi = j(g,1) "0,
for any g € Sp,,(F).

2.2. Local trace operator. From now on in §2, let VV and X be as in
§1. Let v be any place of Q. V, (resp. X,) denotes the localization of V' (resp.
X) at v. Define a nontrivial character y,: Q, — T by

_ felx) if v= o0,
Volx) = {e(—Fr(x)) ifveh,

where Fr(x) (xeQ,,peh) is the fractional part of the p-adic expansion of x.
As we see in §2.1, we have the local Weil representation of G, on ¥(X,) with
respect to F=Q,, ¥p=¥, Vi=1V, and Xr= X,. For simplicity, we put
m, =, Wy = wp, Dy(4) = Dp(4) and y,(V) =y (VF).
Under our assumptions on V, y,(V) and w, can be easily determined [JL70,
Weib4]:

vV-1)" if v= oo,
(27 7 (V) = { e(V) if v e h\{2},
(V) (=vV-1)" ifv=2,
(2.8) wy(x) = (x,(=1)")q, (x€Q)).
Notice that, for any p €h,
1+4Z, p=2,
(2.9) kerw, o {Z;,‘ b2

We define a character y, of a compact group D,(1) (AeZ, if n is even or
AedZ,\{0} if n is odd) by

510 1 if n even
(2.10) Xa(9) = (deta, ~1)q, if n odd

o[ £]eo0)

Take a non-negative integer / and a finite place p e h. From the assumptions
on V, we have det ¥, = 1 mod (Ql’f)z. Thus we can write

|4 det M|, = p~25(M)

(sp(M) e Z, p eh) for any lattice M of V,. Notice that, for any two lattices M,
M' of V,,

(2.11) McM' = s5,(M)>s,(M").
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Let £ (V,,1) be the subspace of &(X,) spanned by all functions of the
form Ipm such that M is an integral lattice of V), with lev,(M) < /. Notice that
LM (V,,1)=0if p=2,nisodd and 0 </ <1 (see (2.4)) or if peh, y,(V,) = —1
and /=0 (see (2.3), (2.9)).

From now on, we assume that

(2.12) {122 if p=2and nis odd,

[ >0 otherwise.

Under this assumption, we define a C-linear map r( ) on ¥ (X,) by the following
formula: (see (2.9), (2.5), (2.10), (2.12))

y oo oA s) i p£2,
@R G = {JD 1W<y (1) i p =2,

(p € #(X,),x € X,) where d,; is the Haar measure of D,(p') normalized such that
Ip (') dp(u) = 1. The integrals on the right-hand side are essentially finite sum,
and the map o ) is well-defined. We call this map local trace operator.

By the deﬁmtlon of the local trace operator, we get r( ,)((p) =¢ for pe
2" (V,,1). The following theorem is a local analogue of Theorem L. We shall

prove later that this theorem implies Theorem L.

Theorem L,. Let the notation be as above. Let I, I' be integers with
[ > 1" >0 such that both of them satisfy (2.12). Take an integral lattice L, of V,
with lev,(L,) =1> 1.

(1) Suppose p#2 and 1 >1">0. If m>1, we have

I()n;?( L('"') egm (V ! )

(2) Suppose that p#2 and | >1'"=0, or that p=2,1=1>1'=0 and n is
even.
@) If y,(Vp) =1 and m>1, we have
7,00 (Im) € 2 (V,,0).

-1
() If y,(Vp) =—1 and m > min{n.s,,(L,,) - [IT] } we have
(1 L) =0.
. -1
() If y,(Vp)=—1 and m < mm{n,sp(L,,) - [T] }, we have

) 0 (1) #0.

In §3, we show Theorem L, follows from Proposition 3.1 and Proposition 3.2,
and prove Propositions 3.1, 3.2.
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2.3. Construction of theta series via the Weil representation. The global Weil
representation mp of Gu realized on #(X,) is defined as follows. Let ¢ be an
element of #(X,) of the form ¢ =[], ¢, such that ¢, = Iy, ,(z, for almost all
peh. For any g = (g,) € Ga, put

ma(g)p = H uACHI

This action of G, extends by continuity to the representation s of Gx on & (X3).
Let f be an element of ¥ (Xy). Put

(0 ® f)(x) = pi(xa0) S (x0) X = (Xao, Xn) € Xa,
then we have ¢; ® f € #(X4). For each g e G,, set

Y(fi9) =Y mal@)(e: ® f)(x).
x€ Xo
We can show (cf. [Wei64, Yos80, Yos84])

o the series in the right-hand side converges absolutely and uniformly on
every compact subset of Gy; hence ¥(f;-) is a continuous function on Gu:

* this function ¥(f;-) is left G invariant and right invariant under the
action of some open compact subgroup of Gy;

e the restriction to G, determines ¥(f;-) by the strong approximation
theorem for Ga.

For every 3 € s, take an element g, of G, such that 3 = g,i and set

(2.14) 3(f33) = J(9eo )" ¥ (£ (9o, In))-

Then we have

(fi3) =D (9, ®f)(x)

.\‘EXQ

Y e(tr('xeSxeo3)) f (n).

x=(x5,xn) € Xo

Therefore we get a well-defined function 3 +— 3(f;3) on #,,. Furthermore we can
immediately see that

(2.15) S 17003) = J(7 )" 3 (3 ') S 3)

for any y = (y,,7s) € Go and any 3 € #,,. Take an integral lattice L of V and
put fim =[] enly. We can easily see f;. € &(Xy) and

I(fpmie) = L.

2.4. Relation of global and local traces. Let N be a positive integer and
N' its positive divisor. We define an open compact subgroup Dy(N) of Gy, by
Duw(N) =[I,cn Dp(N) and set

Do(N) = GoN Gy Dy(N).
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By a morphism y+ (,7,7,...), we identify Fé"')(N) with Dqo(N). Since the

strong approximation theorem holds for G, we can easily see that G, Dg(N) is

dense in G,Dy(N). Thus the image of Dg(N) under the canonical projection

Ga 29 = (goo,9gn) — gn € Gy is dense in Dy(N). Therefore we can identify a

complete set of representatives of I'\" (N)\I'\")(N") with that of Dy(N)\Dy(N').
From now on, assume (see (2.12))

(2.16) {N’IN if n even,

AN'IN  if n odd.

We regard y, as a character of Dy(N) via the canonical projection Dy(N) —

D>(N). Let L be an integral lattice of V' with level(L)|N. We compute the
(n) .

global trace Ty .9, as follows:

(TN (Gl) = D 2a(E)(E,Geod) "I f1m EGuol)
cer{™ (NI (N")
(2.17) = (G )" D ta VP (S1mi (Goos i) (see (2.15))
Y
(2.18) = 9(2 ()70 (4) f 3 (Goo 1..>>, (see (2.14))

where Y = (Yo, yn) and u extend over Do(N)\Dq(N') in (2.17) and Dy(N') /Dh(N)
n (2.18), respectively. Let the prime factorization of N’ be N’ = [[,.,p"™"

Notice that, since D,(N) = D,(N') for almost all peh, [, p";)(N y(Ip) is an
element of #(Xy). The last equality (2.18) shows that, up to the multiplication by
an nonzero constant, the two functions

TN"NH.QL and S(I,H Tp 1 (N )(IL'" ')

are equal on J#,. Therefore Theorem L, implies Theorem L.

3. Calculation of local traces

3.1. Preliminaries. Let F be a non-archimedean local field of char(F) # 2.
Set F be a finite field R/wR of g elements. Let i be an character of F. Assume
Y(R) = {1} and y(¢7'R) # {1}. We keep the notation of the local Weil repre-
sentation as in §2.1, but drop the suffix F for simplicity. Moreover put y = y(V)
and B= Bg. Let L be an integral lattice of V' with levy(L) =1/. We now
assume / > 1 and

(3.1 kerw > (1 + @' '"R)NR*.
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Under this assumption, it can easily be verified that

(3.2) y:D(@' )3 [ccl ZI] . {clo(deta) Ej i ?;

is a character of D(w/™!).
For the above lattice L, we define an element T\") of #(X) by

(33) =] el dg (xe X),

Here the Haar measure dg of the compact group D(w’~') is normalized by
fD(m') dg =1.

3.2. Case />2. In this subsection, we keep the notation and assumptions
in §3.1, and furthermore we assume that

(3.4) [ =levy(L) > 2.

We shall prove the following proposition from which Theorem L, (1) follows
immediately.

Proposition 3.1. Let the notation and assumptions be as above.
(i) There exists a lattice K of V such that K¥ < LV and Q(K") < w*'R; we
have

Ténl) = ZCMIM’" (em € C),
M

where the summation on the right-hand side is taken over all the lattices M of V with
the conditions L M < K and Q(MV) c w~'*!R.
(i) Moreover we assume 2 € R*. Then K is an integral lattice such that

I-2<levy(K)<I—1.

Proof. First, we prove (i). Since / > 2, the subset

(1% )1 12 ] pesmacr momaein)

is a complete set of representatives of D(w'~!)/D(w'). Therefore, up to a

non-zero constant multiple, the function n([o -l

1o ])TL'") on X is equal to a

function

Xoxm J (r(b)L(Lvym)(x) db
Sym,,(w!~!'R)

= J (Y (tr(b'xSx)) (g ym)(x) db
Sym,,(w!~'R)
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(db is a Haar measure of Sym,,(w'~'R)). Moreover, up to a non-zero constant
multiple, the latter function is equal to Iy,), where Y(m) is the open compact
subset of (LV)" defined by

Y(m) = {xe (LY)" |¢(tr(b'xSx)) = 1 for all b € Sym,, (w'"'R)}.
We can easily show that
Y(m)={x=(xx)e(L)"|Qxx) ew ™ R (1 <Vk <m) and
B(x;,x;) e w HR(1 < Vi < Vj < m)}.
Define a subset KV of Y (1) by
KY ={ueY (1)|Bu, Y(1)) c w "*'R}.

It is obvious that KV is an open compact R-module of V| i.e. a lattice of V. Set
K =(K")". For any x = (x;) € Y(m), let (KV), be a lattice in V generated by
KYU{x;|1 <i<m}. From the definition of (KV),, we can easily see that

X

Y(im)= U (K"))"

xeY (m)

The assertion of (i) results from this expression.
Next we prove (ii). Set L’ = L+ w/~'LY. From the definition of L’, it is
an integral lattice of V. Furthermore, we can easily see that

B((L")",LY) c w 'R,
20((L")Y) c w™ 'R,

since (L") = LY Nw~*!L. Therefore the assumption 2 € R* results in (L")" <
KY. Moreover, under the assumption 2e€ R*, L and LY have the following
orthogonal decompositions with some R-basis {e;|1 <i <m} of L:

L= 12" Re;,
LY = _L,ZZ"I Rw_"e,-.
Here {r;|1 <i <2n} is a set of non-negative integers with the conditions:

{Q(e,)ew”R" (1 <Vi<2n),
l=rn=n=---=rn>rn>-->2r,>20 (1<3r<2n).

From these decompositions, we obtain
(L)Y = (LR~ "e) L(L . R "e;).
The last conclusion of (ii) follows immediately from this expression.

3.3. Case /=1. In this subsection, besides the notation and assumptions of
§3.1 we assume that / =levy(L) = 1. Under this assumption, we have y? =1,
since kerw o R* (cf. (3.1)). Notice that, if y = —1, the quadratic space V' has no
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integral lattice with levy =0 (see (2.3), (2.5)). We write |4"detL|p = ¢~* with
some positive integer s. We can easily see that

(3.5) l<s<n

Proposition 3.2. Let the notation and the assumptions as above.
(i) Suppose y=1. Then there exists an integral lattice M of V satisfying the
following conditions:

(3.6) levy (M) =0,
(3.7) LcMcL.

And for m > 1, we can write
T[E'") - A(L, m) Z IMm
M

with some constant A(L,m) € C* depending only on L and m. Here the summation

on the right-hand side is taken over all the integral lattices satisfying the conditions
(3.6) and (3.7).
(i1)  Suppose y = —1. Then,

7m _ 0 form>s
L7 1 a non-zero function for m < s.

Theorem L;, (2) follows immediately from Proposition 3.2 and Theorem L, (1)
(see (2.11), (3.5)).

By the following discussion, we reduce the proof of Proposition 3.2 to that of
Lemma 3.3 stated below.

We have Q(LY) « w 'R, B(LY,L") = w 'R, since levy(L) = 1. Therefore,
setting

O(x mod L) = wQ(x) mod wR € R/wR = F

for any xe LY, we have a regular quadratic space V = (LV/L,Q) over F. Let
B be the nondegenerated bilinear form associated with the quadratic form Q;

B(&,n) = Q(&+n) - 0(&) — O(n) (Eme V). Put
M(V)={M|M is an integral lattice of V satisfying (3.6) and (3.7)}
and
W (V)= {W|W is a maximal totally isotropic subspace of ¥
and dim W =rank V' /2}.
It is easy to see that
rank V = 2s,
and that
(3.8) M(V)a M — M/Lew (V) is a bijection as sets.
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We can also see that

(3.9) y = 1 if and only if ¥ is a hyperbolic space.

The “if 7 part of (3.9) follows immediately from (2.3), (2.5) and (3.8). As to the
proof of the “‘only if ” part of (3.9), see [Yo0s79, pp. 406-410]. After the page 408,
this paper treats the case 2 € R*. But using the discussion of [Yos85, pp. 222-
223], the similar method is applicable to the case 2 ¢ R*.

Let X be the direct sum of m-copies of ¥ as vector spaces. By fixing a basis,
we identify ¥ (resp. X) with F* (resp. Maty, ,(F)) as vector spaces. For any
Ee X, we write & = (&) by column vectors &; (1 <i<m).

Define a subspace Z((LY)",L™) of & (X) by

S(L)", L") ={pe S (X)|supp ¢ = (L¥)" and
p(x+y) = p(x) (Vx e (L¥)" ¥y € L")}
For each g e #((LY)",L™), define the function ¢ on X by
¢(x mod L™) = p(x) (xe (L")"),

then ¢ is an element of the Schwartz-Bruhat space %(X) on X. This corre-
spondence ¢ — ¢ is obviously a vector-space isomorphism of & ((LY)™, L™) onto
L(X).

Define an open compact subgroup D’ of Sp,,(R) by

D’:{gz [f Z] eSpm(R)|a—1Ed—lEbECEOmOdWR}-

It is easy to check that, for any ¢ e L ((LV)",L™),
{n(g)we«g’((Lv)"’»L’") (Vg € D(w")),
n(g)p =9 (Vg e D).

Therefore we can realize the Weil representation 7 of Sp,,(F) = D(w=®)/D’ on
Z(X) by setting

(g mod D')¢ = n(g)p
where g e D(w”) and p € #((L¥)™,L™). 1t is now obvious that Proposition 3.2
results from the following lemma.

Lemma 3.3. Let the notation and the assumptions be as above.
(i) Suppose y=1. Set & =3y ypylwn. If m=1, we obtain
T\ = AV, m)®

with a constant A(V,m) e C* depending only on the quadratic space V and m.
(i1) Suppose y = —1. Then,

) 0 formz=s
T, = )
a non-zero function for m < s.
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Proof. [Step 0] We introduce some notation for the statement of the proof.
Let C(m,m) be the set of all elements ¢ = (&) of X with the conditions

O0E&) =0 (1<Vk<m),
B, &) =0 (V(i,j) with1<i<j<m).

For r=0,1,...,m, define subsets X(r) and C(m.r) of X by
X(r)={e= (&) eX|&=0(1<Vi<m-r)},
C(m,r) = X(r)N C(m,m).
Notice that, for any & = (&;) e C(m,r) < Mat2:‘,,,(17“), we have
rank ¢ < min(s, r)

since a subset {&;|1 <i<m} of V spans a totally isotropic subspace of V.
For each non-negative integer N and each complex number z, define a number

(z:9)n by
1 (if N =0),
(z:g)y = TY:'(1—g'z) GfEN=>1),

and set

[Nl] _ (CI§CI)N]
Nol, (@ 9)n, @D, -n,

for integers N;, N, with Ny > N, > 0. We can easily see the following formula

N
(3.10) (zq)y = D> _(—1Y2/g/U=I2 [N] (NeZ,N>0,zeC)
Jj=0 J 14
by inducton on N.

For each non-negative integer v, let #°(v) (resp. #'(v)) be the hyperbolic space
of rank 2v over F (resp. the set of all the maximal totally isotropic subspaces of
H(v)). It is easily seen that

|# ()| = (-19),.

[Stepl] First, we suppose y = 1, identify ¥ with #(s) as quadratic spaces, and
calculate the value of & at each point on X. From the definition of &, we have
supp® = ) wW".

We#(s)
By Witt’s Theorem, we can easily show that the right-hand side is equal to
C(m,m). Now we fix & = (&) € C(m,m) with t = rank(¢). Let U be the totally

isotropic subspace spanned by {&;|1 <i<m} in ¥. Notice that the dimension of
U is ¢t (t < min(s,m)). It is obvious that, for any W e #7(s),

IWIH(C)#O < Uc W.
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Thus we have
D) ={WeH(s)|Uc W}
With a basis {¢j|1 <i<1} of U, V =#(s) has the following orthogonal
decomposition:
V= (LiciciU)LUp.
Here, for 1 <i<tv, U; is a binary regular quadratic subspace of ¥ with a basis
{e:, f;} satisfying
O(e) = O(f) =0 and Blei f) =1,
and U is isomorphic to #(s — t) as quadratic space. For each W e #'(s) with
U < W, the above decomposition of ¥ induces that of W:

W=ULUNW),

and UpN W is a maximal totally isotropic subspace of Uy ~ #(s —t). Therefore
we obtain

D) = 1# (s = )l = (- L),

[Step2] Second, we suppose y = + 1. The value of T at each point of X is
given by the following formulas.

(3.11) supp TL'") c C(m,m),

i m—t
TME) = Y (e 'q’(’“’/z[ }
(3.12) L ISrZSm ) r—t q

for any & € C(m, m) with rank & = ¢.

In this step, we shall show that Lemma 3.3 follows from the above formulas. The
proof of the formulas (3.11) and (3.12) is given in the next step. Fix any
& e C(m,m) with rank& =1. Setting j=r —¢ in the formula (3.12), we get

— ~ : _ P ii— m—t
TLm)(é) —q slql(l+l)/2yl % Z (_1),1(_yq x+l+l)]qj(l l)/Z[ ] ] ]
0<j<m—t J g

Combining this formula with (3.10), we obtain

(3.13) T"(E) = ¢ g 2y (—yg™ ), .

For any triple of non-negative integers s, m, and ¢ with 0 < ¢ < min(s, m) we define
a number A(y,s,t,m) by the right-hand side of the formula (3.13). Then, from the
definition of (z;q)y, we can easily obtain the value of A(y,s,t,m):

if s <m (t <min(s,m) =s),

A(1,s,s,m)(=1l:q),_, fory=1land0<1t<s,
0 fory=—-land 0 <t <s,

Ay, s, t,m) = {
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if s> m (1 <min(s,m) =m),

Ayos.tm) = Al s,mm)(=1;q9),_,/(-1;q),_,, fory=1and0<1<m,
H&EMIZ 4 non-zero number fory=—-land 0 <t <m.

Notice that, if s <m and y = —1, there is no element & € C(m, m) with rank¢& = s
(see (3.9)). Lemma 3.3 follows immediately from this computation and the results
of the previous step.

[Step 3] Now, we shall prove the formulas (3.11) and (3.12). From the
definition, we get I, = Iz Put

a b ~
Bm—{g_ [C d]eSp,,,(F)|c-0}
Then, D(w!)-invariance of I;» implies B, -invariance of IX,(O). Thus we have

Tém) _ Z fl(g)l,\‘/(()) )
9€Sp,,(F)/Bn

For 0 <r < m, define a element w, of Sp,,(F) by

Ly—r 0 0 0
0 0 0 1,
W, =
0 0 Ly 0
0 -1, 0 0

From the Bruhat decomposition

Spm(ﬁ) = I__| B,w.B, (dlSjOlnt union),

0<r<m

we can write

7’-‘3’;): Z Jrv

0<r<m

Jy = Z (g) ¢ (g)-

g€ By Bum/Bp

To prove the formulas (3.11) and (3.12), we shall find an explicit formula of
Jr. We can take a complete set of representatives of B,,w,B,,/B,, as

{ [g o ] [(‘) 11’] W, |a € GLy(F)/P,be Sym,(ﬁ)},

- * *
P,=qaeGL,(F)|a= ,
Or,m—r *

where
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0,.m_r denotes the zero matrix of size (r,m — r), and Sym,(F) is identified with the

{b e Sym,,(F)|b = [

o),z
beSym,(F)

following set

Thus we have

J, =

> (|

aeGL ,(F)/P,

(+([s

({5

for fe#(X),

b
1

1
0]
¢eX, aeGL,(F) and b= [b;] € Sym,,(F).

)

[)7)©=rea

Takahiro Kume

t —1

a

d

> bi(&) +

I<i<m

)1)@ =,

nontrivial character of F = R/wR defined by

and the Fourier transform f~ of f is given as

Zf(n(

n=(n;)e X

Then we can easily prove that

2 0,)] —

& =qa"

¥ (A mod wR) = Y(w'4)

-5
70 = (7q )

Om—r

0

i

(s )

But, by the definition of the Weil representation 7, we get

S bBELE)

I<i<j<m

(e R),

Z B(fh’?j))-

I<j<m

Therefore the above expression of J, becomes as follows:

Jr=(yq7")

Since

> (]

aeGL,,(F)/P,

C(m,r)a = C(m,m)

0
g IC(m,r)'

for 0<r<mand ae GL,,,(F), this expression of J, implies (3.11).

Let & =

(&;) be any fixed element of C(m,m) (t = rank&).

To

we have only to show the following two properties:
(a) if r <t, no element a of GL,(F) satisfies £a e C(m,r).

)

Here  is the

prove (3.12),
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(b) if r > 1, the number of all the right P,-cosets in GL,,(F) which contain

r—t
The first property (a) holds obviously. Suppose r > t. From the expression
of J,, we may assume & =0 (i=1,...,m—1), and that {&;|i=m—t+1,...,m}
is linearly independent in ¥. Then, for any a € GL,(F), we have

. . m—t
an element a with &a e C(m,r) is just [ ] .
q

Eae Cm,r) = X(r)N C(m,m)
& Eae X(r)
S ae PP,

Therefore the second property (b) follows from a well-known formula

—t
PP,/ P,| = |P/(P.(\ P,)] = ['f_ , ]
q

Thus we have proved the formulas (3.11) and (3.12).
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