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Algebraic varieties with small Chow groups

By

Robert LA TERVEER

Introduction

Let X be a smooth complete n-dimensional variety over a field k , let A t X = /1 X
denote the Chow groups of X, and let A L ,„,X =A nX  denote the kernel of the cycle
class map

1-PiX

to  a fixed Weil cohomology th e o ry . The group of 0-cycles of degree 0, denoted
by A rX ,  is called finite dimensional if there exist a universal domain fl D k  and
an integer m e N  such that the natural map

SmX0  x SmX0 —■ A 0 m(X0 )

is surjective, where Sm denotes mth symmetric power.
One of the cornerstones of the study of Chow groups is the following famous

result of Mumford [Mum] [BI 1, Lecture 1]:

(0.1) Theorem (Mumford). Let X  be a surface ov er an algebraically closed
field. If A rnX  is finite dimensional, then 11 2 X  is algebraic.

Bloch conjectured that the converse holds [BI 1, Lecture 1]:

(0.2) Conjecture (Bloch). If X  is  a surface over an algebraically closed field
such that H 2 X  is algebraic, then Alr n X is finite dimensional.

Mumford's theorem  is usually read as indicating that for a general variety, the
Chow groups are "very large" in codimension > 1. But another way of paraphrasing
Mumford's theorem is that varieties with "small" Chow groups have very special
properties.

This last idea is systematically explored by Bloch and Srinivas [B-S]. Observing
that A ir  " X  is finite dimensional if  A 0 (X ,) has support on a curve (for a universal
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domain 0), they study varieties X  for which /10 (X 0 ) is supported on some subvariety,
i.e. for which there exists a  closed (possibly singular and reducible) Y c X ,  of
dimension r  such that there is a surjection

A, Y-» A 0 (X,).

If r  is small, Bloch and Srinivas show this has many interesting consequences: e.g.
if r< n  then the geometric genus pg (X )=0, if r 3  then the Hodge conjecture in
codimension 2 is true for X , if r < 2  then the algebraic equivalence coincides with
the homological one for codimension 2 cycles on X , and so  on.

The influence of all Chow groups A * (not just A 0 ) on Weil cohomology H*
is further studied by Jannsen, who proves (in the beautiful survey article Pa 2]):

(0.3) Theorem (Jannsen). L et X  be a smooth complete variety over a universal
domain a  Suppose all cycle class maps cl i :A i X OH ° S-1—>H2 i X  are injective. Then
they are also surjective, i.e. there is a ring-isomorphism

A*X0H °S1--=* H *X.

In particular, if  SI = C, it follow s that the Hodge numbers hm(X ) vanish for

A similar result is proven by Esnault and Levine [E - L]:

(0.4) Theorem (Esnault- Levine). L e t  X  b e  a  sm ooth com plete variety  over
C  Suppose all cycle class maps into Deligne cohomology

: A i X(2 —> H(X ,Q(t))

are injective. Then they are also surjective, and hm(X )= 0 for 1p— ql>1.

In th is paper, the main goal is to  unify  (and mildly generalize) these results of
Mumford, Bloch-Srinivas, Jannsen and Esnault-Levine. Motivated by the Bloch-
Srinivas approach, the following definition seems natural: We say that

Niveau(A i(X)Q ) < r

if there exists a closed (possibly singular and reducible) Y c  X of codimension i—r such
that push-forward induces a surjection

A„_,(Y )Q - » A i(X)Q .

The cases r =0  and r= 1 correspond to  the injectivity of cl' and cl respectively, as
assumed in (0.3) and (0.4), cf. (1.5).

The main result is that over a universal domain, the niveau of Chow groups
A 'id influences the niveau of other cohomology theories H*( — ,*) (see (1.7) and (1.9)
for precise statements). A  particular case is  th a t  i f  X  i s  a  smooth complete
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n-dimensional variety over C with

Niveau( i(X)Q )< r Vi<
n — r

iI 
2

then one has hm(X )= 0 if lp— ql>r, i.e. X  has a  sm all Hodge diam ond. Note that
this is a Mumford-type result.

Another special case of ou r main result is that over a  universal domain, the
niveau of Chow groups in  high degree influences the niveau of low degree Chow
groups, cf. (1.8.1).

The conjectural existence of a category of mixed motives ([Be],[Ja 2], [SaS])
has led people ([Ja 2],[Pa]) to conjecture that the converse is true: over a universal
domain, the niveau of Chow groups should in its turn be determined by the niveau
of W eil cohomology, in particular the  vanishing hm (X )=0 for lp— qi >r should
imply that

Niveau(Ai(X)Q) r,

cf. (1.11) for a more precise statement. Note that this is a Bloch-type conjecture.
It should be stressed that the methods of proof in this paper are far from being

new . T he  m ain  idea, viz, that small Chow groups give a  decomposition of the
diagonal

A E f i n (X n X Ar
t2 )Q ,

and that this decomposition has consequences for other cohomology theories H * since
the diagonal acts as correspondence on H *, can also be found in the afore-mentioned
works of Bloch-Srinivas, Jannsen and Esnault-Levine. This idea makes its first
apperance in  Bloch's book [B I 1 , A ppendix  to  Lecture 1], where it is attributed
to Colliot-Thélène.

In a second section, we give several applications of this approach; most of these
are straightforward generalizations of applications in [B-S]. The principle of these
applications is that if a smooth complete variety X  over a universal domain satisfies

Niveau(2,14 ) Q ) _ r  Vi,

then (the Chow motive of) X  behaves in  every way as (the Chow motive of) an
r-dimensional variety. For instance, if all Chow groups of X  have niveau <3, then
the Hodge conjecture for X is true since it can be reduced to the known cases of
curves and divisors, cf. §2.2.

A  new application is given in  a  sequel to this article [La 2]; hare we verify
Murre's conjectures (on a motivic decomposition of the Chow motive, [Mur]) for
3-and 4-folds with Niveau(Ai(X)Q)
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1. Main result

The following definition is inspired by the notion of a "twisted Poincaré duality
theory" [B-0]:

(1.0) Definition. Let 'r.sliWk be the category whose objects are smooth complete
varieties over the field k, and with arbitrary morphisms of varieties as a rro w s. Let
R be a ring.

A good cohomology theory with values in R on 'KOWk  is  a contravariant functor

H*( - ,*):'•17:914-Mk{  bigraded R-algebras}

satisfying:

(i) Every X e 'VOW k h a s  a canonical element

[X ] e H ° (X, 0),

the fundamental class;
(ii) For every Xe "KsziA'k  there  is a ring- structure

H i(X,j)0(X, 1) - ■ H i+ k (X,j +1)

for which [X ] is a unit and which is compatible with pull-backs;
(iii) For a proper morphism p: X - ■ Y between equidimensional varieties in Pd3f k

there exists a functorial push-forward

H i + " (Y ,j+ d )

where d:= dim X -  dim Y;
(iv) (Projection formula) For a proper morphism p: X - * Y, one has

P * (a ' P *fl)=P * cx • fl

for any crt E e H k ( Y, /);
(v) (Base change) For a Cartesian diagram of projections

X X X' x X " -+ Xx X '

x X" X '

one has p*q * = (q ) * (p)*;
(vi) There exists a "cycle class" natural transformation of contravariant functors

eV: 4

compatible with product and proper push-forward;
(vii) ( Vanishing) For Xe r:91,,Mk of pure dimension n, one has
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IP ( X ,j) =0  if i < 0  o r  i >2n.

The following is a  weak version of the notion of "Weil cohomology" that can
be found in  the literature:

(1.1) Definition. A  W eil cohomology is a contravariant functor

H*:'K sil.R , — {graded R-algebras}

(R =Q , R, C o r  Q1) satisfying:
(i) H ( —, j ) =I P  defines a  good cohomology theory;
(ii) Each H i X  is a  finitely generated R-module, and for any n-dimensional variety
X, 11 2 X  is generated by the irreducible components of X;
(iii) (Poincaré duality) For any n-dimensional X, intersection defines a perfect pairing

HiX x H2" - iX —■H2"X;

(iv) (W eak Lefschetz) If X  is projective and Y c X  is a  smooth hyperplane section,
then the homomorphisms

IP - 2Y —*HiX

are surjective for i> n:= dim X.

(1.2) Examples. Every twisted Poincaré duality theory [B-0] satisfying the
vanishing (vii) gives a  good cohomology theory; in  particular w e have singular
cohomology with rational coefficients for k =C , Deligne cohomology Q(*))
for k =C , étale cohomology with values in Qi for k algebraically closed of characteristic
prime to  1, DeRham cohomology for k  algebraically closed.

Singular, étale  and D eR ham  cohom ology are the m ain examples o f  Weil
cohomologies.

Over any field k , a trivial example o f a  good cohomology theory is given by

H i ( X , j ) =
{Aj(X)Q if i = 2j;

0 otherwise.

Extending this last example, it is expected that higher Chow groups [BI 2] form a
good cohomology theory after a renumbering (indeed, it is even expected they are the
universal good cohomology theory), but for the vanishing (vii) the Beilinson-Soulé
conjecture [So] is needed.

T he next definition is motivated by Grothendieck's coniveau filtration [Gro
1][B -0] and by the work of Bloch-Srinivas [B-S]:

(1.3) Definition. Let X E 1/:szigk .
(i) We say that
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Niveau(AX) Q ) r

if there exists a closed reduced subscheme Y c X of codimension > i —r such that
one h as il i(X\ Y)Q  =0 (equivalently, such that push-forward induces a surjection

A1(X)(2 ).

(ii) For any good cohomology theory H *(— , *), we say that

Niveau(H1(X, j) )  r

if there exists a  smooth complete variety Y of dimension d<n+(r— i)/2 and a
proper m orph ism  Y  X inducing a surjection

H i+  2d— 2"(Y ,j+d— n)— »111(X ,j).

(1.4) Remarks. I. For a Weil cohomology H *, it is immediate that one has

Niveau(H 1X)<r <1.> H i X= N r i  2  r1H iX ,

where N * denotes the con iveau f iltration on H * [G ro  1 ] [G ro  2 ] [B -0 ], i.e.

N 1H i X:= Im(1-1' 2 1  Y —+ Hi X).
p:Y —0C proper,

Y smooth of dim. n-1.

2. Suppose k= C , and H * is singular cohomology. The above definition of
the coniveau filtration coincides with the following one:

N1111X:= Im(H 2 Y  H i n
Y. X closed of codim. I

as can be seen using resolution of singularities.
It is not hard to see that

Niveau(H i X )  r h " ( X ) = 0  for p + q =

where h "  denotes the H odge num bers. In fact, it is expected that these tw o
statem ents are equivalent; the right-to-left implication is a  consequence of
Grothendieck's generalized Hodge conjecture [Gro 2].

The following lemma further motivates definition (1.2):

(1.5) Lemma. Let X be a smooth complete variety of dimension n over a universal
domain f2, and let s  be a non-negative integer.
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Niveau(A i(X)Q ) 0

<=> AL„,(X)(2 -= 0 V i>n — s

-=• A i(X),2  has finite rank Vi> n — s.

(ii) L et K2= C . Then

Niveau(A i(X)Q ) < 1 Vi> n — s •4=> A l
m (X)Q =0  V i> n — s.

P ro o f  ( i )  Clearly the second statement implies the last, and the last implies
the first. T h a t  the first statement implies the second follows from (1.7) with r= 0,
cf. (2.1).
(ii) This follows from the fact that both statements are equivalent to the existence
of a decomposition of the diagonal as in (1.7) (ii) w ith r =1 (for the equivalence
between this decomposition and the right-hand-side of (1.5)(ii), cf. [E-L]).

(1.6) Rem arks. 1. The question whether the equivalence of lemma (1.5) holds
for any individual index i still seems open. Also, I don't know whether (1.5) holds
without tensoring by Q.

2. Beilinson and Murre have conjectured the existence of an i + 1-step filtration
F* on A i(X)Q , of which the first two steps should be homological and Abel-Jacobi
equivalence [B e ][M u r][Ja  2 ][Ja  3 ]. In  term s o f this conjectural filtration, the
condition Niveau(A i(X )0< r should correspond to  F r 'A i(X)Q = O.

W ith the above terminology, the main result of this paper is:

(1.7) Theorem. L et X  be a smooth complete variety of dimension n defined over
the field k, let n  k  be a universal dom ain. For any two given non-negative integers
r and s, the following statements are equivalent:

Niveau(i1 1(X0 )Q ) _ r  for all i > n — s;

(ii) There exist closed and reduced subschemes V,, • • •, V s  and  W 0 , • • •,+ i  o f  X n
such  that dim Vi <j+r(j-=0,•••,  ) ,  dim 14/3 < n — j(j=0, • • •,s +1), and  such  that the
diagonal A e An(Xo  x Xn )(2 h as  a decomposition

A=A o +A i + ••• +4,-EAs + 1 ,

with A i  in the im age

A„(V, x W i )(2 —) An(X0  x X0 )(2

0, -• •, s), and AS +1 in  th e  image

A„(Xn x W s + ,)Q — An(X, x

52r for all i > 2(n — s —1);
tmax(2r, i — 2 s - 2 )  for all i

(iii) Niveau(1-1(X0, 1))
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f o r all good cohomology theories.

P ro o f  (iii) ( i ) :  This is trivial, since for H *(X, *) we are allowed to take the
Chow groups (1.2).
(i) (ii): The hypothesis

Niveau(A"(X,AQ:5_r

means that there exists Y c X , of dimension <r such that

A "(X ,\Y ) Q = O.

Taking k  to be the smallest field of definition of X  and Y, and using Bloch's result
that for a field extension K  L  the application

A *(M) — 0 A  *(1111.)42

is injective [BI 1, Appendix to Lecture 1], we can suppose that k  is finitely generated
over its prime subfield and that

Niveau(An(XK))Q r

for any finitely generated K D k.
Consider now the restriction

A " (X k X  Xk)(2 A " ( X
k(X))Q •

The last group has niveau <r by assumption, i.e. there exists Vo c  X„,x , of dimension
< r and a surjection

A 0 (1/0 )(2 —» A"(X"),2 .

In particular, the restriction of the diagonal to X k(x) comes from a cycle on V 0 . L e t
Ao e A"(X x X),2  b e  the closure of this cycle.

By construction, the cycle

=A—.6,0 e2,1"(Xx X),2

m aps to 0 in

A n(X k (x ) (2 = _lim  A "(X  x  U) Q ,
u=x open

so  tha t it m aps to  0 when restricted to some sufficiently small U .  Denoting by
W, c X  the  complement o f such a  U, we find by localization that the cycle A'
comes from A „(X xW i )Q .

If s =0 , w e  have  found  a  decomposition A =  +  A ' satisfying (ii), where
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W0 = X. I f  s > l, we apply the same reasoning to

e A„(X x W,),2

and the restriction

A„(X x (47
1)Q  --+ A" -

 1 (X " , 0 ),2 .

After s+ 1 steps, we arrive a t a  decomposition satisfying (ii).
(ii) We consider the action of the correspondence

A=A 0 +4 1 + +4,-1-As + `

on the R-module H i(X,I).
L et Pi 1 4 7 i  be generically finite proper morphisms with P i  a n d  17I7i

smooth (these exist by de Jong's work [d a ; let

Aj eA „( x  1 7V i )t2 = Ar( x  i )(2

A s +  EA" - s- 1 (Xx GT/s + 1 )Q

be cycles mapping to Ai , A ' •

First, let's consider the action of the correspondence Ai , which will be denoted
(Ad* , for j=0, • • .,s. This action fits into the following commutative diagram:

H i ( p i x 'E A ) ]  H i + 2 r r i --,
itV  X  17V i , l+ r)

H i -  417Vi  , I - j )

H i(X, I) —(4 * . MX, I),

w here t h e  le f t  (resp. r igh t)  vertical m a p s  a r e  t h e  obvious pull-backs (resp.
push-forwards). (Commutativity of this diagram follows from the  axioms defining
good cohomology: If P i -4 X, gi : rf/j .-  X denotes the natural proper morphisms,
p  resp. p 2 : X x X - > X denotes projection on the first resp. second factor, and pp
resp. pw denotes projection from  Pi C) -14-7i  o n  th e  first resp. second factor, then for
any a e

:=(p2),API)*(x* [A])

=(/3 2)*((P 1)*Lx • (fi x g i ) * [ -A i ])

(P 2) *( f ; x g ;) *OA x gi )*(p i )*(x• [Ai ])

=(g)*(PI )*(IP )*(4) */ [AA)

— W e found this argum ent in [E-L,Lemma 2.1], w here  it is sta ted  for Deligne
cohomology.)
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Note tha t I l i( Pi ,1)= 0 for i > 2 dim 17; = 2(j+ r), so the above diagram implies
(A )/1 1(X ,1) com es from  -.1,P;  of dimension n— j<n+ 2

- i , i.e.

Niveau((A i ),11 1(X, 1)) < 2r.

Next we consider the action of the correspondence A . T h e r e  is  a commutative
diagram similar to the above one:

IP(xx Ws +  1 ,1) - -
EA

"  H 1 + 2 (n - s 0 (x x  Ws + ,  , 1+n —s — 1)

H i - 2 ( s+ 1 ) ( a
7
s ± i,l — s - 1 )

i(x, 1) - Ili(X ,1),

which implies

Niveau((As + 1 ) IP(X, 1)) — 2s-2.

Altogether, since A  =A 0 +  +  As + A acts as the identity, we find that

Niveau(H 1(X, 1)) = Niveau(A,H i (X,1)) max(2r, j — 2s-2).

To get the bound on the niveau in case i > 2(n — s — 1), we apply the same reasoning
to  the correspondence

A =IA =`,A0  + ••• +tA s +tAs + 1

(where denotes the transpose); vanishing of cohomology now gives that `A s+

acts as 0, and the conclusion follows.

(1.8) R e m a rk s. I . Here are some particular cases of theorem (1.7). Suppose
X  is d e f in e d  o v e r  a  un ive rsa l dom ain  k = f 1 ,  a n d  t h a t  A o (X)(2 i- Q ,  i.e.
Niveau(A 1 (X)Q ) = 0 .  Then it follows from (1.7) that A 4„„,(X)(i) Q= O. More generally,

A lr( X ) Q = i i 1,1,7 1 (X)Q = • • • = A sh r""(X)Q = 0

implies

A 4,,,n (X)Q = A ii o n ,(X)Q = • • • = ALL1,(X).2 = 0

(here I have used lemma (1.5)(i)).
Likewise,

(X)Q = A  (X)Q = • • • = A n X ) Q = 0

implies

A L(X)Q = A L(X)Q = • • • = AsAj 2 (X) (2 = 0
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(using lemma (1.5)(ii)).
In particular, to have injectivity for all cycle class maps el (resp. cl ) in Jannsen's

theorem (0.3)(resp. in Esnault-Levine's theorem (0.4)), it suffices to have injectivity
of a  bit less than half of them.

I like to consider this influence of A ' for i  large on A ' for i  small a s  a  kind
of "crypto-Poincaré duality" on the level of Chow groups.

2. Here is another corollary of theorem (1.7): Let X , X ' be two smooth complete
varieties over a  universal domain n, and suppose that

N iveau(A ,X )<r V i <s,

Niveau(A r' Vi <s.

Then one has

Niveau(A i(X x X ') )  r + r'

(as follows from the  equivalence (i)<=>(ii) in (1.7)). F o r  0 -c y c le s  this corollary is
easily proved directly, b u t fo r  i> 0  it seems to be non-triv ia l. If a  good category
of mixed motives exists, this corollary could be deduced from the Kiinneth
formula for the Weil cohomology and Beilinson's formula, cf. remark (1.12)(ii) below;
as such this corollary presents some evidence in  favour of

3. A s many people have stressed in  this context [Ja 2][Sc], the  hypothesis
that SI be a  "very large" field is essential in (1.7). F or instance , if  k  is a  finite field
it is known that

Niveau(A o (Xk )(2 1

for any variety X  [K -M ]; the  same is expected to hold fo r number fields k  [Ja
1]. B ut of course, a variety over a  finite field does not necessarily have an algebraic
H 2 .

4. In  view of applications, it would be interesting to know whether theorem
(1.7) holds without tensoring A * by Q .  An application in the style of our second
section, but not ignoring torsion, is given by Colliot-Thélène [Co, Theorem 4.3. 10].

In case of a Weil cohomology H*, one can give a better bound for Niveau(H*)
than the one appearing in (1.7):

(1.9) Theorem. L et X  be a smooth complete variety of dimension n defined over
a universal domain a  Suppose

Niveau(A i(X)Q )< r  for all i> n

Then for any Weil cohomology H * one has

Niveau(H 'X) max(r, i —  2s — 2),
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i.e.

TPX -=-N'IPX

for 1:=min(s + 1,

P ro o f  It follows from (1-.7) that the diagonal decomposes as

A=40- ••• +A s +As + '

(notation as in (1.7)), and we consider the action of A on Gr i
N H'X.

The action of Ai  factors as

EA4 1+ '+ 2 -Gr i
N H i (Vi  x Wi ) G rN  rH  r( V ;  x

G r H i Pi

G rH i X
(d i) .

GrINHiX.

 

Clearly GeN
- i =0  if / < j .  On the other hand, it follows from weak Lefschetz that

Gr1-1'17i  =0 for /< i — dim P i =  — j — r. Putting these two inequalities together, we
find that A i  ac ts as 0 if /<[i .-721 .

Likewise, the correspondence As' acts as 0 on G 6 H 1X  for /<s + I.

(1.10) Corollary. L et X  be  a  smooth complete n-dimensional veriety over C,
and suppose that

Niveau(Ai(X)Q)<r for all i > n— s.

Then

h m (X )=0  if ip— ql>r and

The results (1.9) and (1.10) are "Mumford type" theorems. Inspired by Bloch's
conjecture, several people [Pa][Ja 2] have conjectured the converse implication:

(1.11) Conjecture. The converses of (1.9) and (1.10) hold. In particular, for
X c  I ( C )  a degree d  hypersurface, this conjecture predicts that A i(X)Q =Q  for
all i < r +, 1_1.

(1.12) Rem arks. 1. The case s = 0, r= 1 of theorem (1.9) is Mumford's theorem
(0.1). The case r = 1 of (1.10) is proven by Esnault-Levine [E-L]. A weaker version
of (1.9) is proven by Paranjape [Pa], who also makes the conjecture (1.11).

Results closely related to (1.10) have been obtained by Lewis [Le 1] and Schoen
[Sc], but only under the hypothesis of the generalized Ilodge conjecture or some
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standard conjecture.
2. Philosophically speaking, in view of remark (1.6) one also expects a Mumford

type theorem for the Beilinson-Murre filtration on C how  groups. That is, suppose
such a filtration F* exists. T h e n  if X is an n-dimensional variety with p g (X )> 0, one
should have

P/1"(X)Q 0 0,

i.e. the filtration has maximal length.
3. The converse of (1.9) would follow from the existence of a  category of

mixed motives dtibi k  in  which the so-called Beilinson formula holds:

Grpi i(X)(2 .- Ex t k (h(Spec k), h 2  i - 1 - (X)(0);

here F is the conjectural filtration on Chow groups alluded to in (1.6), and h denotes
motives for homological equivalence. This argument is explained in  detail in  [Ja
2, 3.3 and 3.4].

The converse of (1.10) would follow from the converse of (1.9) in  conjunction
with the generalized Hodge conjecture, cf. (1.4).2.

4. Voisin has proven conjecture (1.11) for certain "well-formed" hypersurfaces
[Vo 2 ].  Another result in the direction of (1.11) is proven by Esnault-Levine-Viehweg
[E-L-V].

2. Applications

§2.1. Surjectivity

(2.1) Proposition. Let X  be a smooth complete n-dimensional variety defined over
a  universal domain Ç.

(i) L et H * be a W eil cohom ology . Suppose the cycle class map

cl i : X O  H ° S"1—> H2 i X

is injective for all i>n—  s. T hen e l  is an isomorphism for i> n —  s and for i <s +1.
(ii) Suppose 12 = C and suppose the map

cl : A i(X)Q H P(X ,Q (i))

is injective for all i> n— s. T hen cI, is an isomorphism for i> n— s and for i <s + 2.

P ro o f .  ( i )  From (1.5) and (1.7) it follows that the diagonal of X decomposes as

A = A, + • • • + As + As + 1  e x  X )x  H ° (f1),

w here  t h e  Ai h a v e  s u p p o r t  o n  lower-dimensional varieties V x Wi  a s  i n
(1.7). Consider now the action of A on  H 2 ', for some i <s + 1. The action of Ai

factors as
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H 2 i (17i x  -Wi)-1 1 1-. H 2k ( Pi  x 11-7; )

H 2 l (Pi ) H 2 i - 2 i ( rPi)

H 2 i( x ) H 2i( x)

(notation as in (1.7)). But the group H 21(17
; ) vanishes if i> dim Pi a n d  f o r

the group H 2 i -  W i) is either 0 or generated by cycles. A similar diagram shows
(A s+ I )* .*2iH  to be generated by cycles (here the assumption i <s + 1 comes in), and
we conclude that

H2i(X)-- A „JINX)

is generated by cycles.
In case i >n —s, we use the transpose of the diagonal

A =`,A =`Ao + ••• d-tAs +tAs + 1 .

(ii) Similar to the above.

(2.2) Corollary. L et X  be a  smooth complete Fano variety  over C .  Then the
A bel-Jacobi map

AJ2:AL,(X )— > J 2

is an  isomorphism modulo torsion.

P ro o f  A Fano variety X is rationally connected [Ca][Ko], so has  A O (X)Q Q.

(2.3) Remarks. 1. For quartic 3-folds, Bloch proves that AJ 2 is an isomorphism
also on the torsion parts [BI 1, Lecture 3].

2. It follows from (2.2) that every Fano hypersurface whose J 2 is non-trivial
modulo torsion is an exception to the Noether-Lefschetz theorem. These exceptions
(cubic and quartic 3-folds) are also noted by Green [Gre].

§2.2. Hodge conjecture

(2.4) Proposition. L et X  be a smooth complete n-dimensional variethy over C.
(i) Suppose Niveau(A i(X)Q ) <. 3 for i= 0, 1, •..,s. Then the Hodge conjecture for X
is verified in codimensions <s + 2 and > n — s —2, i.e. the map

cl i : A i(X)Q  -+ H'AX,Q)

is surjective for i <s + 2  and for i> n — s — 2;
(ii) Suppose Niveau(A 1(X)12)<_ 2 fo r i = 0, 1, • • • , s .  T h e n  the generalized Hodge
conjecture for X is verified in degrees i < 2s +4 and > 2n —2s— 3, i.e. for these values
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of i, every level i - 21 sub-Hodge structure of FA X , Q) is contained in  N I H i (X, Q).

P ro o f  ( i )  We use the decomposition of the diagonal resulting from (1.7), and
consider the action of A on

HC i(X ):=114X , Q)/Im cl'.

The action of As+ 1 factors as

H O X  x HC1+1- s - 1 (X  x Ws +  i )

TIC - -  '0'7s +

(A' .

HC'(X ) HCi(X).

Since  t h e  H o d g e  conjecture is k n o w n  f o r  curves a n d  divisors, t h e  group
H C ' ' 1 ( ws , i ) vanishes for i <s + 2, i.e. A ' as 0 on HC(X ) for these values of i.

The action of  A . (j=0, ...,  ) factors as

HOP.; x ii')+  3 ( Pi  x (Pi )

H O P .) H C (CV ;)

(A,),
HC i(X) HCi(X).

The Hodge conjecture being known for curves, HO Pi ) = 0 if i> dim Pi — 1 =j + 2.
But since the Hodge conjecture is known for divisors, HC' - i( CV; )= 0 if i<j+ 1.

We conclude that A  acts trivially on  HC i(X ) for i <s +2 , so these groups are
0, i.e. the Hodge conjecture holds in  this range.

For i >n —s —2, we use the transpose of the diagonal.
(ii) Follows as above, using the fact that the generalized Hodge conjecture is known
in  degrees <2 a n d  >2n — 1.

(2.5) Corollary. (i) T he Hodge conjecture is completely verified for: uniruled
4-folds; rationally connected 4-and 5-folds (in particular Fano 4-and 5-folds);
(ii) T he generalized Hodge conjecture is completely verified for: uniruled 3-folds;
rationally connected 3-and 4-folds (in particular Fano 3-and 4-folds); cubics of dimension
at m ost 6; a  variety of dimension at m ost 6 w hich is the intersection o f  a quadric
and a cubic; a variety of dimension at most 8 which is the intersection of two quadrics.

P ro o f  ( i )  Obviously uniruled 4-folds have Niveau(A,(X))< 3, and  rationally
connected varieties have Niveau(A 0 (X))< O.
(ii) Obviously uniruled 3-folds have Niveau(44 0 (X))._ 2.
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For cubic 5- and 6- folds, the conclusion follows from the fact that they verify

A 0 (X)12 -'1= A i (X) (2 -=-•.f Q

(i.e. these two Chow groups have niveau <0), which is proven by Paranjape [Pa]
and by Kollár [Ko], generalizing Roitman's work on A o  [Ro].

The intersection of a quadric and a cubic also has A o and A 1 o f  rank  one;
this is proven by Esnault-Levine-Viehweg [E-L-V].

The intersection of two quadrics has

A 0 (X)(2 '._'-=- ' A 1(X)Q"-' A 2(X)Q"

this is again proven in [E-L-V].

(2.6) Remarks. 1. For uniruled 4-folds, the Hodge conjecture was first proven
by  Conte and Murre [C-M]; it has since been reproven in many different ways
[St][SaM, Remark 1.8].

2. The case s= 0 of (2.4)(i) was proven by Bloch and Srinivas (only they forgot to
mention tha t the Hodge conjecture is also verified in codimension n-2 ).

§2.3. Algebraic and homological equivalence

(2.7) Proposition. L e t X  be  a  smooth complete n-dimensional variety over a
universal domain n, and suppose Niveau(A i(X) (2) 2  fo r i = 0, • • •,s. Then the Griffiths
group

Gr1(X )Q:=Z4.,„(X )0Q/41g(X )0Q

is 0  f or i<s+2  and  f or i>n— s-1 .

P ro o f  Let A =  Ac, + • • • + A.+ AS +1 act on Ge(X)Q

The action of Ai  factors as

Ge( 1*7'i  x 15-17),2+  2 ( x  W i )Q

G T7i )(2- ( W i ) Q

Gr(X ) 0 G e ( X ) Q

Since homological and algebraic equivalence coincide for 0-cycles, the group Gr i(17)0

vanishes for i > dim Pi  =j+ 2. Since homological and algebraic equivalence coincide
for divisors, the group G e (1 717) Q vanishes for i _<_j+ 1. It follows that A i  a c ts  as
0 on Ge(X)0

Similarly, we find that A'  a c t s  as 0 if i<s + 2; this ends the proof for i <s + 2.
For i >n— s—  1, we use the transpose A =IA + ••• + `As + 'As+
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(2.8) Remarks.l. Proposition (2.7) is inspired by Bloch-Srinivas, who prove
the case s = O .  In  fac t, using Merkuriev-Suslin o n  K 2 , they prove vanishing of
Gr 2 (X ) not neglecting torsion [B-S, Theorem 1].

2. By way of example: every rationally connected 3-fold or 4-fold has torsion
Griffiths groups; the same holds for cubic 5-folds and 6-folds; a cubic 7-fold Xhas

Ge(X)Q  =  0  f o r  i < 3 or i> 5

(for these examples, cf. the proof of (2.5)). This last result is optimal since Albano
and Collino have proven that a cubic 7-fold has a non-finitely generated Gr4 (X) (2 [A-C].

§2.4. Chow- Lefschetz conjecture

(2.9) The Chow-Lefchetz conjecture [H a] asserts that if X c Z  is  an inclusion
of smooth complete varieties such that the complement Z \X  is affine, then pull-back
induces an  isomorphism

Z 2 -> A i X for i<dim X/ 2=:n/ 2.

The case i=1 has been settled by Grothendieck [SGA2], but apart from this little
progress has been made, not even for Z= Pn +  1 . Note that the truth of the conjecture
would follow from the tru th  of Beilinson's fomula mentioned in  (1.12).3.

(2.10) Proposition. L et X c Z  be as in  (2.9), defined over a  universal domain
O .  Suppose that A*(Z) Q — H*Z is an isomorphism.
(i) Suppose 400 '"(X) (2 = 0 for i = 0, • • • s < —  2. Then there are isomorphisms

A (Z ) 0
 2 '4 i(X)Q  f o r  i s  + 2;

(ii) Let = C . S uppose  AMX) Q = 0  fo r  i = 0, • • •,s < S— 4. T hen  there  a re  iso-
morphisms

2"; Ai(X)Q  f o r  i_ s+ 3.

P ro o f  ( i )  Immediate from (1.8).1 an d  th e  weak Lefschetz theorem for the
Weil cohomology (1.1)(iv).
(ii) Immediate from (1.8).1 and the weak Lefschetz theorem for Deligne cohomology.

(2.11) E xam ples. Let X c  P" 1(C) be a  smooth hypersurface of degree d, and
suppose d ._11> 8. Then /P(X)Q  = Q for 3.

For cubics we can actually do better: suppose d= 3 in  the  above, then

A i(X)Q = Q  f o r  i< min(L +3,-1
2 ),

A i(X),2  = Q  f o r  i<min(L +4,1— 1),
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where L  is defined as the largest integer satisfying (L + 2)(L+ 3)._ 2n + 2. (This last
result follows from (2.10) combined with the  fact that cubics have A 1(X )=Q  for
i<L  [Ko] [E-L-V].)

§2.5, Decomposability

(2.12) Definition. Let X  be a  smooth complete variety over a field k , and let
denote the Zariski sheaves on X associated to higher algebraic K-theory. We say

that the group 1-AX,J( 1) is decomposable if the cokernel of the natural map

1--P(X,Y(1)

is torsion.
Likewise, we say that the higher Chow group A t(X ,I) [B1 2] is decomposable if the

natural map

has torsion cokernel.

(2.13) Proposition. L et X  be a  smooth complete n-dimensional variety over a
universal domain S2.
(i) Suppose that Niveau(A l(X),2 ) 1  f o r all i Then there are isomorphisms

1 X0/1 1 (S-1, 1 )C )Q  A i(X, 1)0 Q

f o r i s+2  and for i>n—s;
(ii) Suppose that Arm(X)Q = 0 for all i < s .  Then AX, 2) is decomposable for i <s + 2
and for i> n—s +1.

Pro o f . (i) Suppose firs t i + 2 .  To prove decomposability, consider the
action of

A=Ao+ •••

on  Al(X,1).
The action of Ai  fac tors over A V; , 1) (which by (2.14) is decomposable for

i> dim P. ; +1 =j+ 2 )  a n d  over A i l  -PP;  , 1) (which by (2.14) is decomposable for
i <j+ 1), so it sends 1) into its decomposable part.

The action of 4 ' 1 factors over A 's -  ( l +  ,1 ) , so goes into the decomposable
part for i<s+ 2.

To prove injectivity, consider the action of A on

Ker(2,11 - 1 X0A VI, 1)0 Q  AX, 1))

and use lemma (2.14).
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In case i >n— s, use the transpose of the diagonal.
(ii) Similar to (i)

(2,.14) Lem m a. L et M  be a smooth m-dimensional variety over afield k. Then
the natural map determines isomorphisms

A iM OA '(k ,1)2 A ' + '(M,1)

for i= 0 and f or i=m .

P ro o f  The i= 0 case follows from Bloch's computation A l (M ,1 )=k *  [B1 2,
Theorem 6.1].

For i=m , surjectivity is obvious. To prove injectivity, note that by the truth of
Gersten's conjecture [Qu, §7  Prop. 5.14] [BI 2, §10],  + 1 (M , -11"`(M  Y {  „,, i )
equals

C o k e r  (  0 (k(x), 2) — ■  0  A l (k, 1))
x E mon - 1) x em 0.)

(where as usual M ( ') denotes codimension i  points of M).
Also AmMOA l (k ,1) equals

C oker (  (D (k(x), 1)0/1 1(k, 1) 0  A  1(k, 1)),
xEm(- -1) xi,f(m)

and the exterior product map factors over the groups inside the parentheses, so
injectivity follows from surjectivity of

A l  (k(x), 1)0 A 1 (k, 1) A 2  (k(x),2).

(2.5) Corollary. L e t  X  be  a  smooth complete variety over C , and suppose
A 3(X)Q =0 for i= 0, • • •,s. Then the cycle class map

At(X, 1)Q  —> HP -  (X, Q(i))

is surjective with kernel 21 X 0A 1(C,1) f or i <s+ 2 and for i >n— s.

P ro o f  Applying the diagonal to Deligne cohomology, we find that HP -  '(X,Q(i))
is decomposable for the indicated i, i.e. there is a surjection

p: HP - '(X, Q(i — 1))0 -1(C, Q(1)) —> HP -  (X , Q(i));

this proves surjectivity of the cycle class map.
To prove the statement about the kernel, it suffices to prove that

K e r p  K e r ( l l p  - 2 (X , Q ( i —  1))
_, 1(X, 0/0 /1 ;(C, Q( 1))
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for the  indicated i. This last statement follows from the  i = dim X + 1-case [E-L,
Lemma 2.2] after applying the diagonal.

(2.16) Corollary. L e t X  be  a  smooth complete n-dimensional variety  over a
universal domain.
(i) Under the assumption of  (2.13)(i), 111 - '(X ,J( ; )  is decomposable f or i<s + 2 and
for i> n—  s;
(ii) Under the assumption of (2.13)(ii), H 1 -  2 (X, ;) is decomposable for i <s + 2 and for
i>n— s+1.

P ro o f  This is immediate from (2.13) and the existence of functorial "Bloch
formula" isomorphisms

Ai(X,/)Q H 'I(X ,,Y tri)0 Q  f o r  /<2

[L a  1, 2.27].

(2.17) Rem arks. 1. T h e  decomposability o f  A 2 (S, 1) fo r a  su rface  S  with
A ( S ) Q = 0  w a s  p ro v e n  b y  Coombes-Srinivas [C-S]. T h e  decomposability of
211(X, 1) for X  a n d  i  a s  in  (2.13)(i) w as proven by Esnault-Levine [E-L, §4]; the
isomorphism in (2.13)(i) answers a question about the kernel asked by Müller -Stach
[Ma].

2. The notion of "decomposable MX , it f ir  as given in (2.12) is more restrictive
than Esnault-Levine's definition [E-L]; however the two notions coincide for I— i = 1
[E-L, §4].

3. In  contrast to (2.15), Voisin has proven [V o 1, 1.6] that if X  c P 3 (C) is a
general hypersurface of general type, then the cycle class map

A 2 (X,1)Q —  II;(X , Q(2))

is not surjective.
4. As a special case of (2.16), we find that H  '(X ,1 2 ), II" - „ ) ,  H ° (X, 2 )

and IP - 1 (X, ( „ , , )  are decomposable for any Fano variety X  of dimension n; for
more examples of varieties satisfying the assumptions, cf. (2.5).

§2.6. M urre conjectures. In  a  sequel to this article [La 2], we prove that
Murre's conjectures (on a  decomposition of the Chow motive of a variety, [Mur])
hold for varieties X  over a  universal domain verifying

dim X < 4, Niveau(AX)Q ) 2 .

IRMA
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