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Algebraic varieties with small Chow groups

By

Robert LATERVEER

Introduction

Let X be a smooth complete n-dimensional variety over a field k, let A'X=4, ;X
denote the Chow groups of X, and let 4} .. X=A""X denote the kernel of the cycle
class map

cli:A'X - H*X

to a fixed Weil cohomology theory. The group of O-cycles of degree 0, denoted
by AB™X, is called finite dimensional if there exist a universal domain Q > k and
an integer me N such that the natural map

SmXQxSmXQ-‘)Agom(XD)
(a,b)>a—>b

is surjective, where S™ denotes mth symmetric power.
One of the cornerstones of the study of Chow groups is the following famous
result of Mumford [Mum] [BI 1, Lecture 1]

(0.1) Theorem (Mumford). Let X be a surface over an algebraically closed
field. If A%™X is finite dimensional, then H*X is algebraic.

Bloch conjectured that the converse holds [Bl 1, Lecture 1]:

(0.2) Conjecture (Bloch). If X is a surface over an algebraically closed field
such that H2X is algebraic, then A}°™X is finite dimensional.

Mumford’s theorem is usually read as indicating that for a general variety, the
Chow groups are “very large” in codimension >1. But another way of paraphrasing
Mumford’s theorem is that varieties with “small” Chow groups have very special
properties.

This last idea is systematically explored by Bloch and Srinivas [B-S]. Observing
that AR°™X is finite dimensional iff 4,(Xg;) has support on a curve (for a universal
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domain Q), they study varieties X for which A4,(Xj,) is supported on some subvariety,
ie. for which there exists a closed (possibly singular and reducible) Y < X, of
dimension r such that there is a surjection

AoY > Ay(Xo).

If r is small, Bloch and Srinivas show this has many interesting consequences: e.g.
if r<n then the geometric genus p,(X)=0, if r<3 then the Hodge conjecture in
codimension 2 is true for X, if r<2 then the algebraic equivalence coincides with
the homological one for codimension 2 cycles on X, and so on.

The influence of all Chow groups A* (not just 4,) on Weil cohomology H *
is further studied by Jannsen, who proves (in the beautiful survey article [Ja 2]):

(0.3) Theorem (Jannsen). Let X be a smooth complete variety over a universal
domain Q. Suppose all cycle class maps cl': AAX® H°Q — H* X are injective. Then
they are also surjective, i.e. there is a ring-isomorphism

A*X®H®QS H*X.
In particular, if Q=C, it follows that the Hodge numbers h™YX) vanish for p+#gq.
A similar result is proven by Esnault and Levine [E-L]:

(0.4) Theorem (Esnault-Levine). Let X be a smooth complete variety over
C. Suppose all cycle class maps into Deligne cohomology

cly: A'Xy - HZ(X, ()
are injective. Then they are also surjective, and h"(X)=0 for |p—q|>1.
In this paper, the main goal is to unify (and mildly generalize) these results of

Mumford, Bloch-Srinivas, Jannsen and Esnault-Levine. Motivated by the Bloch-
Srinivas approach, the following definition seems natural: We say that

Niveau(4'(X)g) <r

if there exists a closed (possibly singular and reducible) Y = X of codimension i —r such
that push-forward induces a surjection

An—i( Y)Q_»Ai(X)Q'

The cases r=0 and r=1 correspond to the injectivity of cl' and cl, respectively, as
assumed in (0.3) and (0.4), cf. (1.5).

The main result is that over a universal domain, the niveau of Chow groups

& influences the niveau of other cohomology theories H*(—, %) (see (1.7) and (1.9)

for precise statements). A particular case is that if X is a smooth complete
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n-dimensional variety over C with

Niveau(4'(X)g)<r Vi< ? ,

then one has A”%(X)=0 if |p—q|>r, i.e. X has a small Hodge diamond. Note that
this is a Mumford-type result.

Another special case of our main result is that over a universal domain, the
niveau of Chow groups in high degree influences the niveau of low degree Chow
groups, cf. (1.8.1).

The conjectural existence of a category of mixed motives ([Be],[Ja 2], [SaS])
has led people ([Ja 2],[Pa]) to conjecture that the converse is true: over a universal
domain, the niveau of Chow groups should in its turn be determined by the niveau
of Weil cohomology, in particular the vanishing A”4X)=0 for |[p—gq|>r should
imply that

Niveau(4'(X)g) <r,

cf. (1.11) for a more precise statement. Note that this is a Bloch-type conjecture.

It should be stressed that the methods of proof in this paper are far from being
new. The main idea, viz. that small Chow groups give a decomposition of the
diagonal

Ae A"(Xox Xo)g,

and that this decomposition has consequences for other cohomology theories H * since
the diagonal acts as correspondence on H *, can also be found in the afore-mentioned
works of Bloch-Srinivas, Jannsen and Esnault-Levine. This idea makes its first
apperance in Bloch’s book [B1 1, Appendix to Lecture 1], where it is attributed
to Colliot-Théleéne.

In a second section, we give several applications of this approach; most of these
are straightforward generalizations of applications in [B-S]. The principle of these
applications is that if a smooth complete variety X over a universal domain satisfies

Niveau(4'(X)g)<r Vi,

then (the Chow motive of) X behaves in every way as (the Chow motive of) an
r-dimensional variety. For instance, if all Chow groups of X have niveau <3, then
the Hodge conjecture for X is true since it can be reduced to the known cases of
curves and divisors, cf. §2.2.

A new application is given in a sequel to this article [La 2]; hare we verify
Murre’s conjectures (on a motivic decomposition of the Chow motive, [Mur]) for
3-and 4-folds with Niveau(A4'(X)g)<2.
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1. Main result
The following definition is inspired by the notion of a “twisted Poincaré duality
theory” [B-O]:

(1.0) Definition. Let ¥&/%, be the category whose objects are smooth complete
varieties over the field £, and with arbitrary morphisms of varieties as arrows. Let
R be a ring.

A good cohomology theory with values in R on ¥/#, is a contravariant functor

H*—, %): V4R, — {bigraded R-algebras}
satisfying:
(i) Every Xev</#, has a canonical element
[X]e H(X,0),

the fundamental class;
(i) For every Xe ¥R, there is a ring-structure

H{(X.)QX, ) - H* X, j+1)

for which [X] is a unit and which is compatible with pull-backs;
(i) For a proper morphism p: X — Y between equidimensional varieties in ¥/%,
there exists a functorial push-forward

Py HI(X.j) > H' (Y j+d)

where d:=dim X—dim Y;
(iv) (Projection formula) For a proper morphism p: X — Y, one has

p*(a'p*ﬂ)=p*a'ﬁ

for any ae H(X,j), e H(Y, 1),
(v) (Base change) For a Cartesian diagram of projections

»
XxX' xX" - XxX'
L I
P
X'xX" - X

one has p*q,=(q),(p)*%
(vi) There exists a “cycle class” natural transformation of contravariant functors

cl': Ay - H?(—,i),

compatible with product and proper push-forward;
(vii) (Vanishing) For Xe€ ¥R, of pure dimension n, one has
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Hi(X,j)=0 if i<0 or i>2n

The following is a weak version of the notion of “Weil cohomology” that can
be found in the literature:

(1.1) Definition. A Weil cohomology is a contravariant functor
H*: v oA R, — {graded R-algebras}

(R=0, R, C or Q) satisfying:

(i) H(—.j)=H' defines a good cohomology theory;

(i) Each H'X is a finitely generated R-module, and for any n-dimensional variety
X, H*"X is generated by the irreducible components of X;

(ili) (Poincaré duality) For any n-dimensional X, intersection defines a perfect pairing

HXxH" X —> H™X;

(iv) (Weak Lefschetz) If X is projective and Y < X is a smooth hyperplane section,
then the homomorphisms

H72Y-> H'X
are surjective for i>n:=dim X.

(1.2) Examples. Every twisted Poincaré duality theory [B-O] satisfying the
vanishing (vii) gives a good cohomology theory; in particular we have singular
cohomology with rational coefficients for k=C, Deligne cohomology HZ(—, Q(*))
for k= C, étale cohomology with values in @, for k algebraically closed of characteristic
prime to /, DeRham cohomology for k algebraically closed.

Singular, étale and DeRham cohomology are the main examples of Weil
cohomologies.

Over any field &, a trivial example of a good cohomology theory is given by

HiX,j)= {AJ(X)Q A

0 otherwise.
Extending this last example, it is expected that higher Chow groups [BI 2] form a
good cohomology theory after a renumbering (indeed, it is even expected they are the
universal good cohomology theory), but for the vanishing (vii) the Beilinson-Soulé
conjecture [So] is needed.

The next definition is motivated by Grothendieck’s coniveau filtration [Gro
1][B-O] and by the work of Bloch-Srinivas [B-S]:

(1.3) Definition. Let XevAZ,.
(i) We say that
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Niveau(4'(X)y) <r

if there exists a closed reduced subscheme Y < X of codimension >i—r such that
one has A(X\Y),=0 (equivalently, such that push-forward induces a surjection

A,_ (Vg Ai(X)g).
(i) For any good cohomology theory H*(—, %), we say that
Niveau(H'(X, /) <r

if there exists a smooth complete variety Y of dimension d<n+(r—i)/2 and a
proper morphism Y — X inducing a surjection

H* 24220y i+ d—n)—- H(X, ).
(1.4) Remarks. 1. Fora Weil cohomology H * it is immediate that one has
, . o iz
Niveau(H'X)<r<>H'X=N' 2 'H'X,

where N * denotes the coniveau filtration on H* [Gro 1] [Gro 2] [B-O], i.e.
N'H X := U Im(H~2Y - H'X).

p:Y—=X proper,
Y smooth of dim. n—1.

2. Suppose k=C, and H* is singular cohomology. The above definition of
the coniveau filtration coincides with the following one:

N'HX:= U Im(H,,_.Y —» H'X),

Y < X closed of codim. !

as can be seen using resolution of singularities.
It is not hard to see that

Niveau(H'X)<r = h"4(X)=0 for p+q=i, |p—q|>r,

where hP? denotes the Hodge numbers. In fact, it is expected that these two
statements are equivalent; the right-to-left implication is a consequence of
Grothendieck’s generalized Hodge conjecture [Gro 2].

The following lemma further motivates definition (1.2):

(1.5) Lemma. Let X be a smooth complete variety of dimension n over a universal
domain Q, and let s be a non-negative integer.
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(M) Niveau(4(X)g)<0 Vi>n—s
< Ajom(X)g=0 Vi>n—s

<> A(X), has finite rank Vi>n—s.
(i) Let Q=C. Then

Niveau(4(X)g)<1 Vizn—s <> Aj(X)g=0 Vizn-—s.

Proof. (i) Clearly the second statement implies the last, and the last implies
the first. That the first statement implies the second follows from (1.7) with r=0,
cf. (2.1).

(i) This follows from the fact that both statements are equivalent to the existence
of a decomposition of the diagonal as in (1.7) (ii) with r=1 (for the equivalence
between this decomposition and the right-hand-side of (1.5)(ii), cf. [E-L]).

(1.6) Remarks. 1. The question whether the equivalence of lemma (1.5) holds
for any individual index i still seems open. Also, I don’t know whether (1.5) holds
without tensoring by Q.

2. Beilinson and Murre have conjectured the existence of an i+ 1-step filtration
F* on A(X)q, of which the first two steps should be homological and Abel-Jacobi
equivalence [Be][Mur][Ja 2][Ja 3]. In terms of this conjectural filtration, the
condition Niveau(A4{(X)g)<r should correspond to F"*'A4'(X)y=0.

With the above terminology, the main result of this paper is:

(1.7) Theorem. Let X be a smooth complete variety of dimension n defined over
the field k, let Q > k be a universal domain. For any two given non-negative integers
r and s, the following statements are equivalent:

(i) Niveau(4(Xp)g)<r for all i>n—s;

(i) There exist closed and reduced subschemes V.-,V and Wy,---, W, of Xq
such that dim V;<j+r(j=0,---,5), dim W;<n—j(j=0,---,s+1), and such that the
diagonal Ae A"(Xq X Xq)g has a decomposition

A=Ag+A + - + A+ AT,
with A; in the image

AV x W)g = A"(Xgx Xg)g
(j=0,---,5), and A" in the image

AXogx Wi1)g = A'(Xa X Xo)g;s

(iii) Niveau(H'(Xo, 1)) < {2r , for alli>2n=s=1)
max(2r,i—2s—2) foralli
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Jor all good cohomology theories.

Proof. (iii)=>(i): This is trivial, since for H*(X, x) we are allowed to take the
Chow groups (1.2).
(i) = (ii): The hypothesis

Niveau(4"(Xy))p <r
means that there exists Y = X, of dimension <r such that
A"(Xg\Y)g=0.

Taking k to be the smallest field of definition of X and Y, and using Bloch’s result
that for a field extension K = L the application

A *(MK)Q - A *(ML)Q

is injective [BI 1, Appendix to Lecture 1], we can suppose that k is finitely generated
over its prime subfield and that

Niveau(4"(Xg))g <r

for any finitely generated K o k.
Consider now the restriction

A"(X X Xi)g = A"(Xix)g -

The last group has niveau <r by assumption, i.e. there exists V, = Xy, of dimension
<r and a surjection

Aol VO)Q > A"(Xk(X))Q .

In particular, the restriction of the diagonal to X, 4, comes from a cycle on V. Let
Ape A"(X x X)g be the closure of this cycle.
By construction, the cycle

A'=A—Age A"(X x X)q

maps to 0 in

A”(Xk(X))Q= lim  A"(X x U)Qa

U< X open

so that it maps to 0 when restricted to some sufficiently small U. Denoting by
W, c X the complement of such a U, we find by localization that the cycle A’
comes from A,(Xx W,),.

If s=0, we have found a decomposition A=A,+A! satisfying (ii), where
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Wy=X. If s>1, we apply the same reasoning to
Ale A (X x W),
and the restriction

A (X x WI)Q - A" l(Xk(w,))Q-

After s+ 1 steps, we arrive at a decomposition satisfying (ii).
(i) = (ii)): We consider the action of the correspondence

A=Ag+A + - + A+ AT

on the R-module H(X,/).
Let Vj—v Vi, Wj—> W; be generically finite proper morphisms with l7j and Wj
smooth (these exist by de Jong’s work [dJ]); let
Rie A(Vix W)o=A"(V;x W),
Zs+l eAn—s—l(Xx Ws+1)g
be cycles mapping to A;, A**'.

First, let’s consider the action of the correspondence A;, which will be denoted
(Aj)y, for j=0,---,s. This action fits into the following commutative diagram:

~

Lo~ ~ (A . ~
Hi(P;x W, ) 2 HY (0 W), 147

1 !
H(P;,1) HiZ2(W;, 1))
!
@A),

HiX, ) —— H{X,1),

where the left (resp. right) vertical maps are the obvious pull-backs (resp.
push-forwards). (Commutativity of this diagram follows from the axioms defining
good cohomology: If f;: l7j—> X, g;: W,-—» X denotes the natural proper morphisms,
Py resp. p,: X x X — X denotes projection on the first resp. second factor, and pjp
resp. p,» denotes projection from l7j® Wj on the first resp. second factor, then for
any ae H(X,!):

(A) 2= (p2)(p1)*a- [A]])
=(p2)(p) - (f;x g),[4])
=(p) {5 % &) S5 % 8)*(p1)*a- [A)])
= ()P (p) ()% [A]])

— We found this argument in [E-L,Lemma 2.1], where it is stated for Deligne
cohomology.)
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Note that H( Vj,l)=0 for i>2-dim l7j=2(j+r), so the above diagram implies
(A) H(X,]) comes from W, of dimension n—j<n+25" ie.

Niveau((A ), H(X,1) <2r.

Next we consider the action of the correspondence A**'. There is a commutative
diagram similar to the above one:

R ~ LR . ~
HiXx W, 1) 5 gie2o-s=-bxx W, I+n—s—1)

!
i HIZ2 00, I=s5—1)
!
. (A:{I)‘ .
w2 Hi(X,1),

which implies
Niveau((A** 1) H'(X, 1)) <i—2s—2.
Altogether, since A=A,+ +A,+A**" acts as the identity, we find that
Niveau(H (X, /)= Niveau(A  H'(X, 1)) < max(2r,i —2s —2).

To get the bound on the niveau in case i>2(n—s—1), we apply the same reasoning
to the correspondence

A='A='A0+ +rAs+rAs+1

(where ' denotes the transpose); vanishing of cohomology now gives that ‘A**!
acts as 0, and the conclusion follows.

(1.8) Remarks. 1. Here are some particular cases of theorem (1.7). Suppose
X is defined over a universal domain k=€, and that Ay(X)e=Q, ie.
Niveau(4"(X)g)=0. Then it follows from (1.7) that AL (X)®Q=0. More generally,

AFT(X)g= AR (X)g= -+ = A¥"(X)g=0
implies
Abom(X)g = Ajom(X)g = -+ = Ao (X)g=0
(here 1 have used lemma (1.5)(i)).
Likewise,
AP (X)g=AY(X)g= -+ = A (X)g=0
implies

A.iJ(X)QZA?AJ(X)QZ =Afﬁ Z(X)Q=0
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(using lemma (1.5)(ii)).

In particular, to have injectivity for all cycle class maps cl’ (resp. cly) in Jannsen’s
theorem (0.3)(resp. in Esnault-Levine’s theorem (0.4)), it suffices to have injectivity
of a bit less than half of them.

I like to consider this influence of A4° for i large on A4’ for i small as a kind
of “crypto-Poincaré duality” on the level of Chow groups.

2. Here is another corollary of theorem (1.7): Let X, X’ be two smooth complete
varieties over a universal domain Q, and suppose that

Niveau(4, X)<r Vi<s,
Niveau(4,X")<r Vi<s.
Then one has

Niveau(4 (X x X)) <r+r Vi<s

(as follows from the equivalence (i)<>(ii) in (1.7)). For O-cycles this corollary is
easily proved directly, but for i>0 it seems to be non-trivial. If a good category
of mixed motives .#.#, exists, this corollary could be deduced from the Kiinneth
formula for the Weil cohomology and Beilinson’s formula, cf. remark (1.12)(ii) below;
as such this corollary presents some evidence in favour of .#.#,.

3. As many people have stressed in this context [Ja 2][Sc], the hypothesis
that Q be a “very large” field is essential in (1.7). For instance, if k is a finite field
it is known that

Niveau(4o(Xy)e <1

for any variety X [K-M]; the same is expected to hold for number fields k [Ja
1].  But of course, a variety over a finite field does not necessarily have an algebraic
H2.

4. In view of applications, it would be interesting to know whether theorem
(1.7) holds without tensoring A* by @. An application in the style of our second
section, but not ignoring torsion, is given by Colliot-Théléne [Co, Theorem 4.3. 10].

In case of a Weil cohomology H * one can give a better bound for Niveau(H *)
than the one appearing in (1.7):

(1.9) Theorem. Let X be a smooth complete variety of dimension n defined over
a universal domain Q. Suppose

Niveau(4'(X)g)<r for all i>n—s.
Then for any Weil cohomology H* one has

Niveau(H'X)<max(r,i—2s—2),



684 Robert Laterveer

HX=N'H'X
Sor [:=min(s+ 1, [5]).
Proof. 1t follows from (L7) that the diagonal decomposes as
A=A+ - +A+A!

(notation as in (1.7)), and we consider the action of A on GryH'X.
The action of A; factors as

T '[l/]

GryH'(V;x W) —=Gry"H'* (P, x W)
1 !
GriyH'V; Gry 'H'~ 2w,
1 !

(A])o

GryH'x ., GryH'X.
Clearly Gry /=0 if /[<j. On the other hand, it follows from weak Lefschetz that
Gr;,H"VI:O for [<i—dim Vj=i—j—r. Putting these two inequalities together, we

find that A; acts as 0 if /<['3"].
Likewise, the correspondence A**' acts as 0 on GryH'X for I<s+1.

(1.10) Corollary. Let X be a smooth complete n-dimensional veriety over C,
and suppose that

Niveau(A4'(X)g)<r for all i>n—s.
Then

h*(X)=0 if [p—q|>r and p<s.

The results (1.9) and (1.10) are “Mumford type” theorems. Inspired by Bloch’s
conjecture, several people [Pa][Ja 2] have conjectured the converse implication:

(1.11) Conjecture. The converses of (1.9) and (1.10) hold. In particular, for
X < P"*'(C) a degree d hypersurface, this conjecture predicts that A,(X)e=Q for
all i<|™t).

(1.12) Remarks. 1. The case s=0, r=1 of theorem (1.9) is Mumford’s theorem
(0.1). The case r=1 of (1.10) is proven by Esnault-Levine [E-L]. A weaker version
of (1.9) is proven by Paranjape [Pa], who also makes the conjecture (1.11).

Results closely related to (1.10) have been obtained by Lewis [Le 1] and Schoen
[Sc], but only under the hypothesis of the generalized Hodge conjecture or some
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standard conjecture.

2. Philosophically speaking, in view of remark (1.6) one also expects a Mumford
type theorem for the Beilinson-Murre filtration on Chow groups. That is, suppose
such a filtration F* exists. Then if X is an n-dimensional variety with p(X)>0, one
should have

F"A"(X)y #0,

ie. the filtration has maximal length.
3. The converse of (1.9) would follow from the existence of a category of
mixed motives .#.#, in which the so-called Beilinson formula holds:

GrrA'(X)g 2 Exty 4, (h(Speck), h¥ (X)),

here F is the conjectural filtration on Chow groups alluded to in (1.6), and h denotes
motives for homological equivalence. This argument is explained in detail in [Ja
2, 3.3 and 34].

The converse of (1.10) would follow from the converse of (1.9) in conjunction
with the generalized Hodge conjecture, cf. (1.4).2.

4. Voisin has proven conjecture (1.11) for certain “well-formed” hypersurfaces
[Vo2]. Another result in the direction of (1.11) is proven by Esnault-Levine-Viehweg
[E-L-V].

2. Applications
§2.1. Surjectivity

(2.1) Proposition. Let X be a smooth complete n-dimensional variety defined over
a universal domain Q.

(i) Let H* be a Weil cohomology. Suppose the cycle class map
cl: AAXQH’Q - H¥Y

is injective for all i>n—s. Then cl' is an isomorphism for i>n—s and for i<s+]1.
(if) Suppose Q= C and suppose the map

cly: Ai(X)g = H'(X, Q)
is injective for all i>n—s.  Then cly is an isomorphism for i>n—s and for i <s+2.
Proof. (i) From(1.5)and (1.7) it follows that the diagonal of X decomposes as
A=Ag+ - + A+ AT e 4"(X x X) x HOQ),

where the A; have support on lower-dimensional varieties V;x W; as in
(1.7). Consider now the action of A on H?, for some i<s+1. The action of A;
factors as
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HY(7,x W) 2% N7, x W)
1 !
HZ:(VI) H21—2]( Wl)
1 !
4.

HZE(X) . HZ!(X)

(notation as in (1.7). But the group H?(¥)) vanishes if i>dim V;=j, and for i<j
the group H?~2(W)) is either 0 or generated by cycles. A similar diagram shows
(A", H?* to be generated by cycles (here the assumption i<s+1 comes in), and
we conclude that

H2i(X)= A*HZl(X)

is generated by cycles.
In case i>n—s, we use the transpose of the diagonal

A="A="Ay+ - +1As+'AH1-
(i) Similar to the above.

(2.2) Corollary. Let X be a smooth complete Fano variety over C. Then the
Abel-Jacobi map

AJ2: A2, (X) - J?
is an isomorphism modulo torsion.

Proof. A Fano variety X is rationally connected [Ca][Ko], so has Ay(X)e=Q.

(2.3) Remarks. 1. For quartic 3-folds, Bloch proves that AJ? is an isomorphism
also on the torsion parts [Bl 1, Lecture 3].

2. It follows from (2.2) that every Fano hypersurface whose J? is non-trivial
modulo torsion is an exception to the Noether-Lefschetz theorem. These exceptions
(cubic and quartic 3-folds) are also noted by Green [Gre].

§2.2. Hodge conjecture

(2.4) Proposition. Let X be a smooth complete n-dimensional variethy over C.
(i) Suppose Niveau(4(X)g)<3 for i=0,1,---,s. Then the Hodge conjecture for X
is verified in codimensions <s+2 and >n—s—2, i.e. the map

ol': 4i(X)g - H"(X, Q)

is surjective for i<s+2 and for izn—s—2;
(i) Suppose Niveau(4(X)g)<2 for i=0,1,---,5. Then the generalized Hodge
conjecture for X is verified in degrees i<2s+4 and >2n—2s5—3, i.e. for these values
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of i, every level i—2/ sub-Hodge structure of H'(X, Q) is contained in N'H(X, Q).

Proof. (i) We use the decomposition of the diagonal resulting from (1.7), and
consider the action of A on

HC{(X):= H"(X,Q)/Imcl'.
The action of A**! factors as

HC(Xx Wy, )) - HCH" 7Y (XxW,,,)

!
1 HC'™* " (Wi, y)

!
HCi(x) &, HCi(X).

Since the Hodge conjecture is known for curves and divisors, the group
HC'™s~Y(W,, ) vanishes for i<s+2,i.. A**" acts as 0 on HC'(X) for these values of i.

The action of A; (j=0,--,s) factors as

HC'(V}X WJ) hnd HCI+3(VJX W})

1 !
HC(P) HC (W)
!
HC(X) Y. HCX).

The Hodge conjecture being known for curves, HCi(¥)=0 if i>dim Vi—1=j+2.
But since the Hodge conjecture is known for divisors, HC' (W) =0 if i<j+1.
We conclude that A acts trivially on HC'(X) for i<s+2, so these groups are
0, i.e. the Hodge conjecture holds in this range.
For izn—s—2, we use the transpose of the diagonal.
(i) Follows as above, using the fact that the generalized Hodge conjecture is known
in degrees <2 and >2n—1.

(2.5) Corollary. (i) The Hodge conjecture is completely verified for: uniruled
4-folds; rationally connected 4-and 5-folds (in particular Fano 4-and 5-folds);
(i) The generalized Hodge conjecture is completely verified for: uniruled 3-folds;
rationally connected 3-and 4-folds (in particular Fano 3-and 4-folds); cubics of dimension
at most 6; a variety of dimension at most 6 which is the intersection of a quadric
and a cubic; a variety of dimension at most 8 which is the intersection of two quadrics.

Proof. (i) Obviously uniruled 4-folds have Niveau(4,(X))<3, and rationally
connected varieties have Niveau(A4,(X))<0.
(i) Obviously uniruled 3-folds have Niveau(4y(X))<2.
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For cubic 5-and 6-folds, the conclusion follows from the fact that they verify

Ao(X)g=A(X)o=Q

(i.e. these two Chow groups have niveau<0), which is proven by Paranjape [Pa]
and by Kollar [Ko], generalizing Roitman’s work on 4, [Ro].

The intersection of a quadric and a cubic also has 4, and A4, of rank one;
this is proven by Esnault-Levine-Viechweg [E-L-V].

The intersection of two quadrics has

Ap(X)g=A1(X)g=A4,(X)e=0,
this is again proven in [E-L-V].

(2.6) Remarks. 1. For uniruled 4-folds, the Hodge conjecture was first proven
by Conte and Murre [C-M]; it has since been reproven in many different ways
[St][SaM, Remark 1.8].

2. The case s=0 of (2.4)(i) was proven by Bloch and Srinivas (only they forgot to
mention that the Hodge conjecture is also verified in codimension n—2).

§2.3. Algebraic and homological equivalence

(2.7) Proposition. Let X be a smooth complete n-dimensional variety over a
universal domain Q, and suppose Niveau(A4'(X )o)<2 for i=0,---,5. Then the Griffiths

group
Gri(X)Q = lemm(X)®Q/Z;lg(X)®Q

is O for i<s+2 and for izn—s—1.

Proof. Let A=Ay+ -+ +A+ A" act on Gri(X),.
The action of A; factors as

Gri(V;x W), = Gri*2(V;x W),

1 |
Gri(7), Gri i),
l
Gri(X)y — 2. Gri(X),.

Since homological and algebraic equivalence coincide for 0-cycles, the group Gri( Vj)Q
vanishes for i>dim V/;=j+2. Since homological and algebraic equivalence coincide
for divisors, the group Gr'~J(W)), vanishes for i<j+1. It follows that A; acts as
0 on Gri(X)g,.

Similarly, we find that A** ! acts as 0 if i < s+ 2; this ends the proof for i <s+2.

For i>n—s—1, we use the transpose A='A="Ag+ -+ +'A;+'AF1.
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(2.8) Remarks.l. Proposition (2.7) is inspired by Bloch-Srinivas, who prove
the case s=0. In fact, using Merkuriev-Suslin on K,, they prove vanishing of
Gr?(X) not neglecting torsion [B-S, Theorem 1].

2. By way of example: every rationally connected 3-fold or 4-fold has torsion
Griffiths groups; the same holds for cubic 5-folds and 6-folds; a cubic 7-fold X has

Gri(X)p=0 for i<3 ori>5

(for these examples, cf. the proof of (2.5)). This last result is optimal since Albano
and Collino have proven that a cubic 7-fold has a non-finitely generated Gr4(X )o[A-C].
§2.4. Chow-Lefschetz conjecture

(2.9) The Chow-Lefchetz conjecture [Ha] asserts that if X = Z is an inclusion
of smooth complete varieties such that the complement Z\ X is affine, then pull-back
induces an isomorphism

AZS AX  for i<dimX/2=:n/2.

The case i=1 has been settled by Grothendieck [SGA2], but apart from this little
progress has been made, not even for Z=P"*!. Note that the truth of the conjecture
would follow from the truth of Beilinson’s fomula mentioned in (1.12).3.

(2.10) Proposition. Let X = Z be as in (2.9), defined over a universal domain
Q. Suppose that ANZ)y— H*Z is an isomorphism.
(i) Suppose AM™(X )o=0 for i=0,---,s<3—2. Then there are isomorphisms

A(Z)y S Al(X)g for i<s+2;
(i) Let Q=C. Suppose AM(X)g=0 for i=0,---,s<4—4. Then there are iso-
morphisms

Ai(Z)g S Ai(X)g for i<s+3.

Proof. (i) Immediate from (1.8).1 and the weak Lefschetz theorem for the
Weil cohomology (1.1)iv).
(ii) Immediate from (1.8).1 and the weak Lefschetz theorem for Deligne cohomology.

(2.11) Examples. Let X = P"*'(C) be a smooth hypersurface of degree d, and
suppose d<n>8. Then A(X)g=Q for i<3.
For cubics we can actually do better: suppose d=3 in the above, then

Ai(X)Q=Q for i<min(L+3,}%),
A(X)g=Q for i<min(L+4,5—1),



690 Robert Laterveer

where L is defined as the largest integer satisfying (L+2)(L+3)<2n+2. (This last
result follows from (2.10) combined with the fact that cubics have A(X)=Q for
i<L [Ko] [E-L-V])

§2.5, Decomposability

(2.12) Definition. Let X be a smooth complete variety over a field k, and let
X, denote the Zariski sheaves on X associated to higher algebraic K-theory. We say
that the group H(X, X)) is decomposable if the cokernel of the natural map

Hi(X, A )®K,_k — H(X. )

is torsion.
Likewise, we say that the higher Chow group 4'(X,/) [Bl 2] is decomposable if the
natural map

ATIX@ Ak, 1) > A(X, 1)

has torsion cokernel.

(2.13) Proposition. Let X be a smooth complete n-dimensional variety over a
universal domain Q.
(i) Suppose that Niveau(A(X)g)<1 for all i<s. Then there are isomorphisms

ATIXRAQNHRO S A4(X, H®Q

for i<s+2 and for i>n—s;
(i) Suppose that A?°™(X)y=0 for all i<s. Then A¥(X,2) is decomposable for i<s+2
and for izn—s+1.

Proof. (i) Suppose first i<s+2. To prove decomposability, consider the
action of

A=Ay+ - +A+ A

on Ai(X,1).

The action of A; factors over A‘(I7j,1) (which by (2.14) is decomposable for
i>dim V;+1=j+2) and over A""'(Wj,l) (which by (2.14) is decomposable for
i<j+1), so it sends A'(X, 1) into its decomposable part.

The action of AS*?! factors over 4'~*~' (W, ,, 1), so goes into the decomposable
part for i<s+2.

To prove injectivity, consider the action of A on

Ker(A 7' X®@A'(Q, )®Q — A(X, 1))

and use lemma (2.14).
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In case i>n—s, use the transpose of the diagonal.

(i) Similar to (i)

(2,.14) Lemma. Let M be a smooth m-dimensional variety over a field k. Then
the natural map determines isomorphisms

AMRA Kk, 1) S 4 (M, 1)
for i=0 and for i=m.

Proof. The i=0 case follows from Bloch’s computation 4'(M,1)=k* [BI 2,
Theorem 6.1].

For i=m, surjectivity is obvious. To prove injectivity, note that by the truth of
Gersten’s conjecture [Qu, §7 Prop. 5.14] [BI 2, §10], A™*'(M, )= H"(M, X, ,)
equals

Coker( @D AYk(x),2)» D A‘(k,l))

xeM(m-1) xeM(m)
(where as usual M@ denotes codimension i points of M).

Also A™"M® A'(k, 1) equals

Coker( @ A'kx),)RA'k 1)» D A‘(k,l)),

xeM(m-1 xeM(m)

and the exterior product map factors over the groups inside the parentheses, so
injectivity follows from surjectivity of

A'(k(x), )@ A'(k, 1) > A%(k(x),2).

(2.5) Corollary. Let X be a smooth complete variety over C, and suppose
AM(X)g=0 for i=0,---,s. Then the cycle class map

A(X, D)o~ HZ™ (X, Q1)

is surjective with kernel Ai; X®AYC,1) for i<s+2 and for i>n—s.

Proof. Applying the diagonal to Deligne cohomology, we find that H2'~'(X, Qi)
is decomposable for the indicated i, i.e. there is a surjection

pHZTIX, Qi—1)@HH(C, Q1) » HF™'(X, Q));

this proves surjectivity of the cycle class map.
To prove the statement about the kernel, it suffices to prove that

Kerp=Ker(H3 XX, Qi— 1) » H'~ "~ 1(X, Q)@ HM(C, Q1))
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for the indicated i. This last statement follows from the i=dim X+ 1-case [E-L,
Lemma 2.2] after applying the diagonal.

(2.16) Corollary. Let X be a smooth complete n-dimensional variety over a
universal domain.
(i) Under the assumption of (2.13)(i), H' =Y (X, X)) is decomposable for i<s+2 and
Jor izn—s;
(i) Under the assumption of (2.13)(ii), H'~*(X, X";) is decomposable for i <s+ 2 and for
i>n—s+1.

Proof. This is immediate from (2.13) and the existence of functorial “Bloch
formula™ isomorphisms

AX D= H' "X, )®Q for <2

[La I, 2.27].

(2.17) Remarks. 1. The decomposability of 4%(S,1) for a surface S with
A3(S)g=0 was proven by Coombes-Srinivas [C-S]. The decomposability of
Ai(X,1) for X and i as in (2.13)i) was proven by Esnault-Levine [E-L, §4]; the
isomorphism in (2.13)(i) answers a question about the kernel asked by Miiller -Stach
[Mii].

2. The notion of “decomposable Hi(X, )" as given in (2.12) is more restrictive
than Esnault-Levine’s definition [ E-L]; however the two notions coincide for /—i=1
[E-L, §4].

3. In contrast to (2.15), Voisin has proven [Vo 1, 1.6] that if X < PXC) is a
general hypersurface of general type, then the cycle class map

AX(X, )g —> H3(X, Q2))

is not surjective.

4. As a special case of (2.16), we find that H'(X, ¢ ,), H" (X, X",), H°(X, X ;)
and H" (X, ,.,) are decomposable for any Fano variety X of dimension n; for
more examples of varieties satisfying the assumptions, cf. (2.5).

§2.6. Murre conjectures. In a sequel to this article [La 2], we prove that
Murre’s conjectures (on a decomposition of the Chow motive of a variety, [Mur])
hold for varieties X over a universal domain verifying

dimX<4,  Niveau(4(X)g)<2.
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