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Modulo odd prime homotopy normality for
H-spaces

By

Kenji Kupou and Nobuaki YAGITA

Abstract

Given an H-map i:Y — X, we say that i/ is mod p homotpy narmal if the
commutator map from X, x Y, to X, can be deformed into Y. In this
paper, we study necessary conditions of mod p homotopy normality for the cases
that X are exceptional Lie groups with odd torsion in the cohomology, by using
the Morava K-theory.

1. Introduction

When X is a homotopy associative H-space of finite cohomology type, the
homotopy functor [ —, X] takes its values in category of groups. Given an inclusion
i:Y— X of H-spaces, we are interested in the property such that i [Z, Y] are
always normal subgroups of [Z, X] for all finite complexes Z. If the inclusion
i:Y < X has such property, we say that the map i is homotopy normal.

I. James ([4],[5]) notices that the homotopy normality is equivalent to the fact
that the commutator map ¢,: X' x Y - X can be deformed into Y. James ([4], [5])
and MacCarty [8] proved many facts about non homotopy normality for classical
Lie groups. For example, the standard inclusions Un) < Un+1) < Un+2) < ---
are not homotopy normal. Furukawa [1] studied the cases including exceptional
Lie groups, i.e., inclusions G, « F, « Eg = E; = Eg are not homotopy normal.

The above facts are proved by using the Samelson product or the Hopf algebra
structure of HX(X;Z/p). In this paper, we will study these problems by using the
Morava K-homology K(n),(X) and its Pontrjagin product structure [10], [11],
[12]. Since the cohomology K(n)*(X) does not have a commutative product for
p=2, we assume that p is an odd prime througnhout this paper. Moreover we
consider just the p-component. Hence we define that an H-map i: Y - X is mod p
homotpy normal if its localization i) : Y, — X(p is homotopy normal. Here maps
i and i) are not assumed injective.

In particular, we will study these problems when X are exceptional Lie
groups. For example, suppose that X=F, and that H*(Y;Z/3) does not have any
19-dimensional primitive element. Then if an H-map i: Y — F, is mod 3 homotopy
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normal, we will prove that i*H*(F,;Z/3) is isomorphic to one of the mod 3
cohomologies of Fy, Spin(9), G, and a point. However we do not know yet that the
natural inclusions G, < Spin(9) < F, are mod 3 homotopy normal or not, while
they are not mod 2 homotopy normal.

The authors thank to the referee who pointed out errors in the first version
of this paper.

2. mod p homotopy normality

Thoughout this paper, let ¥ and X be simply connected homotopy associative
H-spaces and i:Y— X be an H-map. Moreover we assume that X is of finite
cohomology type, namely, H¥X)~H*Z) for some finite complex Z. The
commutator map ¢,: X' x X - X is defined by

dx xdx 1 xtwx1

XXX -5 XXxXAXxXxX - XxXxXxX

Ix1xagxa u(p % p)

- XAxXAxXxX -

where dy is the diagonal, tw is the twisting map, ¢ is the inverse and u is the
multiplication map of X. Of course, when X is a topological group, c,(g.h)
=ghg™'h~! for g he X.

Define an H-map i: Y — X is mod p normal if ¢,(X(p X i(Y)p) is deformed into
i(Y)p , namely, there exist maps f,: X X i(Y)p) = X(p) such that f,=c,| Xy % Y(p) and
JiXpy % Yip) < i(Y )ipy.

Let & be a commutative ring spectrum over Z/p and h*(—) be the induced
generalized cohomology theory. Here we assume that, for finite complexes X and
X', the Kiinneth formula A*(X x X')=h*(X)®#rh*(X') holds and that the Kronecker
pairing induces a natural isomorphism A (X)=~Hom(h*(X), Z/p).

Examples for such /4, (—) are the mod p ordinary homology H (- ;Z/p) and
the Morava K-theory K(n),(—) with the coefficient K(n),,=Z/p[v,.vi '], [v,|=2(p"—1)
for an odd prime p. For these theories, h(X) are Hopf algebras with the
multiplication u, and the comultiplication d¥. Hence they are cocommutative but,
in general, not commutative.

Lemma 2.1 ([10], [11]). If x,yeh,(X) are primitive, then
cz*(x®y)=[x,y]=xy_(_ ])|x||}'|yx

Proof. Since x is primitive, a(x)=—x and dx«(x)=x®1+1®x. Similar
equations hold for y. Hence we get

(1 x twx 1) (dx x dy) (x®@p)=(1 x tw x 1) (x@ 1+ I@X)R(® + 1®Y)
=x@yRIR1+(— "M RyRxR1 +x@1R1®y+ 1R 1 ®x®y.
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Applying (1 x 1 x 0 x0),, we have
x®y@1®1—(—)"MRyEx®1 —x@1®1Qy +1®1@x®y.
Also applying u,(ux p),, we have the commutator map

c2:x®y)= —(— NP yx + xy =[x, y]

Corollary 2.2. If i:Y— X is mod p homotopy normal and if xeh (X) and
yeh (Y) are primitive, then [x,i (y)]€i h(Y).

Corollary 2.3. If x,yeh (X) are primitive, then so is c24(x®y).
Proof. Direct computation shows that d¥[x,y]=[x,y]1®1+1®[x,y].

3. H-spaces with one even degree generator

By the Borel theorem, the mod p cohomology H*(X;Z/p) is a tensor algebra
of truncated polynomial and exterior algebras generated by even and odd dimensional
clements respectively. In this section, we consider the case that the polynomial
algebra in HX(X;Z/p) is generated by only one element y. By Kane [6], we know
that [y|=2(p'+p'~'+ --- +1) for some i and y**=0. However all known examples
satify that i=1 and y?=0. Hence we assume

(3.1 HXX;Z[/p)=Z/ply]/ON®A,  yl=2p+2

where A is an exterior algebra generated by odd degree elements. Then it is also
known by Kane [6] that there exists generators x,,xo€ A such that

P'xo=x0 and Pxo=y with |xo|=3, |xo|=2p+1.

For such H-space X, the Morava K-theory K(2)*(X) is just a tensor product
KX X)=HXX;Z/p)®K(2)* and the Hopf algebra structure is given in [12]

Theorem 3.1 ([12], [6]). Let X be an H-spase satisfing (3.1). ThenH*(X;Z/p)
(resp. K(2)XX)) has a quotient Hopf algebra Q¥=K[y]/(")®A(x;,xi|0<i<p—2)
with K=Z/p (resp. K(2)*), |x]=2(p+ 1)i+3, |xi|=2(p+ 1)i+1)—1 such that the dual
Hopf algebra Qk « is multiplicatively generated by z, z', y with the relations ad®~ '(y)(z) =0
(resp. —v,2), ad?~'(Y)2)=0 (resp. = —0v,2), yP=0 (resp. = —v,y), and ad(z(z')=0
where ad(y)z)=[y,z]. Moreover the K-module of primitive elements in Qky is
generated by ad'(y)z), ad'(y)z'), y which are duals of indecomposable elements x;, xi,
y respectively.

Let us write ad(y)z)=z; and ad'(y)(z)=zi. From the above theorem,
Ok« = K[y1/(0®A(z;,zi| 0<i<p—2)) additively. So we can take a K-module basis
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3.2) Ok 52 K(yk(zo)ao e (zp-2)'r- z(zb)a(’) o (z;’_ 2)";’ -2)

with 0<k<p—1 and a;,ai=0 or 1. Let F, be the filtration of Qx4 generated by
monomials ))"(ZO)"O (Zp_z)“p—z(z'o)“b (Z;,_Z)";J—z such that Za'.-[-Za;ZS‘

Then it is immediate that F,F, « Fy+, and ad(y)F, = F,. Let F;,+ be the module
generated by ¥z, y*zi for k>1, 0<i<p—2 and elements in F, so that
Q./F1,+ 2K(y%, z;,zi). Then note that ad(y)F,,+ < F1.+.

Theorem 3.2. Let i:Y— X be mod p homotopy normal for an H-space X
satisfying (3.1). Let Q*=Q#¥qz). Suppose that the quotient map to Q* splits, i.e.,
0* < K(2)X(X) as Hopf algebras. Then i*Q* is isomorphic to one of the following
Hopf algebras

0% 0*/(n), KQ*®A(x;|10<i<p-2), KQ)*®A(xi|0<i<p-—2), K(2),.

Proof. Recall that x; and x; are duals in (3.2) of z; and zj respectively. Suppose
that i*(x;) #0€ K(2)*(Y) for some j. Then we see that there exists Z;€ K(2) (Y) such
that i(Z;)=z; mod(F1,+) because if k#j, then {i*(x,),w)=0 and {i*(xi),w)=0 for
any we K(2)2¢p+1yj+3(Y) by dimensional reason. From Corollary 2.2, the homotopy
normality of i implies that there exists 7, € K(2) (Y) with i, (Z,)=2z, mod(F1,+) for all
k>j. Let Z,=v3'%,-1. Then we get %, for all 0<k<p—2. So the composition
of maps

K(2),(Y) = K2 (X) > 0,/(.2)
is epic. Therefore we have proved that if i*(x;)#0 for some j then
K(2)  ®A(i¥(x)|0<i<p—2) < K(2) ().

Similar fact holds for the cases i*(xj)#0.
Next suppose that i*(»)#0. Then there is e K(2),(Y) with i (J)=y. Hence
v, 2]1=[i (7). z] €i K(2) (V) for all ze K(2),(X). This implies i*Q*= Q*.

To consider the mod p ordinary homology version of the above theorem, we
recall the connective Morava K-theory k(n),(—) with the coefficient k(n),=Z/p[v,].
The usual Morava K-theory is just the localization K(n)(—)="[vs 'Jk(n)(—).
Moreover we know that the condition K(n)(X)=K(n),®H(X;Z/p) implies
k(n) (X)=k(n) ,OH (X:Z/p) by the naturality of the Atiyah-Hirzebruch spectral
sequence. Since k(n) is a connective spectrum, there is the natural Thom map for
reduced theories k(n) (X) — ﬁ*(X;Z/p) which is an isomorphism if x<2(p"—1)+2
for spaces X in (3.1), since |v,|=2(p"—1).

Theorem 3.3. Let i:Y— X be mod p homotopy normal for an H-space X
satisfying (3.1). Let Q*=Q%,. Suppose that there does not exist any primitive
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element of degree 2(p>—1)+3 nor 2(p*—1)+2p+1 in HXY;Z/p) and that
Q* c HXX;Z/p) as Hopf algebras. Then iXQ?*) is isomorphic to one of the following
Hopf algebras

0% 0*/(y), Ax;|0<i<p—2), Z/p.

Proof. We consider the mod p-cohomology version of the proof of Theorem
4.2. Suppose first that the there is xj such that i*(x})#0 in HXY;Z/p). Then we
see that there exists Z;e H(Y;Z/p) such that i/(Z)=z; mod(F, ). Moreover
|z";.|<2(p2— 1)=|v,| implies that we can identify Z;ek(2),(Y). The mod p homotopy
normality for i implies that there exists Z,€k(2),(Y) for all k>j with i (Z)=z,
=ad(y)z') mod(F, ). For p—2>k>j, by the dimensional reason such that
lad"(y)z)| <|v,|, we can take Z also in H(Y;Z/p).

The crucial case is k=p—1 where i (Z,_ |)=ad"~ '(WNz')=v,2 mod(F, ,). Hence
there are two possibilities; there exists Z' such that i (Z')=z" mod(F, .) or there exists
a k(2),-module generator Z” such that i (Z")=v,z" mod(F, ,). For the later case,
by the dimensional reason, Z” is also in H (Y;Z/p).

Suppose that 2’ is a k(2),-algebra generator. Taking the dual, we know that
there exists a primitive element in HXY;Z/p) of degree |2"|=2(p>*—1)+2p+1. By
the assumption of this theorem, there does not exist such an element and so we
get e H (Y;Z/p). Next suppose that Z’=Zuw in k(2),(Y) with u#0, w#0 in
HJY;Z/p). In the projection image to k(2),®Q,, we see Zi ()i (w)=v,z'#0
eF,/F,. Since F\F, ¢ F,, there is u and w such that i (u) (or i w)) is not zero
in F,/F,, namely, is y* mod(F,) for 1<k<p—1. This means i*(*)#0 in
HXY;Z/p). So i*»)#0 and i*(x,)#0 since fxo=y. Hence for all cases we have
Z e HNY;Z/p). Thusfrom corollary 2.2, thereis Z,€ H¥Y;Z/p)forall0<k <p-—2.

Here we note that 2!(x,) = x|, and that i*(xp) #0 implies i*(x,)#0 also. Hence
we get also the existence of Z, for all 0<k<p—2 by the mod p homotopy
normality. So the composition of maps H(Y;Z/p)—» H(X;Z/p)—> Q,/(y) is
epic. Therefore we have proved if i*(x})#0, then

A(¥(x), i(x)|0<i<p—2) « HXY;Z/p).

If i*(x;) =0 for all 0 <k <p—2 and i*(x;) #0 for some j, then by the non existence
of primitive element of degree 2(p*—1)+3, we get similarly

A*(x)|0<i<p—2)=i*Q*.

Thus we have shown the theorem.

For the cases p = 3,5, the quotient Hopf algebra Q* are isomorphic to HX(F,; Z/3),
HX(Eg;Z/5) respectively [9],[7].
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HXFy;Z/3)=Z/3[ys]/(V®A(X3, X7, X11,X15)
HXEg;Z/5)=Z/5[y12]/(12)®A(x3,X11,X15,X23,X27,X35,X39,X47)

where subscript means the degree, i.e., |x;]=i. The reduced powers are also known

g1x,~=x,'+2(p—1) (i.e., 91X3=X7, g‘Xn:xls for p=3)
Note that this means 2'x,=x;} in the notations in Theorem 3.1.

Corollary 3.4. Let i: Y — F, (resp. Eg) be a mod 3 (resp. S) homotopy normal
map. Suppose that there does not exist any primitive element in HXY;Z/p) of
degree 19 (resp. S51). Then i*HX(F,;Z/3) (resp. i*HX(Eg;Z/5)) is isomorphic to one
of the following Hopf algebras

HXFy;Z/3), HXFy;Z/3)/(ve)s Alx3.x11), Z/3
(resp. HNEg;Z/5), HNEg;Z/5)/(y12), Ax3,%15,X27,X39), Z/5).

Proof. Suppose that i*xj)#0. Then i*(x;)#0 since 2'x;=xj. Since there
does not exist any primitive element in H*Y;Z/p) of degree 2(p*—1)+3, we get
i*(x0)#0 from the argument in the proof of Theorem 3.3. Therefore i*(x0)#0 from
P'xy=x0. Thus we have the corollary (without the assumpion for the degree
2p2—1)+2p+1).

The advantage of using the Morava K-theory for X=HXF,;Z/3) is just to
exclude the Hopf algebras A(x11), A(x11,x15) which seem not to be proved by only
using reduced powers and the Hopf algebra structure of H¥F,;Z/3). The homotopy
group m11(G,) is isomorphic to Z/3 and it defines the generator x;; in
H*G,;Z/3). This induces n12(BG23)=Z/3. So there is a map S'? —» BG, which
represents a generator of n12(BG,). Then we have a map of loop spaces

(QS '3y =SB} X (QS23)3) = G23)=QBG23) © Fa3).

We know that i*H*(F,;Z/3)=A(x11) and hence this map is not mod 3 homotopy
normal.

Next consider the cases exceptional Lie groups E4, E, for p=3. The
cohomologies are known

HYEg;Z[3)xHXFy;Z/3)®A(xg,x17)
HXE;;Z/3)=HXF,;Z/3)®A(x19,X27,X35)

with P3=x10, P'x15=x27, P'x15=ex19 (e=+1). Denote also by z; the dual
of x;. The Pontrijagin product structre in H (Eq;Z/3) (resp. H (E;;Z/3)) is given
by

ad(y)(zg)=2z17 (resp. ad(y) (z19) =227, ad(y)z27) =2z3s).
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Lemma 3.5. The Pontrjagin product structure in K(2),(E¢) (resp. K(2) (E-)) is
given by ad(y) (z17)= —v,z9 (resp. ad(y) (z3s)= —v,227).

Proof. Since y3= —v,y, we always have
ad(y)*(z;) = ad(y*)z;) = — v ad(y)z;).

Since ad(y) (z19) is primitive, we see that ad(y)zi7)=Av,z9, A€Z/3, from the
dimenisional reason. Then

0217 =0,ad(y)z9) = —ad(y)*(z5) = —ad(y)ad(y)(z17))
= —ad(y)(Av,zo) = — Av,z17.

Thus we know A= —1. The case E, is proved similarly.

Corollary 3.6. Let i:Y—>Eg (resp. E;) be a mod 3 homotopy normal
map. Suppose that KQ2) (V)=K(2),®H(Y;Z/3) and there does not exist any
primitive element in HXY;Z/3) of degree 19 nor 25 (resp. 19 nor 43). Then
I*HMEg;Z/3)(resp. i*HX(E ; Z/3) is isomorphic to one of the following Hopf algebras.

HXEq;Z/3), HE¢:Z/3)/(y), Mxo,x17), HNF4;Z/3)/(»), Alx3,x11), Z/3
(resp. HXE;;Z/3)/(y,x19), HXF4;Z/3)/(¥), AMx3,x11), Z/3)

Proof. By the assumption K(2)¥(Y)= KQ2Q)*®H*(Y; Z/3) it follows that i*(x)#0
in HXY;Z/3) implies i*(x)#0 in k(2)*(Y). For the case X=Eg, if i¥(y)#0, then
—[z9,y1=2z17 shows i*(x17)#0. The non existence of any k(2),-algebra generator
2"€k(2) (Y) such that ad(y)zi11)=i*z") nor ad(y)(zi7)=i/z") implies the corollary
for this case. When X=E,, facts that i*(x19)=0 and 23x,5=x27 can prove the
corollary. Here we use the nonexisence of any primitive element of degree |ad(y)(z11)]
and |ad(y)(z3s)|.

Corollary 3.7 ([1]). The naturad inclusions F, c Eq < E, are not mod 3 homotopy
normal.

4. H-spaces with two even degree generators

In this section, we consider a simply connected homotopy associative H-space
X such that

(4.1) HYX;Z[p)=Z[ply,ul /" u")®A, |yl #]ul.

However the known example is only the case p=3 and X=FEzx X’ for some X’
such that H*(X';Z/3) is isomorphic to an exterior algegra. Therefore we only
consider the case p=3 and X=Eg hereafter. The ordinary mod 3 cohomology of

Eg is ([9]. [7])
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HXEg;Z/3)=Z/3[yg,u20]/(y&,u30)@A(X3,X;,X15,X10,X27,X35,X39,X47)
The reduced powers are also known

1 1
Plxz=x7, P'xis=exi9, P'x3s=x39 (e=+1)
3
Px7=x10, P>x15=X27, Px27= —X39, P3x35=X47.

Bx7=xs, Pxro=P3ys=uzo

The Morava K-theory K(3),(Eg) is given in [12].

Theorem 4.1 ([12]). There is a K(3),-algebra isomorphism K(3)*(Eg)=K(3)*
QHXEg;Z/3). Let z; (resp. yu)e K(3),(Eg) be the dual elements of x; (resp. yg,
uzo)€ K(3)X(Eg). The Pontrjagin ring K(3) (Eg) is generated by two elements,
u,z'=z19, with the relations u®=0, adu)®(z')=0. (')*=0 (and u®= —v,;y). The
adjoint map is given by the following arrows, ie., z - [u,z],

219 = 239 = —U32Z7, 27227 247 —U3Z15
Zys > 235 > —U323, 2z3—0.
Theorem 4.2. Let i: Y — Eg be a mod 3 homotopy normal map. Let (aq, -, a;)

be the ordered set (19, 39, 7, 27, 47, 15, 35, 3). Then i*K(3)X(Eg) is isomorphic to
one of the following Hopf algebras

K(3)*®A(xaj ,Xaj+ 19 "',xa7) f()r OSjS 7,
KO/ ()@ A(xay, -+, Xas) for 0<j<2,
K(3)* and K(3)X(Es).
Proof. The a; is ordered so that ad(u)za,) =za;., OF —v3za,,, in K(3),(Eg). By

the arguments similar to the proof of Theorem 3.2 and the facts f(x;)=y and
X;=Xa,, We can prove the theorem.

By arguments quite similar to the proof of Theorem 3.3, we get the following theorem.

Theorem 4.3. Let i: Y — Eg be mod 3 homotopy normal map. Suppose that
there does not exist any primitive element of degree 55,59 nor 61. Then i*H™X(Eg;Z/3)
is isomorphic to one of the following Hopf algebras

A(Xajs Xajiis s Xas) for 0<j<T,
Z/p1/ (@ A(Xay, -+, Xar) for 0<j<2
Z/3 and HX(Eg;Z/3).

Using the Hopf algebra structure of H*(Eg;Z/3) and the reduced power
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operations, we get the similar result as above, however it seems difficult to exclude
the case A(xis,x3s).

There is well known chain of inclusions of simple Lie groups SU(3) = G, < Spin(7)
< Spin(8) < Spin(®) <« F, <« Eg < E, < Eg. Furukawa [1] showed that any H < G
above is not homotopy normal.

Corollary 4.4 ([1]). Let i: H < Eg be any inclusion of above except for H= SU(3)
nor G,. Then i is not mod 3 homotopy normal.

Proof. For each subgroup H, there is not any primitive element in H *(H;Z/3)
of degree 55, 59 nor 67. For the case H=E,, i*x19)#0 in HXE,;Z/3) but
i*(x47)=0. This contradicts the theorem. For other cases, i*(x;)#0 but i*x35)=0
implies the non mod 3 homotopy normality.
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