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Blow-ups of P2 and root systems of type D
By

Jun-ichi MaTsuzawa and Akiko OMURA

1. Introduction

Nonsingular cubic surfaces in P*(C) are obtained by blowing up 6 points on
P2, Also it is well known that geometry of cubic surfaces is closely related to the
root system and Weyl group of type Eg; (i) The symmetry of the 27 lines on
nonsingular cubic surface can be described by the root system and Weyl group of
type E¢. (ii) In the middle homology lattice of cubic surface, the orthogonal
complement of the class of canonical divisor is isomorphic to the root lattice of
type E¢. (iii) The semi-universal deformation of simple singularity of type Ee can
be described by a Cartan subalgebra of Lie algebra of type Es. Furthermore a
nonsingular cubic surface can be regarded as a compactification of a generic fiber
of this deformation.

For certain class of rational surfaces, the geometry of surfaces is closely
related to infinite root systems and the moduli space for the surfaces are con-
structed in terms of root systems and periods [9].

In this paper, we construct rational surfaces related to the root system and
Weyl group of type D,,. We discuss the moduli problem of the surfaces.

In sections 2 and 3, we show the relation between surfaces X, obtained by
blowing up m points on P? and the root systems and Weyl groups of type D,,. In
section 4, we prove the theorem of Torelli type for the pairs of X, and a certain
anticanonical divisor of X), in terms of the root systems and Weyl groups of type
D,,. In section 5, we construct a family ¢ : ¥ — S of the surfaces X,.3, where
the base space S is the quotient space of the Cartan subalgebra of simple Lie
algebra of type D,,.3 by its Weyl group.

The nonsingular fiber X, can be regarded as a compactification of the fiber of
semi-universal deformation of the simple singularity of type D,,,3. So the relation
between X, and the simple singularity of type D3 is similar to that between Del
Pezzo surfaces and the simple singularities of type E (see Remark 5.10). In
section 6, we show the relation between the surface Z,,, obtained by blowing up
X2+2 and the root system of type D,,;5. Also we can construct a family ¢ : ¥ —
S of these surfaces Zj,;,. where the base space S is the quotient space of the
Cartan subalgebra of simple Lie algebra of type D,;, by its Weyl group. The
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fiber can be also regarded as a compactification of the fiber of semi-universal
deformation of the simple singularity of type Dj,,».

The period mapping of semi-universal deformation M — S of simple sin-
gularity of type D,, is studied by Looijenga and Saito ([8], [15]). We give a
concrete description of the period mapping for the families constructed in section 5
and 6 in terms of the root system and Weyl group of type Dj,.3 and Ds, ».

In sections 5 and 6, we define a meromorphic 2-form «w on X. Denote by
A < S the discriminant variety of ¢ and by D,(s € S\4) the anticanonocal divisor
on X, such that the restriction of w to X; has poles along ©;. Then the
monodromy group of 7)(S\4) on H,(¥X,\D,;Z) is isomorphic to the Weyl group
of type D,, and n;(S\4) acts on the period domain as a reflection group which is
isomorphic to the Weyl group of type D,,.

2. P? with several points blown up

Let C be a conic in P2, L a line tangent to C and P a point on L\C. By €
we denote the set of all such pairs (C, L, P) and an elements of € is said to be the
framing. Assume m >4 in this paper.

Definition 2.1. For a framing (C, L, P), we say that m points P;,..., P, on
C\L are in general position if m points Py,..., P, are distinct and if P and any
two of them are not collinear.

Let Py,...,P, be m points on C\L in general position. Let
p:Xy—P?

be the blowing up of P? at Py,....P, and P. Then put Ep = p~'(P).E, =
p~'(Py),...,E,=p ' (P,). Let L,C be the proper transforms of L and C.
Then D =L + C is an anticanonical divisor on X,.

Definition 2.2. Let (C,L,P) (resp. (C',L',P'))e@. Let X, (resp. X!) be
surface obtained by blowing up P (resp. P’) and m points on C\L (resp. C’'\L') in
general position. Put D=L+ C (resp. D' =L  + C)).

Then we say that the pairs (X,,, D) and (X, D') are isomorphic if there exists
an isomorphism ¢ : X,, — X, such that

$(C)=C'.¢(L)=L".

Lemma 2.3. Let (x:y:z) be homogeneous coordinate of P2, C a conic
defined by z* = xy, L a line defined by x =0 and P=(0:0:1).
Let (C',L',P"),X,,,D" be as above. Then there exist m points P\,... P, in

general position with respect to the framing (C,L,P) which have the following
property;
Let X,, be the surface obtained by blowing up P, Py...., P,,, then there exists

an isomorphism @ : X, — X, such that

o(C)=C', oL)=L".
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By this lemma, we may assume (C,L,P) as in the lemma.

Proposition 2.4. Let (C,L,P) be as above. Let Py,...,Py (resp. Py, ...,
P!.) be m points on C\L in general position respectively. Let p: X,, — P2 (resp.
p X, — P2?) be the blowing up P,Py,...,P, (resp. P|,...,P) ).

Put E;=p~'(P;) (resp. El=p ' (P!)). Put D=L+ C (resp. D' = L'+
C'), where L, C (resp. L'.C') are proper transforms of L, C. Let P; = (1:5?:5,)
(resp. Pl =(1:s":5s!)).

Then there exists isomorphism ® : (X, D) — (X,,,D') such that ®(E;) = E]

(i=1,...,m) if and only if there exists a € C* such that
si=oas;  (i=1,...m).

Proof. Let A be an element of PGL(3.C) such that A(C) = C. A(L) = L.
A(P) = P. Then line defined by y =0 is tangent to C at (1:0:0) and passes
through P. Therefore 4 maps the point (1:0:0) to itself. Since A also satisfies
that A((0:0:1))=(0:0:1) and A((1:0:0)) =(1:0:0), we have

a 0 O
A:(O b 0).
0 0 ¢

Since A(C) = C, we have ¢? = ab. Therefore

1 0 O
A= (O o? 0)
0 0 «

The result follows from this.

Proposition 2.5. Let p: X,, — P? be as above and L; (1 < i <m) the proper
transform of the line passing through P and P;. Let I be a subset of {1,...,m} and
assume the number #1 is even. Then we have the Hirzebruch surface X\ of degree
1 by contracting L; for iel and E; for je{l,....m}—1. Contracting (—1)-
section of X\ further, we get another framing (C', L', P') € €, where C',L’ are the
images of C.L and P' is the image of (—1)-section of X|.

Proof. By contracting L; for ie I and E; for je {l...., m} — I, we have P!

bundle over P'. Therefore the resulting surface is isomorphic to the Hirzebruch
surface 2, of degree r for some r.

p i X,—Z.

Let f,s(e H2(Z,;Z)) be the classes of a fiber and the (—r)-section S of Z,. Let
¢ = af + bs be the class of p'(C), then b = 2, because a fiber of Z, intersect p’(C)
at 2 points. Since

0<p'(C)-S=(af +25)-s=a—2r,

we have
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a>2r.

Also

4=p'(C)-p'(C) =4da— 4ar.
Thus we have r =a— 1. Since a > 2r, we have r < 1. Therefore r is 0 or 1.

Let D be the section of X,. Since the class of D is xf + s (x € N) and
D-D=2x—r,

we have

D-D=S-S (mod 2).
If we take D = p’(Ep), then

p'(Ep)-p'(Ep) = =1+ #1

is odd. Therefore S-S must be odd. Hence we have r = 1.
The remaining part of proposition is obvious.

3. Homology and root system

In this section, we shall study the exceptional curves of the first kind on X,
and the homology groups of X,, and X,,\D(D = C + L). The root systems of
type D,, can be realized in the middle homology group of X,,. The Weyl group
can be regarded as the automorphism group of the configuration of the exceptional
curves of the first kind. It is similar to the realization of the root systems and
Weyl groups of type Ee in that of cubic surfaces.

Let ep,ey,...,em € Hy(Xm;Z) be the classes of the exceptional curves Ep,
Ei,... E, defined in section 2. Let / € H(X,,;Z) be the class of total transform
of line. Then we have next proposition.

Propositon 3.1. (1) Hy(X,:Z) is generated by I, ep.e,.... em-
(2) The intersection pairing on X, is given by

=1, e=-1, e=-1 (i=1,....m),
l-ep=0, l-ei=0 (i=1,...,m),
ei-ep=0 (i=1,....,m), ei-eg=0 (i#jand i,j=1,...,m).
(3) The class of canonical divisor on X, is ky, = =3l +ep+el +---+ep.
Now we consider the homology exact sequence:

I H3(A/,,,;Z) — HB(meXm\D;Z)

0
2 Hy(X,\D:Z) -5 Hy(XZ) L5 Hy(X,, X,\D:Z)

—
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The intersection pairing in H,(X,,; Z) can be extended to the bilinear form on
HZ(/Ym; Z) ®zR. Put

Q =ker j, = Hy(Xy; Z),
R={aeQ|a-a=-2}.
Lemma 3.2. Let Q and R be as above. Then we have
Hy (X, \D;Z) = Q.

Proof. By the definition of Q, we have a following short exact sequences

0 — Hy (X Xo\D; Z) 5 Hy(X,\D; Z) -5 0 — 0.
Therefore we have only to prove that Hi(X,,, X,,\D;Z) =0. By the duality,
Hy(X,,. X,,\D:Z) =~ H'(D: Z)
~ H\(D:Z)".
Since D=C+L,C=S?L=>=S?and CNL = {pt}, then H/(D:Z) = 0.
Proposition 3.3. The lattice Q is given by

x-(ZI—el—--~—e,,,):0}

(3.1
x-(I—ep)=0

0= {a € Hy(Xu; Z)

and R is a root system of type D,, in Q®zR and generates Q. The set

H: {el —€2...., €m—1 _emv_(l_eP_em—l _em)}
is a basis of R.

Proof. By the duality H>(X,,.X,\D;Z) =~ H?(D;Z), kerj, is the lattice
whose elements are orthogonal to the classes of the components of D. Since the

classes of C and L are ¢ =2/ —e; —---—e, and I =1 —ep respectively, we have
(3.1).
Let o« =al +bpep +bie; +---+ bye, € Q. By (3.1),

2“+bl+"'+bm:0»
a+bp=0.
Thus

0= {O( € HZ(/Ym; Z)

a=a(l—ep—e)+(a+b)e + -+ byen.
.32
a+(a+b|)+"’+bm=0

Let o =al +bpep+biey +---+bye, € R. Then a® — (b3 + b3+ +b2) = —2.
It follows from a+ bp =0 that b? + .-+ b2 =2. Thus

m
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R={+(ei—¢), x(I—ep—ei—e),i# ji,j=1,...,m}.
Thus we have the proposition.

Proposition 3.4. There are 2! + 2m exceptional curves of the first kind on
Xn. They are the exceptional curves of the blowing up p: X,, — P?, the proper
transforms of the lines passing through P and P;, the proper transforms of the curves
of degree a (1 <a < [m/2]) passing through 2a distinct points of {P,..., Py} and
P with multiplicity a — 1.

Proof Lleté=2l—e —---—e,. ]l =1—ep be the classes of C,L. Let Ebe
an exceptional curve of the first kind and e = al — bpep — Y _[" | bie; its class.  Since
E is exceptional curve of the first kind, we have

m

1=— m.g:3a—bp—2b,', (34)
i=1
—1 :e.e:az—blz,—Zbiz. (35)
i=1
Also we have
C- D=2~ b >0 (3-6)
i=1

By (3.4) and (3.6) we have

1:3a—bp—2bi20—bp.

i=1
It follows from this and (3.7) that
bp<a<bp+1.

Thus we have a =bp or a=bp+ 1.
(1) Suppose a =bp. By (3.5) we have

m

> opi=1.
i=1
Thus there exist i such that b; = +1 and b; =0(j #i). By (3.4) we have 2a—
bi=landa=1ifb;=1,a=0if by = —1. Now we have 2m exceptional classes
e,....em\l—ep—e,.... —ep—e,.

These are the classes of exceptional curves of the blowing up p and that of the
proper transforms of the lines passing through P and P;. Let % be the set of
these classes.
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(i) Suppose a =bp+ 1. By (3.4) we have

ib,’ = 2a.
i=1

By (3.5) we have

m

Z b,.2 = 2a.
i=1

Thus

m m m

0=3"62-3 b= bt~ 1).
i=l1 i i

i=1 i=1
Since b;(b; — 1) > 0, we have b;(b; — 1) =0 for all i. Therefore
bi=0,1.
Now we have exceptional classes
al —(a—Dbp—e, —--- — e,

Let ¥, be the set of these classes. Since

[%] <l71.) — 2!11—[ .
o \2
we have # ¥, =2""1

If we take m skew classes /i,.../, in &1, then there exists only one class /,
in %, such that /., - /; =0 (1 <i<m). This class is nothing but the class of the
curve D on X,, whose image under the contraction p’ in the proof of Proposition
2.5 is the (—1)-section of Hirzebruch surface X;. Thus for every class e of %>,
there exist the exceptional curve of the first kind on X,, whose class is e.

We next define 2-cycle of X, \D. Let E;=p~'(P)), E;= p~'(P;), Bi=E:N
C. Bi=E;NC. Let T be a tubular neighborhood of C in X,, such that TNE;
and TNE; are fibers. Let y be a injective path in C from B; to B; and put

Iy = (EN(ENT)) VAT, U (EN\(ENT)). (3-3)

Then we can take the orientation such that i,([[};]) = e; —e;, where [I}] is the
homology class of I7j.

Furthermore let L; P2 be a line passing P and P;. Let L; be its proper
transform. Then the homology class of Zj is | —ep—ee€ Hy(X:Z). Let B; =
L;NC. Let y an injective path in C from B; to Bj. Then we can define I'j;
similarly.

i, = (ENENT)VIT], UL\LNT)). (3.3)

L) = e — (1= ep — ).
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Let ay, ..., 0, € Hy(X,,\D; Z) be the homology classes of I' 2,..., [y_1 m, and

l
m—1,m*

Corollary 3.5. H>(X,,\D;Z) is generated by {o,... ,a,}. The intersection
paring is given by

—2 Q=]
4oy = 1 |I'—'j|=l,l,j;ém,
1 {i,j} = {m—2,m},
0 otherwise.
Proof. By Lemma 3.2 and Proposition 3.3, it is clear that H,(X,,\D;Z) is
generated by {oy,...,a,}. Since o;-o; = i,(;) - i,(oy), the intersection paring is

given as above.

It is well known that there is close relation between a cubic surface and a
Weyl group of type Es. We have the same relation between X, and the Weyl
group of type D,,.

Proposition 3.6. The group

=gy =T
Wz{geAu«Hz(Xm;z» o6 = c.otl) }

g(@)-g(a') =a-a for a,a’ € Hy(X,u; Z)

is isomorphic to the Weyl group of type Dy,.

Proof. 1t is clear that W contains the group generated by reflections with
respect to the elements of R, which is isomorphic to the Weyl group of type D,,.

Let ge W and g(e;) = al + bep + biey + -+ + bpe,. It follows from the
condition g(a) - g(a’) = o - o' (Vo, Vo' € Ha (X3 Z)) that

[}

glei) - g(¢) =ei-c=1,

~I
Il
L

glei) -g(l) =e; -
glei) -gle;) = ej-ep = —1.
On the other hand, since ¢(¢) = ¢,g(/) = [, we have
gle) - g(@) =gler)-¢=2a+b; +--+by =1,
gler)-g(l) =gle)) - I=a+b=0,
gle))-gle)) =a? —b*> —b} — - — b2 = 1.
Thus we have

(’ju
glei) = {l—ep —ej.

for some j. Therefore there exists an element ¢ of the symmetric group S,, such
that
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_ €a(i)>
g(ei) - /- éep — ea(,-).

Since g satisfies that g(¢) = ¢ and g(/) =, g is determined uniquely. It follows
from g(¢) = ¢ that

2g(1) =2l - (el + +€,,,) + {.‘](el) ++ g(em)}-

Since the coefficient of / in the left-hand side is even, the number of the indices
i that satisfy g(e;) = — ep — eq(;) must be even. Therefore the order of W is equal
to that of the Weyl group of type D,,.

Let #(X,,) be the set of exceptional classes given in Proposition 3.4. The
Weyl group W(D,,) acts on L(X,,).

Propositon 3.7. (i) There are 2 orbit of £ (X,,) under the action of W(D,,).
One is W(Dy)-orbit ¥ of e, and another is W(Dy,)-orbit ¥, of ep.

(i) Let M ={l\.....I} be a maximal set of mutually skew classes, i.e. I;-I; =
0 (i#j). Then s=m+1. The set M consists of m elements of ¥\ and one
element of &.

(i) Let &(Xn) be the set of ordered set of mutually skew lines:

éo(AXm) = {(llv' . »lm§lm+l)|li . lj =0 (l #* j)vli € g] (1 <i< m)vlm+l € gZ}
Then the Weyl group W(D,,) acts on &(X,,) simply transitively.

Proof. (i) Straightforward.

(i) f MN¥y =, then M = .¥,. In this case we have #M =m. But
there exists one element e of %, such that e is skew to the elements of M. Thus
we have MN¥%, # & and let ;e MN¥%,. By the action of W(D,,), we may
assume /; = ep. The set of the elements of #(X,,) that are skew to ep is M' =
{e1,...,e,}. Thus we have s =m+ 1.

(iii) As in the proof of (ii), /41 determine the set {/,,...,/,} uniquely.
Therefore W (D,,) acts on &(X,,) transitively. Since #.%, =2"~! by Propositon
34, #&(Xm)=2""'m!. This is the order of W(D,,). Thus we have (iii).

4. Torelli theorem for the pairs (X,,, D)

Let (C,L,P)e @ be a framing defined in section 2. Let X,, be a surface
obtained by blowing up P? at P and m points P,..., P, on C\L in general
position.

p:A/m_’Pz

Put D=C+L. By Lemma 2.3, we may assume C:z>=xy L:x=0 and
P(0:0:1). We next define meromorphic 2-form wy on X,,. Let Vi, V5, V3 be
open sets of P2 defined by
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Vi={(1:x:y)eP?,
Va={(x2:1:y,)eP?,
Vs={(xs:y;:1)eP?}.

Then we define a meromorphic 2-form wj on P? by

( dxl A dy1
—_— on Vi,
2nv—1(y} — x1)
dx; A dyy
Wy = on V, 4.1
07 2nV—1x(x2 — y3) (41)
dx; A dys on Vs
[ 27V =1x3(1 — x3)3)

Put
wo = p*wy.

Lemma 4.1. Let I;,I'}; be the 2-cycles defined by (3.3), (3.3)" and P; =

(1:s?:5) (i=1,...,m). Then we have
J o = 8 — 5,
Tij
J wy = S; + ;.
r

ij

Proof. Since E; = p~'(P;),E; = p~'(P;), we have

CO():J LO():O.
E;

J E\(ENT) \(E;NT)

J woy = j wy.
I aT|,

The point of C\L can be parameterized by (1 : s? :5),s€ C. Then by the residue
formula, we have

Therefore

J wy = 27V —1 J Reszwo
oT|, Y

:st
y
=Jlds

= S; —Sj,
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We next calculate [, wo. Since [} wj=0, we have
ij

J_ _ wy = 0.
L\(LNT)

Since LiNC = {(1:7:5).(1:5}: =5},

ri, aTl,

=2nv -1 J Reszwy
y

:J ds
yl
=}’ ds

]
=S +5j.
Thus the lemma follows.

Let w be a meromorphic 2-form such that @ has poles only along D. We can
define a map

Xo:Q—C
by

Yol2) = Jr w. aeQ (4.2)

where I is a 2-cycle of X, \D such that « is the image of the class of I under
i.. Now we have the theorem of Torelli type for our framed surfaces.

Theorem 4.2. Let (C.L.P) (resp. (C'.L',P')) be an element of € and p : X,,
— P2 (resp. p': X! — P?) the morphism obtained by blowing up P (resp. P') and
m points Py,... Py (resp. Py,... P, ) on C\L (resp. C'\L') in general position.
Put D=C+L (resp. D'=C +L'). Let w (resp. ') be one of mero-
morphic 2-forms on X, (resp. X, ) which has poles only along D (resp. D'). For
w (resp. '), let y,,: Q — C (resp. !, : Q' — C) be the mapping defined as (4.2).
If ¢: Hy(X,:Z) — Hy(X,:Z) is an isometry such that
(1) ge)=¢.g(l)=T",
(2) there exists o€ C" such that ¢*(x,) = 0%
then there exists an isomorphism @ : (X,,, D) — (X, D") which induces ¢ and maps
CtCand L oL

Proof. It follows from the condition (1) and Proposition 3.6 that there exists
o € S,, such that ¢(¢;) = ey or I —ep— e(’,(,.) and that the number of i such that
ple)) =1—ep—e,; is even.
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Let Li(i =1,...,m) be the line in P> which passing through P and P;. Let
L; be a proper transform of L;. It follows from the Proposition 2.5 that we may
assume that ¢(ep) = ep/, ¢(e;) = e/, (i=1,....,m). By Lemma 2.3, we may assume
that conics C,C’ are given by z? = xy, lines L.L’ are the line given by x =0
and that P and P’ are the point (0:0:1), where (x: y:z) is a homogeneous
coordinate of P2.

Let (1:s?:5),(1 :sjz:s}) be coordinates of P;, P; respectively. Then by
Lemma 4.1 and the condition (2) of the theorem, we have

! .
S; = 08 i=1,...,m

Thus the theorem follows from Propositon 2.4.

5. A family of P? with 21+ 3 points blown up

Let $ be a Cartan subalgebra of simple Lie algebra so(2(2n + 3),C) of type
D3 and W its Weyl group. Then S =$/W =~ C¥*3 In this section, we
construct a family of the surfaces X»,.3 whose base space is S. To do it, we
construct a family ) of surfaces whose general fiber is double covering of
Hirzebruch surface of degree n branched along a hyperelliptic curve. The general
fiber is also isomorphic to a blowing up of X3,.3 at one point.

Let

S={(,.... 0, —hy,...,—h,) e C*}
={(h.... hn) € C™}.

The quotient

Do S=9/W
is given by
h=(hy,....hy)— (a,b1,b, ... bay2),
where a=hy - hp,bj = (=1)'ai(h},... h2),0; is the i-th elementary symmetric
polynomial.

For s = (a,bl,bz, c.. ,bz,,.,.z) eSS, put

f.s' — x2n+2 4 b|X2n+l 44 b2n+2-
Then
Fi(x1,y,,21,8) = 21 + x\y} + 2ay, + f,(x1) =0

is the semi-universal deformation of singularities of type D,,.
Put

Ui = {(xi, yi,2i,5) € C* x S| Fi(x;, y;,zi,8) = 0}, 1 <i<4d,

where
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Fi(x1,y1,21,5) = z{ + x1¥] + 2ay, + f,(x1),
Fy(x2, y5.22,8) = 23 + xap} + 2ax3™ 2y, + X272, (x5 1),
F3(x3, y3.23,8) = 22 + x3 + 2axi 2y, + y%x?"”fx(x;'),
Fi(x4.yq.24,8) = 23 + Xq + 2ay, + v f,(Xa)-
We can glue %,,%,,%3,%4 as follows and denote by 9):
X| = X4, X7 = X3, x1x; =1,

nys=1, nys=1, YiXy =y,

o _ _
21Xy = 2y, 7 = z3)y, Z4 =214

For se€ S denote by %), the fiber of the projection ¥ — S.

Remark 5.1. The glueing formula for (x;, y;) is same as (5.2) below for
Hirzebruch surface X2,.

Lemma 5.2. Put
A = {s e S|xf,(x) —a* = 0 has multiple roots.}.

If se S\4, there exists (C,L,P) e Q€ and 2n+ 3 points Py,...,Pyy3 on C\L in
general position such that 9, is isomorphic to a surface obtained by blowing up P, Q,
Py,...,Pyy3, where CNL = {Q}.

Proof. Wefixse S\d. Put Ui=%NYP,(i=1,...,4). Ifa+#0, Y, has no
singularity on x; =0. Thus we assume x; # 0. Since

x1F = x22 + (x| (y, +%)>2+x|fs(x|) e (5.1)

and X; =x1,Y] = x; (yl +x£) and Z, = ,/xiz is a local coordinate, 9 has no
1

singularity on Uj.
If a =0, we can prove ), has no singularity on U; when x; #0. If x; =0,
we have

Fi(0, p),21,8) = z} + £,(0).

Since s € S\4, f,(0) # 0. Therefore since % = 2z; # 0, Y, has no singularity on
Ui :
Furthermore since

0F,

|l b

ya=0

then 9, has no singularity on Uj.
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. . oF,
Since U,\U, is the set defined by x; = 0 and i

9, has no singularity on Us. 2
Since Us\(U,U Uy) is the set defined by x3 = y; =0 and

= 2227F2(0a y2,0,S) = 1:

\2=0

on

5)(3 - ]’

x3=y3=0

9, has no singularity on Us.
Therefore 9); is nonsingular. Let X, be the Hirzebruch surface of degree n,

Zy={o: i O)W 0" e PP x P57 = 1"¢,}.

~Let Wy, Wy, W3, W4 be open coverings of X,

Wi ={(lo:: L)W v)eZyv" #0, #0}  (x1,) = '/v',(2/40)
Wy ={(lo: L)W v e Zylu # 0,8, #0} (x2,3,) = (v'/u',(5/0) 52)
Wi={({lo:{i: Q)W 1) e Zylu" #0,5, #0} (x5, p3) = (v'/u',(1/3)
Wi={(lo: 8 : Q)W 1 v) e Zy|v" # 0,5 # 0} (x4, 34) = (' /0", £0/E)

Let H be a curve on X, defined as follows:

x1y? +2ay; + fi(x1) =0 on Wi,
X293 +2axi 2y, + x5 =0 on W,
X3+ 2axi 2y + pIxIT A (x5 =0 on Wi,
X4+ 2ay, + yffs(x‘;) =0 on Wjy.

It follows from the way to glue U, U,, Us, Us that ), is a double covering of X,
branched along H

v ‘Ds — 2y

The curve H is a hyperelliptic curve of genus n+ 1 ramified at the points
()81’ a/ﬂl) ﬁ2n+3a a/ﬂ2n+3) € W) and (O O) e Ws, where ﬁlﬁ e 7ﬂ2n+3 are the
roots of the equatlon xfi(x) —a?> =0 (If a= p; = 0, we take (0,0) € W, instead of
(Bi» —a/B;) e Wh).

- Let F; (i=1,...,2n+ 3) be the fiber of X, defined by u'/v’ = §; and F,, the
fiber defined by v'/u’=0. Then for i=1,...,2n+ 3,00, the inverse image
v~ !(F;) is a union of two lines;

v\ (F) = F;1 UF>, F 1, F,~P.

Since v"!(F;) v ! (F)) =0.F;,-F,1 =F;5-F,=—1. Since F;; @ Fj; ~P' F; |,
Fi» (i=1,...,2n+3,00) are exceptional curves of the first kind.
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We next blow down the exceptional curves F;;;(j(i)e{1,2},i=1,...,
2n+3), and Fy . Then we have P'-bundle over P'. Therefore it is the
Hirzebruch surface X, of degree r for some r. Then we need the following lemma.

Lemma 53. r=0,1. We can choose j(i) such that r = 1.

#:‘Dx_’zl'

Proof of Lemma 5.3. Let

S® = {(Lo: s ) v') € Zlly = ¢y = 0}

be (—n)-section of X,. Let S® be the inverse image of S under the covering
v. Then u(S™). u(S") =4 and u(S™) intersects a general fiber at two points.
Let /) and s be the linear equivalence classes of a fiber of X, and (—r)-section
respectively. Then

a8y S0 =208 s > 0. u(S™) - w(S™) = 4. (5.3)

This shows r < 1. If r = 0, by exchanging F | and F; 3, we have u(9,) = 2.

Now we blow down (—1)-section of X
49, — P

Since we have u(S™) ~ 2™ 4+ 25 by (5.3), u(S™) doesn’t intersect (—1)-section
of ;. Therefore u'(S™) . u'(S™) = 4.

Then since 4/'(S™) = P', 1/(S™) is a conic C on P2. The image of F,, ; is a
line L tangent to x'(S™) and the image of (—1)-section of X, is a point P on
L\C. Thus we have Lemma 5.2.

Remark 54. For h= (h,... hy,) €9, we have

[I2 G = h) + ki -y,
X]

Fi =z} + xy} + 2ay, +

Thus the roots f,..., 8, of the equation x;f,(x|) —a*=0 are h?,... K.

Proposition 5.5. The manifold ) is nonsingular and satisfies the following
conditions.

(1) If se S\4, the fiber V), is nonsingular, and there exists a framing (C,L,P) € €
and 2n+3 points Py, ..., P43 on C\L in general position such that 9, is
isomorphic to the surface obtained from P? by blowing up P,Q, Py, ..., Pyy3,
where CNL = {Q}.

(2) If sed and a #0, the fiber V), has singularity. Put

xfyx) —a* = (x—d)" - (x—d)" di#d, (i #)).
Then Y, has simple singularities of type Ag,_1(i=1,...,r).
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(3) If sed and a=0, the fiber Y, has singularity. Put
fix) =xbo(x —d) - (x—d) . di#d (i #)), di #0.

Then Y, has simple singularities of type Ax-1 (i=1,...,r') and simple
singularity of type Diyr1. (If ko =1,2, then D) = A),D, = A3).

Proof. Since 0F;/dby =1, 9 has no singularity on %;. By the proof of
Lemma 5.2, it is clear that 9 has no singularity on 9\%;. Thus 9 is non-
singular. Lemma 5.2 shows (1). By (5.1), we have (2).

Put seS\4, a=0. Then 9, has a simple singularity of type A,
(i=1,...,r").

Put f,(x) = xkh(x). Then h(0) #0. Since

Fih(x) ™" = 22h(x) ™" + xipth(x) T 4+ xl =0

and take (X{,Y/,Z|) = (x1,y,//h(x1),z1/\/h(x1)) as a local coordinate for a
neighbor-hood U of x; =0, we have

Z7+x\y +xj =0
(a) 1If ko =1, U has singularity only at the points (0, +v—1,0) € U. Since
ZP+ XY+ xR =z XY+ 1) =0

and (X7, Y,’2 +1,Z{) is a local coordinate near the singularities, U has a
simple singularity of type A, at the points (0, +v—1,0) e U.
(b) 1If ko =2, U has singularity only at the point (0,0,0) e U. Since

ZP XY X =27+ (X + 1Y) - h it =0

and (X{+3Y/{,Y/,Z]) is a local coordinate near the point, U has a simple
singularity of type A3 at (0:0:0)e U.

(c) If ko >3, U has singularity only at (0:0:0) e U. It is clear that U has a
simple singularity of type D41 at (0,0,0) e U.

The proposition is proved.

We have constructed a family of the surfaces obtained by blowing up at one
point on X,.3. We next construct a family of the surfaces X,;3;. Put

fs(x) — X2"+2 + b1x2n+| oy bz,,+2,
A={zeC||lz—-1]| < 1/2},
o = {(x,5) € Cx 8| — (x2*2fi(x7") — a®x¥"*) € 4}.

Then there exists holomorphic function gs(x) on &/ such that
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(9:(x))% = =(FP2f(x7") = N,
We fix g,(x). We need the following lemma to construct the family.
Lemma 5.6. Fix s€S. Let
Ul = {(xynz) e Ul(s) e ) (i=2.3).

where Uy =9,N%; (j=1,....4). Let n':Uj;UU; — CxP? be a morphism
defined as follows.

' (w)

(x2.(z2 = gu(x2) : pr +axs*)) e V., w = (x2, y2.22) € Uy, 22 = gs(x2) # 0,
(x2. (=x2(yy + axs™!) 1 2o 4 gy(x2))) €V, w = (x2, ¥3.22) € Uy, 22 + gs(x2) # 0,

) Gz —gs(x2) p axyt)ye v. w=(x2, y5.22) € Uy, x2 =0,

] (- gy o 1 +axity)) eV, w = (x3,3.23) € Uz, 23 — gs(x3) y3 # 0.
(x3.(—x3(1 + a.\'§’+'y3) catg(x3)y)) e V. w=(x3. y3.23) € Us.z3 + gs(x3) y3 # 0.
(x3,(z3 = gs(x3)yy - L+ axit p)) e V. w=(x3,y3,23) € Uy, x3 =0,

where

V={(x(u:0)eCxP'|(x,s) e #}.

The open set Uy U Uy has no singularity and ' is blowing down an exceptional
curve Ey, where Eo = {(x2,,22) € Us|x3 = 0,23 — gs(x2) = 0} U {(x3,y3.23) €
Uslxs = 0,23 — g5(x3) y3 = 0}.

Proof.  We have only to prove U; N (U, U Uj) has no singularity to show that
U, U Uj has no singularity (see the proof of Lemma 5.2). Singularity on U, N
(U, U Us) is on the set defined by x;f.(x;) —a* =0 (see (5.1)). By the definition
of &, x1fy(x1) —a?# 0 on U N(U;UU{). Therefore U;U Uy has no singularity.

We next show that n’ is blowing down of E,.. By putting y, = Y'/X', z;, =
Z'/X', we have

Uju U
= {(x, (X' 1Y Z) eCx P | Z7 4 XY 4 2ax"2X'Y' + x¥2f(x"1)x"? = 0}.
Since
Z7 XY £ 2ax™2 XY + 3(2’”'2./‘;()(')X'2
=(Z' = g;(X)X')NZ' + g5(x)X") + x(Y' + ax"t' X")2,
we have
UsUUs ={(x,(X: Y:2Z))eCx P} XZ+xY? =0},

where X =Z' — g,(x)X', Y =Y +ax""'X', Z = Z' 4 g,(x)X'. The exceptional
curve E, is given by x= X =0. Now we have
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/ (x.(X:7Y)) if X #0.
x(X:Y:2) =

7 ) {(x,(—xY:Z)) if Z#0.

Put U'={(x,(X:Y:2Z)eUUUj|(X: Y :Z)#(1:0:0)}. Then U’ is a

open neighborhood of E,. We have a coordinate transformation ¢ of U’ as

follows:

EU — {(x.y)eC*|(x.5) e} x P!,

(x. %)(Z: Y) if ' Y#0,
(x,(X:Y:2)) =

Y
(x.——x)(Z:Y) if Z#0.
VA
This shows z’ is nothing but a blowing down of the exceptional curve E,.

We construct a family of X5,,3 by Lemma 5.6. Put

Uy = {(x1,y).21.5) € C’ x S| Fi(x1.y.21,5) = O}
¥ ={(x.5)(u:v)eCxSxP'|(x,5)e.}
Uy = {(x4, y4.24,5) eC’ x S| Fa(xa. y4.za.5) = 0},

We can glue %,7 ,%4 as follows (see Lemma 5.6) and denote it by X:
(1) xi=xa.pys=1lyz1 =2

(2) Put % = {(x1,y,,21,5) € U|(x7".s) e L} I (x1,p).21,5) €U,

_
X=X

n+1

_n+1

gs(xi) 1 xiy +a) if o — X!

(Ll U): {(Zl—xl gx(x]’l);éo
: (_(lel +a) : Xl(ll +X{’+'gs(x,"))) If o +X'|'+'gs(x|") £0

(3) Put %, = {(x4, ys.24,5) € Ua|(x3".5) € A}, I (X4.4.24.5) € Uy,

X = x;' ;
(u:v)
B { (24 — x4 yags(x3") - xa +ayy) i za— x{ yag.(x3") #0,
(= (xa + apg) s xa(za + X0 pags(x3)) I 24+ X pag,(5") #0.
Let

p:X—>S
be the projection to S. For se S\4, let
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be a morphism defined as follows:
(i)
(x1.¥,21) € Uy, w=(x1,y.21) € U,
(V2. (22 = gs(x2)) s 2 +axg ) eV, W= (x2, y3.22) € UsZy — gs(x2) # 0.

(2 (=32 +axyt)) it gx2))) €V w= (32 py.:2) € Urza 4 gi(x2) #0,

= (v (z =gy T +axit ) eV, w=(x3, ¥3.53) € Us.z3 — g.(x3) y3 # 0.
(x3(=x3(1 + a\’“rl W) oy ) eV, w=(x3, r5.03) € Usoza + gi(x3) vy #0,
(x3,(z3 = go(xa)ya s L+ axy ™ ) eV, w=(x3.5.23) € Us,x3 =0,

(¥4, v4,24) € Us. w = (x4, V4, 2a) € Us.

Then this is blowing down of the exceptional curve E, .

Proposition 5.7. X is nonsingular.  Put
A= {seS|xf(x) —a*> =0 has multiple roots.}

(1) If seS\A. the fiber X, = ¢~ '(s) is nonsingular and there exists a framing
(C.L.P)e € and 2n+ 3 points P\,...,Pyi3 on C\L in general position such
that X is isomorphic to the surfuce obtained from P? by blowing up P. P
P2n+3~

(2) If sed and a #0. the fiber X, has singularities.  Put

.....

M) —dd = (v =d)" (v =d) . di#d (P # ).

Then X, has simple singularities of type Ag—y (i=1,.... r).
(3) If sed and a=0, the fiber X, has singularities. Put

fx)y=xf(x—d)f (v =d) . diE: di# ). di#0

Then X, has simple singularities of tvpe Ay,—y (i=1,....r") and simple sin-
gularity of type Di,1. (If ko =1,2, then Dy = A,. Dy = A3).

Proof. It is clear that 7/ has no singularity by definition of ¥ and we
have that %, and #4 have no singularity (see Proposition 5.5). Therefore X is
nonsingular.

By Proposition 5.5 and Lemma 5.6, we have (1). In the proof of Lemma 5.2,
we showed that ), has no singularity outside U, =9 ,N%,. Therefore the
statements (2) and (3) follow from Proposition 5.5.

Remark 5.8. The fiber of 9), defined by v'/u’ = 0 is union of two exceptional
curves. There are two choices of sign for fixing the function g,(x) at the be-

ginning of construction of X. This corresponds to the choice of the exceptional
curve that is blown down in Lemma 5.6.

We next consider a meromorphic 2-form w on X defined as follows:
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_dxidyr on U
2/~ 1z, A
dxdv,
_— on v\ ={(x,s)(v;: 1) e v},
X ) 1={(x.9)(i:1)er}

dxdv,
Cav—Ix(1 + xv3)
dxadys
L - 2nv/~1y,za

Let D be the pole divisor of w. Put D, =DNX,.

on V3 ={(x,5)(1: 1) € ¥},

on Us.

Proposition 5.9. If s € S\4, there exists a framing (C, L, P) € € satisfying the
following conditions.
(i) X, is the surface obtained from P2 by blowing up P and 2n + 3 points in general
position on C\L.
(i) Dy=C+ L, where C+ L are the proper transforms of C. L.

Proof. By the proof of Lemma 5.2 and 5.3, that we have only to show D, =
n(S") + 7(Fyp,2). On U; we have

_dxldyl_ dxldzl_ dy1d21
2V —1lws = 2, =-2 oF, =2 @

v 0x
Since X, is nonsingular, w doesn’t have pole on U;. On U,
Dy N Us = {(x4. y4.24.5) € Us|y, = 0}
= (SN Uy.

On V, = ¥1NX,, w, has pole along x =0 or v? + x=0. Since

B x(x + v?)
Ya = av? + 201 x"+2g,(x~1) +_ax’
then
(G, (11 00)) € Vilx(v? +x) = 0} = (2(S)) Un(F,..2)) N V1.
Therefore

DNV = (S Unr(Fye2)) N V1.
Similarly on V> = ¥3N X,
DN Vs = (#(S")Un(Fe2)) N Va.

Remark 5.10. Let 3 — S be the semi-universal deformation of Eimple
surface singularity of type E, (m=6,7,8). Then there exists a family 3 — S
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whose general fibers are Del Pezzo surfaces and compactifications of general
fibers of 3 — S ([14]).

The family ¢|,, : % — S is the semi-universal deformation of simple surface
singularity of type Dj,.3 and general fiber X; is compactification of general fiber of
semi-universal deformation of simple singularity of type Da,y3.

It is well known that 3, is a surface obtained by blowing up m points in
general position on P2, Furthermore D’ = 3,\3, is an anticanonical divisor of 3,
and

R ={ae Hy(3;:Z)|a-[D')=0.00- 00 = -2}

is the root system of type E, ([6], [10]).
The surfaces X343 and the family X have same properties.

6. A family of P2 with 21 + 2 points blown up

In the previous section, we constructed a family of surfaces related to a simple
singularity of type Dj,+3. In this section, we construct a family of surfaces related
to a simple singularity of type Dj,42. Let m =2n+ 2 in this section.

Let (C.L,P) e € be a framing defined in section 2 and {Qy} = LN C. Blow
up P.Qp and m points P...., P, on C\L in general position. Let Ep. Eg, and E;
be the exceptional curves cooresponding to these points. Let Q; be the inter-
section point of C and Eg,, where C is the proper transform of C. Blow up Q)
further. Then we have the surface Z,,

p:Zy — P2
Let Eg, be the proper transform of Eg, and Ep the exceptional curve.
Propositon 6.1. The divisor
D=L+ C+Eg, +2Ep,
is an anticanonical divisor of Z,,.
We next define isomorphism of the pair (Z,,, D).
Definition 6.2. Let (C,L.P) (resp. (C'.L',P'))e €. Let Z,, (resp. Z,) be

the surface obtained as above. Put D=L+ C+ Eg, +2Eg, (resp. D' =L +
e
C + E;.)“ + 2E’QI ). Then we say that (Z,,. D) and (Z,,, D) are isomorphic if there

exists an isomorphism ¢ : Z,, — Z' such that

m

/

#C)=C'.  ¢L)=L. $(Eq)=Ep. HEg)=E

From now on, we assume that C:z2=xy, L:x=0, P=(0:0:1) (see
Lemma 2.3).

Proposition 6.3. Let m points Py,..., P, (resp. P{,....P))e C\L be in
general position and Z,, (resp. Z' ) the surface obtained by blowing up P,Qy. Q).

nm
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Pi,....Py, (resp. P',Q(. 0P| ..., P!). Put D=L+ C+Eg,+2Eg, (resp.

_ - m
D=L'+C+ E/Q0 + 2Eb. ). Then there exists an isomorphism @ :(Z,,D) —

(Z),,D") such that ®(E;))=E/ (i=1,.... m) if and only if there exists a e C*

such that s; =as, (i=1,....,m), where Pi=(1:s?:s) (i=1,....m) (resp. P/ =

(1 :s,f2 is) (i=1,....m)).
Proof. The proof is same as the proof of Proposition 2.4.
We consider homology exact sequence.

— H}(Z,,,QZ) — H3(vaZm\D:Z)

II
0

_6’_’ HZ(Zm\D; Z) L) HZ(Zm: Z) L’ HZ(ZIm Zm\D; Z)

—

We can extend the intersection pairing in H>(Z,:Z) to a bilinear form on
HZ(Zm;Z)@ZR. Put

Q=kerj, «c Hy(Z,:Z),
R={aeQ|a -a=-2}.
Lemma 6.4. Let Q and R as above. Then we have
Hy(Z,\D;Z) = Q.

Proof. Put D=C+L+Eg,+2Eg,. The curves C, L, Egy, Eg are
homeomorphic to 2-sphere. Therefore H,(D:Z)=0. Then Hs(Z,.Z,\D:Z) =
0 and the result follows.

Let / be the homology class of total transform of line and ep,ép,. ep,,
el....,ey the classes of EP,EQO,EQI‘EI, ....E, respectively. Let ¢ and / be the
classes of C and L.

Proposition 6.5. Let Q. R be as above. Then
a- (2l —ey — - —ey — g, —2ep,) =0

Q= 0eHyZy;Z)|o- (I —ep—eég, —2ep,) =0 (6.1)

a-ég, =a-eg =0
and R is the root system of type D,, in Q ®zR. Furthermore R generates Q. Put
II={e—er....en-1 —€p.—(I —ep—en_1 —en)},
then IT is a basis of R

Proof. Since D=L+ C+ Eg,+2Eg,, [ =1—ep—&g, —2¢q, and ¢=2/—
el — -+ — ey — &g, — 2ep,, we have (6.1).
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Put o = al + bpep + byey + -+ + byen + cofg, + Creg, € Q. then

a4+ b+ -+ by +c1 =0,

a+bp+c =0,
—2¢o + ¢ =0,
Co — () =0.

Therefore since

2a+ by +---+ b, =0,

a+bp =0,
Co =0,
C| =0,

then the result follows from Proposition 3.3.

We take 2-cycles I ;. F,’J as (3.3) and (3.3)". Let oy,..., o, € Hy(Z,\D:Z)
be the classes of I'\a,.... Loy I}

m—1.m*

Corollary 6.6. H,(Z,,\D:Z) is generated by {a,,....o,} and the intersection
paring is given by

=2 i=j
— 1 li—jl=1.i,j#m
‘ 1 {i.j} ={m—2.m}
0 otherwise

The next proposition follows from Proposition 3.6 and Proposition 6.5.
Proposition 6.7. Put
g(e)y=c.g(hy=1
W = qgeAut(Hx(Z,:Z))| g(eg,) = g,.4(eq,) = ¢g,
g(2) g2y =a-o for a,a' € Hy(Z,;Z)
Then W is isomorphic to the Weyl group of type D,,.

We have the theorem of Torelli type from these results and the same dis-
cussion in section 4.

Theorem 6.8. Let (C.L.P) (resp. (C'.L'.P"))e€ and {Qo} = LNC. (resp.
{Q}=L'NC"). Let P\,....Py (resp. P|.....P),) be m points on C\L (resp.
C\L') in general position.

Let p:Z,, — P (resp. p': Z — P2) be the morphism obtained by blowing up
P.Qy.Py.....Py (resp. P',Q(. Py, .... P!.) and infinitely near point Q\ of Qq (resp.
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Q(), where Qi (resp. Qy) is the intersection point of the exceptional curve of
blowing up of Qo (resp. Q;) and the proper transform ()j C.

Put D=C+ L+ Eg,+2Eg, (resp. D’—C +r +EQ +2Eg). Let o
(resp. w') be a meromorphic 2-form on Z,, (resp. Z,,) such that w (resp. ') has
poles only along D (resp. D'). Then as (4.2), we can define the mapping
Xw:Q — C (resp. x,: Q' — C), where Q =ker j, (resp. Q' =kerj,) is the root
lattice.

If ¢: Hy(Z,;Z) - Hy(Z,,:Z) is an isometry satisfying the following conditions
(1) and (2 )

(1) $(0) =2, ¢1) =T’ $(eg,) = ., dleg,) = e,
(2) there exlsts e C" such that ¢" (x,) = 0Xe-
Then there exists an isomorphism @ : (Z,,,D) — (Z!

m?

D') such that @ induces §.
In the remaining of this section, we construct a family of these surfaces. Let
$ be a Cartan subalgebra of simple Lie algebra so(2(2n + 2),C) of type Dj,> and
W its Weyl group. The quotient
$§—>S:$5/W;C2"+2
is given as in section 5. For s=(a.by,.... bos1) €S, put
f‘(X) — x2/1+l + blxln 4ot b2/1+lv
hy(x) = x> f,(x7") —x7".
Let H' be a curve on X, defined by as follows:
x1 3+ 2ay, + fi(x)) =0 on W,
x2(y} 4 2axi y, + X3 f(x3Y) =0 on W,
x3(1+ 2axi ys + p3xd™ f(x371)) =0 on Wi,
X4+ 2ay, + yff;(x4) =0 on Wiy,
where W;, i=1,2,3,4 is open sets of X, defined by (5.2).
In Lemma 5.2, we consider the double covering of X, branched along a
nonsingular curve H. But H' has singularities at (0, +v/—1) € W3. Therefore we
blow up these singularities and take double covering branched along the proper

transform H" of H’.
Put

Fi(x, y1,21,8) = 22 + x1y8 + 2ay, + f,(x1),

F(x2, ¥3,72.8) = 25 + x203 + 2ax52 py + x2 - 3" £,(1/x2),
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Gy (x3.u.23.8) = z3 + u(uxz + 2V/—1) + 2ax!(ux; + vV-1)
+ (uxs + V=1)hy(x3),
Gy(v.w. z5,8) = 27 4 {w 4 2a0" (ow — 2V =1)" (ow — v-1)
+ (0w — V=1)2hy(v(ow — 2V=1))},
Gy(t. yy.zs.s) = 2§ + {1+ 2ay,"™ (p3 + 1) + 1p3h(1(y3 + 1)}
Fu(Xq, yg.2a.8) = 22 4 xa + 2ay, + 2 fi(xa).

Let X be a manifold obtained by gluing the following open sets %, %2,%\,%>. %3,
U4 as follows:

Uy = {(x1,y,.21.8) € C* x S| Fy(x1.y,,21,5) = 0}
Uy = {(x2, y2.72,5) € C* x S| Fa(x2, y3.22,5) = 0. (x2, 72.22) # (0, +V=1,0)},
Yy = {(x3.u,23,5) € C* x S| G (x3.u,23.5) = 0},
WYy = {(v,w,2},5) € C* x S| Ga(v,w, 2}, 5) = 0},
Yy = {(t. y3.25,5) € C* x S| Gs(1, y3.2§,5) = O},
Uy = {(xa y4.74.5) € C % S| Fa(x4. y4,24,8) = 0},
X| = Xg, X3 = X3, xixy =1,
Yiya=1. yays =1, Y1 =Xy,

1 -
it =z, =21y,

y3— V-l =ux. x3=uv(y; —vV-1),
Vol w0 =iy + V),
22/ y, = x373 = v(ow — 2V = 1)z = (yi + 1)z5.

The glueing formulas for (x;, y;) are same as (5.2) and that for u,v,w,,x3 and s
are nothing but blowing up of (x3,y;) = (0, +v—1). Rewriting F; by these
formulas, we have F», G|, G, G3 and Fj.

Proposition 6.9. X is nonsingular. Put

A= {seS|xf.x) —a’> =0 has multiple roots}.
Then
(1) If se S\4, the fiber X, is nonsingular and there exists a framing (C.L,P) e €
such that X, is isomorphic to the surface obtained from P? by blowing up P,
2n+ 2 points Py, ..., P2 on C\L in general position, Qo and infinitely near
point Q, of Qo as in Theorem 6.8.



750 Jun-ichi Matsuzawa and Akiko Omura
(2) If sed.a+#0, the fiber X; has singularity. Put
Xfx)—a® = (x—d)" - (x—d)". di#d (i # ).

Then X, has simple singularities of type Ay,-; (i=1,.... r).
(3) If sed,a=0, the fiber X; has singularity. Put

filx)=xfo(x—d)h - (x—d) . di#di(i # ). d #0.

Then X has simple singularities of type Dy 1 and of type Ay,—y (i=1...., r)
(lf k() = 1,2, then D, = Ay, Dy = A3).

Proof. There is no singularity on %, and %4 (see the proof of Proposition
5.5). The complement %,\%, is defined by x; =0. We have

OF il g 5 -
T = V3 2+ 2 s £ 00 ) o (3 ().
X2 X2
0F;
= 225,
522 2

Therefore on the set defined by x; =0, we have

NI SRS
0x; 0z 2, = 0.

Thus X has no singularity on ;.
On 9),, if x3 # 0, then there is no singularity. Since

oG,

—_— =2v -1,
ou

.\‘3=0

9), has no singularity.
On %,, if v # 0, then there is no singularity. Since

0G>

ow =1

v=0

there is no singularity on %,.
Then we have only to prove X has no singularity on the subset of %3 defined
by y; =0. Since

oG
WG g G005 =1, & =1,
0z4 ot P——

then X; has no singularity on %3. Therefore X is nonsingular. The proof of (2)
and (3) is same as Proposition 5.5. If se S\4, then X, is nonsingular (see
Proposition 5.5). We next prove (l). Put se S\4 and

U= X0N%, i=1,24, Yi=X,N%,, i=1,23.
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The fiber X, is a double covering of blowing up of X, at two points with branching
along H”,

vV X — X,

The irreducible components of H” are heperelliptic cuve H!' and P'. The
hyperelliptic curve H|' is ramified at (f8,. —a/B,),. ... (Bas2, —a/Pans2) € W1, Where
Bis- - Bamsa be the roots of the equation xfi(x)—a®>=0 (if a=p; =0, then
(0,0) € Wa).

Let F; (i=1,..., 2n + 2) be the fiber of X, defined by «'/v" = ;. Then put

Vo' F)=F, UF,  F. Fa~P.

For points (0, +v—1) e W3, put Ex =v'-'((0,v/=1)), E_ =v'~'((0,—V~1))
and let F be the inverse image of proper transform of the fiber F defined by x; =0
in W, (see (5.2)). The self-intersection number of F;; (i=1,....2n4+2.j=1,2)
is —1 (see the proof of Lemma 5.2). Furthermore the self-intersection number of
E, and E_ is —2 and that of F is —1.

Since F;; (i=1.....2n+2,j=1,2),E_,E,, and F are isomorphic to P!,
Fij (i=1,....2n4+2,j=1,2) and F are exceptional curves of the first kind.
Then we blow down F;; (i=1.....2n+2,j(i) =1 or 2), F and the image of
E.. Then we have P'-bundle X, over p'

n:X,— 2.

We may assume r =1 (see Lemma 5.3).
We next blow down (—1)-section of ;. We have a morphism

n X, — P2

Put S'("):v"'(S(”)), where S is (—n)-section of X,. Since the self-
intersection number of S is —2n. self-intersection number of ;7’(5‘(")) is 4. Then
17’(5'(")) is a conic because it is isomorphic to P' and its self-intersection number
is 4. Then »'(E_) is a line tangent to ry’(S(")). Thus we have the statement

(1).

Remark 6.10. (i) We can choose /(i) such that a surface obtained by blowing
down F ;i (i=1,....2n+2,j(i)e {1.2}), F and E_ is X.
(i) For h=(h,.... hy) €D, we have

12, () — h2) + h? - h2

m

F|=:]2+x|yf‘+2ay,+ .
X

Thus the roots f3,...,f,, of the equation xf,(x;) —a? =0 are hi,....h2

m*

We next define a meromorphic 2-form @ on X.
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( dX|dy|
—_— on %,
2nv -1z :
dXZdyz
e on %U,,
2nvV —1x32, ?
dxsdu
on %,
27IV—1X3Z3(X3M+\/—1) :
w= ) dvdw o (6.2)
2nv—lvzj(vw — 2V =1)(ow — vV —1) >
dtdy;
on %3,
2nV—1ezyy;(y3 + 1) }
dx4dy4
- on %y.
{27V —1y,z4

Put D be a pole divisor of w.

Proposition 6.11. If' s € S\4, there exists a framinf (C, L, P) € € which has the
following properties:
(i) X, is isomorphic to the surface obtained by blowing up P, 2n+ 2 points on C\L
in general position, Qo and infinitely near point Q of Qo as in Theorem 6.8.
(i) Dy=C+L+Egp, +2Ep,.

Proof. By Proposition 6.9, we have only to show D, = S'(") +E_+E, +2F.
dx,dy,
22
on U,. Therefore w, has poles only on the set defined by x; =0 in U,. Put
Fy(x3, ¥5,22,8) = z% + x2rc2(x2, ¥5,8). Then since in the neighborhood of any

It is clear that w; has no pole on U;. It is also clear that has no pole

. . . z
point of x; =0,k; # 0 and (x2, y,,z) is a local coordinate, where z; = =2

NG
Since U, is defined by zéz +x2 =0, (,,23) is a coordinate of U,. It follows
from
dedyz -9 dyza'zé
X222 \/x—zzéz '

that «w; has poles along x;, = 0 with multiplicity 2. We have

$"nu =g

Fﬂ Uz = {(Xz,yz,ZQ) € Ulez = 0},
E.NU, =y,

ENU,={.

Therefore D,N U, = (§(n) +E_+ E, +2F)NU,. Similarly we have the follo-
wings. Let Y, =%;NX,.
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(a) On Y|, ws has poles only along x3 =0 and ux; +v—1=0.

S‘(") NY, = {(x3,u,z3) € Y1 |ux3 + V-1 = 0},

FNY =g,
E.NY = {(x3.uz)e Y |x3=0}
ENY =g.
(b) On Y,, w, has poles only along v =0, vw — 2v/=1=0 and ow — V-1 =0.
§"n Yi = {(v,w,z}) € Ya|ow— V-1=0},
FNY =g,
E,NY, = {(v.wz}) e Y |ow—2V-1=0},
E_NY;={(v.wz}) € Ya|v=0}.

() On Y3, w, has poles only along y3 =0, y3—vV—=1=0, y;+v—1=0 with
multiplicity 1 and ¢ = 0 with multiplicity 2.

sy, = {(v,w,z5) € Ya| y3 =0},
FNY,={(v.wz{)e V2|t =0},
E.NYy={(v,wz5)e Y| ys — vV—=1=0},
E_NY, ={(v,wz})eYa|p;+V—-1=0}.
(d) On Us, wy has poles only along y, =0.

SN ¥, = {(x4, ya.24) € Y| y4 = O},

FNY =g,
E.NY =,
E_NY =g.

Thus we have D, = 5(") +E_+E,+ 2F.

Remark 6.12. It is clear that the general fiber of X — S is a compactification

of the general fiber of semi-universal deformation of a simple singularity of type
Dy,42 (see Remark 5.10).

7. Monodromy representation of 7;(S\4) on Hy(X\D;Z)

Let ¢:X — S be the family and D the divisor defined in section S5 if
m=2n+3 or in section 6 if m=2n+2. Put
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S’ = S\4.
X' =X\(DUgp (1))

Then ¢’ = ¢l : X' — S’ is a locally trivial fiber bundle with the fiber X\,
(te S’). Therefore n;(S\4) acts on Hy(¥,\D;:Z) as a monodromy. Put

9 = {(S11ee Sy —=S10vn-s —Sm) € CZ’”}
={(s1,...,5m) € C"},

T1Gsi = s)Gsi +57) # 0}.

i#]

Drey = {(sl ...... Sm) €9

Then
S = D/ W
where W is the Weyl group of type D,,.

Theorem 7.1 ([4], [S]). The fundamental group m\(S') has a presentation with
generators ay., ..., Om_y and relations:

O"o'jo" e == 0‘10”0'1 DN
—— N———
m;_jtimes m; jtimes
where
1 i=J
- 3 li—jl=1,ij#m,
" 3 (i.j) = (m = 2.m). (m,m = 2),
2 otherwise.
The loop corresponding to the generators gy, .... 0,1 can be given as follows
(see [5]).
Put
Hij={(s1,....5m) € R |s;i —s; = 0}
and
H’,I = {(S], AN ,S,,,) e R"” lS,’ + Sj = 0}
Then
Doy = 9 — U (Hi; +V-1H; ;U H,{, + v—lH,{,).
i#] ) '
The set

Co+ v —IR" = 5:‘(’5/
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is a fundamental region of W in 9,,,, where
Co={(s1,--,Sm) €RM |51 =52 <0, ..., St — S < 0,81 + 5 > 0}
Put
ug, =(1.2,...,m)e Cp + vV—1R"

and let 5o be a class of uy, in S’. We define paths in $,,, which induces loops in
S’ as follows:

}/(l') . [0, 1] - 5reg (l = 112)1
W) = (1= Dy, + 12,2+ V=1.3,4,....m),
(0 = (1 =022+ V=1,3.4,...m)+1(2,1,3,....m).

Put y, = y(12) -y(ll), then y, is a path from u, to the image of u; by the reflection
in H;,. Similarly, we define y;(i=2,...,m—1) with respect to H;
(i=2,....m—1). We also define the path y,, in 9,,, from uy, to the image of u,
by the reflection in H/ as follows.

m—1,m
W) = (1= Oug +0(1.2,....m—2m — 1+ V=1, m+V-1),

YA =1 =0)(1,2,....m=2m— 14+ V=1, m+V-1)
+t(1,2,....—m,—m+ 1),

and put y = y%y5).

Let ; (i=1,...,m) be the loops in S’ given by these paths y, (i=1,...,m)
and ay,...,0, the classes of 7;(S’,s0) induced by 7, (i=1,...,m). Then
(S’ s0) is generated by o,..., 0.

We next define generators of H»(¥,\Ds,;Z) corresponding to oy,...,q,. If
s =150, it follows from Remark 5.4 and 6.10 that the roots of the equation
xfy(x) —a* =0 are 12,22,... . m?. We may assume f,,...,B, is 12,22,....m?
respectively and

E,;NS" = {((2.0.(-1)"'V=The U}  (i=1,...,mj=12),

where

Fi; m=2n+2" &

Fij =2n+3 < 5" -
Ei’j:{n( yom=2n+ S<>={§(S ) m=2n+3

m=2n+2

When we blow down X, to X, we may assume all indices j of curves E;;
which should be contracted are 1 (see Remark 5.8, 6.10). Put

U =uN%X, (i=1,4),

T :a closed tubular neighborhood of 5" in X;,.
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Define paths 7; (i=1,....m—1) from (i?,0,v/—=1i) to (i?,0,v/—1(i+1)) as
follows

() = (1 = i+ t(i + 1)2.0.(1 = )6;1 + 16;41.1) € Us.
Also
(1) = (1 = )(m = 1)+ tm)*.0. (1 = 1)Op_1.1 + o2 € Us,

where 5,-,,~:(—1)-"_]\/—1i. Then we can construct I (i=1,...,m) and
r as (3.3) and (3.3)".

m—1,m
i = (E\ENT)UOT |t U(Eip1 1\ (Eis1,1 N T)),
Iy = Enet \Enerd N 7)) UST |, U (Ep2\(En2 N 7).

m—1,m

Let a,...,a, be classes of Fl,z,...,1",,,_|_,,,,F,’n_,vm in Hy(%,\Ds,: Z)

respectively. It follows from Corollary 3.4 that H,(X,\D,:Z) is generated by
aj,..., %, and we have following theorem.

Theorem 7.2. Let s9,01,...,6m,,01,...,0, be as above.  Let
p: 7TI(S/~SO) - AUt(Hz(xSO\bSD; 7))

be the monodromy of the fibration ¢ : X' — S’.  Then

ploi)(x) = x — i’j‘:’i %, (1
ploio;)(x) = p(a:)p(a;)(x). (2)

This shows the monodromy group p(mi(S’.s0)) is isomorphic to the Weyl group of
type Dp,.

Proof. The condition (2) is clear. At first we prove (1) for o; =0,. We
consider diffeomorphic mapping induced by 7;:

'7(’) : xxo\bxo i x)‘vl(t)\‘bpl(y), e [0, l]
Then
n(D)((12,0,.V=10)) = (5:(1)%,0. £ V=1s;(1)) € %5,()\ Dy, () N Za.

where  y,(f) = (s1(¢),....sm(f)). Since si(t)#0 and #(f) is continuous,
n(0)((i2,0,v/=1i)) = (s;(1)*.0,v/=1s,()). Therefore we have
(22,0,2v/-1)  i=1,
n()20,V=1) =1 (12,0.V=T)  i=2,
(i2,0.v/~1i) i#1,2.

Similarly we have



Blow-ups of P? 757

(22,0,-2v—-1) i=1,
n(1)(i%,0, —V=1i) = { (12,0, —/=1) i=2,
(12,0, —V/—T1i) i#1,2.

Thus we have

— o] = 1,
plon)(o) = ¢ o+ i=2,
o i # 1,2,
and
2x -0
plon)(x) =x - T a.
We can prove (1) for o3,...,0, in the same way.

Remark 7.3. We showed the monodromy group p(m,(S’,50)) is isomorphic to
the Weyl group of the root system of type D,,. But it is well known that the
monodromy group of the locally trivial fiber bundle induced by semi-universal
deformation of simple singularity is isomorphic to the Weyl group of the root
system corresponding to its singularity. ([1, Volume Il, Theorem 3.14))

8. Period mapping for the fibration ¢': X' — S’
The notation is as in section 7. For u,, = (l....,m), put
Q = Homgz(H2(X,)\D,,;Z),C).
Then 7;(S’,s0) acts on Q.
pr (S, s) — Aut(Q).
For oy,..:, 0y, we define af,..., o, as follows:

m

ol (x) = o - x, xe Hh(X \D:Z), i=1,.... m.

1

Put

ve=3"" Ra.
Then we have
Q=V"+Vv-1V*.

We shall define a non-degenerate bilinear form on V* by

* % h m m m
Xyt = (E ,.=1Xifli) : (5 i y,-fxi), Xt = E oy X,y = E g Vit

Let w,- € Q" be the reflection in the hyperplane orthogonal to o and W™ the
group generated by wg.,...,w,. Let

m

R={w' () eV |weW ' i=1,....m}.
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We shall define a period mapping for the family ¢’ : X' — §’. There is one-
to-one correspondence between the equivalence class of covering spaces of S’ and
the conjugacy class of 7;(S’.s9). Let

108 s

be the covering space of S’ corresponding to kerp. Then S isa regular covering
of S’ and its covering transformation group is G = p(n;(S’,50)).

Put $) = (s0.[¢]), where [e] is the unit of p(m(S’,50)). For any §e S’, we can
define a diffeomorphism of X, \D,, to X;\D, induced by one of the paths from sy
to s in S’ which corresponds to §, where s = i(s).

This diffeomorphism induces the isomorphism of homology groups

(8),: Hy(X,\Dy; Z) — Hy(X\Dy: Z).

This isomorphism does not depend on the choice of representative of homotopy.
Therefore for any §e S, we define A; € Homz(H2(X,;,\Dy,: Z). C) uniquely by

M= o

Si(c)

where [c] is the homology class of 2-cycle c.
Then we define a period mapping 2 for ¢’ : X' — S’

2 : 8 — Homgz(Hy(¥,\Dy,: Z),C)

by 2(5) = A;.
Put

HO(" = {U* eV | <a*,1)*> = O}. ot e R*’

Q=0- |J (V' +V-1H,.).

a eR’
Then G < Aut(H(X,,\D;,;Z)) acts on Q' by
0-a(x) =a(07'(x)), 0eG, aeQ'. xeHy(¥,\Dy:Z).
(see Theorem 7.2). We have the following theorem.
Theorem 8.1. The mapping
2.8 -

~)
is surjective and biholomorphic. The monodromy group G acts on S as covering
transformation group and Q' as a reflection group. The period mapping P is
equivariant with these actions. Thus we have isomorphism

S'~5'/G=Q'/G.
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Proof. We have G =~ W by Theorem 7.2. Sjpce Co+ vV—IR" is a fun-
damental region of W in $,,. Any element §€S can be represented by an
element u; € Cy + vV—IR™ and an element w; e W uniquely. Then § = (u;, w;).

Let u; = (s51,...,3 sm) and s =1(5). Letz; 5 (i=1,...,m) be the paths in Uy =
4N X, given by

2is(0) = (1 = O)si + 15:51) .0V =1((1 = O)si + 15041)), i=1,....m—1.
Tm,s(,) = (((l — 1)Sm-1 + [S,,,)Z,O, \/__1((1 - I)Sm—l - [S,,,)).

This path 7; ; gives 2-cycle I';($) as in section 7. Let o;(s) be the class of I;($) in
H)(X¥\Dy;Z). Then

S (o)) = wy (@(5)).

Since 2;(8)) = «;, we have

where «; is as in section 7.
Thus we have that 2 is equivariant with action of G. Put
So = {§e S |§ = (us. le]). use Co+ V—1R"},
Co={v eV | .a/X0(i=1,....m—1,<v" o >>0}.

Then S‘o,\/—ICO* + V'* is a fundamental region of Sl, Q' for the action of G
respectively. Therefore we have only to prove that

?LS:“ . S() - V—lC(; =V
is bijection to prove that 2 is a bijective mapping.
Put § = (us,[e]). Since

. — _ __Axadys
* 2nv —1y424
1 6F4/624

= - dyadz.
2/ —1y,z4 OF4/0x4 Jadzs

dysdz,
v —1y,(1 + yiof,/oxq)

N

we have
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260 = | o

a(s)

=2nv -1 J Resg(,.; Wy

Ti.s

V=lsi
=2J dZ4
V=T,
=2(V—lsip1 — V=ls;)
for i=1,...,m—1. If i=m, we have

26 =| o

\/—_lé‘m-l
=2 J dZ4
—‘/—_15m

= 2( \4 _lsm—l + v —IS,,,).

Thus 2|g, is bijective. It is clear that # is biholomorphic. Thus the theorem is
proved.
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