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Blow-ups of P2 and root systems of type D
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Jun-ichi MATSUZAWA and A kiko OMURA

1. Introduction

Nonsingular cubic surfaces in P 3 (C) are obtained by blowing up 6 points on
P 2 . Also it is well known that geometry of cubic surfaces is closely related to the
root system and W eyl group o f type  E 6 ;  (i) The symmetry o f  th e  2 7  lines on
nonsingular cubic surface can be described by the root system and Weyl group of
type E 6 .  (ii) In  the  m iddle  homology lattice o f  cubic surface, the orthogonal
complement of the class of canonical divisor is isomorphic to the root lattice of
type E6. ( i i i )  The semi-universal deformation of simple singularity of type E 6  can
be described by a Cartan subalgebra of Lie algebra of type E 6 .  Furthermore a
nonsingular cubic surface can be regarded as a compactification of a generic fiber
of this deformation.

For certa in  class o f  rational surfaces, the geometry of surfaces is closely
related to infinite root systems and  the  moduli space for the surfaces are con-
structed in  terms o f  root systems and periods [9].

In  this paper, we construct rational surfaces related to the root system and
Weyl group of type D,„. We discuss the moduli problem of the surfaces.

In sections 2 and 3, we show the relation between surfaces X„, obtained by
blowing up n i points on P 2 and the root systems and Weyl groups of type D „,. In
section 4, we prove the theorem of Torelli type for the pairs of X,,, and a certain
anticanonical divisor of X„, in terms of the root systems and Weyl groups of type
D,„. In section 5, we construct a family ço : X --+ S of the surfaces X2,,+3, where
the base space S  is  the  quotient space of the Cartan subalgebra of simple Lie
algebra of type D 2 t ,+ 3  by  its  W ey l group.

The nonsingular fiber X, can be regarded as a compactification of the fiber of
semi-universal deformation of the simple singularity of type D2 n +3. So the relation
between X,„ and the simple singularity of type D2 17+3  is similar to that between Del
Pezzo surfaces and the sim ple singularities o f  ty p e  E  (see  R em ark  5 .10). In
section 6, we show the relation between the surface Z 2 „+ 1  obtained by blowing up
X2„+2 and the root system of type D 2 n + 2 .  Also we can construct a  family : X —>
S  o f these surfaces Z2 n + 2 , where the base space S  is  the quotient space of the
Cartan subalgebra of simple Lie algebra of t YPe D277+2 b y  its W eyl group. T he
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fiber can be also regarded a s  a  compactification of the fiber of semi-universal
deformation of the simple singularity of type D2,7+2.

The period mapping o f semi-universal deformation 911 S  of simple sin-
gularity of type Dm  is stud ied  by Looijenga and Saito ([8], [15]). W e give a
concrete description of the period mapping for the families constructed in section 5
and 6  in  terms of the root system and Weyl group of type D2n+3 and D2n+2.

In sections 5  and 6 , we define a  meromorphic 2-form co on X. Denote by
A OE S the discriminant variety of 0  and by Z,(s e S \A ) the anticanonocal divisor
o n  X , such that the restriction of co to X s has po les a long Z s . T h e n  the
monodromy group of ni(S \A ) on H2(X 5 \ 1 ;  Z )  is isomorphic to the Weyl group
of type Dm  and z] (S\,61) acts on the period domain as a reflection group which is
isomorphic to the Weyl group of type D,,,.

2. P 2 with several points blown up

Let C be a conic in P 2 , L  a  line tangent to C and P  a point on L \ C .  By
we denote the set of all such pairs (C, L, P) and an elements of OE is said to be the
fram ing. Assume m  >  4  in  this paper.

Definition 2.1. For a framing (C , L, P), we say that m  points P1.. . . , Pm  on
C \L  are in general position if m  points P1, . . . , P„, are distinct and if P  and any
two of them are not collinear.

Let P 1 , , be m  points on C \L  in  general position. Let

p : X n , P 2

be the blowing up o f P 2 a t  P1, ,  P „ ,  and P .  Then put Ep = p  (P). Et =
p ' ( P i ), ,  =  ( P m ). L et L , C  b e  the proper transforms o f L  an d  C.
Then D  =  L  C  is  an  anticanonical divisor on X rn .

Definition 2.2. Let (C , L , P) (resp. (C ', L ', P')) c Let X,„ (resp. X/n )  be
surface obtained by blowing up P (resp. P') and m  points on C \L  (resp. C '\L ')  in
general position. Put D  =  L  C  (resp. D' C').

Then we say that the pairs (X„, D) and (X ,,, D ') are isomorphic if there exists
an isomorphism 0 : X ,,, — > X  such that

0 (0 ) = 0(L ) =

L em m a 2.3. L et (x  : y  : z ) be hom ogeneous coordinate of  P 2 , C  a co n ic
defined by z 2 x y ,  L  a  line def ined by  x  = 0  and  P = (0 : O: 1).

Let (C', L ', P'), X ,,, D ' be as above. T hen  there  ex ist m  points P 1 , , P„, in
general position w ith respect to the f ram ing (C, L , P) w hich hav e the following
property;

L et X n ,  be the surface obtained by blowing up P, P 1 , , P„,, then there exists
an  isomorphism 0 : X„, —> X n' such that

0 (e )  = , 0(L ) .
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By this lemma, we may assume (C , L, P) as in the lemma.

Proposition 2.4. L e t (C ,L ,P)  be  as  ab o v e . L et P 1 ,...,P„, (re sp . P; .......
P )  be m  points on C \L  in general position respectively . Let p : X,„ —> P2 (resp
p' : X,, —4 P 2 )  be  the blow ing up P,P1,... ,P,„ (resp. P;,...,P,',,).

Put E , = (resp. =  p ' (P t )). Pu t D  = L  + C  (resp . D ' = +
) , where L,C (resp. , C / ) are proper transforms o f  L , C . L e t P, = (1 : s : s,)

(resp. P', = (1 : s ' :
T hen there ex ists isom orphism  0: (X m , D) such that 0(E 1) =

( i  =1 ,. . . ,m )  if  and only  if  there ex ists a E C* such that

s, — as (i = 1 , . . . m).

P ro o f  Let A  be an element of PGL (3,C) such that A (C) = C, A (L ) = L .
A (P) = P .  Then line defined by y =  0  is  tangent t o  C  at (1 : 0  : 0 ) and passes
through P .  Therefore A  maps the point (1: 0 : 0) to itself. S in c e  A  also satisfies
that A((0 : 0 : 1)) = (0 : 0 : 1) and A((1 : 0 : 0)) = (1 : 0 : 0), w e have

a  0  0
A = b  O .

0  0  c

Since A (C ) = C , w e have e2 =  a b .  Therefore

1 0  0
A =0 (0  c x 2

0  0 a

The result follows from this.

Proposition 2.5. Let p : X,„ —> P 2 b e  as above and L , (1 < i < m ) the proper
transform of the line passing through P and P. L e t  I be a subset of  { 1,...,m }  and
assume the num ber #I is ev en. T hen w e hav e the Hirzebruch surface El of  degree
1 by  contracting L , f o r i  E  I  and E I for j e { 1, ... ,m }  —  I. C o n trac tin g  (-1 )-
section of E 1 further, we get another framing (C', L ', P') e O.:, where C', L '  are the
im ages of  -C ,L  an d  P ' is  the im age of  (-1)-section of  E .

P ro o f  By contracting L , for i E / and Ej  for j e {1, ... —I, we have P
bundle over P 1 . Therefore the resulting surface is isomorphic to the Hirzebruch
surface E r  o f  degree r  for some r.

p' E r.

Let f ,s(E H2(E,; Z )) be the classes of a fiber and the (—r)-section S  of Er . Let
e' = a f  + bs be the class of p'( ), then 1) = 2, because a fiber of E r intersect p'( )
a t  2  po in ts. Since

0 ( C) • S = (af  +2s)- s = a —2r,

we have
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a > 2r.
Also

4 = p'(C) • p'(C) = 4a —  4r.

Thus we have r = a — I. S in c e  a > 2r, w e h a v e  r<  1. Therefore r  is  0  or 1.
L et D  be the section of E . S in c e  the class o f D  is  x f  + s  (x  c N) and

D • D = 2x — r,
we have

D • D _ S • S (mod 2).

If  w e take D  = p'(Ep), then

p' (E) • p l (Ep) = —1 + #1

is odd. Therefore  S  • S  must be  odd . H ence  w e  have r = 1.
The remaining part of proposition is obvious.

3. Homology and root system

In  this section, we shall study the exceptional curves of the first kind on  X,„
and  the  homology groups of X „, and X „,\D (D  = C  + L ). T he root systems of
type Dm  can be realized in the middle homology group of X ,„. The Weyl group
can be regarded as the automorphism group of the configuration of the exceptional
curves of the first kind. I t  is  s im ila r  to  the realization of the  root systems and
Weyl groups of type E 6  in  tha t of cubic surfaces.

L e t ep, el, ... ,e,,, E H2(Xm; Z ) b e  the  c lasses of the  exceptional curves Ep,
E1,... ,E„, defined in  section 2. L et / E 112 (Xni ; Z )  be the class of total transform
o f  l in e . Then we have next proposition.

Propositon 3.1. (1) H2 ( X,„ ; Z )  is generated by 1, ep, el.. • • , em.
(2) The intersection pairing on X ,„ is given by

12  =  1, 4= —1, e = —1 (i =  i,...,m ),

1 . e ,  = o, l •  e, = 0 (i =  1 ,...,m ) ,

e i • ep = 0 (i = 1, . . . , m), ei • ej  = 0 (i j  and i, j =1, , in).

(3) T he class of  canonical div isor on X ,„ is k m  =  —31 + ep + e l + • • + e„,.

Now we consider the homology exact sequence:

— >  H 3  (X„,; Z) H3 (X ,„, X ,„\D; Z)

O
a. H 2(X „,\D ; Z ) H 2(X,,,; Z) H2 (X„„ X,,,\D; Z)

. .  .
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The intersection pairing in H2(Xm ; Z ) can be extended to the bilinear form on
H2(Xm; Z) O z  R .  Put

Q = ker H2(Xm;Z),

R  =  f a e Q lc x - a = - 2 1 .

Lemma 3 . 2 .  L et Q  and R  be as  abov e. T hen w e hav e

H 2 (X,„\D;Z) Q.

P ro o f  By the definition o f  Q, we have a  following short exact sequences

0 H 3 (X ,, X 1 \D; Z) H2 (Xm \D; Z ) Q  O.

Therefore we have only to  prove that H3(Xm, Xm \D; Z ) =  O . B y  the duality,

I/3 (X,n , X,„\D;Z) H I (D ;Z )

H i (D; Z)*.

Since D = C + L, C S 2 , L S2 a n d  C n L =  {1 ,0 , then Hi (D; Z) = O.

Proposition 3.3. T he lattice Q  is given by

a - (2/ — e 1 — - • • — e„,) = 0
Q = oc H2(Xm ; Z)

}
(3.1)

a • (1 — ep) = 0

and R  is  a  root sy stem  of  ty pe Dm  i n  Q O z R  and generates Q . The set

n=  {  —  e 2 , ...... em 1 — em, —(1 — ep — em-i — em)}

is a  basis of  R .

P ro o f  B y  th e  dua lity  / 12(Xin , X nA D; Z) H 2 (D ; Z ) ,  k e r f ,  i s  th e  lattice
whose elements are orthogonal to  the classes of the components of D .  Since the
classes of C  and L  are e = 21 — el — • • — em  a n d  /  =  1 — ep respectively, we have
(3.1).

Let a =  al + bpe p + ble i + • • • + bm e„, E Q .  By (3.1),

2a + b i + • • + b„, = 0,

a + b p = O.

Thus

Q = { a e H2(X,n ; Z )
a = a(1 — ep — el) +  (a + bi)el ± • • - ± bmem,

a +  (a +  b ,)+ • • • + b„, = 0

}
• (3.2)

L et a = al + bpe p + hi ei + • • • + bm em  E  R .  Then a 2  — (hi, +  b +  •  •  +  k 2
n )  =  —2.

It follows from a + h p  = 0  th a t hi + • • • + h, =  2. T h u s
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R  = (ei — ± (1 — ep — e, — ef ), i j  ,  j  = 1 , .  .  .  ,

Thus we have the proposition.

Proposition 3.4. There are 2m- I  +2m  exceptional curves of  the f irst k ind on
X,,. They are the exceptional curves of  the blow ing up p: X ,n  —> P 2 , the proper
transforms of  the lines passing through P and P . the proper transforms of  the curves
of  degree a  (1 < a <[m 12]) passing through 2a distinct points of  {P1, • • and
P  with multiplicity a —1.

P ro o f  Let e = 21— e l — • • • — ,  1  =  1 —  e p  be the classes of C, L .  Let E be
an exceptional curve of the first kind and e = al — bpep — E;n , b,e, its class. Since
E  is exceptional curve o f the  first kind, we have

1 = —k„, • e =3a — bp — (3.4)
i= 1

— 1 =e •e =a 2 —bp
2 (3.5)

i=1

Also we have

C • D =2a — _ (3.6)
i=1

L • D = a — bp > 0. (3.7)

By (3.4) and (3.6) w e have

1 = 3a — bp — , > a — bp.
i= I

I t  follows from this and (3.7) that

b p  a bp +1.

Thus we have a= b p  o r  a = bp+1.
(i) Suppose a = b p .  By (3.5) we have

Thus there exist i  such that bi —  + 1 and bi  = 0( j  i ) .  By (3.4) we have 2a —
bi = 1 and a =  1 if bi =1 ,a  = 0 if bi = —1. Now we have 2m exceptional classes

e j —  ep —  el, ... ,1  —  ep —  en ,.

These are the classes of exceptional curves of the  blowing up p  and that of the
proper transforms of the lines passing through P  and P .  L e t  be the set of
these classes.
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(ii) Suppose a = bp + 1. B y  (3 .4 )  w e  have

ni

Eb.;  = 2a.
i=t

By (3.5) we have

= 2a.
1= 1

Thus

0 = bi (b i — 1).
i=1 1=11 =1

Since bi (bi —  1) > 0, w e have bi (bi —  1) = 0  fo r  a ll i. Therefore

bi = 0, 1.

Now we have exceptional classes

al — (a — 1)bp — e — • • • — e 12„.

Let Y 2 b e  the  se t o f these classes. Since

[m/ 2] m

E ( 2 i )  =
2'"2m -1

i=0

we have  #  =

If we take m  skew classes / 1 , /,,, in Y1, then there exists only one class /„, + i

in £ 2  such that  1n7+1 • /, = 0 (1 < i < in). This class is nothing but the class of the
curve D  on X,„ whose image under the contraction p ' in the proof of Proposition
2.5 is the (-1)-section of Hirzebruch surface  E .  T h u s  for every class e  of SP 2,
there exist the exceptional curve of the first kind o n  X ,„ whose class is e.

We next define 2-cycle of X ,„\D . Let E, = (P,), E 1 = (Pi ) ,  B, = E n
c, .11 = E, (I C .  L et T  be a  tubular neighborhood o f  C  in  X „, such that T fl E,
and  TnE;  a r e  fibers. L et y be  a injective path  in  C  from  B , to  Bj  and  pu t

= (E,V E, n T)) U OTl y U (EA (Ej  n T)). (3.3)

Then w e can take the orientation such that i( [F u ]) = e, — e ,  w h e re  [Tu ] is  the
homology class o f Fu .

Furthermore let Li  c  P 2 b e  a  line passing P  and P .  L e t  Li  be its proper
transform . Then the homology class of L1 i s  1 — e p — ej  e H2(X „,; Z ) .  Let B.; =
L1 n C .  L et y ' an injective pa th  in  C  from B , to  B . T h en  w e  can  d e fin e  r u

similarly.

= (EA (E i n T ))U  er y , U (LA (L i  n T)), (3.3)'

i, ([1 " j) = ei —  —  e P —  ei).
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Let al , . • • • an, G H2(Xm \D; Z) be the homology classes of Ti,2, ••• , Fm- 1,m. and
r nl i -  , m

Corollary 3.5. H2(Xm\D; Z )  is generated by  {  ,  •  •  •  ,  0 6 } .  The intersection
paring is given by

CX i • (Xi =

{

—2 i =  j ,
1 = m,
1 {i, j} = fm —  2, ml,
0 otherwise.

P ro o f  By Lemma 3 .2  and Proposition 3 .3 , it is clear that H2(X,n \D: Z )  is
generated by {a l , ,  a n j .  Since a i =  i* (a1) • i,.(a1 ) ,  the intersection paring is
given as above.

It is well known that there is close relation between a  cubic surface and a
Weyl group of type E 6 .  We have the same relation between Xn,  and the Weyl
group of type D„,.

Proposition 3.6. T he group

=  { g  A u t ( H 2 (X ,„;Z))
g (i)  = e, g (1) = 1

g(a) • g(a')= a • a' f o r 1,a' c 112(X ,„;Z )} .

is isom orphic to the W ey l group of  type D,„.

P ro o f  It is clear that W  contains the group generated by reflections with
respect to the elements of R , which is isomorphic to the Weyl group of type D„,.

L et g c  W  an d  g(e,) = al + bep b le i + • • • + lim e ,  It follows from  the
condition g(a) • g(a 1 )  = a • a '(Va, Va' e H2(X,„; Z ) )  that

g(e,) • g(e) = e, • e =1,

g(e 1) • g(1) = e 1 1  =  0,

g(e,) • g(e 1) = e, • el = —1.

On the other hand, since g(c) = e,g(1) = I , we have

g(e 1) • g(e) = g(e 1) • e = 2a+  b1 + • • • + b,„ = 1,

g(e 1) • g(I) = g(e 1) • 1 -- a b = 0,

g(e i ) • g(e i ) = a 2  — b 2 — b — = — 1.

Thus we have

g ( ei )  = r e _ ep _

for some j. Therefore there exists an element a  of the symmetric group S„, such
that
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ea ( ,) ,
g(e,) = ep _ e0 .

(

) .

Since g  satisfies that g(e) =  e and g(1) =1, g is determined uniquely. It follows
from g(e) =  e  that

2g(1) = 21 — (ei + • • • + em ) + {g(e i ) + • • + g(e,n )}.

Since the coefficient of 1 in the left-hand side is even, the number of the indices
i that satisfy g(e,) =1 — ep — e, ( )  m ust be even. Therefore the order of W is equal
to that of the W eyl group of type D m .

Let Y (X ,n )  be the  se t o f exceptional classes given in Proposition 3.4. The
Weyl group W(Dm )  acts o n  .,29  (Xm) •

Propositon 3.7. (i) There are  2  orbit of  ( X m ) under the action of W  (D m ).
One is W (D,n )-orbiti  o f  e l  and another is W (D m )-orbit _992  o f  ep.

(ii) L e t M  = { 1 1 ,...,0  be a maximal set of mutually skew classes, i.e. li • 11 =
0  (i j ) .  T h e n  s  =  m  + 1 .  T he  se t M  consists o f  m  elements o f  2 'i and  one
element of Y 2.

(iii) L et e(X,n ) be  the set of  ordered set of  mutually skew lines:

( ) = ; 4+1 = O (i E (1 i m), im+i e -29 21-

Then the W ey l group W (D m )  ac ts  on ‘(X ,n )  simply transitively.

P ro o f  ( i )  Straightforward.
(ii) I f  M n .29 2 = 0, then M 2 2 1. In  this case we h av e  # M  =  m .  But

there exists one element e  of Y 2 such that e is skew to the elements of M .  Thus
we have M  fl 2 '2  0  0  and le t / 5. e M fl Y 2 .  By the  ac tion  o f W(D,n ) ,  we may
assume ls =  ep. The set of the elements of Y (X m )  that are skew to ep is M ' =
lei, , em l . Thus we have s = m + 1.

(iii) A s  in  th e  proof o f  ( ii) , i n i + i  determine th e  s e t  { li, , /m} uniquely.
Therefore W(D m )  acts on &(X,n )  transitively. S in c e  # 2  =  2 ' 1 by  Propositon
3.4 , # (X , n ) = 2m - l m ! .  This is the  order o f  W (13 m ). Thus we have (iii).

4 .  Torelli theorem for the pairs (X,„, D)

L et (C, L, P) e 1  be a  framing defined in  se c tio n  2 . L e t X,„ be a surface
obtained by blowing up P2 a t  P  and m  poin ts P 1 , • , P ni on C \L  in  general
position.

p —> P2

P u t  D = C +  L .  By Lemma 2 .3 , we may assume C : z 2  =  x y ,L :x -, -- 0  and
P(0 : 0 : 1). We next define meromorphic 2-form wo o n  X,n . Let Vi, V2, V3 be
open sets of P 2 defined by
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= 1(1 :x1 :  y i ) e P 2 1,

V 2 = { (X 2 : : y 2 ) e P 2 },

V 3 = {(x3 : y 3 : 1) E P 2 }.

Then we define a  meromorphic 2-form co,; on P 2 by

dx i A  dy
on V1

on V 2, (4.1)

o n  V3.

Put

(0 0 = pW j.

L em m a 4.1. L et T i j , b e  the 2-cycles def ined by  (3.3), (3.3)' and  P i =
(1 : s  : si ) (i = 1, . . . , m ) .  Then w e have

P ro o f  Since E i -= p - 1  (Pi), Ei  = p - 1  (Pi), we have

o = ( 0 0 = 0.
L

co
A(EinT) EiVEinT)

Therefore

= WO.
F, eTly

The point of C \L  can be parameterized by (1: s 2 : s), s e C .  Then by the residue
formula, we have

J w j  = 277 -V — 1  ReSe.Wo
dTI yY

=  d s

27r-V-1(y? — X I)

dX2 A  dY2

Sj

= S i —
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We next calculate w o . Since SL  w  =  0 , w e have

.14,(4nT)
= O.

Since 4n c = {(1 : : s; ), : :

= 2mV- 1 Resew()
y'

Thus the lemma follows.

Let co be a meromorphic 2-form such that co has poles only along D .  We can
define a  map

z w :Q — > C
by

40( 1 ) = f a) , E (4.2)

where F  is a 2-cycle of X „,\D such that a  is  the image of the class of F  under
i,. Now we have the theorem of Torelli type for our fram ed surfaces.

Theorem 4.2. L et (C , L ,P) (resp. (C ', L ',P')) be an element of 1. and p: X ,„
—> P 2 (resp. p' : X„', —> P 2 )  the morphism obtained by  blow ing up P (resp. P') and
m points P 1 .....P ,,, (re sp . P;,...,P ,'„)  on  C \L  (resp . C '\L ' )  in  general position.

Put D  = C  + L  (re,sp. D ' =- C '  +  ) .  L e t co  (resp . co ') be  one of  m ero-
morphic 2-forms on X „, (resp. which has poles only along D (resp. D ') .  F o r

(resp. w ') ,  let  X Q  — > C  (resp. z,"„, : Q' C ) be the mapping defined as (4.2).
If  0: H2(X ,,,:Z ) — > H2(X ,:Z) is an  isometry such that

(1) 0(e) = • 0(1) = Ï',
(2) there ex ists g E  C ' such that 0*(x ) -=
then there exists an isomorphism 0 : (X ,,,, D) (X „D') w hich induces 0 and maps
C  to  C ' an d  L  to  L .

P ro o f  It follows from the condition (1) and Proposition 3.6 that there exists
a E S,,, such that 0(e1) = e", ( i )  o r  / — e l

p  —  e,r
1

( i )  a n d  that the number of i  such that
0(e 1) = I — e,— e„' ( i )  is even.
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Let L ,(i = 1, , m ) be the line in P 2 which passing through P  and P .  L e t
L , be a  proper transform of L .  It fo llow s from  the Proposition 2.5 that we may
assume that 0(ep) e p• , 0(e,) = e , ,  (i = 1.. . . , rn). By Lemma 2.3, we may assume
that conics C, C ' are  given by z 2 =  x y , lines L , L ' are  the  line given by x = 0
and  tha t P  and  P ' are the point (0 : 0 : 1), where (x : y : z )  is  a  homogeneous
coordinate o f P 2 .

Let ( 1 :  s  :  s,), (1::  s i )  be coordinates o f  P„ P; respectively. Then by
Lemma 4.1 and the condition (2) of the theorem, we have

= gs, i = 1, ... ,m .

Thus the theorem follows from Propositon 2.4.

5. A  family of P 2 w ith  2n + 3 points blown up

Let be a Cartan subalgebra of simple Lie algebra o(2(2n + 3), C) of type
D 2n+ 3 a n d  W  its  W ey l g ro u p . T hen  S 1 W  C 2 n + 3 . I n  th is  section, we
construct a  family of the surfaces X 2 n + 3  w hose  base space is S .  T o  d o  it , we
construct a  fa m ily  / )  of surfaces w hose general fiber is double covering of
Hirzebruch surface of degree n branched along a hyperelliptic c u rv e . The general
fiber is also isomorphic to a  blowing up o f X 2„+ 3 a t  one point.

Let

= {(ht, • • . , hm , —hi, , —h,„) e C 2 "1 }

= { (hi, ,h„,) e Cm}.

S =  N W

is given by

h = (h1, ,h,„) (a, bi , b2, • • • • b2,,+2),

where a = hl • • • hm ,b ; = ( - 1) i ai (hf , i s  th e  i- th  elementary symmetric
polynomial.

For s= (a, bi , b2, . . • ,b2n+2) E S, put
f s x 2 n + 2  b i x 2 n+ 1 +  • • b2n+2.

Then

Fi (x i ,  Yi zi , ) =  z? + x1 + 2ay i +  f s (x l) = 0

is  the semi-universal deformation of singularities of type D,„.
Put

01 I  = { (x i , y i , z i , ) e C 3 x  S Fi (x i , = 01, 1 < i < 4,

The quotient

where
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Fi (xi , y i ,z i,  ) z? x ly?+  2ay 1 + f s (X1),

F2 (X2, y2, Z2, s )
x p+2f s (x 2  ) ,=z3+x 2 y ; + 2a4 + 2  y2

F3 (X3, y3, Z3, S) +  X 3  +  2 a X P
3
i + 2  y3

F4(X 4, y 4 .  Z 4 , S )  =  4 + x4 + 2ay4 + Yifs(x4).

W e can glue , * 2 ,  0 / /3 ,  * 4  as follows and  denote by D:

X i =  X 4 , X 2 = X 3, X i X 2  =  1,

YiY4 — 1 , Y2Y3=1 Y1x'21 = Y2,

n+1Z iX 2=  Z 2 , Z2 = Z3Y2, Z4 — ZI Y4.

For s  c  S  denote by D s t h e  fiber of the projection D S.

Remark 5 .1 .  T he  glueing form ula for (x i , y , )  is  sam e a s  (5.2) below for
Hirzebruch surface E .

Lemma 5.2. Put

= Is c S ix f ,(x) —  a 2 =  0 has m ultiple roots.} .

I f  s E S \A , there ex ists (C ,L ,P)  e and 2n + 3 points PI, • • • , P2n+3O f l C \L  in
general position such that V s is isomorphic to a surface obtained by blowing up P, Q,
P1, • • • ,P2n+3, where C n L  = {Q}.

P ro o f  We fix s S V 1 .  Put U, = /I ;  n Ds (i = 1, , 4). If a 0  0, Ts  has no
singularity on  x1 = O. T h u s  w e  assume x1 0 O. S in c e

(

2a
x i F i =  x 1 4  +  x i  Y i + — + x i fs (xi) — a2( 5 . 1 )

XI )

a
and X1 =  xi, y i =  x i  ( Y ! +  

)
and Zi = Vxizi is a local coordinate, Ds h a s  no

xi
singularity o n  U1 .

If a = 0, we can prove Ds h a s  no singularity o n  U1 w hen x i 0  O .  If x1 = 0,
we have

Fl (0, , zi , s) = +  fs (0).

OF'Since s e S \A , f ,(0 )  0  O. Therefore since = 2z 1 0 0, Ds has no singularity on
z i

Furthermore since

OF4

OX4 r4=0
= 1,
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yix in+2fs(x i l ) ,

then T s  h a s  n o  singularity o n  U4.
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aF2Since U2 \ Ui is the set defined by x2 = 0 and = 2z2, F2(0, Y2, 0, =  1,aVs h as  no singularity on  U2. z2 x2-0
Since U3\( U2 1.1 U4) is  the set defined by x3 = y3 =  0  and

aF3

ax3

=  1,
X3 =y3 =0

 

T s h as no singularity on U3.
Therefore D s is nonsingular. Let be the Hirzebruch surface of degree n,

En = CI C2)( 1/ C P2 x P I s n Co = tn Ci}.

Let W ,, W2, W3, W 4  be open coverings of E n ,

W 1 = (Co : CI : C2 )(u' : y') E z„Ivi 0, Co o 0} (xi, Yi) = (u7vi, C2/(0)

W2 = CI y ')  e 0, CI 0 0} (x2, Y2) = C2/Ci
(5.2)

W3 = f(Co : C2 )(u' : y') e Z n iu/ 0 0, C2 0 0} (x3, Y3) = Ci /C2)

W4 = {(o 2)(u' y') c Z n Iv' 0 0, C2 0 0} (x4, Y4) = (a //v /,Co/C2)

Let H  be a  curve on E n defined as follows:

+ 2 aYi + f s (x i) 0

x2Y; + 2 a 4 + 2  Y2 + =

+ 2a4 ± 2 y3 + yixin ± 2 f,(xV) = 0

X4  + 2aY4 + Yifs (x4) = o

o n  W1,

o n  W2,

o n  W3,

o n  W4.

It follows from the way to glue U1, U2, U3, U 4 that T., is a double covering of E n

branched along H

V :9J s

The curve H  is  a  hyperelliptic curve of genus n  + 1  ramified at the points
( 1

31 7 - alf il)7 • • • (fi2n+3 ,  - a l l32/1+3) E  W I and (0,0) e  W3, where ,fl2n+3 are the
roots of the equation x f s (x )  -  a 2 =  0 (If a =  =  0, we take (0,0) E W4 instead of
(fi f ii) E W1).

Let F, ( i  = 1, , 2n + 3) be the fiber of Z n defined by u '/v ' = 1
81 and F o o the

fiber defined by v '/u ' =  0 .  Then fo r i =1 , ,2n + 3, co , the inverse image
v- I (F,) is a union of two lines;

v  I (Fi) = F1,1U F1,2, 1, Fi,2

Since v '  (F,) • v - 1  (F i )  = 0, F1,1 • Fi,1 =- F1,2 • F1,2 = - I .  S in c e  Fi,i F1,2 = P I , Fi,
( i =1 , , 2n + 3, op) are exceptional curves of the first kind.
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W e  n e x t b lo w  d o w n  the exceptional curves F, J ( ,) (j(i) e {1, 2}, i = 1 , . . . ,
2n + 3), and

 
T h e n  w e  have P I -bundle  over P'. T h e r e f o r e  i t  i s  the

Hirzebruch surface E r  of degree r for some r. Then we need the following lemma.

Lemma 5.3. r = 0, 1. W e can choose j(i) such that r = 1.

I-1 : Ds El.

Proof  o f  Lemma 5.3. Let

s( n) = {(C o  (i C2)(u' : y') G  n 1C0 = CI =  01

be (—n)-section of E .  Let g (n) b e  the inverse image of S ( n) u n d e r the covering
v. T h e n  tt(g (n) ) ( J O )  =  4  and ,u(g (") )  intersects a  general fiber at two points.
Let f ( r ) and .s4 0  b e  the linear equivalence classes of a fiber of E r and (—r)-section
respectively. Then

t i (g (n ) )  f ( r ) 2 ,  p
(
s(") )  , s ,(r) > 0 ,  t i ( :5 (n) )  i i ( g(n) )4 . (5.3)

This shows r < 1. If r = 0, by exchanging F1,1 and F1,2, we have tt(T s) = E1.

Now we blow down (-1)-section of E 1

t i t D sp 2 .

Since we have ,u(S'( ") ) — 2f ( I )  + 25 ( 1 ) by (5.3), 1.1(, - (")) doesn't intersect (-1)-section
of E l . T h e re fo re  p'(,S; ( ") ) • ,It'(S- ( ") ) = 4.

Then since ,u'(g ( n ) ) -= P i , p'( ") ) is a conic C on P 2 . The image of F oc .2 is a
line L  tangent to  p i (,.-5( ") )  and the image of (-1)-section of E i  is  a point P  on
L \ C .  Thus we have Lemma 5.2.

Remark 5.4. For h = (hi.... ,h„,) e b, we have

m
= 4 Y ? + 2a y +T-E — h7) + h hzn

x i

Thus the roots fi t , ,fl„, of the equation xif;(xl) — a 2 =  0  are lq , , h,,.

Proposition 5.5. T he m anifold 9,.) is nonsingular and satisf ies the following
conditions.
(1) If s E S \d, the f iber Ds is nonsingular, and there exists a f ram ing (C,L ,P) eCr

and 2n + 3 points P , . . P2n+3 o n  C \L  in  general position such that Ds  is
isomorphic to the surface obtained from P 2 by  blow ing up P, Q, P 1 ,  •  •  •  •  -P2n+3,
where C n L  = {Q}.

(2) If  s E A  and a 0  0 , the f ib e r lts. has singularity. Put

xf,(x) —  a 2 = (x —  d i )k i • • (x  —  dr )k d i  0  d i ,  ( i  1 ) .

Then 9 j, has simple singularities of  ty pe A k ,_ i (i =  , , r).
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(3) I f  s e A  and a = 0 , the f iber V s  has singularity . Put

f ( x )  _  x ko (x  _  d 1)k 1 (x — dr ,) k r'

T hen Ds  h a s  sim ple singularities o f  ty p e  A k ,--1  (i =  1, , r ' )  and simple
singularity  of  ty pe Dko-Fl. ( If  k o  = 1 ,2 , then Di = AI, D 2 =  A 3).

P ro o f  Since W I M ho = 1, J has no singularity on V I .  B y  the proof of
L em m a 5 .2 , it is c lear tha t D has no singularity on D V /4  T h u s  1) is non-
singular. Lem m a 5.2 shows (1). By (5.1), we have (2).

Put s e S \ A ,  a =  O. T h e n  4D, h a s  a sim ple singularity of type Ak,-1
(i 1 ,. . . ,r ') .

Put f (x )  =  x " h (x ) .  T h e n  h (0 )  0 . S in c e

-  
I + xkio=  z?h(xi) - 1  +  xi .qh(xi ) = 0

and take  (K , Z; )  =  (x i Y i 0 (x 1 ) , z1/ A x 1 ) )
neighbor-hood U  of x1 = 0, we have

as a local coordinate for a

z ; 2 ± yi/ 2 ± k() 0 .

(a) If /co = 1, U  has singularity only at the points (0, + 0) e U .  Since

4  2 + + =  4  2 ± 2 ± =

and (Xi, Y1' 2 + 1, Z ) i s  a local coordinate near the singularities, U  has a
simple singularity of type A i  a t  the points (0, + 0) e U.

(b) If ko =  2 ,  U  has singularity only at the point (0, 0, 0) E U .  Since

z; 2
 + x i / 2 + x i / ko  z; 2

 ± ± ) 2 Y 4
 0

and (X i  + Z r)  is  a local coordinate near the point, U  has a simple
singularity of type A 3 at (0 : 0 : 0) E U.

(c) If /co 3 , U has singularity only at (0 : 0: 0) e U .  It is clear that U  has a
simple singularity of type D4 + 1 at (0, 0, 0) e U.

The proposition is proved.

We have constructed a family of the surfaces obtained by blowing up at one
point on X 2n+3. We next construct a  family of the surfaces X 2 n + 3 . P u t

f (x) ,c2n+2 bix2"+1 + • • • + b2n+2,

A = { z  e C z — 1/2},

= {(x, s) E C x _  ( x 2n+2f ; ( x -  _  a  2x 2n+3 e  A I .

Then there exists holomorphic function  g 5 (x )  on d  su c h  th a t
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( g., (x ))2 (x2n+2fs(x-I) a 2x 2n+3) .

We fix gs (x). W e need the  following lemma to construct the  family.

Lemma 5.6. Fix  s e  S . L e t

= { (x i ,y i ,z i ) c (i = 2,3),

w here (I;  = (j =  1, , 4). L e t  it' : C  x P 2 b e  a m o rp h ism
defined as follows.

71'(w)

(x2 , (z2 - g(x 2) : Y 2 + ax !,1+1 )) e  V ,w  =  ( x 2 ,  y2,z2) E U4, Z2 - g s (X2 ) O.

(x2, (=X2(Y? ax4f r P l ) : Z7 q , (X / ) ) )  G V, w =  (x2 , y2 , z2) e U4, z2 + g s (x2 ) 0 0,

(x2 , (z2 - gs (x2) : Y2 +  a x ' ) )  e V.w  =  (x 2 , y , z 2 ) E U4, X2 = O.

(53, (z3 - g s (x3 ) y3 : 1 + a 4 + 1 y 3 )) c V, w = (x 3 , y3 , z3 ) c U ,  z3 -  g5 (x3 )y 3O .

(53 , (- x 3 (1  +  ax ' y 3 ) : z 3 + g.,(x3)y 3 )) e V w = (5 3 , y3 , z3) c U ,  z3 g s (x3 ) y 3O .

(53 , (z3 - g s (x3 )y 3 : 1  +  ax ' v 3 )) E V . w =  (x3 , y3 , z3 ) E r./, x3 = O.

where

V  = {(x, (u : y) E C  x  P l i(x,  ) e

The open set U  U  U  h as no singularity and it' is blowing down an exceptional
curv e E cx , w h e re  E .,)0 - {(x2, Y2, '2) e U21x2 = 0, z 2 -  g ,1(x2) = 0} U {(-)(3• Y3 • 1 3) 6

U31X3 = 0,Z3  -  g s (x3)y 3 =  01.

P ro o f  We have only to prove U1 (1 (t/ U U )  has no singularity to show that
has n o  singularity (see the  proof o f  Lemma 5.2). Singularity o n  (J, n

(u2 u u3 ) is on the set defined by x i fs (x i)  -  a2 = 0  (see (5.1)). By the definition
of d ,  x i fs (x l)  -  a 2 0  o n  U l n ( ( /  u (JD. Therefore t /  U  L / has no singularity.

We next show that TE'  is blowing down of E .  B y  p u ttin g  y 2 - -  V / V .  7,2 =
we have

U

{(X , (X I :  Y' : z'))E c x P 2 Z '2
 +  x  Y

2 ±  2axu+2X' x2n+2.fs,(x_1 ) x /2 0 1 .

Since
z,12 x y / 2 2ax114-2x/ ±  x 211-1-2.f s(x -I  ) x /2

= (Z ' -  g s (x )X ')(Z ' + g(x )X ') + x (Y ' + ax "+ I X ') 2 ,

we have

U U U { (x .(X : Y  : Z ) )  E  C  x  P 2 I X Z  x  Y 2 = 01,

where X  = Z ' -  g s (x )X ' , Y  = Y ' + axu+ 1 X ', Z  = Z ' + g s ( x ) X '.  The exceptional
curve E x ,  is given by x  X  =  O. N o w  w e  have
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{ (x , (X : Y )) if  X  0  0,
g'(x, (X : Y  : Z )) =

(x , (-xY  : Z )) Z  O.

P u t U' = {(x, (X  : Y : Z )) E (/ (X  :  Y : Z ) (1 : 0 : 0)1. Then U ' is a
open neighborhood of E .  W e  have  a  coordinate transformation c  o f  U ' as
follows:

: U' {(x, y) c C 2 1 (x,  ) c V } x P 1 ,

x (Z  : Y) Y 0 0,
(X  : Y : Z )) -

x
,—

Y
Y-  x .)(Z  : Y) Z  O.

This shows g ' is nothing b u t a  blowing down of the  exceptional curve E ,.

We construct a  family o f X 2 + 3  by Lemma 5.6. Put

= {(xi, y 1 , z1 ,  ) E  C 3 X  S  F i (xi, y1. zi , s) = 01,

=  (x, s)(u : v) EC  x S x  P 1 1 (x, s) e

=  { (x4, y4 , z4, s) E C3 x SIF4(x4, y 4 , Z4 , s) = 01.

W e can glue WI, V, /./4 as follows (see Lemma 5.6) and denote it by X:
x i = X4 , Y I  Y 4  -  l• Y4z i =
Put g/ = {(xi, zi,  ) E (x -

1
1 ,  ) e If (xi, y i , z i ,  )  6 Q / ,

-1X  =  X
i

( z i  -  4 +1 gs(xT I ) x lY i + a) z , — x r i gs (x-
1

1) 0 0
(u : v) =

(-(x i y i + a) : x i(z i + 4  g s (x iTI ))) if ' z i + x r 1 gs (x-
1

1) 0 0

Put &1 (x41 Y4, Z4, S) E ()//41(X4 I S )  E  d f .  I f  (x4 , y4 , z4, s) E

X  =  X 4

(u : v)

J(z4 - 4+ 1 y4 g,(x4
- 1  ) : x4 + aY4) i f  7.4 - x'47+1 y4 gs (x:t 1 ) O.

t ( - (x4 + ay 4 ) : x4(z4 + x 4") -  I y4 gs (x4
- I  ))) if  z4 + 4+ 1 y4 g.,(x4

- ') oO.

Let

be  the projection to  S. F or s E S \A , let

n :

(1)
(2)

(
3

)
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be a  morphism defined a s  follows:

n(lr)

(xi, y l)  c

(x2, (=2 — gs(x2)) y2 + E 1/,

y2.(--v2(y2+ax," ± 1 )): z 2 +  afx 2 ))) c  V,

(x3, (7.3 — g (x i ) y 3 : 1 + ax 3"+ I y 3 ) )  c  V,

(x3( - -Y3( I +  ax i' )_1'3) =3 + gs(x3),v3)) E V,

(x3, (z3 — q ( x 3 ) v 3 : I  + y3)) c V,

(x4, y 4 , zel) E  U4.

= y i,iz i)  6

w = (x2, Y2, z2) e U2z2 — g.,(x2) O.

w (x2 , Y 2. z2) 6  U 2, Z 2  ±  g ,(A -2)

• =  (X 3, y 3 , 3 ) E U3, Z3 —  gs (x 3 )y 3O .

w = (x 3 , y3 ,z 3 ) e  U3, :3 q (x3 )v 3 0 O.

• = (x3, y 3 ,2:3 ) G  U 3, X 3 =  0 ,

• =  ( Y4, Y4, Z4) G U4.

( 1 )

Then this is blowing down of the  exceptional curve E .

Proposition 5.7. X  is nonsingular. Put

= E SIxf,(x) — a 2 =  0  has multiple roots.}

I f  s E S \ d , the f iber X s = I  (s )  is nonsingular and  there ex ists a f ram ing
( C ,L ,P ) e (!. and 2n ± 3 points P I , . . . ,  P 2„+3 on C \ L  in general position such
that X s is isomorphic to the surf ice obtained from P2 by blowing up P. PI .......

(2) I f  s E 4  and a 0  0 ,  the f iber X , has singularities. Put

_  a 2 _  d p .) kr ,

Then X s has sim ple singularities of  ty pe Aki _ ,  ( i  =  1 ,.. .  ,r) .
S e 4  and a =  0 ,  the f iber X s  has singularities. Put

f ( A )  =  X k " (X  —  di) k ' • • • (x  — 0 d i (i j ) ,  di 0  0

Then X s  h as  simple singularities o f  type Ak; _ i  ( i  =  1 , . . .  , r ')  and sim ple sin-
gularity  of  ty pe Dk o ±i . ( i f  1(0  =  1, 2 , then D i =  A1, D 2  =  A 3 ).

P ro o f : It is c lear tha t has n o  singularity by definition o f  17 - a n d  we
have that W I and 1/4 h a v e  n o  singularity (see Proposition 5.5). Therefore X  is
nonsingular.

By Proposition 5.5 and Lemma 5.6, we have  (I). In  the  proof of Lemma 5.2,
w e show ed  tha t 9)s h a s  n o  singularity outside U 1 =  9) s  (11/1. Therefore the
statements (2) and  (3) follow from Proposition 5.5.

Remark 5.8. The fiber of 9)s defined by v '/u ' =  0  is union of two exceptional
curves. There  a re  two choices o f  sign for fixing the function gs ( x )  a t  the  be-
ginning of construction of X .  This corresponds to  the choice of the exceptional
curve that is blown down in  Lemma 5.6.

We next consider a  meromorphic 2-form w  o n  X  defined a s  follows:

(3)
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dx i dyi on W I ,
27iV —1 z

dxdvi
on '11 = { (x , s)(v i : 1) e

z.V— lx(q + x)
=

dxdv2
(5.4)

on 17 -2 = {(x, s)(1 : v 2 ) E
rtV —1 x(1 + xv3)

dx 4 dy 4 on 01/4.
27tV —1y4 z4

Let 11) be  the pole divisor of co. Put 1:), = fl X.

Proposition 5.9. I f  s E SV I, there exists a f ram ing (C ,L ,P) e satisfying the
following conditions.
(i) X„ is the surface obtained from P 2  by blowing up P and 2n + 3 points in general

position on C\L .
(ii) Z , =  C + L , w here C + L  are the proper transform s of  C, L.

P ro o f  By the proof of Lemma 5.2 and 5.3, that we have only to show Z, =
rc(S (") )  + T c(F,2 ). On U1 w e have

dxidyi 2  dxidzi 2  dy i dzi
2.7tV—lco, — 

z, OF1 (V I  •
ax,

Since Xs is nonsingular, w  doesn't have pole on U i . O n  U4

z s n u4  = {(x4, y4, z4, s )  E u4I y4 =  o}

= 7C(Sq ")
)  n U4.

On V , = n w s has pole along x = 0  or vf + x = O. S in c e

x(x + l l j )
Y 4  -  av f  +2v ix 0 - 2 g„(x - 1 ) + ax '

then

{ (x, (1 : yl)) c ix(v; + = =  ( 7 ( ( " ) )  u 7(F„, 2 )) n vi .

Therefore

z s  n V, = (7 .[( ( n) ) u 7c(F 2)) n

Similarly on V2 =n
z s n v2 = (7.r((n)) U n(Fir),2)) n 1/2.

Remark 5 .1 0 .  Let S  b e  th e  semi-universal deformation of simple
surface singularity of type E„, (m  = 6,7, 8). Then there exists a  family S
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whose general fibers are D el Pezzo surfaces and com pactifications of general
fibers o f 3 s ([14]).

The family yoti,, : S  is the semi-universal deformation of simple surface
singularity of type D 2n+3 and general fiber X s is compactification of general fiber of
semi-universal deformation of simple singularity of type D2n+3.

I t  is w ell know n that 3s  i s  a surface obtained by blowing up in  points in
general position on P 2 . Furthermore D ' = 3 ,  is an anticanonical divisor of
and

R ' = {a E 112(3s; •Z)la • [D'] = 0, a • a = —2}

is the root system of type E,„ ([6], [10]).
The surfaces X 2 n + 3  a n d  th e  family X have same properties.

6. A  family of P 2  w ith  2n + 2 points blown up

In the previous section, we constructed a family of surfaces related to a simple
singularity of type D 2 „ + 3 .  In this section, we construct a  family of surfaces related
to  a simple singularity of type D 2 n + 2 .  L e t  in = 2n + 2  in  th is section.

Let (C. L, P) be a  framing defined in section 2 and {Q 0 } = L n C . B low
up P, Qo and in points P 1 , , P„, on C \L  in general position. L e t  Ep, EQ0 and  E,
be  the  exceptional curves cooresponding to these p o in ts . L e t  Q i b e  the  inter-
section point of C  and E Q , where C  is the proper transform o f C . B lo w  up Q,
further. Then w e have the surface Z,„

p : Z„, -4 P 2 .

Let E Q„ be  the  proper transform o f EQ„ and E Q  the  exceptional curve.

Propositon 6.1. T he divisor

D = L + C + E Q „  2EQ,

is  an anticanonical div isor of  Z„,.

We next define isomorphism of the  pa ir (Z,„, D).

Definition 6.2. L et (C, L , P) (resp. (C ', L ',  P')) c  OE. Let Z „, (resp. Z,'„) be
th e  surface obtained a s  a b o v e . P u t D = L  + C + E Q „  2 E Q , (resp. D' = +

+ E Q/  + 2 E i ). Then we say that (Z,„, D) and (Z,',,, D') are isomorphic if there
exists a n  isomorphism : Z,„ Z,',, such that

0(C ) =  C', 0 ( L )  =  , 0(40) = E ,2/0 ( E Q , )  =

F rom  now  o n , w e  assume th a t  C  : z 2 =  x y ,  L  : x  = 0 ,  P = (0 : 0: 1) (see
Lemma 2.3).

Proposition 6.3. L e t  in  points Pi , • • • , P,,, (resp. P  . . . , P,',,) E  C \L  h e  in
general position and Z„, ( resp. Z ,'„) tlw  surface obtained by  blow ing up P, Q0. Q,
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P i,. . . ,P „ , (re s p . P ', Q;, P;,... ,P,'„). P u t  D = L C  E Q ,, +24 , (resp .
D ' =  +  +  2 E , , ) .  T hen there ex ists a n  isomorphism  0 : (Z„, D) —>
(Z ,, D ')  su c h  th at 0 (E 1)  =  E ;  ( i  = 1 , . . . ,m ) if  an d  only  i f  there  ex ists  le  C*
such that si =  as; (i =  1 , ... ,m ) where P i = (1 :  s i ) (i =  1,... ,m ) (resp.  P =
(1: 4 2 : 4) (i = 1, . . . , m) ).

P ro o f  The proof is sam e as the proof of Proposition 2.4.

We consider homology exact sequence.

— ) 1 / 3 (4 n ; Z )  — )  1 1 3 (Z,„, Z„,\D;Z)

0
(74

H 2 (Z ,,,,\D ;Z ) H 2 (Z ,„lZ ) H 2 ( Z „ Z n,\D; Z)

W e can  ex tend  the intersection pairing in  H 2 (4 „; Z ) t o  a  bilinear form  on
H 2(Z „ i ; Z )  ® z  R. P u t

Q =  ker 112( 4 1 ; Z),

R E Q 1 a•a=

Lem m a 6.4. L e t Q  and R  as above. T h e n  w e  have

H2(Z,„\D;Z) Q.

P ro o f  P u t D = C + L + EQ, + 2E 0 . T he cu rves C ,  L ,  E Q„, E Q ,  are
homeomorphic to 2-sphere. Therefore H 1 (D; Z) = O. T h e n  H 3 (Z,n ,Z,„\D: Z) =
0  and the result follows.

L et / b e  the homology class of to ta l transform o f lin e  and ep. èQ a , Cg ,.
, e,„ the classes of E p E Q0 , EQ1, El , • • • • E„, respectively. Let t  and I  be the

classes of C  and L.

Proposition 6.5. L et Q , R  be as above. T h e n

{

Q =  a  e H2 (Z,n ;Z )

  

a • (21 -  Ci - • • • - e,„ - eQ „— 2e0.1) =  0

a • ( I -  ep - 2eo ) =  0

a • éQo =  a • eQ , =  0

(6.1)

   

and R is the root system of  type D„, in Q O z  R .  Furthermore R generates Q . Put

/7 = {e l -  e z , • • • , em -i - em, -(1 - Cp - em-1 - ei„)},

then H  is a  basis o f  R.

P ro o f  Since D =  L + C  + E Q ,  2 E Q , ,  I =  I ep — C-;Q„ — 2e,2 1 a n d  e= 21 -
el - • • • - e„, - 0 Q ° - 2 e 0 ,  we have (6. I ).
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Put a =  al + ()pep + • • • + &Hem + coeQ0 + cieQ i E  Q , then

2a +  +  •  •  •  +  b„, + = 0 ,

a + bp +

—2co

CO — CI

Therefore since

{

2a + b i + • • • + b,„ = 0,

a+ b p =0 ,

co = 0,

c 1= 0,

then the result follows from Proposition 3.3.

We take 2-cycles T i j , 1 -";  as (3.3) and (3.3)'. Let a h •  , c,„ E H2(Z„AD: Z )

be the classes of F 1 ,2 ........  ,  Fm -I,m ,

Corollary 6.6. H 2(Z„,\D : Z ) is generated by  {a i , . . . , }  and the intersection
paring is giv en by

—2 i =
1 =  I inOC; • Oti  —

The next proposition follows from Proposition 3.6  and Proposition 6.5.

Proposition 6.7. Put

{

g o = e, g(1) = l

W  =  g c A ut(H2(4,1;Z )) f l(t5 Q0) = JO) , g(eQ1) = eQ1 •

g(g) • g(Œ') = a • a ' f o r a, a' c H2(Z „,;Z )

T hen W  is isom orphic to the W ey l group of  ty pe D„,.

W e have the theorem of Torelli type from these results and  the  same dis-
cussion in section 4.

Theorem 6.8. L et (C, L , P) (re,sp. (C' , L ' P'))  (5 :. and { Q0}  = L n C, ( resp.
{ Q }  = L ' n C'). Let P 1 . .. . .P ,,, ( re sp . 1 31   P , , )  b e  m  p o i n t s  o n  C \L  (resp.
C \L ' )  in general position.

Let p : Z,„ P 2 (resp. p' : Z ,, — > P 2 ) be the m orphism  obtained by  blow ing up
(resp. and infinitely  near point Q , of  Q o  (resp.

1 = { m  — 2, m}
0 otherwise
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0 ) ,  w here 0  ( r e s p .  0 )  is  the intersection point of  the exceptional curve of
blow ing up of  Q o  (re sp . 0 )  and the proper transform  of C.

P u t  D = C + L  + EQ„+2EQ, (resp. D ' =  +  +  E Q 4 + 2EQÇ ). L e t  co
(resp. co') be a meromorphic 2-form on Z n , (resp. Z,',,) such that co (resp. co') has
po les on ly  along  D  (resp. D ') .  T h e n  a s  (4 .2), w e can  de f ine  th e  mapping

Q C  (resp. x , ,
: Q' C ), where Q = ker j  ( r e s p .  Q ' k e r  )  is the root

lattice.
If  0: H2(Zin:Z) —› 112(Z„; Z) is an isometry satisfying the following conditions

(1) and (2),
(1) 0(e) = e' , 0(1) =7', ( ë  Q ,) = è'Q0 ,0(eQ,) = e ,
(2) there ex ists g EC* such that 0" = gz a ) .
Then there ex ists an  isomorphism 0 : (Z„„D) (Z ,',,, D') such that 0  induces 0.

In the remaining of this section, we construct a  family of these surfaces. Let
be a Cartan subalgebra of simple Lie algebra o(2(2n + 2), C) of type D 2 n - E 2  and

W its Weyl group. The quotient

5  _> s  5 /  w  C 2 n + 2

is given a s  in  se c tio n  5 . F o r  s = (a, bi , ,b2,4-1) ES , p u t

f r (x )= X2n+I
b 1 x 2 n

. • + b2,,+1,

h,, (x) = x 2 " f ,(x - 1  ) - x 1 .

L et H ' be a  curve o n  Z „ defined by a s  follows:

x i +  2ay i + f r (x l )= 0o n  W 1 ,

=0 o n  W2 ,X2( .14.2 a x , " + 1 y , + 4 '1+ 1 f ,(x 2
- 1 )) 

A x in+i f s ( x 3-1 ) )x 3 (1  +2a4 + ' y3o n  W3,

x4 + 2 aY 4 Y iL(x4)= 0 o n  W a ,

where W , i = 1, 2, 3 ,4  is  open sets of Z .  n defined by (5.2).
I n  Lemma 5.2, we consider the double covering o f Z n  branched along a

nonsingular curve H .  But H ' has singularities at ( 0 ,  +  —1) e  W 3 .  Therefore we
blow up these singularities and take double covering branched along the  proper
transform H "  o f H'.

Put

+ x l y f  +2ay 1 + f s (XI

F2 (X2 Y2, 1 2, =  z  +  X2 + 2a4+ 2 y2 + x 2 • xin+lf,(1 /x2),
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GI (x3, u, z3, s) = z + ii(ux3 + 2N / -1) + 2a4(ux3 + ' - 1 )

• (u x 3  +  -1 ) 2 h5 (x3),

G2(1), W ,2 ,S ) = 1147 2av n (vw - -1 ) n ( v w  -  - 1 )

+ ( v w  -  - 1 ) 2 lis (v(vw - 2N/ -1 ) )} ,

G3 (t, y 3 , z3" , ) = z 2 + i l l  + 2ay 3 t"± l (y3. + 1) " t  y i l i s (t( A  + 1))}.

F4(x4, Y4, za,  ) = z  +  x 4 +  2 a.Y4 + Yifs(x4)•

Let X be a manifold obtained by gluing the following open sets VI, V2, N
q/4 as follows:

• = { (x i, e C 3 x  S  Fi(x i = Of,

1/2 = {(x2, Y2, z2 , s) c  C 3 x  S  F2(x2, Y2, z2 , s)0 ,  (X2, Y2, 2 2) 0  (0 , ±  Y -1 , 0 )1 ,

= f(X3, LI, Z3„S') E C 3 X  S I Gi (x 3 , u, z 3 , s) = 01,

• =  { ( ), w, 4  s )  E C 3 X  S  G2(v ,w , 4 s) = 0 1,

(N3 = {(t, y 3 , , ) E C 3 x  S I G3(t, y 3 , z /
3

1 , ) = Of,

• = {(x4,Y4,z4,  ) E C 3 x S1F4(x4,Y4,z4,  ) =

=  X4, X2 = X3, X1X2 = 1,

YI Y 4 = 1 ,Y 2 Y 3  - = 1 , y1 =xÇy2,
n+IZIX 2- =  22, 24 = z iy4 ,

y 3 - = ux3, x3 = v(y 3 -  Y -1 ),

y 3 +  - I  = wv,e  = t(y 3 + Y -1 ),

Z2/2 = x 3 z3 = v (v w  - 21/ - 1)z ; =  (y i + 1 )z .

The glueing formulas for (x, , y ,) are same as (5.2) and that for u,v,w, t, x3 and y 3

a re  nothing b u t  b low ing up of (x3, y 3 )  = (0 , +  Y -1 ). R ew riting  F i b y  th e se
formulas, w e have F2, G1, G2, G 3 and F4.

Proposition 6.9. X  is nonsingular. Put

= { s E SIxf,.(x ) -  a 2 = 0  has multiple roots} .
Then
(1) If  5E S \d ,  the fiber X s is nonsingular and there exists a framing (C, L, P) E

such that X s is isomorphic to the surface obtained from P 2 by blowing up P,
2n + 2 points Pi, . • • , P2n+2 on C \L  in general position, Qo and infinitely near
point Q 1 o f  Qo a s  in  Theorem 6.8.
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(2) If  s E 4, a 0, the f iber X „ has singularity . Put

x fs (x) — a2 =- (x — di) k i • • (X  —  dr ) l" ,d 1 (i j).

T hen X , has simple singularities of  ty pe A ( i  =  1, . . . , r).
If  s E 4, a = 0, the f iber X „ has singularity . Put

i,;(x )= x"(x  —  di) k i • • • (X — 64., )k r' di di(i j) ,  d i O.

Then X „ has simple singularities of type Dk o ± i  and of  type A k i _i = 1 r')
((f  k o = 1, 2, then D 1= AI, D2 = A 3) •

P ro o f  There is n o  singularity on  W I and 1 /4  (see the proof of Proposition
5.5). The complement //2\//I is defined by x? = 0. W e have

OF2 a„ = y  + 2a(n + I y 2 + 4 " + I  f (x y l ) + x 2  
ux2 Ox2

OF2
az2

= 2 z2.

Therefore o n  the set defined by x l = 0, w e have

OF2 a F )
= =  0

UX2 UZ2

Thus X has n o  singularity o n  0/12.
O n 'Di ,  if  x3 0 0, then there is n o  singularity. Since

0G1

Ou
= 2V-1,

V 3  0

 

'2) 1 h a s  n o  singularity.
O n W 2, if y 0 0, then there is n o  singularity. Since

0G2
OW

=  I
t•= 0

 

there is n o  singularity o n  '#2.
Then we have only to prove X has no singularity on the subset of V3 defined

b y  y 3 = 0. Since

0G3 0G3
=  24, G3(t, 0. 0, s) = t,

ut

then X„ has no singularity on qq3. Therefore X is nonsingular. The proof of (2)
a n d  (3 ) is  sam e  as Proposition 5.5. I f  s  E  S \d , th e n  X„ is nonsingular (see
Proposition 5.5). W e next prove (1). Put sE S V A  and

= n =  1, 2, 4, r = X„ n i = 1, 2, 3.

(3)

=
t=y3=zç=0
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The fiber X s is  a double covering of blowing up of Z n at tw o points with branching
along H ",

Xs En•

The irreducible components o f H "  are heperelliptic cuve 11 / a n d  P I . The
hyperelliptic curve II( ' is ramified at (/3 1,

 — al fit) , • • • , ( #2n+2 ,
 — a/ i32 + 2 ) 6  W l ,  where

A , • • • , #2n+2 b e  th e  roo ts  o f  th e  equation xf,(x) —  a2 = 0  ( if  a = 13, = 0 ,  then
(0,0) e W4).

Let F, (i = 1 .......  217 + 2) be the fiber of E. „ defined by u '/v ' fl,. T h e n  put

v"  ( F 1) = F1,1 U Fi,i, ,  2  =  P

For points (0, + —1) E  W 3, put E ±  = ((0 , E_ = ((O, —V —1))
and let P be the inverse image of proper transform of the fiber F defined by x2 = 0
in  W 2 (see (5.2)). The self-intersection number of Ft ,'  ( i  1 ,  .  .  .  ,  2n + 2. 1 = 1.2)
is —1 (see the proof of Lemma 5.2). Furthermore the self-intersection number of
E+  a n d  E _  is —2 and  tha t o f  i ;  i s  —1.

Since Fo  ( i  =  1, . . . , 2n + 2, j  =  1,2), E_, E+ ,  a n d  P a re  isomorphic to P I ,
Fo  ( i = 1, ,  2 n  +  2 ,  j  =  1 ,2 )  a n d  P a re  exceptional curves o f  th e  first kind.
Then we blow down F,,j ( ,) ( i  =  1, ... 2n + 2, j( i)  =  1 or 2 ), P and the image of
E+ . Then we have P 1-bundle Z r over P I

r.

W e may assume r = 1 (see Lemma 5.3).
W e next blow down (-1)-section o f E l .  W e  have a morphism

: —> P2 .
-(n)

P u t  S vi-1(S(")), where S(n ) is  (— n)-sec tion  o f  Z „ .  Since th e  self-
intersection number of S ( n ) is —2n. self-intersection number of n'( n ) )  is 4. T h e n

- (1 7 )tit ( S  )  is a  conic because it is isomorphic to P i a n d  its self-intersection number
- ( )

is 4. T h e n (E _ )  is  a  line tangent to  ri'(S
n

 ). Thus w e have the  statement
(1).

Remark 6.10. (i) We can choose j( i)  such that a surface obtained by blowing
down Fi l ( i )  ( i  = I , , 2n + 2, ,j(i) { 1 ,  2}), P and  E _  is 2:,.
(ii) F o r h = ..... h„,) c w e have

= zj 2ayi + ' ' - +•  h z ,

XI
•

Thus the  roots fi i , ,f l,„ of the  equation x i f (x l) —  a 2 = 0  are hf ....... h 2111

We next define a meromorphic 2-form (n o n  X.
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dxidyi

dx2dy2
22TV —1x2z2

dx3du

on

on V 2 ,

on *1,

 

27r lx 3 z3 (x 3 u + -V-1)
= dvdw (6.2)

27cV—lvz(vw — —1)(vw — \/-1)

dtdy3
27TV y3(.yi + 1)

d x 4d y 4  
27tV —1 y4 7.4

on

on *4.

Put be a  pole  divisor of w.

Proposition 6.11. If s E  S \A , there ex ists a f ram inf  (C,L ,P) E 0.; which has the
following properties:
(i) Xs is isomorphic to the surface obtained by blowing up P, 2n+ 2 points on C\L

in general position, Qo and infinitely near point Q i of  Qo as  in  Theorem 6.8.
(ii) =  C + L  + E Q , 2 E Q ,.

P ro o f  By Proposition 6.9, we have only to show Zs =  S( n ) E _  +  E +  +2 P.
dx2dY2

I t  is clear that co, has no  po le  on  U 1 . It is also clear that  has no pole
Z2

on (12. Therefore co, has poles only on  the  se t defined by x2 =  0  in  U 2 .  Put
F2(X2 ) Y2 , Z 2 , s )  =  z +  X2K2 (X2, y2 , s). Then since i n  t h e  neighborhood o f  any

point of x2 = 0, K2 0  0  a n d  (x2, Y2, z )  is a local coordinate, where z =   z 2  .

Since U 2  is defined by z 2 + x2 = 0, (y 2 , z )  is  a  coordinate of U 2 .  It follows
from

dx 2 dy2 2  dy 2 dz
12 ,

X2Z2 N/C2Z2

that cos  has poles along x2 = 0 with multiplicity 2. W e have

(n)S  n u2 = 0,

n {(x2, y2, z2) E u2 I x2 = 0},

E+ n U2 - -

E_ n U2 = O.
Therefore Z s n U 2  =  (, ( n ) E _  +  E + + 21) n U 2 .  Sim ilarly we h a v e  th e  follo-
w in gs. L e t Yi =  os,. n
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(a) O n  Y1, ot s has poles only along x3 = 0 and ux3 + = O.

S'( ")  n Y, = { (x3 , u, Z3) E Y1 ux3 + = 0 },

En y, =  0 ,
E+  n y, = {(x 3 , u, z3 ) e Yi I x3 = 0},

E_ f l  Y, = 0 .

Y2, ws has poles only along y = 0, vw —  2-V- 1 = 0 and vw — A/-1 = 0.

(n)
S  n Yj = {(v, e Y2 vw — = O},

En y 1 =

E n Y, = {(v.14, ,Z) e

E_ n Y, = {(v, w, -4) E

(c) On Y3, CO, has poles only along y 3 = 0, y 3 — V -1  = 0, y 3 + V -1  = 0 with
multiplicity 1 and t = 0 with multiplicity 2.

(n)
S  n Y, = {(v, w, 4') E Y2 1 Y3 = 0},

En Y i = {(v, w, '4) E Y2 1 t =o },

E+  n Y, = { (v, w, E Yl 3  — = 0},

E_ n = {(v, E Y2 1 y 3 + V -1  = 0}.

(d) On U 4, w s has poles only along y4 =  O.

(n)
S  n Y, = f(x4, Y4, za) E Yl1324 =

En y, =  0 .

E+  n y  =  0 ,
E_ rl Y, =  Ø.

Thus we have Zs =  S; ( n )  E _  , E F + 2E.

Remark 6 .1 2 .  It is clear that the general fiber of X --+ S  is a compactification
of the general fiber of semi-universal deformation of a simple singularity of type
D2n+2 (see Remark 5.10).

7. M onodromy representation o f  l t  (S \A ) on  H2 (Xs \ Z s ; Z)

L et yo : X S  b e  th e  fam ily and  Z  the divisor defined in section 5  if
m = 2n + 3 or in section 6  if m =  2n  +  2 . Put

(b) On

Y1 1 V14' — 2A/-1 01,

Y2 1 V = 01.
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S ' = S \41,

X' = X\ ( U y9- 1  (A)).

Then = : X' —> S ' is a  locally trivial fiber bundle with the fiber XAZi
(t e S '). Therefore tr i (S\.61) acts on  H 2 ( X s \ ; Z ) a s  a  monodromy. Put

= {(s1 ..... s,,, — si,...,— s„,) e C21

= {(s i ,...,s,„) E

b reg  =  { ( S i  •  —  , Sm) E  b II(s i — si )(si + si ) o}.

Then

breg I  W

where W is  the W eyl group of type D,„.

Theorem 7.1 ( 14 1, [5]). The fundamental group trI (S ')  has a presentation with
generators o-0, ,o-,„_ , and relations:

U p g iC T i •  •  •  =  0 7 (7 ;0 7  •  •  •  ,

mi f times imitimes

where

1 i = j ,

mi d  ---
3{ ji = 1,i, 0 111,

3 (i. j) = (ni — 2. m), (m , m — 2),
2 otherwise.

The loop corresponding to the generators ao ,. . . ,o -„,_, can be given as follows
(see [5 ]).

Put

= { (s, , , s,„) E R"  s ;  — s =

and

11;1 = ,s„,) E R"  s  +  s;  =  01.

Then

r e  =  - U (Hi • + \./-111,JU 11/ i + N/-11-1/ 1).

The set

C o+  \/-1 R " OE _ roj
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is a fundamental region of W  j11 b„,, where

Co = {(si , , sa ,) c — s2 < 0 , . . . ,  sm-] — < 0, s,„_i + s„, > 0}.

Put

u„ = (1,2, ...,m) c Co + V-112 m

and let so be a class of u„ in S '. We define paths in 5  „q  which induces loops in
S ' as follows:

y(11) : [0,1] —> „ g (1 =  1, 2),

y(
1

1 ) (t) = (1— t )u , + t(2,2 +

/ 1
2 ) (t) = (1 — t)(2,2 + t(2,1,3,...,m).

Put y i =  / 1
2 ) y r ) , then yi i s  a path from u„ to  the image of u ,  by the reflection

in  H 1 ,2 .  S im ila r ly , w e  d e f in e  y(i = 2, ,rn  —  1 ) w it h  respect t o  H,,, ± 1
(i = 2, ... , m — 1). We also define the path y,„ in 5 „ g  from u„ to the image of us,
by  the reflection in H,'  as follows.

y;» (t) = (1— t)u,„ + t(1,2,... — 2,1n — 1 + —1,m + .\/ —1),

y (t) = (1 — t)(1,2,..., in — 2,m — 1+ V-1,m+ -V-1)

+ t(1,2,..., —ni, + 1),

(2) (1)and put y =
Let 2, (i = 1, . . . , m) be the loops in S ' given by these paths yi ( i  = 1,...,m)

and al, • • , a m  the classes of  i i  ( S ' , i n d u c e d  b y  2, (i = 1 ........ m )  Then
in (S', is generated by a l , . • • , am.

We next define generators of H2(X 5 Z s a ; Z )  corresponding to al, a m . If
s = so , it fo llow s from  R em ark  5.4 and 6.10 th a t  the roo ts  of the equation
xf,(x) — a 2 = 0 are 1 2 ,2 2 .... ,m 2 . W e m ay assume fl i , , f l „ ,  i s  12,22 m2

respectively and

Ei n S ( n ) =  { ( i 2 ,0, c U41 (i = 1,...,m ,j= 1,2),

where

ni = 2n + 3
m = 2n + 2

—(n) =  { n (
(n )

S  ) m = 2n + 3S 
S-(n) m = 2n + 2

W hen w e b low  dow n X , to  E , w e m ay assume all indices j  of curves
which should be contracted are 1 (see Remark 5.8, 6.10). Put

= all i n xso , = 1,4),

: a closed tubular neighborhood of g( n )

 
 in  Xs„.
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D efine  pa ths T  (i = 1 ,... ,m  -  1 )  f ro m  (i2 , 0 , A /- li)  t o  (i 2 , 0, +  1 ) )  as
follows

r i (t) = (((1 - t)i + t(i + 0) 2 , 0 ,0  - + tb1+1,1) c U4 •

Also

rpn(t) = (((1 —  t)(in  — ± tM 1 2(1  —  t) (  5  m -1 ,1  ±  0 1,1,2 E

w here 6 ;

'

 =  ( - 1 )
-1T h e n  w e  c a n  c o n s t r u c t (i = 1, . . , m ) and

a s  (3.3) and (3.3)'.

= , fl y)) u y )),

(Em - I , I \ ( Em - I ,1 y)) u u (E„2\(E„,,2 n y)).

L e t  al , • • • • ocm b e  c lasses o f F1,2, ••• , Fm-1,m, r"n _ i m  i n  H 2(X 0 Z so : Z )

respectively. It follows from Corollary 3 .4  th a t H2(X so \  i so ; Z ) is generated by
• • , oc,n and we have following theorem.

Theorem 7.2. L et SO, ai , • • • am, al • • • • am be as above. Let

p : n 1 (S , so ) A u t(H 2 (X , ,; Z ))

be  the monodromy of the fibration  :  X' S '. T h e n

2x • a i

P(ai)(x ) = ai • ot i

P(070-i) (x )  =  p(a i )p(a-
i )(x ). (2)

This shows the monodromy group p(ni(S ' , so)) is isomorphic to the W eyl group of
type D m .

P ro o f  The condition (2) is  clear. A t  first we prove (1) for a ,  =  a l .  We
consider diffeomorphic mapping induced by 'p i :

ri(t) : Xs„\Zso
3 E. 1(1)\7 ) ,(t) , t E [0,1].

Then

n(t)((i 2 , 0, =  (s1 (t) 2 , 0, +  V -IS(t)) E X.T,1 (0\ 1 (t) fi Z(4 .

where (t)  = (si (t), sm (t)). Since s i (t)  0  0  a n d  17(0 is con tinuous,
n(t)((i 2 ,0, 'J - 1i)) = (s i (t) 2 , 0, V— k i ( t ) ) .  Therefore we have

{  

(22 ,0 ,1V -1)
17( 1)(i2 , 0 , V - 1 0 = (1 2 ,0, V-1)

(i2 , 0, V-li)

Similarly we have

(1)
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{ (2 2 , 0, —2V-1)i =  1,
r1(1)(i 2 , 0, —V-1i) = (1 2 ,0, —V-1) i = 2,

(i 2 , 0, —V-1i) i 0 1, 2.

Thus we have

— al
{

i =  1,
P(01)(ai) = al +12 i = 2,

ocii  0 1,2,

and

2x • a i
p(o- i) (x )  —  x   .

OCI • CX1

W e can prove (1) fo r a-,), , 0,„ in  the  same way.

Remark 7 .3 .  We showed the monodromy group p(iti(S' , so)) is isomorphic to
the W eyl group of the  root system of type D„,. B ut it is w ell know n that the
monodromy group o f  th e  locally trivial fiber bundle induced by semi-universal
deformation of simple singularity is isomorphic to the  W eyl group o f the  root
system corresponding to its singularity. ([1, Volume II, Theorem 3.14])

8. Period mapping for the fibration yo' : X' S'

The notation is  as in section 7. F o r us „ = (1, . . . , m ), put

= Homz(H2(X 0 \ Z, o ; Z), C).

Then iri(S',s0) acts o n  Q.

p* : m1 (S' , so ) Aut(Q).

F or a l , , am , we define ,a7 as follows:

aî (x) = x, x E H2(X, \ ; Z ) , j s  1,  ni.

Put

v* = in

i=1

Then we have

Q =  V *  + V*.

We shall define a  non-degenerate bilinear form o n  V *  by

<x*, y*> = • ( K . :
* *

X * =  \ - - " n  X iC X • , y  = E. .
1=1

L et wa :  E  Q* b e  the  reflection in  the  hyperplane orthogonal to a,* a n d  W * the
group generated by Iva; , • • , iva,L . Let

R* = 1 4 ' (a,*) e V *  w* E  W * , =  I , , MI.
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We shall define a  period mapping for the family : X' S ' .  There is one-
to-one correspondence between the equivalence class of covering spaces of S ' and
the conjugacy class of rci (S', so). Let

- /

: S

be the covering space of S' corresponding to ker p. Then S' is a  regular covering
o f S ' and its covering transformation group is G = p(711(S' so)).

Put go = (s0 , [e]) , where [e] is the unit of p (ni (S', so)). For any :s• we can
define a diffeomorphism of X, 0 \ I ) , to  X \ Z s induced by one of the paths from so
to  s in  S ' which corresponds to g, where s =

This diffeomorphism induces the isomorphism of homology groups

(g),, : H2(Xsa \Z so ; Z) H2 (Xs \ Z s ; Z).

This isomorphism does not depend on the choice of representative of homotopy.
Therefore for any gE S , we define 2g E Homz (H2 ( \  ;  Z), C) uniquely by

Aç ([c]) = co,,
s,(e)

where [c] is  the homology class of 2-cycle c.
Then we define a  period mapping Y  for yo' : X' S'

: — > Homz (H2 (X „\ Z ,;Z ),C )

by  Y (g) =
Put

H ,.  = Iv * E <a* ,C> = 01, a* c R*,

= Q  -  U  ( V * +
a* e I?*

Then G c Aut(H2(Xs0 \Z,; Z )) acts on  S2' by

0 • a(x) = a(0 -
1 (x)), OE G , a G S-21 x E H2(X,„ \ '1),; Z).

(see Theorem  7.2). W e have the following theorem.

Theorem 8.1. The mapping

is surjective and biholomorphic. The monodromy group G  acts on S  as  covering
transformation group and  Q ' a s  a  reflection group. T h e  period m apping Y  is
eguivariant with these actions. Thus we have isomorphism

'/G  Q ' / G .
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P ro o f  W e have G  W  by Theorem  7.2 . S ince C o +  V-112m  is a  fun--,
damental region of W  in Any element S  can be represented by an
element us e Co +  V -1R "' and  an  element iv ç. e W  uniquely. Then .§ = (us, ii' ).

Let us = (si • • • • sm) and s  = IGO. Let -r1, (i = , m ) be the paths in  U4 =°-
//4 fl X„ given by

= (( (1 — os , + ts1± 1) 2 . o, V-1(0 — os i +  tsi+I) ),i  =  1, .. . m — 1.

Tm , s (t) =  ( ((1 — O S , tS„,) , 0, N/— 1 ( ( 1 — —

This p a th  r  g iv e s  2-cycle 1"1(g) as in section 7. Let  i 1 (s) be the class of F,(S ) in
H2 (X s\Z s; Z ) .  Then

= w71(ai (s) ) .

Since oc i ( o) = oc i , w e  have

= ( o s

§,. (a4,)

(2i(s)) 
Ws,

where a ; i s  as in section 7.
Thus we have that is equivariant with action of G .  Put

= E  I = (u s , [e ]) , u  E  Co +  \ / - 1Rm l,

= fv* e V* I , ;*><0(i = 1, , m — 1, (u* ,a n >>01.

Then S'o,"\/
-

1Cd` ± V ' i s  a  fundamental region of Q ' fo r  th e  a c tio n  o f  G
respectively. Therefore we have only to prove that

Yls„ So V— 1 C( ;  =  V*

is bijection to  p rove  tha t Y  is  a bijective mapping.
Put (us, [e]). Since

dx4dY4=
2t,/-1y4z4

1
d y 4 d z a

2 7 W  y 4 z4  F a i  ax4

d y 4dz4

g \ / - 1 .Y4(1 + vial; /ax4)
we have
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Y(Wa() = w.
oci (s)

= 27r-V-1 JRes _(„, .
„ s '

=21
N/7s,„

dza
,/7s,

= 2( V— 1 si + 1 — V— 1 si )

fo r i = 1 ,...,m — 1. I f  i = m , we have

Y(g)(am) = ws
01,(s)

V7s,„_ 1= 2 I. dza
-V7s„,

= 2(V— +

Thus g% is bijective. It is clear that Y  is biholomorphic. Thus the theorem is
proved.
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