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On the bamboo-shoot topology of certain inductive limits
of topological groups

By

Takashi EDAMATSU

§0. Introduction

Let {(Gutn),@ps1ntnen be an inductive system of topological groups G,
with topology t,, each ¢,.,, being a continuous homomorphism of G, into Gy, ;.
Put G = li_m)G,, and Tjq = li_m)t,,. N. Tatsuuma—H. Shimomura—T. Hirai [2]
showed by two counter examples that tj,4 is not necessarily a group topology
for G. They also showed that if the given inductive system fulfils the “PTA-
condition”, there exists for G the finest group topology that makes every canonical
map ¢, of G, into G continuous. Such a topology is, of course, coarser than
Tina. They called such a topology the bamboo-shoot topology for G, denoted by
s, and gave a tgs-neighbourhood base at the unity e of G as the collection of all
sets

Ukl = U, 5 4 $u(Un)u_1 (Un—t) - 8 (Ui)$(Us) - - 8,1 (Un-1)¢,(Un)

with k =1,2,... and U;’s each of which runs over symmetric neighbourhoods of
the unity ¢; of (Gj,7;), j = k. Here the PTA-condition is a moderate one and
stated as follows:

(0.1) vn, YU, IV c U, v=v'  VYm>n YW, IW

W6 (V) S (V)W

where U, V (resp. W, W') denote neighbourhoods of the unity e, of G, (resp. e, of
Gn) and @, = du_1©--- 0,1, For instance, any inductive system consisting
of locally compact Hausdorff groups fulfils this condition and in this case ting
happens to coincide with tgs. 7ps in general seems to be a topological- group-
theoretic analogue of the locally convex inductive topology of the inductive limit of
locally convex vector spaces (see Propositions 3.1 and 3.2 in [2]).

Now let us bring an inductive system of Banach algebras A4, (n e N) with the
limit algebra A4 = li_m)A,, (in algebraic sense). Let 7y, denote the locally convex
inductive topology of A as the inductive limit of Banach spaces A4,. In an
appropriate circumstance this system yields an inductive system of topological
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groups G(A,) having G(A) as its limit group, where each G(A4,) consists of all
invertible elements in A4, and inherits the norm topology and G(A4) consists of all
invertible elements in 4. In the present paper we study the topology 7gs of G(A)
and shows that tgg is just identical with 7). relativized to G(A4) (Theorem 1). We
shall also obtain a similar result for another circumstance of A4,’s (Theorem 2).
Our treatment yields as a special case, in particular, the result obtained in A.
Yamasaki [3] for the inductive system of toplogical groups GL,(C(X,C)), X being
a compact Hausdorff space (for details see Example 5 below). Moreover it will
be shown that for the inductive systems of topological groups dealt with in the
present paper the topology 7ing gives a group topology only when all 4, are finite-
dimensional. This fact enables us to produce abundance of elementary examples
for which ;4 is not a group topology. Here we shall use the following criterion
theorem due to Yamasaki [3].

Theorem Y. For the system {(GyTh),Bui1n}tnen SUppose that each (G,t,) is
first countable and that each @, , is a topological isomorphism of (G,t,) onto a
closed subgroup of (Gui1tni1). ( The PTA-condition is not assumed.) Then, Ting is
a group topology for G if and only if one of the following two conditions is fulfilled
with some ng € N:

(Cy) Each (Gyty) (n 2 ng) is locally compact;

(Cy) Each ¢,,,(Gn) (n 2 no) is open in (G,t,).

§1. Preliminary: Strict inductive limits of Banach algebras
Let

Y2 (2 12
(1.1) (Aill Nl = (2]l 1) = (4]l 1l3) = -
be a strict inductive system of Banach algebras over C (or R), each ¥, , being
assumed to be a norm-preserving algebra isomorphism into. Let 4 = li_m)A,, =

(U ¥,(4,) be its limit algebra in algebraic sense, ¥, being the canonical imbedding
isomorphism of A4, into A, and 1) be the locally convex inductive topology for 4
as the inductive limit of Banach spaces. As known from the theory of locally
convex vector spaces ([1]), the following hold: (i) The space (A4 7i) is Hausdorff
and complete; (ii) ) induces the norm topology of each v, ((4,| ||,)), that is, each
¥, ((4n]l 1I,)) is a closed topological vector subspace of (A4 ti.); (iii) A subset of 4
is 7i-bounded if and only if it is a bounded subset of some ,((4,] |/,))- In the
sequel each (4,| ||,) and its ,-image in A are identified and every || |, is denoted
by Il |l

Now, for each decreasing sequence & ¢ > & > --- > 0 of positive numbers,
define a seminorm || ||, on A4 as

(1.2)  lal, = inf{zk lawll /ex; a € Axa=>", a (finite sum)} (ae A),

and put
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(1.3) U, = {ae 4; [a], < 1)

- {Zk a (finite sum); a € Ae, Y, llaell/ex < 1}.

Lemma 1. The family {U,}, gives a neighbourhood base at 0 in (A 7).

The routine verification of this lemma is omitted. Note that in this lemma
the sequences ¢ may be confined to such ones that > 7, & < 1.

Remark 1. It is easy to see that in finding the infimum in (1.1) the de-
composition a = Y, ax (ax € Ax) of each a € A may be confined to such ones that
k £ min{n; a e A,} and non-zero a; corresponding to each of such k appears at
most once.

Lemma 2. U U, < U, holds if ¢ < 1.

Proof. Let a,be U,. Choose their finite decompositions a=)", ax (ax € Ax),
b=>3",b (b €A such that >, |lac|l/ex <1, >, llbill/er < 1. Putting n(k,l) =
min{n:ax, by € A,}, we have ab =73,  axb; = Zj E"(k,,):j axb;. Hence

fabll 5 3| 5y ] /o
, -
<D e lallllbnll/ecer  (since e e < g < 1)

= Maell /e Y llball /e < 1.

This proves the assertion.

Lemma 3. The limit algebra A becomes a topological algebra with respect to
Tiet, that is, the multiplication is jointly continuous w.r.t. T.

Proof. Given any a.a'€ A and U,. Choose U, with ¢ <1 so that U, +
Uy+ Uy <= U, and o€ (0 1) so that aae U, aa’ € Uy. Then, for the sequence
e" =oe's ag] >aey >--- >0, we have Uy = alU, and so aU, = aaU, < Usz, c
U, by Lemma 2. Similarly Uyra € Uy, a’'Uyw < Uy, Upa’ < Uy. Hence

(a+ Us)(a' + Up) Cad' + Uy + Uy + U2,
Cad + U, (since Uy < Uy).
This proves the joint continuity under question.

Lemma 4. The algebra A has identity e if and only if, for some nge N,
each A, (n = ng) has identity e, and ., ,(e,) = esy1 holds. In this case e, =
e (n=ng) holds under the identification of A, and ,(An).

Proof. Since A4 = UA,,, the “only if” part is obvious. Conversely, by

assumption, Y, (€nt1) = Vpi1 (Wnr1 n(en)) = W, (en) (n 2 mo). Hence, putting e =
V,(en) (n = ny), we have the identity of A4.
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§2. Results for the case of 4 with identity

As is well known, the invertible elements of a Banach algebra 2 with identity
e make a Hausdorff topological group, which is open in 2, by inheriting the norm
topology of . In particular each element e +a for ae A s.t. ||a|| <1 has the
inverse (e+a) ' =e—a+a?—---.

Now bring the strict inductive system (1.1) of Banach algebras 4, and its limit
topological algebra (A4 7i). In this section we assume that 4 has identity e,
namely, by transfering to a cofinal subsystem if necessary, that all 4, (n = 1) have
a common identity e and each ¢, ,, maps e to e (Lemma 4).

Notation. G(A4,): the topological group consisting of all invertible elements
of A, inheriting the norm topology of 4,.
G(A): the group in algebraic sense consisting of all invertible
elements of A.

Proposition 1. The group G(A) is open in (A t\) and becomes a topological
group inheriting the topology iy of A.  The family {e+ U, >}~ & < 1} gives a
neighbourhood base at e of this topological group.

Proof.  Given a neighbourhood e + U, of ¢ in (4 7i), where Y/ e < 1. If
a€ U, there is a finite decomposition a =3 ax (arx € Ax) s.t. >, [la|l/ex < 1.
Hence |la||< Y, llal|< 3, ex < 1. Therefore the inverse (e+a)”' =e—a+
a’* — --- exists in those 4, to which a belongs. Thus e+ U, = G(4). Now let

1
aelU, (=Uys.< U). Then a"€ 3 Ue (n=1,2,...) by Lemma 2 and so

; ‘ 1
12 (=)l = 25 lla"ll, = 3255, 55<1. Hence 372,(=a)" € Us. Therefore

(e+13 U,)~' < e+ U, Since ¢ is arbitrary, this shows that the invertion operation
in G(A4) is ti-continuous at e. Next, for any b € G(A4) and any neighbourhood
b~'(e + U,) of b~', we have ((e+%U,;)b)_I c b '(e+ U,). This proves that the
invertion operation is t)-continuous at b. In view of Lemma 3 the verification is
now complete.

Since each y,,,, maps e to e. it is obvious that the inductive system (1.1) of
Banach algebras gives rise to the inductive system

(2.1) G(A) 2 Gar) 22 Glay) 2

of topological groups and that lim G(4,) = (JG(A4,) = G(A) holds as set. More
generally suppose that there is given a topological subgroup G, of each G(4,) so
that G, = G,4. Then the system (2.1) further gives rise to an inductive system

(2.2) G2 Gy L gy

of topological groups. Needless to say, (2.1) is included in (2.2) as a special case.

Proposition 2. The system (2.2} fulfils the PTA-condition.
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Proof.  We check (0.1) for this system. For any » and any neighbourhood U
of ¢ in G, we can choose a symmetric neighbourhood V of e in G, so that V' <
UN{e+a;ae A, |a|| <1/2}. Given any m > n and any neibourhood W of e in
G,,. Take 6 > 0 so that

{e+a;ae A, |a|| <o}NG, = W,
and put
W' ={e+b;be Ay, |b|| <d/4}NG,,.

Then, for ve V and w’' = e+ b e W', we have w'v = v(v™'w'v) = v(e + v~'bv) and
lo='bo]| < lo~"IlIbNllvll < 6 (since |[o~"]|, |[v]| < 2). Hence w'v € vW which implies
W'V < VWw.

To get the main results of the paper (Theorems 1 and 2 below) we set here the
following technique

Lemma 5. Let H be a subgroup of G(A). Assume that for each ke N
and each neighbourhood O, of 0 in A,(n=k), there can be chosen a
neighbourhood Q, of 0 in each A, (n2k) so that {{J,.,(Qx+---+ Qu)}NH'<
Ui {(OkNH') + -+ (0,NH")}, where H'=H —e. Then, for the system
(2.2) with G, = G(A,) N H, the topology tgs of its limit group m G, =G, =H
coincides with the topology tip of li_m)A,, = A relativized to H. (Hence, in this
case, a tgs-neighbourhood base at e in H is given by {(e+ U,)NH:> [ & < 1}
(see Proposition 1)).

Proof. (This proof was suggested by Prof. H. Shimomura.) Since
T relativized to H is a group topology by Proposition 1, it is coarser than tgs.
We prove the converse. Given any tgs-neighbourhood Ulk] = U"Zk U,Up_y -+
UpUy -+ U, U, of e in H, where each U; is a neighbourhood of e in G; (see §0).
Since each G(4;) is open in A;, we can choose a neighbourhood O; of 0 in
Aj (j= k) so that U2 (e+ O0;))NH =e+ (O;NH'). Then, obviously, Ulk] 2
Upsk Uk Un2{, 54 le + (OkNH') + -+ (0,NH'")}. Therefore the assump-
tion of the lemma enables us to choose a sequence & & >é& >--->0 so
that 7%, &y < 1 and Ulk] 2,5, {e + (Qx + -+ Q)N H'}, where Q; = {a € 4;;
llal| < &i—k+1} (j = k). Now suppose ae U.,NH'. Then a= Z,’il a; and
Z,’il llai|l/er <1 for some N and a;€A;. Hence aj€ Q41 and ace
(Ok+ -+ Onsxk—1)NH'. Thus after all (e+ U;)NH <= | [k], which completes
the proof.

Theorem 1. The topology tps of G(A) = MG(A,,) coincides with 1 rela-
tivized to G(A).

Proof. Since G(A4) is open in (A4,7)y), the assumption of the lemma 5 is
fulfilled for H = G(A).

Indeed, (G(A4) —e)N A4; is open in 4;(V/) and therefore, for given O;’s (j = k)
in Lemma 5, one can take O,NH' = O;N(G(A) —e) as Q)s.
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Proposition 3. The topology ting for G(A) = ll_m) G(A,) is a group topology
(namely, ting = ts holds) if and only if all A, are finite-dimensional.

Proof. Each G(A,) is first countable and closed in G(4,,) (m >n). But it
is not open in G(A,,). In fact, 4, is not open in A4,, because A,, is connected
and A, is closed in it. Therefore, for any J e (0 1), there can be chosen a e
A \A, s.t. ||la|| <. Then e+ ae G(A,)\G(A4,). Therefore ¢ is not an interior
point of G(4,) in G(A4,,) and so G(4,) is not open in G(A4,,). Thus, by Theorem
Y in §0, the following equivalency obtains: 7,4 is a group topology < every
G(A,) is locally compact (n = 3ng) < some closed ball {¢ + a;|ja|| £d < 1} in 4,
is compact (n = 3ny) < every A, is finite-dimensional.

Remark 2. The norms of A4,’s altogether define obviously a norm on 4 =
() A4, and A4 becomes a normed algebra (incomplete). G(A) is a topological group
by this norm topology relativized, denoted by t,orm, as well.  One has tpomm < TBs
and the equivalency Tpom = 7ps & 3ng, Vi = ng, A, = A,,. This equivalency can
be checked easily by the completeness of (A4 7io), Baire’s category theorem and the
definition of the topologies of G(A4).

Example 1. Let X =[],_, X, be the product space of compact Hausdorff
spaces X, and C(X,C) be the Banach algebra consisting of all C-valued con-
tinuous functions on X equipped with the uniform norm. For each n let 4, be the
Banach subalgebra of C(X,C) consisting of the functions depending only on the
variables x;€ X; (i=1,...,n). Then a strict inductive system 4; — 4y — A3 — ---
of Banach algebras is obtained, where each — is the natural imbedding. All A4,
and 4 = li_m)A,, = U A, have the constant function 1 as the common identity and
each — maps 1 to 1. Thus the above results apply to this system. Note that
each G(A,) is the totality of never-vanishing functions in A,. It is easily seen by
Proposition 1 that tgs for G(A4) is strictly finer than the norm topology of C(X,C)
relativized to G(A4). Proposition 3 shows that 7, = tgs holds if and only if every
X, is a finite set.

Example 2. Given an inductive system H; — H, — H; — --. of Hausdorff
groups H,, where each — is a topologically isomorphic imbedding. Let My(H,)
be the usual Banach algebra formed of all bouded complex Radon measures on H,,.
For each u, € My(H,) define u,,, € My(H,41) by p,,(B) = pn,(BNH,), B being
Borel sets of H,y;. Now take a sequence of compact subsets K, of H, s.t.
,un(ﬂfi] Kf)=0. The Borel structure on K = U;‘;l K; induced from H, and that
induced from H,;, coincide. Furthermore. for any real Radon measure x4 on a
completely regular space X, one has ||u||=sup{u(B)—u(B); B is a Borel set of X}.
Hence ||, || = ||, follows. Thus each M,(H,) is imbedded into M(H,,) by
identifying each y, with g, (, and a strict inductive system My(H,) — My(H2) —
My(H3) — --- of Banach algebras is obtained. Here each My(H,) has the Dirac
measure J, as identity (e denoting the common unity of all H,), which is mapped to
Jde.€ Mo(H,41) by —. Thus the preceding results apply to this system. Proposi-
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tion 3 shows for li_m)G(MO(H,,)) = G(ll_m+ MO(H,,)) that t;,q = 7gs holds if and
only if every H, is a finite group.

§3. On the case of 4 without identity

It is essentially the following two cases that A4 :1i_r3A,, has not identity
(Lemma 4):

Case 1. No A4, has identity.

Case 2. Every A, has identity ¢, but there exist infinitely many » such that
Wit nlen) # enii.

In either cases we introduce a new strict inductive system of Banach algebras
with identity. That is, adding a formal common element ¢ to all 4, and 4. we
make the direct sums of vector spaces A, = A, + Cé, A= A+ Cé and define the
multiplication in them by

(an + oe)(by + pé) = (anby, + ab, + pa,) + ofe (an. by € Ay, o, f € C)

and similarly for 4. Then A4,. A become algebras with identity é. Further each
A, becomes a Banach algebra by the norm ||a, + 2é|| = ||a,|| + |¢|. Through this
procedure the strict inductive system (l.1) of Banach algebras A4, is extended
uniquely to a strict inductive system

(3.1) FRENY ML RN

of Banach algebras A,. Here each é€ A4, is mapped to é € A~,,+| by t/},,ﬂ g Itis
of course that the limit algebra of this system coincides with 4. A4 is endowed
with the locally convex inductive topology. denoted by 7, of this system. A is

then a topological algebra by Lemma 3. In this section we intend to apply the
preceding results to the system (3.1)

Lemma 6. 7 for A = A + Cé coincides with the product topology of tiq for
A and the usual topology of Ceé (=C).

Proof. The seminorms || ||, generating 7) are extended to the seminorms
lla + «é||, = |jal|, + |« on the space 4 = 4+ Cé. Let 7 denote the stated product
topology. Obviously 7 is generalized by these extended seminorms. On the other
hand, 7| is generalized by the seminorms

lla + aell; = inf{ S llai + 2éll/ex (finite sum);

Zk ak = a (ax € Ax), Zk oy = o(}

each of which is another extention of || ||, on 4. Here we have ||a+ «é|;=
lall, + eyl since 3, lok|/ex = >4 lo|/er = |a|/e1. and conversely [la + aél|; <
llallz + ||xell; = ||all, + llellz|«]. Hence the assertion follows.
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Now let us consider the topological subgroups
(3.2) Gy = (An+8)NG(Ay). G=(A4+&)NG(A)

of each G(A4,) and G(A). Here note that G(4,) = (C\{0})G,, G(4) = (C\{0})G
and G, = G(4,)NG. Recall that an element « of an algebra 2, having identity or
not, is quasi-invertible by definition if there exists be W s.t. a+b+ab=a+ b+
ba=0. Let qi(4,) (resp. qi(A)) denote the totality of quasi-invertible elements in
A, (resp. A). Then it is evident that

(3.2") G, = ¢+ qi(4,), G =¢é+qi(A).
The system (3.1) induces an inductive system

(3.3) Gi 2 Gy 2 Gy Y

of topological subgroups of G(4,)’s, which fulfils the PTA-condition by Propo-
sition 2. Its limit group 1i_m)G~,, = U G,, coincides with G.

Theorem 2. Suppose A has not identity. The set qi(A) is open in A = m A,

bearing Ti,. The bamboo-shoot topology. denoted by 7gs, on the limit group G =
e+ qi(A) is induced from 1o for A.  That is, a Tgs-neighbourhood base at é in G is
given by {e+ U.Y ;e < 1}, where each U, is the same as in (1.3).

Proof. é+qi(A) = (é+ A)NG(A) (see (3.2), (3.2)), and G(A) is open in
(A.7%1) by Proposition 1. Therefore, in virtue of Lemma 6, it is evident that
qi(A4) is open in (A4,7i). The remaining assertion of the theorem just means that
Tps coincides with 7 relativized to G. So our task is to show that for the
subgroup H = G = é + qi(4) of G(A) the assumption of Lemma 5 is fulfilled.
Given any k € N and any neighbourhood Oj of 0 in A}- (j = k). ltis obvious that
the set éjﬂH’ = Ojﬂqi(A) is open in 4;. Hence, as Q;’s in Lemma 5, the sets
Cé + (0;Ngi(A)) (say) can be taken.

Proposition 4. The inductive topology for G as the limit of (3.3). denoted by
Tind» coincides with Tgs if and only if all A, are finite-dimensional.

Proof. The verification goes in parallel with the proof of Proposition 3. We

have only to replace G(4,) and e there by G, and é.
Here we give an example belonging to Case | above.

Example 3. Bring the inductive system of Hausdorff groups H, in Example 2
but assume that every group H, is infinite and discrete. Let H denote the limit
group of this system bearing the bamboo-shoot topology, i.e., the discrete topology.
For each n, consider the commutative Banach algebra Cy(H, ), with uniform norm,
of all C-valued functions on H, vanishing at infinity. It is obvious that each
Co(H,) can be imbeded in Cy(H) by regarding each f e Cy(H,) as the function in
Co(H) s.t. f =0 on H\H,. Thus a strict inductive system Co(H,) — Co(H;) —



Bamboo-shoot topology 723

Co(H3) — -+ of Banach algebras without identity is obtained. It is obvious that
11m Co(Hy,) = U Co(H,) is dense in the Banach algebra Cy(H). Hence the role of
¢ must be played by the constdnt function 1 on H. For this system one has G =
1+{feCy(H);Range(f)$—1}. By Theorem 2 7gg for G is induced from 7
for Co(H) = lim CO(H,,). Furthermore Proposition 4 shows that 7,4 differs from
7ps for the pgent case because every H, is an infinite group and so Cy(H,) is
infinite-dimensional.

Now let us consider Case 2. (Note that in this case each 4, has identity e,
but (2.1) never gives an inductive system of groups because ¥, ,(e,) # en1 for
infinitely many n.) In this case we have equivalency a € qi(4,) & e, +a € G(A4,).
Hence ¢i(4,) = G(A4,) — e, and so, by (3.2'),

(3.2") G, = G(4,) + (¢ — ey).

Here note that ¢ — ¢, is an idempotent element of A, and therefore it makes a
single group contained in 4,

Proposition 5.  Suppose each A, has identity e, but A does not. Then each G,
is given by (3.2") and topologically isomorphic to the direct product of G(A,), which
inherits the norm topology of A,. with the single group {é —e,} in A,. (Hence

G=J{G(4,) + (é—en}.)
Proof. Since a(é —e,) = (6 —e,)a =0 for a € A4, the assertion is obvious.

Example 4. Let H = H, + H, + H3 + - - - be an orthogonal sum of countably
many Hilbert spaces. Put H") = H, + ...+ H, for each n and consider the usual
Banach algebra B(H™) formed of all bounded linear operators on H. Each
B(H™) has identity /"), By identifying each T e B(H™) with T € B(H) s.t
T=T" on H” and =0 on H"! in H, a strict inductive system of Banach
algebras B(H™) is obtained which belongs to Case 2. Note that B(H™) is
identified with PU)B(H™)P™ as Banach space, P") denoting the projection of
H onto HW". 11mBH("’ =|{JB(H")) is strongly dense in B(H) because
PMTP™ converges strongly to T for every T € B(H). Hence the role of the
common identify & for this system must be played by /, the identity operator on H.
Therefore, by (3.2"), G, = {T € G(B(H)):T|H" € G(B(H")).T =1 on H"+},
where G(B(H)) denotes the totality of regular elements in B(H). Proposition 4
shows for G = U G, in this case that 7y,q = 7gs holds if and only if all H, are
finite-dimensional.

Example 5. Let A be a Banach algebra over C (or R) with identity e, and
M,(A) = {a = (aj);_,.,:a; € A} be the full matrix-algebra of n-th order with

e
elements in A(n=1.2,...). Each M,(A) has identity I, = [ } Let A"
e

be the product Banach space of n copies of A, the norm of which is defined by
16]1,, = max;||b]] (b= (by....,b,) € A"), and B(A") be the Banach algebra formed
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of all bounded linear operators on A". Then it is easy to see that each M,(A)
is a Banach subalgebra of B(A4"). By identifying each a = (a;) € M,(A) with

which belongs to Case 2. Put M(A) = lim M, (A)(= | M,(4)). It is obvious
that the role of the common identity for M, (A4)” and M(A)~ is played by the matrix

e
I = [ € ] By (3.2") we have G, = D e . ; ae GL,(A) p, where

GL,(A) = G(M,(A)). As to a 7fps-neighbourhood base at [ in G=
lim G, (:UG,,), denoted by GL(A), Theorem 2 applies. Proposition 4 shows
that Tina = Tps holds if and only if A is finite-dimensional. The case of A =
C(X,C), X being a compact Hausdorft space, was treated in Yamasaki [3] in a
direct manner. (Of course C(X,C) represents for all commutative C*-algebras
with identity.)

§ Appendix

Let H, (n=1,2,...) be Hausdorff groups satisfying the first countability.
Put G, = H, x --- x H, and let y,,,, , be the canonical imbedding of G, into G,4,.
For the inductive system {G,, ¥, ,},.n Of topological groups thus obtained, it is
easily seen by Theorem Y that 7,4 is a group topology for G = m G, if and only
if all H, are locally compact, or all but a finite number of H, are discrete. The
first counter example given in [2] is just the case H; = Q, H, = R (n 2 2), which
satisfies neither of these requirements.
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