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Multiple fibers on elliptic surfaces in positive
characteristic

By

Mitsuru KAWAZOE

Abstract

In this note, we investigate elliptic surfaces in char. p > 0 with multiple fibers of
a  supersingular elliptic curve. In particular, we show that wild fibers on elliptic
surfaces over P ' with e 2 =0 and the general fiber being a  supersingular elliptic
curve can be reduced to tame fibers by taking a  purely inseparable covering of
degree p  successively and as an application of it, we show th a t if such elliptic
surface has only one multiple fiber, then its multiplicity is equal to p.

Introduction

In characteristic p >0 world, multiple fibers appeared in fibred varieties are divided
into two classes. One is a tame fiber which can be treated as in characteristic zero
and the other one is a wild fiber which is only appeared in positive characteristic
and has curious properties (cf. [1][4]). K atsura and U eno [1] studied multiple
fibers of elliptic surfaces in positive characteristic and obtained many results. For
example, they studied how to reduce a wild fiber to a tame and moreover to a
non-multiple fiber by pulling back the elliptic fibration to a certain covering of a
given elliptic surface and for a multiple fiber of type „,In , n > 0 they proved that if
such multiple fiber is of good type (for the definition, see [1, added in proof]), one
can reduce a multiple fiber to a tame fiber by taking a certain covering successively. In
particular, if the support of a multiple fiber is an ordinary elliptic curve or of type
I„, n >0, a covering used in the above procedure is a Z/pZ étale covering. For
a multiple fiber of a supersingular elliptic curve, their result is a little w eak. For
example, they could not answer whether we can take a covering of degree p  in the
procedure of reduction to tame fibers.

In this article, we consider elliptic surfaces in characteristic p >0 with multiple
fibers of a supersingular elliptic curve. For the reduction of a wild fiber to a tame
fiber, we show the following:
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Theorem A .  Let f :X  be an  elliptic surface in characteristic p > 0  with
general fiber being a supersingular elliptic curve and x(0 x ) = -0 . Then, we can reduce
wild fibers of it to tame fibers by taking a purely inseparable covering of  degree p
successively.

The situation treated in this theorem is special, but this theorem does not need the
assumption that all wild fibers are of good type. After reducing wild fibers to tame
fibers, we can reduce tame fibers to non-multiple fibers in the well-known manner(cf.
[1]). As a corollary of this result, we have:

Corollary. Let f : X -  P I b e  as  in  Theorem A .  I f  t h e  multiplicity o f  every
multiple f iber off  is a pow er of p, f: X -i. P 1 is obtained by  a successive quotient of
the trivial elliptic fibration P 1 x E by p-closed derivations where E is a supersingular
elliptic curve.

For wild fibers in elliptic fibrations in characteristic p >0, the following question
has been open for a long time (cf. [3][6][7]):

Question. Does there exist an elliptic surface over P 1 w ith  a multiple fiber of
a supersingular elliptic curve of multiplicity if (v >2)?

In  reference to this question, we are interested in the multiplicity of a multiple fiber
with support being a supersingular elliptic curve appeared in an elliptic fibration. B y
applying the above results, we show the following:

Theorem B .  L et f : X  P 1 b e  an elliptic surface in  characteristic p > 0  with
x(e x ) =0 and the general fiber being a supersingular elliptic curve. If  f :  X -± P 1 has
only one multiple fiber, then the multiplicity of  the multiple fiber is equal to p.

The condition that f :  X -+ P 1 has only one multiple fiber comes from only a technical
reason in the proof. By virtue of this theorem, we can compute the Hodge numbers
of elliptic surfaces satisfying the assumption of Theorem B.

Finally, we give a  brief outline of th is article. I n  S e c t io n  1, we shall recall
the notion of a  wild fiber and  its  p rope rty . In Section 2, we shall give a  quick
survey of the theory of taking quotients by derivations which is a  very useful tool
to understand purely inseparable m aps. In Section 3, we shall consider how to
reduce wild fibers to tame fibers on our surfaces by pulling-back with the Frobenius
map of their Albanese varieties and prove Theorem A (Theorem 3.2) and Corollary
(Corollary 3.4). In  Section  4 , applying th e  result in  S ec tion  3 , we shall prove
Theorem B (Theorem 4.4) a n d  compute th e  Hodge num bers o f  elliptic surfaces
satisfying the assumption of Theorem B.

Notation

We use the following notation. For an n-dim ensional irreducible algebraic variety
X over an  algebraically closed field k of characteristic p> 0,
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k(X): the function field of X,
Derk (k(X)): the module of derivations of k(X)/k,
Fx  :the relative Frobenius map from X.

F o r a  nonsingular algebraic variety X,
Alb(X): the Albanese variety of X,
d e x :  the  sheaf of the image of the map d : e x D f d f a l l ,
q(X): the dimension of Alb(X),
b i(X): the i-th Betti number of X,
c,(X): the i-th Chern class of X,
p(X): the Picard number of X,
[D]: the line bundle associated with D.

1. Preliminaries

In  this article, we always assume that an  elliptic surface f: X - ) C  is minimal,
that is, any fiber of f  contains no exceptional curve of the first kind. For an elliptic
surface f :  X - * C  in  characteristic p > 0 , le t g -  b e  the  to rsion  part o f R i f,Cox  and

f - 1 (a)=mD a multiple fiber off where ni is the multiplicity and D is its support. P u t
n = ord [D ]lp . Then there exists a  non-negative integer r such that

A multiple fiber f - 1 (1)=mD is called a  tame fiber if one of the following equivalent
conditions is satisfied.

1. g = 0 ,
2. IP(CO.D)= 1,
3. n=m.

If a multiple fiber is not tame, we call it a wild fiber. A multiple fiber f - 1 (a)=mD
is wild if and only if one of the following equivalent conditions is satisfied.

1. 27„00,
2. Ir(l9„,D) 2,
3. 1  <n<m - 1.

If D is a  supersingular elliptic curve, then Pie(D) has no p-torsion p o in t .  Hence,
for a multiple fiber mD of a  supersingular elliptic curve D, mD is wild if and only
if (m,p) 1.

2 .  Quick survey of quotients by derivations

In  this section, we recall some basic facts o n  th e  theory o f derivations and
p-closed vector fields (cf. [5]).

2.1. L e t R  b e  a  r in g  a n d  D  a  derivation o f  R .  W e denote a  subring
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{aeR:Da =0} of R  by RD. For an ideal I  of R, D  defines a  derivation D of Rh I
if and only if D(I)ci.

2 .2 .  Let K  be a field of characteristic p > 0 and D  be a  derivation of K .  If
D  is  a  derivation of K , then DP is also a  derivation. A  derivation D  is called
p-closed if and only if D" =ŒD for some a e K . In particular, if D"=0 (resp. DP=D)
we say that D  is of additive type (resp. multiplicative type). Two derivations D,
D ' are called equivalent if and only if D =f D ' for some f e K ,  f 0 0 .  If D  and D'
are equivalent, we write D — D'.

Since the module of derivations of K IL  for any subfield L  of K  such that KIL
is an inseparable extension of degree p  is one dimensional, every subfield L  of K
such that K IL  is an inseparable extension of degree p  bijectively corresponds to an
equivalent class of p-closed derivations of K  such that 1 0 =L  where K

° i s  the
subfield tfe K: Df =0 } of K.

2 .3 .  Let X = USpec(A) be  an  irreducible algebraic variety defined over an
algebraically closed field k  of characteristic p >0  and D  a  rational vector field on
X , i.e., a derivation of (X )Ik . As is well-known, a variety X °  defined by USpec(AP)
where AP:=A i nk(X)° and a morphism 7rD : X° induced from AP q A i satisfy the
following properties:

1. rcr , is a  finite purely inseparable morphism,
2. If X  is normal, so is X ° ,
3. If D  is p-closed, then degnp=p.
Conversely, for normal varieties X , Y  and a finite purely inseparable morphism

TE : X —r Y of degree p, there exists a  rational p-closed vector field D  on X  such that
it = np, Y= XD  and D  is uniquely determined up to a  nonzero scalar multiple from
k (X ). This fact comes from (2.2).

2.4. Let X  be a  nonsingular irreducible algebraic variety over k , and D  a
rational vector field on X .  Then D can be written in a neighborhood of xeX as

D = h x

)

f x ,
,=1 

where x l , ••-, x lo c a l coordinates at xeX , h x i s  a  rational function on  X  and
f x ,i are regular functions at x which are relatively prim e. The functions hx determine
a divisor, which we call the divisor of D  and denote it by (D ) . Let <D> be a zero
cycle on X  defined by E x E x  m xx, where m x = d i r n k 0 x , x / Y .. . , i ,  F o r  a  rational
vector field D  on X , we say D  has only a divisorial singularity at xE X  if and only
if the above ideal (fx ,i , • • ,f )  contains the unity, that is, <D> =O.

In the case of nonsingular surfaces, the following fact is well-known.

Proposition 2 .1  (Rudakov- Safarevi6 [5]). L e t X  b e  a  nonsingular algebraic
surface, D a p-closed rational vector f ield on X  and x e X .  Then the quotient surface
X°  is nonsingular at n» (x) if  and only  if  D  has only  a  divisorial singularity  at x.
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Finally, we recall the notion of an integral subvariety. Let V be a  subvariety
of X and y the general point on V .  Denote ht,- 1 D by D v , where h, is a local equation
of the divisor (D) a t v . W e  c a ll V an integral subvariety for D  if the vector field
D , is tangent t o  V  a t  v . W h e n  V  is  a  divisor, V is  an integral subvariety for D
if and only if D (F) -- 0  mod Ft, in  Cov ,„ for any point y of V , where F t, is  a local
equation of V a t  v .  The following proposition is important.

Proposition 2 .2 .  ([5]). L et X  be an algebraic variety  which is nonsingular in
codimension one and let D be a p-closed rational vector field on X, it =  ltD  X - ,  XD, V
an irreducible divisor on X, V' the image of V in X°

. T hen w e have the following:
1. If  V  is an integral subvariety f or D , then ir. V =pV  and n*V  =V ,
2. If  V  is not an integral subvariety f or D , then rc* V = V ' and ir*V '=pV .

Let f:X  -+ S be a proper surjective flat morphism of algebraic varieties. Let D
be a p-closed derivation of k(X) and  V  be an integral subvariety of X .  If  V  is  a
fiber off then the natural fibration : X° S °  obtained from f : X  S  has a multiple
fiber over n i r D ( V)) of multiplicity p.

3. Reduction of wild fibers to tame fibers

Let f :  X  P 1 b e  an elliptic surface in characteristic p > O .  In the following, we
assume that f :X --*P' satisfies the following conditions (*):

1. X( x) °,
2. the general fiber is a  supersingular elliptic curve.

The condition x(0x )=0  imposes that every singular fiber is of type „Jo , th a t is, a
multiple fiber of an elliptic curve. This can be seen from the following lemma.

Lemma 3.1 (K atsura-U eno [1]). For an elliptic surface f :X -,C, we let cp: X -,
Alb(X) be an A lbanese map of X  and tll:C-,J(C) a natural mapping into the Jacobian
variety  of  C, with a suitable choice of base points on X  and C. Then, the following
conditions are equivalent.

1. There exists a f iber f  i (p), peC such that cp(f- '(p)) is a point.
2. Alb(X) is isomorphic to J(C).

Otherwise, we have dim Alb(X)= dim J(C)+1.

By c 1(X)2 = 0  and Noether's formula, x(e),)=0 if and only if c 2(X)=O. F r o m
the  above lemma and  the  inequality c2(X)= b o (X)- bi(X)+ b2(X) - b3(X)+b4(X)
2 -4q(X ), we have that if x((9x )= 0, then q(X)= 1 and every singular fiber is a multiple
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fiber of an elliptic curve.
Let m iS i = r 1(a i), i = 1, 2, ...,l be all multiple fibers of f :X —  I:" where m i are

positive integers and S i are their supports. Changing indices if necessary, we may
assume that mi <m i  for i < j .  Let cp. be an Albanese map of X and E= Alb(X). Note
that E  is also a  supersingular elliptic curve because the general fiber of f  is  a
supersingular elliptic curve. Moreover, since S i is also a supersingular elliptic curve,
ri(0)=m is i i s  a  wild fiber if and only if (mi ,p)0 1. For such surfaces, we can
reduce wild fibers to tame fibers by pulling back an elliptic fibration to  a certain
covering of f : Indeed, we have the following theorem.

Theorem 3.2. Let f : X -4:". and r i (cti)=m iS i b e  as abov e. T hen there is the
following diagram:

Eh Eh_E b E0:=E

lPhÎ
g,h_, ‘,„  î

1 th  -  I irj It

X„ Xh_ Xi X0 :=X

-  1 f i fi
P i p1 ' P i

such that

1. F are relative Frobenius maps,
2. — 4'1 are elliptic surfaces satisfying the condition (*),
3. f or the  po in t OEPEP 1 , j < h  such that F(al-i))=c4i - 1 )  an d  Œ

°
=Œ1, th e  fiber

f i l ( a n  is a  multiple fiber o f  a supersingular elliptic curve with multiplicity

j=0,1,•••,h— r inip=. m_{ i
j=h— ri+1,h— r + 2, • • h -1

f o r all i= 1,2, •••,I where ri i s  the largest integer such that Ili devides m i ,
4. zpi  are  A lbanese maps,
5. i t  are finite purely inseparable morph isms of degree p,
6. has only tame fibers.

The following lemma is important in the proof of the above theorem.

Lemma 3.3. Let f :X - 4 3 '  be as in  the Theorem 3.2. Then,

1. f o r  t h e  A lbanese  m ap  cp : X Alb(X)=E, (p* : 111 ( E ,  E) e x )  is
injective,
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2. for a smooth fiber f - 1 (fl) =D , the natural restriction mapping e :1-11(X,(9x ) —

111 (D,C D )  is the zero mapping.

P ro o f  (1) Since q(X )=1, Alb(X) is an elliptic curve. Then, by Leray's spectral
sequence for go : X —> Alb(X), we have the exact sequence,

0 —1-11(E, (9 E) -  1-11(X5 I( V-).

(2) This is the consequence of [1, Lemma 6.1 (ii)]

Proof of  Theorem 3.2. Let p  be a non-zero element of 1-11 (E, (9E). Since E  is
a  supersingular elliptic curve, F*(p)=0 where F* is the induced action on 1-11 (E,(90
from the Frobenius action F:C E Bgi—TPeC E  o n  (9E.

Taking an affine open covering {U }).„  of E, we represent p by a  te c h  cocycle
{ p }  with respect to this covering. By F*(p)= 0, there are p,e F(U,, (.9E ) such that

piL =p A — pm o n  LIA n U o ,

We define the covering IC: E l - 4  E  by

{

 u P2 =p A

uA =u m -l-p, 4

on UA

on UA n U,.

7C:E1-4 E is nothing but the relative Frobenius morphism FE i .
Since cp* is injective, we have

(p*p 00, F*(9*p)=0

from the following commutative diagram:

9.
0 —> 1-11 (E,C E) H1(X,(9x)

F*I 1F.

(p*
0  -4  H i (E,(OE) —> HI(X, (9x)

Put f , :=  cp*p  on (p -  1 (U A)n(p -  i (U 0  and  zA := cp*tiA o n  (1)- 1 (uA). W e define the
covering Fr :1 -4 X  by

P -ZA- ( P
*
 PA on cp-  1 (II A)

z A = z,-1-f,0 o n  cp'( U A)ny) - 1 (U,).
{

This is a flat covering of degree p .  Let X.  b e  a minimal nonsingular model of the
normalization of 1 .  By the Stein factorization, we have the following diagram.
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I t

-■

where C be a  nonsingular complete algebraic curve. Since the restriction of It to
the general fiber of f  is trivial by Lemma 3.3, the morphism g is purely inseparable
of degree p, so C P 1 a n d  g is the Frobenius m apping. B y the construction, cp o ft
factors through FEI :  E l  E ,  so we have the following diagram.

f
P 1 4-  X El

f
P i  4 —  X E.

It is easy to see that ep is an  Albanese map.
In the above argument, we do not need a desingularization for the normalization

of I ,  that is, the normalization of I  is already sm ooth. Let S  be  an exceptional
curve in

P i P i

Since f a  It(S) is a point, we see that f (S ) is also a point, tha t is, S  is contained in
a fiber of f  B u t  since q(1. )= 1, every fiber of f  has only one irreducible component
and hence S  must be a  po in t. T hen , we have It is a  finite purely inseparable flat
morphism of degree p  and x(0)= x(0,)=0.

Now we look a t  multiple fibers. W e  w r ite  m ; =n ip"' where ni = ord[Sji s , and
ri i s  a  non-negative integer. Since S i i s  a  supersingular elliptic curve, we have
(ni ,p)= 1. Put thpg'i :=f  - 1 (60, i= 1, 2, • • •,1, where g i is  the support of the fiber. For
a  morphism i ,  we denote the purely inseparable degree of by d ( 0 ) .  F or 91s ,,
we have
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dp(tP15)=P r ' - r ' dp1(01s).

If dp 1(910 >1, then ((pi s )* : H 1 (S  s ,)— H '( ,  g i) is the zero mapping and fr1§,: S.
is the trivial c o v e r . Since, from Lemma 3.3, the restriction of cp to  the general fiber
is also the trivial cover, we have

riii =m ;=

Furthermore, we have

4(01) = dpi((p ls,)/P

from the following diagram

qui
S iE i

Ali, I I  FE I

Si E
(pis,

P u t  X i  :=S', := f, ir i := 7i, (p i := ep, SV ) := /741):=Ifli a n d  XJ := I i _ „
1ri :=1ri _ 1 , cp; := 1 a n d  so on . T hen , for each i = 1, 2, • •, /, there is a  non-negative
integer j, such that dp ,(cpi i ls v d )-= 1. From m1 m 2  • • • and the relation dp ,(91s ,)=
pri - rldp i ((pis i ), we have j i = logp dp ,(cpls ,)+ rl —ri fo r  i= 1, 2, •••,l.

F o r this j i ,  we have (49 i,Is1j,)) * : 1 1 1 (Ei1,e c » — H V i ( 9 sp i)) is  an isomorphism.
Constructing a  covering X _ ,  of X  w ith  resPect to  p ( h) e l l i (Ek e E i i ) by the above
procedure, we have that

1. ) is purely inseparable of  degree p,
2. ml-ii + 1 ) =rn Plp =n 1pri - 1 ,
3. : + 1) EJ f + 1c 1is separable, that is, p i (ço i i +  1141, ,  j)) =  1 .

So, iterating the above construction, we finally reach at (X h ,(ph , f h ) with l (cc h))= n i S r
for all i =1, 2, •••,I. Then, all multiple fibers are tame and this complets the proof.

Corollary 3 .4 .  Let f: X —> P 1 be as in Theorem 3.2. If  the multiplicity of every
multiple fiber off is a power of p , then f :  X  P 1 is obtained by a successive quotient
of the trivial elliptic f ibration P1 x E by p-closed derivations where E is a supersingular
elliptic curve.

P ro o f  Under the assumption that the multiplicity of every multiple fiber is a
power of p, we have f h : Xh : P 1 is  free from multiple fibers, i.e., f h is smooth. Since
x(0 2,0= 0 and q(X h ) = 1, we have b i (X h) = b 2 (X h ) = p(X h )= 2. Furthermore, we have

x E h  with pr i = f h and pr 2 = (ph . Since each n;  is  a  purely inseparable finite
morphism of degree p  by Theorem 3.2, we have that each n;  is given as a quotient
map from X;  b y  a p-closed derivation and this completes the proof.
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4. The multiplicity of a wild fiber of a supersingular elliptic Curve

I n  th is section, we consider the case th a t  th e  elliptic surface has on ly  one
multiple fiber.

Lemma 4.1. Let f: X  -4.P 1 b e  an  elliptic surface with x(e x )= 0 .  If 131
has only one multiple f iber, then the multiple fiber is a  wild fiber and its multiplicity
is a pow er of p.

P ro o f  This follows from [1, Corollary 4.2].

F o r  a  supersingular elliptic curve E , it is well-known (cf. [6 ]) that there is a
local coordinate system { (U,, ri,)} such that th=1),,-I-M,„ bÂiL ef(U A n U,„ . In
the following, next two lemmas are important.

Lemma 4.2. L et E  be a supersingular elliptic curve in characteristic p> 0 and
let { (U ,, 0 } be a local coordinate system of  E such that th=g 4 +bP4 ,
(0E). T h e n ,  there does not exist a cocycle {c Au }e11 1 (E, C E) such that
cP =b.14, AL

P ro o f  First we note that {b4 }  is a  cocycle of II 1 (E, (9e ). Suppose that there
exists a  cocycle {c14 }EH l (E, E )  as in  the  assertion. Then the cocycle {b} = {0},
because the map F*: 11 1 (E, Co 111 (E, & E )  induced from the Frobenius action on
( 0 E  is  th e  z e ro  m a p . Hence, there exists a  cochain {a A }eC({U l }, CE)  such that

— alL = bAm.
Since p b t „  we have riA — a =— a .  T h e n ,  triA - a i n  defines a global

section of ( 
0 E

 o v e r  E  and  i t  m ust be  co n stan t. Hence, {dik=d(11 2 —aP„)}={0} in
W).

B ut this contradicts to the  assum ption that {(U,I , 112 )} is  a  loca l coordinate
system of E , because if  { (U,, l b ) }  i s  a  loca l coordinate system o f E , then {dri l l
defines a non-zero holomorphic 1-form on  E.

Lemma 4.3. L et E, { (U,, ;IX  an d  { b }  be as in the prev ious lem m a. Then,
there exist a non-zero constant cekx  and a cochain {a2 }eC° ({U2 }, CO such that

db, o =o),—com

where co, is a holomorphic 1-form on U , given by crir l dri,+da,.

Pro o f . Since E  is  a  supersingular elliptic curve, dim1-11(E, = 1 and  it is
easy to see that

111(E,A9E)=k•

W e denote fie -
 1 dr/A —14-1 driml  by Since {dbA,}  is a lso  a non-zero element of

I11 (E, W O by Lemma 4.2, there exists a non-zero constant c e k ' such that {db,,,}
in  111 (E, A Y .  Then, there exists { a,} ee p ({U,} , ( 0 E )  such that
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db = c+ da ,,— da 4 ----(criPA - l dri A +da,1) —(c l dr +da 4 ).

Now, we shall prove the following theorem.

Theorem 4.4. L et f :  X  F" be an  elliptic surface in characteristic p > 0  with
x(C,)----0 and the general f iber being a supersingu lar elliptic curv e. lf f: X —.13 '  has
only one multiple f iber, then the multiplicity of  the multiple f iber is equal to p.

We prove this theorem in the following. To prove the theorem, it is sufficient
to  show that such surface can not have a multiple fiber of multiplicity pv(v>2).

Let f:X—.13 1  b e  an elliptic surface in characteristic p > 0  such that x(C,)= 0, the
general fiber is a supersingular elliptic curve and f  has only one multiple fiber. F r o m
Lemma 4.1, the multiple fiber is a multiple fiber o f  a  supersingular elliptic curve
with multiplicity I,' for some 1 >0.

Suppose th a t  />2 a n d  le t f - 1 (a)=p 1S  b e  th e  o n ly  one m ultip le  fiber of
f :  X  P 1 . Then, from Theorem 3.2, we have the following diagram:

E0 F  E, F E  2  F F  .  E

vo 1 vi 1
4 , 2 Î (P f

A-0  . 0  A,, ____L÷. X2 _142 • • • —■ Xn  = X___,
f  o  If i  j, 2 I

f  1
p l F p 1 _F. _. p 1 F +' . . . _F1). P 1

such that

1. F  are relative Frobenius maps,

2. —> 13 1  a r e  elliptic surfaces satisfying the condition (*),

3. for the point a( i) EP I , j>  1 such that R au) =  + 1 ) a n d  a (") = a, f i  1 (ocu))  is a
multiple fiber of multiplicity

m .= {
p  j=1,2,•••,/

J

p i  j= l+ 1 ,1+ 2 , •••,n ,

are Albanese maps,
5. 7E are purely inseparable finite morphism of degree p,
6. X0 '- -13 1  x E , and f o = p r , and 9 0  = pr2 .

Looking at the top part of the above diagram, we have the following diagram:
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S0= E0
in c lu s io n  p l  E0

ino

inclusionS I (P i  E ,

I
inclusionS2 X2 ‘—fi+ E2

where ,S; , j=  1, 2, is the support of the multiple fiber of f ;  and  such that

1. F  are relative Frobenius maps,
2. j i :x.;1 3"  are elliptic surfaces satisfying the condition (*),
3. f i71(a0 ) =m ; S;  where ot(i) i s  the point such that F(ocii)) = P "  and m;

j=  1, 2,
4. cp.; a re  Albanese maps,
5. n;  a re  purely inseparable finite morphism of degree p,

6. Xo P 1 x Eo  and f o = p r, and (p o = pr 2 .

Since n, j=  1, 2, are purely inseparable finite morphisms of degree p  and X;  are
nonsingular, each n;  is obtained as a quotient morphism by  a p-closed rational
vector field on X;  with only divisorial singularities.

For no : X0 -+ X,, we have the following lemma.

Lemma 4 .5 .  Let Do be a p-closed rational vector f ield which gives the quotient
map no : 131 x E0 X , .  Then, for a suitable choice of  a local coordinate system, D o

is written in the form:

a
Do = h(—+ f(y)(5)= h(t 2f (5

ay at )

where P l  = Speck[y] uSpeck[t], yt =1 on Speck[y] (- -)Speck[t], ■5 is a p-closed additive
regular vector f ield on E0 , fe k[y] and h is a  rational function on 13 1  x Eo .

P ro o f  Take a  coordinate t  to satisfy that the fiber over It = 0} is the only
one multiple fiber. S ince  D c, —Fa/0y+ (5 where F is a  rational function of 13 1  x E,
Do is written in the form

Do = h ( F  +  (5 ) on Speck[y] x E,
\  a3

=h(Ft2 —
a

+ a) on Speck[t] x E
at
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f o r  som e ra tiona l func tion  h  o n  P 1 x E .  S in ce  X, = A40)° is  nonsingu lar,
<Do > =O. From this fact and f ,  has a multiple fiber over ft =0}, we have that
((t)0 .(F ). )= 0 . Then, (1 ) .  consists o f  fibers o f  pr, :P I x E  13 ' a n d  a lso  (F)
does. Hence, Fek(P 1).

Since f, : X 1 -4111 has only one multiple fiber at t =0, F has no zero in Spec
k [y ].  Then, f :=F -

'e k [y ] and this completes the proof.

From this lemma, we can compute the local coordinate ring of X,.
Let {(U0 ,,,, rio , )1 be a local parameter system on E0 w ith  respect to  an affine

open covering {1./0 ,,,} such that

110 ,1 — = Uo,An U0 , ,, E0 )

Then, the local coordinate ring of (Speck[y] x Uo ,,t)° ° can be discribed as

(F(Uo, E °) [A P ° = r  0  6 1 °)[YP, "NY) + no,A]

where H(y) is a polynomial and we may assume that 17(y)=y"°07— a i r • • • (y — ar
and (p, n o +n,+ ••• +n i) =1.

From the above notation, we have the following lemma.

Lemma 4 .6 .  Put n:=n o +n i + ••• +n i and let h, q, a, 13 be integers such that

n+q=hp, 0<q<p, ap413q=1, 13>0.

Then,

X l = U {Spec F(U,, A, ( 9 E i )[x,,, H(y1) —111 ,A)
AEA

u s p e c r w , ,  c o [ 5 2 , t,]/(s — t,(0 —alto' ,  • • • (1 —arid"— thi n i ,,r)}

where

F*H=I7P, 5 A =y , 4 ,

Furthermore,

• = ,  1 1 y j y , ti =t1(7,, r11,A tig,A .

H°(X,, f2jc i ) =f*, H° (P , miU3,] ))dii

where aHu1vayi=tyi—sir 1(yi—s2) - •••(yi— s,r, si, s 2 ,• • • , f l re k  and ebi is  a
regular 1-form on E , given by dri=dri i ,  on [I 1,A.

P ro o f  Let Y, be a  variety defined by

171: = U {SPeCRU 1 , ( 9 EI)[X  Y  il(x 5 — 1) — ,  i )u
AEA

SpecF(U, .A, CEAZA, t P(Z5 — 1(1 — alt I ) "  •  •  •  ( 1  —  ar t On' —  ?Jilin " ) }
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where x l =t,- "z2 and Y i  =t,- 1 . Then, it is easy to see that X0  is a purely inseparable
covering of degreep of Y, with k(Y 1 )=k(X 0 )D0 and X , is the normalization of Y,.

F o r th e  rest of the assertion, we can show  in  the  following w ay . F o r th e
support S, of 'WI =OD, Ox1Vi- 1 (fl1))=- 9 x1(PSI) and from the adjunction formula,
we have cox , =O x i ((2n(F)-2)S 1 )  where F is the fiber of g9, and 7E(F) is its arithmetic
genus. From  an exact sequence

o•, (pIt211 0ex 1 (E  m if i  '(/31)) f/jC1 - 4  fl")Xi/Ei 0  (9 X1 E  mifi

we have

o ,  ex ,  ( E pi, —  cx,027 ( ) — 2—(n —1)p)S 1 ) —> O.
i=t

Since a n  inequality n(F) (p — 1)(n — 1)/2 h o ld s , w e  h a v e  27r(F)— 2 — (n — 1)p <
— n - 1 <0 and

H° e x i( Ir (P 1 ,0 p i(E  mi[fii])) •
i=1

Corollary 4 .7 .  For an integer m <n, w e have

H °  (X 1 , 511 i (mS 1 )) = H° (1)1  , Cp t 
i= 1 

mi + KEco]))

w here K  is the largest integer satisfying K__mlp and co ={ t, =0}.

F o r  7t, : X1 - >  X 2 ,  it is also obtained as a  quo tien t morphism by a  p-closed
rational vector field on X,.

Since X 1 does not depend on the choice of a, )3, we may assume that Œ +#h -=0
mod p  and  pu t 1+ f3h=yp, y eZ . From the  above lemma, we have the following
relations.

a a
—  f i'sn +1 (t7H(t i

- 1 )—tqn,,,yofi - 1 ) -
a
—ax, as, asA

a a a
=  H ' ( y  , )  = 1)
ay ,& I L A .
a a

axA a x ,

a ab,,„  a a
ay, 0Y  ax, 0Y
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where H' =01110y, and N ote  th a t  (t1H(t,- 1 ) -411,,,r (11 - 1 )  i s  a  un it
element of k[[s i , i i ]].

Now, we consider the morphism np i : X , -) X 2 .  For a fixed Ao , D , is equivalent
to  the following form

a aD 1 -  F +
0x,o 0 y ,

for some Fek(X 1). W e fix this expression in the following.
For an element Ili of a ring of formal power series k[[x 1 ,x 2 ] ]  and a fixed i= 1,

2 ,  w e  s a y  'I f  is  in te g ra b le  on x •  t h e r e  e x is t s  Cilek[[x 1 ,x 2 ] ]  such  that
atil/ax, = P .  The integrability on x i is equivalent to the condition that 41 h a s  no
such term of the form x74, a - 1  mod p.

Lemma 4.8. L et D 1 ,  F  be as  above and o),I =crti;,-, 1 d ii,,+d a,, as  in  Lemma
4.3. Then, {Fdy i - d b , , , - ( o , }  gives an element of  HA X ,, S IL (nS ,)). Moreover, F
is integrable on y ,  in k [[x , o ,y ,]], that is, the formal power expansion of  F with x h ,
Yi does not contain such terms of the form  x iy i,J  -  1 mod p.

P ro o f  From  the above relation, on each neighborhood, D I is w ritten  in the
following form.

0 0
D i -  F +

ax A „ ay'

—(F abi,A.A)  +
aYi0 x , „

1 .r lo A )r  — 1  — 1 n+ I n —1ab
H (t, ) (t, H ( t ,  ) - t n o t r " ) a a

ay , 0s,, ai l

0
-  &l c

+  1 (tn,H ( t  1) - tni t 1)
-

FH '(t 1) -  
 a  

 N A. a i l °

Since X , has only one multiple fiber over t 1 =0, F has no pole along fibers of
f 1 over Spec k [y d .  Then, since D , has only divisorial singularities on X 1 , we have
that poles of F can appear only along S , or fibers of yo, outside 9,- 1 (U,,,,0). Moreover,
we have that poles of (F - 0 y  i )f f -  c an  ap p ea r o n ly  a lo n g  S ,  with order
at m ost n on  9,- 1 (U1 ,2), for any A.

P u t  ,,:=Fdy i -d b ,,, 0A o n  cp,- 1 (U,,,) for each 2. Then, they gives an  element
of 0({  Slii(nS,)) and satisfy the relation 4 , -  =  d b  , A0 A. Hence, from Lemma
4.3, (Fdy i -d b ,,, o ,-u h ),, E A  gives an  element of T r(X „ S2i 1(nS 1)).

For the rest of the assersion, it follows from the p-closedness of D,.

W e denote the  element o f I-r(X I , fI l i (nS I )) given by {Fdy,-db,,,,,,,,-(D A )  in
the proof of previous lemma by From Corollary 4.7, there exists an  element

a
ay
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of H°(1' 1, Op1(Em1[(3,] + K[oo])) where K is the largest integer satisfying K__nlp such
that

1,p 'ohm = d 111,.1

for all A. Then, for 20 , we have

Fdy = co ,o +tIldri ".

In the following, we only consider about Fdy 1 =co2 0 +1/Jch7 1 0 and we omitt indices
for the convenience. Expressing H(y)=E7,. 1h iy i, (h„ 00), f ro m  = x"— H(y), we have

i/P-  1 =  ( X P  — E h iy i) P ( E  i h Ey id y  =(n h f ,y "P -  1  +(lower terms on y))dy

and from Lemma 4.3

co = cir 1d +da=(nchf , y "P +(low er terms on y))dy+da.

From H'(y)=1-1(y — fir '  and Corollary 4.7, we have

H'
Hi (X 1, njc i (n S 1)) E k • • dy + E k • H'y'"dy.

(y-13 1Y m=o

where K  is  the largest integer satisfying Then, for tkati =t1111"dy eH°(X i ,
LI1,), the degree of OH' with respect toy is at most n — l+n lp . Hence, we have

+ Vick =(nchf,y"P- 1  + (lower terms on y))dy+ da.

But this contradicts to the fact that Fdy =co + chi and F is integrable on y .  Thus,
we complete the proof of Theorem 4.4.

Corollary 4 .9 .  Let f : X -4 ' 1 b e  as in  Theorem 4.4. If  f  has only  one multiple
fiber, then we have:

h° (X, SID = h2 (X ,S11)=1+ [degcp*Slilp],

h1(X,L11)= 2[degcp *f2k/p] + 2,

h1(X ,e x )=h 1(X, f/i) =2 + [(27c(F)-2)Ip],

h2 1X , Id= h ° 1X, ni) = 1 + E(21t(F) —

an d  moreover, hA X ,O x )= [dew *Snip] + 1 + [27r(F) — 2 ) Ip ] w h e re  9 :X  E  is  an
Albanese map, n(F) is the arithmetic genus of  the general f iber of  9 and the bracket
[ ] denotes the Gauss symbol.

P ro o f  By Theorem 4.4, the  multiplicity o f the  only one multiple fiber is
p .  Then the local coordinate ring of X  is given as Lemma 4 .6 .  As we see in the
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proof of Lemma 4.6, we have

0  C x ((degyo*SI)S)—>S21 (9x ((27i(F) - 2—  degço*SI )S ) 0

where S  is the support of the only one multiple fiber of f  Then we have

X(X,f2jd= X(X,Ox((cleg(Pq2Ds))+Ax,ex((27r(F) - 2 —   degcp*SI)S)= 0

by Riemann-Roch theorem . From  this fact and x(X,C9x ) =0 and Serre duality, we
can compute h1(S2ix )'s. Moreover, from ex =f40Wx-  1  and the above exact sequence,
we can compute h° (0,-).

Remark 4 .1 0 . Takeda [6][7] computed the Hodge numbers of an example of
a false hyperelliptic surface. Corollary 4.9 gives a more general formula including
Takeda's re su lt . N ote  th a t  surfaces considered i n  Corollary 4.9 a re  not false
hyperelliptic surfaces in general because the general fiber of an Albanese map can
have many cusps.
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Added in Proof:

1. In  Theorem 3.2, the assumption m i <mi  f o r  i < j  has to  be  co rrec ted  to  the
following: for i < j  where mi = n ipr' and (ni,p)= 1.

2. I n  C orollary 4.9, w e  n e e d  th e  following assumption: a n  Albanese map
cp.: X  E =  Alb(X) has a section.


