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Multiple fibers on elliptic surfaces in positive
characteristic

By

Mitsuru KAWAZOE

Abstract

In this note, we investigate elliptic surfaces in char. p>0 with multiple fibers of
a supersingular elliptic curve. In particular, we show that wild fibers on elliptic
surfaces over P! with ¢, =0 and the general fiber being a supersingular elliptic
curve can be reduced to tame fibers by taking a purely inseparable covering of
degree p successively and as an application of it, we show that if such elliptic
surface has only one multiple fiber, then its multiplicity is equal to p.

Introduction

In characteristic p>0 world, multiple fibers appeared in fibred varieties are divided
into two classes. One is a tame fiber which can be treated as in characteristic zero
and the other one is a wild fiber which is only appeared in positive characteristic
and has curious properties (cf. [1][4]). Katsura and Ueno [1] studied multiple
fibers of elliptic surfaces in positive characteristic and obtained many results. For
example, they studied how to reduce a wild fiber to a tame and moreover to a
non-multiple fiber by pulling back the elliptic fibration to a certain covering of a
given elliptic surface and for a multiple fiber of type ,I,, n>0 they proved that if
such multiple fiber is of good type (for the definition, see [1, added in proof]), one
can reduce a multiple fiber to a tame fiber by taking a certain covering successively. In
particular, if the support of a multiple fiber is an ordinary elliptic curve or of type
I, n>0, a covering used in the above procedure is a Z/pZ étale covering. For
a multiple fiber of a supersingular elliptic curve, their result is a little weak. For
example, they could not answer whether we can take a covering of degree p in the
procedure of reduction to tame fibers.

In this article, we consider elliptic surfaces in characteristic p >0 with multiple
fibers of a supersingular elliptic curve. For the reduction of a wild fiber to a tame
fiber, we show the following:
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Theorem A. Let f:X — P! be an elliptic surface in characteristic p>0 with
general fiber being a supersingular elliptic curve and y(0x)=0. Then, we can reduce

wild fibers of it to tame fibers by taking a purely inseparable covering of degree p
successively.

The situation treated in this theorem is special, but this theorem does not need the
assumption that all wild fibers are of good type. After reducing wild fibers to tame
fibers, we can reduce tame fibers to non-multiple fibers in the well-known manner(cf.
[1]). As a corollary of this result, we have:

Corollary. Let f:X > P! be as in Theorem A. If the multiplicity of every
multiple fiber of f is a power of p, f: X —» P! is obtained by a successive quotient of
the trivial elliptic fibration P' x E by p-closed derivations where E is a supersingular
elliptic curve.

For wild fibers in elliptic fibrations in characteristic p >0, the following question
has been open for a long time (cf. [3][6][7]):

Question. Does there exist an elliptic surface over P! with a multiple fiber of
a supersingular elliptic curve of multiplicity p* (v>2)?

In reference to this question, we are interested in the multiplicity of a multiple fiber
with support being a supersingular elliptic curve appeared in an elliptic fibration. By
applying the above results, we show the following:

Theorem B. Let f:X - P' be an elliptic surface in characteristic p>0 with
x(Ox)=0 and the general fiber being a supersingular elliptic curve. If f:X — P! has
only one multiple fiber, then the multiplicity of the multiple fiber is equal to p.

The condition that f: X — P! has only one multiple fiber comes from only a technical
reason in the proof. By virtue of this theorem, we can compute the Hodge numbers
of elliptic surfaces satisfying the assumption of Theorem B.

Finally, we give a brief outline of this article. In Section 1, we shall recall
the notion of a wild fiber and its property. In Section 2, we shall give a quick
survey of the theory of taking quotients by derivations which is a very useful tool
to understand purely inseparable maps. In Section 3, we shall consider how to
reduce wild fibers to tame fibers on our surfaces by pulling-back with the Frobenius
map of their Albanese varieties and prove Theorem A (Theorem 3.2) and Corollary
(Corollary 3.4). In Section 4, applying the result in Section 3, we shall prove
Theorem B (Theorem 4.4) and compute the Hodge numbers of elliptic surfaces
satisfying the assumption of Theorem B.

Notation

We use the following notation. For an n-dimensional irreducible algebraic variety
X over an algebraically closed field k of characteristic p >0,
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k(X):the function field of X,
Der,(k(X)):the module of derivations of k(X)/k,

Fy :the relative Frobenius map from X.
For a nonsingular algebraic variety X,
Alb(X): the Albanese variety of X,
dOy: the sheaf of the image of the map d:Oy3fi>dfeQy,
g(X):the dimension of Alb(X),
b/(X):the i-th Betti number of X,
¢{(X):the i-th Chern class of X,
p(X):the Picard number of X,
[D]:the line bundle associated with D.

1. Preliminaries

In this article, we always assume that an elliptic surface f: X — C is minimal,
that is, any fiber of f contains no exceptional curve of the first kind. For an elliptic
surface f: X — C in characteristic p>0, let J be the torsion part of R'f,0x and
f~Yo)=mD a multiple fiber of f where m is the multiplicity and D is its support. Put
n=ord[D]|,. Then there exists a non-negative integer r such that

r

m=np".

A multiple fiber £~ !(x)=mD is called a tame fiber if one of the following equivalent
conditions is satisfied.

1. 7,=0,
2' ho(@mD) = la
3. n=m.

If a multiple fiber is not tame, we call it a wild fiber. A multiple fiber f~'(@)=mD
is wild if and only if one of the following equivalent conditions is satisfied.

1. 7,#0,

2. KO 22,

3. I<n<m-—1.

If D is a supersingular elliptic curve, then Pic®(D) has no p-torsion point. Hence,
for a multiple fiber mD of a supersingular elliptic curve D, mD is wild if and only
if (m,p)#1.

2. Quick survey of quotients by derivations

In this section, we recall some basic facts on the theory of derivations and
p-closed vector fields (cf. [5]).
2.1. Let R be a ring and D a derivation of R. We denote a subring
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{aeR:Da=0} of R by R®. For an ideal I of R, D defines a derivation D of R/I
if and only if D())< 1.

2.2. Let K be a field of characteristic p>0 and D be a derivation of K. If
D is a derivation of K, then DP is also a derivation. A derivation D is called
p-closed if and only if D =aD for some aeK. In particular, if D?=0 (resp. D?=D)
we say that D is of additive type (resp. multiplicative type). Two derivations D,
D' are called equivalent if and only if D=fD" for some feK, f#0. If D and D’
are equivalent, we write D~ D'

Since the module of derivations of K/L for any subfield L of K such that K/L
is an inseparable extension of degree p is one dimensional, every subfield L of K
such that K/L is an inseparable extension of degree p bijectively corresponds to an
equivalent class of p-closed derivations of K such that K®=L where K® is the
subfield {feK:Df=0} of K.

2.3. Let X=|{JSpec(d4,) be an irreducible algebraic variety defined over an
algebraically closed field k of characteristic p>0 and D a rational vector field on
X, ie., a derivation of (X)/k. As is well-known, a variety X” defined by ( JSpec(4?P)
where AP:=A,nk(X)® and a morphism n,: X — X? induced from AP g 4; satisfy the
following properties:

1. =p is a finite purely inseparable morphism,

2. If X is normal, so is X?,

3. If D is p-closed, then degn,=p.

Conversely, for normal varieties X, Y and a finite purely inseparable morphism
n: X— Y of degree p, there exists a rational p-closed vector field D on X such that

n=np Y=XP and D is uniquely determined up to a nonzero scalar multiple from
k(X). This fact comes from (2.2).

2.4. Let X be a nonsingular irreducible algebraic variety over k, and D a
rational vector field on X. Then D can be written in a neighborhood of xe X as

D=h, (z foi )

where x,,---,x, are local coordinates at xeX, h, is a rational function on X and
f..: are regular functions at x which are relatively prime. The functions A, determine
a divisor, which we call the divisor of D and denote it by (D). Let (D) be a zero
cycle on X defined by X,y m,x, where m,=dim, Oy . /(f; 1, . fx)- For a rational
vector field D on X, we say D has only a divisorial singularity at xe X if and only
if the above ideal (f} ;- .fx.,) contains the unity, that is, {(D>=0.

In the case of nonsingular surfaces, the following fact is well-known.

Proposition 2.1 (Rudakov-Safarevi¢ [5]). Let X be a nonsingular algebraic
surface, D a p-closed rational vector field on X and xeX. Then the quotient surface
XP is nonsingular at n(x) if and only if D has only a divisorial singularity at x.
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Finally, we recall the notion of an integral subvariety. Let V' be a subvariety
of X and v the general point on V. Denote h, !D by D,, where A, is a local equation
of the divisor (D) at v. We call V an integral subvariety for D if the vector field
D, is tangent to V at v. When V is a divisor, V is an integral subvariety for D
if and only if D(F,)=0 mod F, in @, for any point v of V, where F, is a local
equation of ¥ at v. The following proposition is important.

Proposition 2.2. ([5]). Let X be an algebraic variety which is nonsingular in
codimension one and let D be a p-closed rational vector field on X,n=mnp: X— X°, V
an irreducible divisor on X, V' the image of V in XP.  Then we have the following:

1. If V is an integral subvariety for D, then n,V=pV and n*V =V,

2. If V is not an integral subvariety for D, then n, V=V and n*V =pV.

Let /:X— S be a proper surjective flat morphism of algebraic varieties. Let D
be a p-closed derivation of k(X) and V be an integral subvariety of X. If Vis a
fiber of f then the natural fibration f2: X? —» SP obtained from f: X — S has a multiple
fiber over f2(ny(V)) of multiplicity p.

D

X — XxP

gl

s — SP
3. Reduction of wild fibers to tame fibers

Let f: X - P! be an elliptic surface in characteristic p>0. In the following, we
assume that f: X - P! satisfies the following conditions (*):

1‘ X((ox)':O,
2. the general fiber is a supersingular elliptic curve.

The condition x(Oyx)=0 imposes that every singular fiber is of type ,I,, that is, a
multiple fiber of an elliptic curve. This can be seen from the following lemma.

Lemma 3.1 (Katsura-Ueno [1]). For an elliptic surface f- X — C, we let ¢: X —
Alb(X) be an Albanese map of X and  : C— J(C) a natural mapping into the Jacobian
variety of C, with a suitable choice of base points on X and C. Then, the following
conditions are equivalent.

1. There exists a fiber f~'(p), peC such that o(f~'(p)) is a point.
2. Alb(X) is isomorphic to J(C).
Otherwise, we have dim Alb(X)=dim J(C)+ 1.

By ¢,(X)>=0 and Noether’s formula, y(0x)=0 if and only if c,(X)=0. From
the above lemma and the inequality cy(X)=bq(X)—b(X)+b,(X)—ba(X)+by(X)>
2 —4q(X), we have that if x(O) =0, then g(X)=1 and every singular fiber is a multiple
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fiber of an elliptic curve.

Let m;S;=f"'(o;), i=1,2,---,/ be all multiple fibers of f: X »P' where m, are
positive integers and S; are their supports. Changing indices if necessary, we may
assume that m;<m; for i<j. Let ¢ be an Albanese map of X and E= Alb(X). Note
that E is also a supersingular elliptic curve because the general fiber of f is a
supersingular elliptic curve. Moreover, since S; is also a supersingular elliptic curve,
S Hey)=m;S; is a wild fiber if and only if (m,p)#1. For such surfaces, we can
reduce wild fibers to tame fibers by pulling back an elliptic fibration to a certain
covering of f: X—>P!. Indeed, we have the following theorem.

Theorem 3.2. Let f: X—>P' and f~'(«)=m;S; be as above. Then there is the
following diagram:

F F F F F
E, —— Eh—l

s
ol
.
Il
ol

such that

1. F are relative Frobenius maps,
2. fi:X;>P! are elliptic surfaces satisfying the condition (%),

3. for the point «’eP’, j<h such that Foa®)=a™V and ol®=q, the fiber
[ (&) is a multiple fiber of a supersingular elliptic curve with multiplicity

T j=0,1,-- h—r,
' mi pj_h+" j=h—-r,~+1,h—ri+2,-'-,h—1
for all i=1,2,---,1 where r; is the largest integer such that p" devides m,

4. ¢; are Albanese maps,
5. m; are finite purely inseparable morphisms of degree p,
6. fn:X,—P' has only tame fibers.

The following lemma is important in the proof of the above theorem.

Lemma 3.3. Let f:X—P' be as in the Theorem 3.2. Then,

1. for the Albanese map @:X—>Alb(X)=E, o*:H\(E,0p)— H\(X,0y) is
injective,
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2. for a smooth fiber f~(B)=D, the natural restriction mapping g: H'(X, 0x)—
HY(D, 0p) is the zero mapping.

Proof. (1) Since g(X)=1, Alb(X) is an elliptic curve. Then, by Leray’s spectral
sequence for ¢ : X — Alb(X), we have the exact sequence,

0— HI(E7 (OE)_)Hl(Xa @X)‘

(2) This is the consequence of [1, Lemma 6.1 (ii)]

Proof of Theorem 3.2. Let p be a non-zero element of H'(E,O;). Since E is
a supersingular elliptic curve, F*(p)=0 where F* is the induced action on H'(E, )
from the Frobenius action F:0g3g+gPelF on 0.

Taking an affine open covering {U,};., of E, we represent p by a Cech cocycle
{pa.} with respect to this covering. By F*(p)=0, there are p,eI'(U,, Of) such that

pPiu=pa—p, on U;nU,

We define the covering n: E, - E by

{ ui=p, on U,
u,=u,+p,, onUnnU,.

n:E, — E is nothing but the relative Frobenius morphism Fg,.
Since ¢* is injective, we have

p*p#0, FXo*p)=0

from the following commutative diagram:

0 » HYE,0p) » H'(X,0y)

Ftl lh

0 - HY(E,0p) - H'(X,0y)

Put f,,:=¢*p,, on ¢ "(U)ne (U, and z,:=¢*u; on ¢~ '(U,). We define the
covering #: X — X by

{ B=¢*, ong '(U)
ZA=Zp+pr Ol’l(p—l(U)‘)f\(p_l(Uu).

This is a flat covering of degree p. Let X be a minimal nonsingular model of the
normalization of X. By the Stein factorization, we have the following diagram.
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X - x
fl I

C - P!

g

where C be a nonsingular complete algebraic curve. Since the restriction of # to
the general fiber of f is trivial by Lemma 3.3, the morphism g is purely inseparable
of degree p, so C=P' and g is the Frobenius mapping. By the construction, ¢ #
factors through Fg, :E; — E, so we have the following diagram.

fo_ ¢
Pl « X > E,

Fl ifl lFEI

i [
Pl X > E

It is easy to see that ¢ is an Albanese map.

In the above argument, we do not need a desingularization for the normalization
of X, that is, the normalization of X is already smooth. Let S be an exceptional
curve in X.

Fy

E, - E

¢5T Tcp

X > X

i Vv

P! - P!

F
Since fo#(S) is a point, we see that f(S) is also a point, that is, S is contained in
a fiber of £ But since g(X)=1, every fiber of f has only one irreducible component
and hence S must be a point. Then, we have # is a finite purely inseparable flat
morphism of degree p and x(0Ox)= x(0x)=0.
Now we look at multiple fibers. We write m;=n;p" where n,=ord[S;]|5, and

r; is a non-negative integer. Since S; is a supersingular elliptic curve, we have
(n,p)=1. Put m;S;:=f"'(&), i=1,2,---I, where S; is the support of the fiber. For
a morphism ¢, we denote the purely inseparable degree of Y by d,(y). For ¢ls,
we have
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dpi(¢|s.) =P’l - "dpi((P|s,)-

If d,(¢ls)> 1, then (¢ls,)": H'(S,, 05) — H'(S,, 0g) is the zero mapping and #g.: S; - S;
is the trivial cover. Since, from Lemma 3.3, the restriction of ¢ to the general fiber
is also the trivial cover, we have

my=m;=np".
Furthermore, we have

dpi(<2’|s‘,) = dpx{(P|s,)/P

from the following diagram

L dls,
Sl' —_— El

ﬁls" l l FE]
S,' —_— E

tPIsi

Put X=X, fi:=f n,:=% @,:=0, SV:=8, mV:=m; and X;:=X,_,, fi=Ff;_,,
m;:=#;_y, @;>=@;_, and so on. Then, for each i=1,2,---,/, there is a non-negative
integer j; such that d (¢ |spp)=1. Fromm;<m,<---<m, and the relation d (¢|s)=
P "d,(ols), we have ji=log,d,(opls)+r—r; for i=1,2,---,1

For this j, we have (¢, lsy,)*: H'(E;, 0,5])—>H‘(S$j",@ss,‘,) is an isomorphism.
Constructing a covering X, ,; of X;, with respect to pYeH'(E;, Og,) by the above
procedure, we have that '

Lo 7 lsy, s 0 ST D - SU is purely inseparable of degree p,
2. mi*D=mf[p=n;p"~1,
3. <P|s51,+u35.u‘+”—’ E; 41 is separable, that is, dpi((pji+,|s$,,+1,)= 1.

So, iterating the above construction, we finally reach at (X,, ¢,,f,) with £, '(@®)=n,S®
for all i=1,2,---,I. Then, all multiple fibers are tame and this complets the proof.

Corollary 3.4. Let f: X - P! be as in Theorem 3.2. If the multiplicity of every
multiple fiber of f is a power of p, then f: X —P' is obtained by a successive quotient
of the trivial elliptic fibration P' x E by p-closed derivations where E is a supersingular
elliptic curve.

Proof.- Under the assumption that the multiplicity of every multiple fiber is a
power of p, we have f,: X,,: = P! is free from multiple fibers, i.e., f, is smooth. Since
x(Ox,)=0 and g(X,)=1, we have b,(X,)=b,(X;)=p(X})=2. Furthermore, we have
X,=P' x E, with pr,=f, and pr,=¢,. Since each =; is a purely inseparable finite
morphism of degree p by Theorem 3.2, we have that each =; is given as a quotient
map from X; by a p-closed derivation and this completes the proof.
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4. The multiplicity of a wild fiber of a supersingular elliptic Curve

In this section, we consider the case that the elliptic surface has only one
multiple fiber.

Lemma 4.1. Let f:X - P! be an elliptic surface with y(0y)=0. If f:X — P!
has only one multiple fiber, then the multiple fiber is a wild fiber and its multiplicity
is a power of p.

Proof. This follows from [1, Corollary 4.2].

For a supersingular elliptic curve E, it is well-known (cf. [6]) that there is a
local coordinate system {(U,, #,)} such that n,=n,+b%, b,,eT(U;nU,, Op. In
the following, next two lemmas are important.

Lemma 4.2. Let E be a supersingular elliptic curve in characteristic p>0 and
let {(U,, n,)} be a local coordinate system of E such that w,=n,+b%,, b,,eT(U,nU,
Og). Then, there does not exist a cocycle {c,,}eH'(E, Og) such that
Cg“:blu.

Proof. First we note that {b,,} is a cocycle of H'(E, Og). Suppose that there
exists a cocycle {c,,}€H'(E, Op) as in the assertion. Then the cocycle {b,,}={0},
because the map F*: H\(E, Of)— H'(E, Op) induced from the Frobenius action on
Og is the zero map. Hence, there exists a cochain {a,}eC°({U,}, @p) such that
a,—a,=b,,

Since n,=#,+b%,, we have n,—af=n,—al. Then, {n,—aj} defines a global
section of Oy over E and it must be constant. Hence, {dn,=d(n,—a})}={0} in
HE, Q).

But this contradicts to the assumption that {(U,, #,)} is a local coordinate
system of E, because if {(U,, #,;)} is a local coordinate system of E, then {dn,}
defines a non-zero holomorphic 1-form on E.

Lemma 4.3. Let E, {(U,, n,)} and {b,,} be as in the previous lemma. Then,
there exist a non-zero constant cek* and a cochain {a,}e C°({U,}, Op) such that

dblu=w1—-wﬂ
where w, is a holomorphic 1-form on U, given by cn% 'dn,+da,.

Proof. Since E is a supersingular elliptic curve, dimH'(E, dOg)=1 and it is
easy to see that

HYE,dOg)=k-{n} 'dn,—n2 " 'dn,}.

We denote {n§~'dn,—n%"'dn,} by £ Since {db,,} is also a non-zero element of
H'(E, d0g) by Lemma 4.2, there exists a non-zero constant cek ™ such that {db,,} =c¢
in H'(E, dOg). Then, there exists {a,}eC°({U,}, @f) such that
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db,,=c&+da,—da,=(cn}~ 'dn,+da,)—(cn’~ 'dn, +da,).

Now, we shall prove the following theorem.

Theorem 4.4. Let f:X — P! be an elliptic surface in characteristic p>0 with
x(Ox)=0 and the general fiber being a supersingular elliptic curve. If f: X — P! has
only one multiple fiber, then the multiplicity of the multiple fiber is equal to p.

We prove this theorem in the following. To prove the theorem, it is sufficient
to show that such surface can not have a multiple fiber of multiplicity p*(v>2).

Let f: X— P! be an elliptic surface in characteristic p >0 such that y(0)=0, the
general fiber is a supersingular elliptic curve and f has only one multiple fiber. From
Lemma 4.1, the multiple fiber is a multiple fiber of a supersingular elliptic curve
with multiplicity p' for some />0.

Suppose that />2 and let f'(x)=p'S be the only one multiple fiber of
f:X—> P! Then, from Theorem 3.2, we have the following diagram:

Ey —fo E, £, E, F...F

¢0I vuI m{ ¢I
Xo 20 X, 2L, X, M- X,=X

fol fll I2 l fl

Pl F Pl F Pl F F_) Pl

such that

1. F are relative Frobenius maps,
2. f;:X;— P! are elliptic surfaces satisfying the condition (),

3. for the point a”€P’, j>1 such that FaV)=aY*" and o™ =0, f; ') is a
multiple fiber of multiplicity

{ poj=12,01
m.=
! ploj=l+1L142,n,

4. ¢; are Albanese maps,
5. m; are purely inseparable finite morphism of degree p,

6. Xo~P!xE, and f,=pr, and ¢,=pr,.

Looking at the top part of the above diagram, we have the following diagram:
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S0=E0 inclusion Pl X EO EO
l A
Sl inclusion Xl o1 El

| P

S2 inclusion X2 @2 E’2

where S, j=1, 2, is the support of the multiple fiber of f; and such that
1. F are relative Frobenius maps,
2. fj:X;— P! are elliptic surfaces satisfying the condition (),
. J7 (@9)=m;S; where oV is the point such that Fa®)=aY*" and m;=p’,
j=12,
4. ¢; are Albanese maps,

w

5. mj are purely inseparable finite morphism of degree p,

6. X,=P!'xE, and fy=pr, and ¢,=pr,.
Since m;, j=1,2, are purely inseparable finite morphisms of degree p and X; are
nonsingular, each x; is obtained as a quotient morphism by a p-closed rational

vector field on X; with only divisorial singularities.
For ny: X, — X,;, we have the following lemma.

Lemma 4.5. Let D, be a p-closed rational vector field which gives the quotient
map ny: P! x Ey— X,. Then, for a suitable choice of a local coordinate system, D,
is written in the form:

F ,o0 (1
Do=h(a—y+f(y)6)=h<t a+f<;) 5)

where P! =Speck[y]uSpeck[], yt=1 on Speck[y]nSpeck[t], é is a p-closed additive
regular vector field on E,, fek[y] and h is a rational function on P x E,.

Proof. Take a coordinate ¢ to satisfy that the fiber over {t=0} is the only
one multiple fiber. Since Dy~ Fd/dy+¢& where F is a rational function of P' x E,
D, is written in the form

Do=h<F ai+6> on Speck[y] x E,
y

=h(Ft2 %+6> on Speck[t]x E
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for some rational function A on P!xE. Since X,=X2 is nonsingular,
{Do>=0. From this fact and f; has a multiple fiber over {=0}, we have that
(00(F,)=0. Then, (F), consists of fibers of pr,:P!xE—-P! and also (F)
does. Hence, Fek(P?).

Since f;: X, > P! has only one multiple fiber at t=0, F has no zero in Spec
k[y]. Then, f:=F 'ek[y] and this completes the proof.

From this lemma, we can compute the local coordinate ring of X,.
Let {(Uo,; 7o.,)} be a local parameter system on E, with respect to an affine
open covering {U, ;} such that

M0,a—No,u="b8 140 bo 1, €T(Ug 0 Uo,w Ok,

Then, the local coordinate ring of (Speck[y] x U, ;)* can be discribed as

(C(Uo,1 O)¥])*=T(Uo i, O )DY", HY)+10,]

where H(y) is a polynomial and we may assume that H(y)=y"™(y—a,)" - (y —a)"
and (p, no+n,+ -+ +n)=1.
From the above notation, we have the following lemma.

Lemma 4.6. Put n:i=ny+n,+---+n, and let h, q, o, B be integers such that

n+q=hp, 0<q<p, ap+fpq=1, f>0.
Then,

X, = U {Specl’(Uu, @E,)[be’1]/(x§— H(y,) —11,2)

AeA
USpecT'(U, 3, O, )55t 1/(s5 —t (1 —afty)™ - (1 —aft )" — t';’h.z)p)}
where
F*H=HP, s;=y;@*"xE 1,'=y7' y, =8, 1t =1 Ni,2=N§ 2

Furthermore,

m(xl,n;,)=f:m<w,@pl(zmi[ﬂ..]))dn

where OH(y\)/0y, =y —B)™" (1 —B)™ - 1 —B)™, By, Bz B.ek and dy is a
regular 1-form on E, given by dn=dn, ; on U, ;.

Proof. Let Y, be a variety defined by

Y:= U {SpecI’(U, 5, Og)[x2 y11/(x5—H(y,)—n, )u

AeA

SpecT' (U, 41, O )z, t1/(25—t4(1 —afe ) - (1 —afty)" —t4Pn, )}
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where x,=1;"z, and y,=t;'. Then, it is easy to see that X, is a purely inseparable
covering of degree p of Y, with k&(Y,)=k(X,)”° and X, is the normalization of Y;.

For the rest of the assertion, we can show in the following way. For the
support S; of /7 '({t;=0}), Ox (f1 '(B)) = Ox,(pS,) and from the adjunction formula,
we have wy, =0y ((2n(F)—2)S,) where F is the fiber of ¢, and n(F) is its arithmetic
genus. From an exact sequence

0— (Ptlgllzl@(oxl ( Z mify l(ﬁx)) - Q)ln - wx,/E,®@x, (" Z mf{ l(ﬁ.)) -0,
i=1 i=1
we have

0 Oy, ( Y mify ‘(ﬁ;)) = Qk, = Ox (2n(F) =2~ (n— 1)p)S;) - 0.

i=1

Since an inequality n(F)<(p—1)n—1)/2 holds, we have 2a(F)—2—(n—1)p<
—n—1<0 and

HO(XnQ;l(l) ~ H° <X1,@xl<z mifl_l(ﬁi))> = H°<P1,(9P,< Z m; [ﬁ;])) .
i=1 i=1
Corollary 4.7. For an integer m<n, we have

HO(Xl,Q}(l(mSl))zHO(Pl,(9,”(.?:1 mi[ﬂi]+K[°0])>

where K is the largest integer satisfying K<m/p and oo ={t, =0}.

For n,:X;—X,, it is also obtained as a quotient morphism by a p-closed
rational vector field on X;.

Since X, does not depend on the choice of «, f, we may assume that a +h=0
mod p and put a+pfh=yp, yeZ. From the above lemma, we have the following
relations.

0 d P
- =ﬂ1”y1‘wx€—l_ =ﬂsn+l(trlnH(tl—1)_tp;,11'l)a(ﬂ—l)_

0x, 0s, 0s,
0 0 _ 0

= —HE)—— = —H!

0y, ony z ony .
o 0

ox, ox,

0 O 0 9

5): 0y, axu oy,
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where H'=0H/dy, and b, ,,=bj,,. Note that ({H(t7")—1in, )" is a unit
element of k[[s,, n, ;1]

Now, we consider the morphism 7 : X; > X,. For a fixed A,, D, is equivalent
to the following form

D, ~F_a_ + i
0x,, Oy,

for some Fek(X,). We fix this expression in the following.

For an element W of a ring of formal power series k[[x;,x,]] and a fixed i=1,
2, we say ¥ is integrable on x; if there exists ‘T-’ek[[xl,xz]] such that
0¥ /ox,=¥. The integrability on x; is equivalent to the condition that ¥ has no
such term of the form x{x}, a=—1 mod p.

Lemma 4.8. Let Dy, F be as above and w,=cn},'dn, ;+da, as in Lemma
4.3. Then, {Fdy,—db, ;,,—w,} gives an element of H°(X,, Q) (nS,)). Moreover, F
is integrable on y, in k[[x,,,y,]], that is, the formal power expansion of F with x,
y, does not contain such terms of the form x'y), j= —1 mod p.

Proof. From the above relation, on each neighborhood, D, is written in the
following form.

0x,, Oy,

=<F_M> LAPCE
0y, ox, 0y,

0 0
~<F_ abl,m) H(t7 )™ By e H (e ) — £ P 70— — —
0y, ds; on,
n+1/4n -1 n a(f—1) 14— 1)— 1 a a
~ Bshy (L1H(ty ) —11n;,) FH(t{ ") — — —
as;.o 6"“0

Since X, has only one multiple fiber over ¢, =0, F has no pole along fibers of
f1 over Spec k[y,]. Then, since D, has only divisorial singularities on X, we have
that poles of F can appear only along S, or fibers of ¢, outside ¢; '(U, ;). Moreover,
we have that poles of (F—db, ,,,/0y,)H "' can appear only along S, with order
at most n on ¢ }(U, ), for any A.

Put ¢:=Fdy,—db, ;,; on ¢y (U, ,) for each A. Then, they gives an element
of C°({U, ,;}, Q%,(nS,)) and satisfy the relation &, —&,=db, ,.,. Hence, from Lemma
4.3, {Fdy,—db, ;,,—®;}1ea gives an element of HO(X,, Q} (nS,)).

For the rest of the assersion, it follows from the p-closedness of D,.

We denote the element of HO(X,, Qk (nS,)) given by {Fdy,—db, ;,,—w,} in
the proof of previous lemma by £&. From Corollary 4.7, there exists an element
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of HY(P!, Op(Em,[B;]+ K[0])) where K is the largest integer satisfying K <n/p such
that

fkp;l(ul,u:wd'lu
for all A. Then, for 4, we have
del =wlo +l//d’11,‘.o

In the following, we only consider about Fdy,=w,,+ydn, ;, and we omitt indices
for the convenience. Expressing H(y)=ZX"_,hy', (h,#0), from n=x?—H(y), we have

p-1
nP- 1d11=(x" -3y hiy") (Z ihy'~ 1) dy =(nh?y"?~ ! +(lower terms on y))dy

and from Lemma 4.3
w=cn? ‘dn+da=(nch? y""~' +(lower terms on y))dy +da.

From H'(y)=TI(y — )™ and Corollary 4.7, we have

H
HO(X,,Q} (nS,)=
e ogj.-s»-z,-,lsig —By

dy+ Z k- H'y"dy.

where K is the largest integer satisfying K<n/p. Then, for ydy=yHdye H'(X,,
Q} ), the degree of Yy H' with respect to y is at most n—1+n/p. Hence, we have

w4+ ydn=(nchfy"?~ ' 4 (lower terms on y))dy+da.

But this contradicts to the fact that Fdy=w +ydn and F is integrable on y. Thus,
we complete the proof of Theorem 4.4.

Corollary 4.9. Let f: X —P! be as in Theorem 4.4. If f has only one multiple
fiber, then we have:

ho(X, Q) =h*(X,Qx) =1+ [degp*Qy/p],
(X, Qx)=2[degp*Qp/p] +2,

h(X, 0x)=h'(X,Q%)=2+[2n(P)—2)/p],
h*(X, 0x) =h°(X, Q%) = 1 + [(2n(F) —2)/p].

and moreover, h°(X,®y)=[degop*Q}/p]+1+[2n(F)—2)/p] where ¢:X—E is an
Albanese map, n(F) is the arithmetic genus of the general fiber of ¢ and the bracket
[ ] denotes the Gauss symbol.

Proof. By Theorem 4.4, the multiplicity of the only one multiple fiber is
p- Then the local coordinate ring of X is given as Lemma 4.6. As we see in the
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proof of Lemma 4.6, we have
0 Ox((degg*Q)S) — Qi — Ox(2n(F) — 2 — degp*Qp)S) - 0
where S is the support of the only one multiple fiber of £ Then we have
XX Q%) = 1(X,0x((degp *Qp)S)) + x(X,0(2n(F) — 2 — degp*Qp)S) =0

by Riemann-Roch theorem. From this fact and y(X,0x)=0 and Serre duality, we
can compute A(Q})'s. Moreover, from @,=Q ®wx ' and the above exact sequence,
we can compute h%(Oy).

Remark 4.10. Takeda [6][7] computed the Hodge numbers of an example of
a false hyperelliptic surface. Corollary 4.9 gives a more general formula including
Takeda’s result. Note that surfaces considered in Corollary 4.9 are not false
hyperelliptic surfaces in general because the general fiber of an Albanese map can
have many cusps.
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Added in Proof:

1. In Theorem 3.2, the assumption m;<m; for i<j has to be corrected to the
following: r;<r; for i<j where m;=n;p" and (n;p)=1.
2. In Corollary 4.9, we need the following assumption: an Albanese map

¢©:X— E=AIb(X) has a section.



