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An example of non-uniqueness
for a hyperbolic equation with
non-Lipschitz-continuous coefficients

By

Ferruccio COLOMBINI and Daniele DEL SANTO

1. Introduction and main result

Let Q be an open neighborhood of the origin in R™™* and let P be a second
order operator of the form

n

(11) P=0}— Y ajlt,2)0s,00, + Y bj(t,2)0a, + c(t, x)d, + d(t, ),

Jk=1 j=1

with bounded complex valued coefficients defined in €.

We say that the operator P has the uniqueness in the Cauchy problem
with respect to {¢ = 0} at the origin if there exists (' open neighborhood of
the origin, Q' C , such that if u € C?(Q), suppu C {(t,z) € Q : t > 0} and
Pu=01in Q then u =0 in &'.

Suppose that the operator P is strictly hyperbolic (with respect to {t = ¢}
in Q) i.e. the coefficients a;j, are real valued, a;j, = ax; and there exists A\g > 0
such that

(1.2) ajr(t, ©)&E > Aol€[®

n
jk=1

for all (¢,2) € Q and for all £ € R™; the question we are interested in is the
following: how the uniqueness in the Cauchy problem for the operator P is
related with the regularity of the coefficients of the principal part of P?

It is well known that if the coefficients a;; are Lipschitz-continuous then
P has the uniqueness in the Cauchy problem. Conversely Colombini, Jannelli
and Spagnolo proved that there exists a hyperbolic operator P of the form (1.1)
such that for all @ < 1 the coefficients of the principal part of P are Holder-
continuous of exponent a and P does not have the cited uniqueness property
(see [2]).
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In the present note we improve the result of [2] showing that there is a
quite precise relation between the modulus of continuity of the coefficients of
the principal part and the possibility of constructing a non-uniqueness example.

Let o be a modulus of continuity, i.e. p is a non-negative function defined
on [0,7] for some r € (0,1), continuous, strictly increasing, concave and such
that 1(0) = 0. We say that the function f defined on Q is p-continuous (and
we will write f € C*(Q)) if for all K compact set in €2 there exists € > 0 such

that
MW -FOI
y,2€K, 0<|y—z|<e /"(|y - Z|)

Our result is the following.

Theorem 1.  Suppose that

"1
1.3 / ——ds < +00
) o K
and
(1.4) the function s+— — His) is decreasing in (0,7].

slog(s)

Then there exist a real valued function a(t) and two complex valued func-
tions d(t,x) and u(t,z) such that
a€C*(R) and 1/2<a(t) <3/2 forall teR;
d€C>®R?) and suppd C {(t,x) €R? : t>0};
u €C®(R?) and suppu = {(t,z) €R? : t > 0};
ut(t, ) — a(t) gy (¢, ) + d(t, 2)u(t,z) =0 for all (t,z) € R2.
It is worthy to compare the result of Theorem 1 with the similar results

known in the case of second order elliptic operators with real principal part.
Consider the operator

n n
Q=07+ Y ajul(t,2)0s,00, + Y _ bj(t, )00, + c(t, x)d + d(t, ),
k=1 j=1
under the condition (1.2). Let p be a modulus of continuity such that

(1.5) lim uls) =0 forall a€[0,1)

and



An example of non-uniqueness for a hyperbolic equation 519

If the coefficients of the principal part of @ are in C*(2) then @ has the unique-
ness in the Cauchy problem with respect to {t = 0} at the origin (see [6]). On
the other hand if the modulus of continuity satisfies the conditions (1.5) and
(1.3) it is possible to construct a non-uniqueness example for an elliptic op-
erator like @) with the coefficients of the principal part in C#(€2) (see [5] and

4)).

It would be very interesting to prove a result similar to that one of [6] in
the case of hyperbolic operators. We think that the condition (1.6) is related
to the uniqueness in the Cauchy problem also for hyperbolic operators, but
unfortunately we are not able to prove it.

Let us finally recall what is known for a similar subject, namely the relation
between the well-posedness of the Cauchy problem for a second order hyperbolic
operator and the regularity of the coefficients of its principal part. Also in this
case the crucial condition is given in terms of the modulus of continuity of the
coefficients of the principal part. Consider the operator

n

Py=07 = ) au(t,x)0s,0u,,

k=1

under the condition (1.2). Suppose that the coefficients a;, are C* in the z
variables for all fixed ¢, the a;;’s and its first and second derivatives in the x
variables are bounded in R™*! and

sup |a’jk(t3x) _a’jk(svx)l

< 400,
0<|t—s|<1/2, z€R" p(|t = sl)

where p(7) = 7|log 7|; then the Cauchy problem for P, is C*°-well-posed. This
result is sharp in the sense that if a modulus of continuity is of the type u(7) =
7|log T|¢)(| log T|) with ¢ increasing, concave and such that lim,_, ;o (o) =
+00, then there exists a function a € C* with 1/2 < a(t) < 3/2 such that for
the operator

02 — a(t)0?

the Cauchy problem is not C*-well-posed (see [1] and [3]).

2. Proof of Theorem 1

The main step of the proof of Theorem 1 is the following refinement of the
‘change of phase’ Lemma (see [2, Lemma 2]). A detailed proof of this result
can be found in the Appendix.

Lemma 1.  There exists a positive constant M > 1 such that for all
positive integers hyi, ho, for all positive constants €1, €2, p, 11, n2 and for all
t1 € R, if

1
(21) 0<er<e; < m,
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€2h2 2
2.2 >2M
(22 22> o,
and
(2.3) ge—eihir < 2 o Licanap
“m 4

then there exist ta > t1, a C™ real valued function a(t) defined on I = [t1,to]
and two complex valued functions d(t,x), u(t,z) defined on I xR, C* int and
2m-periodic and analytic in x, such that

4

(2.4) ty —t; < 12Mp + h—”
1

(2.5) up(t, ) — a(t)ug(t, ) + d(t, x)u(t,z) =0 forall (t,z) € I xR,
(2.6) supp(u) = I x R,
(2.7) a(t)y=1 and d(t,z)=0  for t neart;,j=1,2,
(2.8) u(t,x) = nj cos(hj|t —t;|)e® for tmneart;, j=1,2.
Moreover

1
(2.9) sup |1 —a(t)] < 2

tel
la(t) — a(7)] { €1 €2 }

2.10 a = sup ———— < (Cymax , ,
A0 e = S0 Tl = T /) wli/he)
and finally
(2.11)

< Cphgﬂ max{ny, N2} for all p,q €N,

ONP /& \4

@) @)
o) ()
(tx)eIxR | \ O Ox

( N “+o00
< C’phgﬂ+2 Z pPtde=neihip for all p,q €N,

n=1

where Cy, C,, do not depend on hy, ha, €1, €2, p, M, N2 and t;.

In what follows we find T > 0 and we construct a(t), d(¢,z), u(t,z) such
that

ac€C*(R) and 1/2<af(t) <3/2 forall teR,
a(t) =1 forall t<0 and ¢t>T,
d € C>®(R?*) and supp(d) C[0,7] x R,
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u € C®(R?) and supp(u) C (—oo0,T] x R,
and
uge(t, ) — a(t)ug (t, ) + d(t, x)u(t,x) =0 for all (t,z) € R%

The conclusion of the proof will be easily obtained by a reflection respect to
t="T/2.

Let us consider four sequences {hp}, {ex}, {pr}, {nk} of real positive
numbers such that

(2.13) hr € N forall k€N and klirf hy, = +o0,
2.14 is d i d li = 1li = i =0
(2.14)  {er} is decreasing an Jm ep= lm pp= lm n ,
1
(2.15) ep < YYi for all ke NN,
(2.16) Serthier S ope gl ke,
Ekhk
and
1
(2.17) ge—sehurn < ML o 2 perpihinie forall ke N.
Mk

Using Lemma 1 we construct an increasing sequence of positive real num-
bers {tx}, with ¢; = 0, such that the functions a(t), d(¢,z), u(t,x) are defined
on each strip [tg, tx+1] X R and satisfy (2.5), ..., (2.12) with hy, ho, €1, €2, p,
m, N2 and t1 replaced by hg, hr+1, €k, €k+15 Py My Mk+1 and ty respectively.

Since |tgr1 — ti| < 12Mpy + 47/ hy, if

+oo +oo
1
(2.18) ;pk < 400 and kz_l T < 400,

then the sequence {t} is convergent. We define limy_. 1 o tx, = T. We set

a(t)=1 and d(t,z)=0 for t<0 and t>T1T,
u(t,z) = ny cos(hit)e™® fort <0, wu(t,z)=0 fort>T.
In view of (2.6) through (2.8) we have that a € C*°(R\ {T}), d, u € C®(R?\

{(t,x) : t = T}) and supp(u) = (—oo, T| x R. From (2.10) we easily deduce
that if there exists C' > 0 such that

€k
<C for all k€ N,
p(1/hu)

then a € C#(R). Finally (2.11) and (2.12) will imply the C*°-regularity for u
and d on R? provided the following conditions hold

(2.19)

(2.20) kEIfOO Ry max{ng, mey1} =0  forall peN,
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(2.21) hrn hii? Z nPe~"Preh — 0 forall p e N.

To end the proof it will be sufficient to choose the sequences {hx}, {er}, {pr}
and {7} in such a way that (2.13), ..., (2.21) are verified.
We remark that (1.3) and (1.4) imply that for any positive integer N the

function
2—2N5 2Ns

B

is decreasing in [1, +oo[ and

/+oo 2—2N52Ns
vy dS < +OO
1 p(2727)

Consequently
+oo 92— oNk 9Nk

Zm<+0®

k=1

Moreover it is possible to find a function fi : [0,r] — [0, 400) such that

f 2—2N’“2Nk
= a2
and
(2.23) tim A8 — o
0 fi(s)

Let N € N, N > 1. We define

‘ 9—2"* 9Nk
hk = 22Nk7 Er = /,L(2_2Nk), Pk = T oNEv forall keN
[(27277)
and
1 for k=1,
M = 1
exp | —5 Zlfjhjpj for k>2.

With these choices the condition (2.13) holds; easily, using also (2.22) and
remarking that (2.23) implies

2Nk 2—2Nk
(2.24) klir+n exhppr = lim M )

e TR T
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we obtain (2.14). If N is sufficiently large (2.15) is verified. Since the function
s 2727 9Ns 11,2277 ig decreasing on [1, +00) we have

p2=""") p(2=2")
9—2N(k+D 9N (k+1) — 9—2Nk9Nk

so that 5k+1hk+12_N(k+1) > e,hi27 Nk consequently

Ert1hr41

>N
erhg -

and (2.16) follows for N is sufficiently large. For k > 1 we have ngy1/m =
e~erhiPr/2 and then (2.17) is a consequence of (2.24). The first part of (2.18)
is deduced by (2.22) while the second is trivial. Let us finally come to (2.20)
and (2.21). We have

+o00o
ane—nskhkpk < Cpe—skhkpk7
n=1

then

PR h 2)2N (k+D nei(272)
hZHane_mk HoE| < 2Pt exp | —2 ez )
n=1
Since, by (2.23),
272Nk
lim (log2)(p + 2)2NV*+D 2N’€f‘(7w) =00 forall peN,
koo (22"

we obtain (2.21). Similarly, since the sequence {n} is decreasing and 7, <
e~ eh—1hk-1P8-1/2 e have

N(k—1)
N(k+1) _1)— u(272 )
By max{m, M1} < 202 exp (—2<N(k Y I)W

and (2.20) follows. The proof is complete.

A. Appendix

In this Appendix we prove Lemma 1. We will follow closely the proof of
[2, Lemma 2] and for the reader’s convenience we will point out the different
parts. We need first the following lemma. The proof of this result can be found
in [2, p. 502].

Lemma 2 ([2, Lemma 1]).  For all € € (0,1] there exist two real valued
functions a. (1), we(7) satisfying the following properties

(A1)

wl (1) + as(T)we (1) =0 on R,
w.(0) = 1, wl(0) =0,



524 Ferruccio Colombini and Daniele Del Santo

(A.2) ac(T) is 2w — periodic,
(A.3) al(r) =1 forall 7€ |22,
33
(A.4) we(T) = e~ (1) with  w.(T) 21 — periodic,
(A.5) lae (1) — 1| < Moe forall T€R,
(A.6) lal(T)] < %Mg& forall T€R,

where My does not depend on €. Moreover

(A7) lwe(T)] <1 forall T>0,

(A.8) la® (1) < M, forall TR and for all p € N,
(A.9) lw® ()| < Mpe™" forall TeR and for all p €N,

where M, does not depend on € for all p € N.

Let M = My, where Mj is the constant which appears in Lemma 2. Let
then hq, ho, €1, €2, p, N1, 12 satisfying the conditions (2.1) through (2.3). We
claim that there exist two positive numbers p1, ps such that

(A.10) % is a positive integer for j =1, 2,
(A.11) p; > 4p for j=1,2,

(A.12) M < pi1/ps <2M,

and

(A.13) p1+p2 < 12Mp + 4x/hy.

In fact, from (2.1) and (2.2), we have that
(A.14) ho > 2M?hye; [eg > 2M?hy.
We take p; = 8Mp + 61 with 0; € [0, 2w /hq] and 6; such that

h 8Mphy + 61h
'0; 1_oMp ;+ "L s a positive integer.
™ o

Consequently p; > 4p. Then we take py = p1/(2M) + 05 with 02 € [0, 27/hs]
and 65 such that
pghz . p1h2 O2ho 8Mph2 + 01hy + 205 M ho

or = AMnx or = e is a positive integer.

As a consequence pa > 4p. Moreover pa/p1 = 1/(2M) +62/p1 and from (A.10)
and (A.14) we deduce that

02 27 27 1
— < < < .
P11 p1h2 - 2M2p1h1 - 2M?
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Recalling that M > 1 we obtain (A.12). Finally, again using the fact that
M > 1 and hy < hy/2, we have

p1+pa=8Mp+01 +4p+01/(2M) + 02 < 12Mp + 47 /hy.
We set

(A.15) t=t1+p1, to =t+ p2 =t1 + p1 + pa.
We denote by Iy, I, I the intervals [t1, t], [, t2], [t1, t2] respectively. We define
(it —t for tel,
(A.16) a(t) = 4 et =t)) - for t el
A, (hg(tz — t)) for te I,

where . is the function constructed in Lemma 2. By (A.2), (A.3), (A.10) and
(A.15) we deduce that a(t) = 1 for ¢ in a neighborhood of t1, ¢, t2; consequently
a € C*>(I) and the first part of (2.7) holds. More precisely (A.3) implies that

(A.17) a(t) =1 for teJyUJs,
where
(A.18) h%“*%J’ b%£ﬁ4

and a consequence of (A.10) is that J; C I, for j =1, 2.
Let us verify (2.9) and (2.10). (2.9) is a trivial consequence of (A.5) and
(2.1), while from (A.6) and the concavity of u we have that

o — a(t) — a(r)
! t,7€l;, t#T :U'(‘t_Tl)
t i
a0
t,r€l;, 0<|t—7|<27/h; u(lt —71)
t) — t—
N 1 o I 2t
t,r€l;, 0<|t—7|<27/h; |t — 7] p(lt —7l)
1 t—
< =Mejh; sup i
2 t,rely, 0<|t—7|<2m/h; u(lt —l)
e
<Mm J for j=1,2
n(1/hy)
and (2.10) follows. Moreover
"t
(A.19) a((t))‘ < Mejh; forall tel;, j=1,2.
a

Consider now a C* real valued function 3 defined on R such that, for all
teR,0<6(t)<1and
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We set
(a20) 50 =5 (2t -0). w0 =5(20ue-n)).

Let 11, 12 be the solutions of

(A.21) {wﬂw T+ %ty (t) =0  on I,

¥;(ty) = n;, Vi(t;) =0,
for j =1, 2. We define
(A.22) u(z,t) = Brip1e” + Borhoe’".

It is immediate to verify that w is C*° in ¢ and 27-periodic and analytic in z.
Moreover u does not vanish identically on any open set of I x R, i.e. (2.6)
holds. Since a(t) =1 for all t € J; U Jy then

(A.23) ¥;(t) = mjcos(hy(t —t;))  for teJ;, j=1,2,

and (2.8) follows.
We claim now that

(A.24) u(t,z) #0 for (t,z) € (J1UJ2) x R.

(A.24) will be deduced by the following facts:

(A.25) %@z% for teJ;, j=1,2,
and
2
(A.26) |a(t)] < 77742 for tely, [tha(t)] < %771 for tel.

In fact (A.25) and (A.26) will give
lu(t, z)| > % for (t,z)€Jy xR
and
"2
|u(t, z)| > 1 for (t,z) € J2 x R.

The inequalities of (A.25) are a consequence of (A.23). Let’s estimate 11 on Iy
and 12 on I;. From (A.4) we have that

Y;(t) = njwe, (hylt — t4])

A.27
(A.27) = ettt (hilt—t;])  for tel;
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and, recalling (A.10), (A.15) and the properties of the function w, as stated in
Lemma 2, we deduce that

G () =nyeMri i) =0, j=1,2
Let’s introduce the quantities
ej(t) = W53 (t) + (¥5(1)%,  Ej(t) = hja(t)¥F(t) + (v5(1)*.
Since a(t) = 1 we have
(A.28) e;(f) = Ej(f) = hinjeMri j =1, 2.

Using the fact that v; solves the Cauchy problem (A.21) it is easy to obtain
via differentiation and Gronwall’s lemma that

(A.29) e1(t) < ep(t)eM Ji -a(s)l ds for t>1¢
and
(A.30) Bs(t) < Eo(De I s for ¢ <7

Let now ¢ € I5. Then from (A.28) and (A.29) we deduce

2,2 —2e1h Mhie 2,2 —hi(2e —Me
el(t) S h1771€ 1 1P1e 1€202 h1771€ 1(2e1p1 202).

By (2.1) and (A.12) we have €1p1 > Meops and then

(A.31) e1(t) < hinle—srm for all t e Is.

On the other hand if ¢ € I; we obtain from (A.19), (A.28) and (A.30)
Ba(t) < h2ple—2e2harztMhacipn

From (2.2) and (A.12) we have exhaps > Mhie1p; and hence

(A.32) Eo(t) < h3nie—=2M2rz forall tel.

Recalling (A.11), the inequality (A.31) gives

el(t
hy

~—

—hie1p1/2 —2hie1p

for tel

[P1(t)] < <me <me

but (2.3) implies that 47; < 7917 and then the first part of (A.26) follows.
Similarly by (A.32)

v/ 2E5(t
[Pa2(t)| < TQ() < V2npe~h2g2r2/2 < \fop, e 2hac2p for tel,
2

again by (2.3) we have 47, < n;€/2°2¢ and from this we obtain the second part
of (A.26).
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We finally define

_utt(t, x) — a(t)uge (t, x)
d(t,z) = u(t, x)
0 for (t,z) € (I\ (J1UJ))xR.

for (t,I) S (Jl U Jg) x R,

Since ug(t, x) — a(t)uq,(t, x) is identically 0 in a neighborhood of (I'\ (J; U
J2)) x R and u(t, z) is never 0 in (J; U Jz) x R the function d is C* in I x R.

To end the proof of the lemma it remains to show (2.11) and (2.12). For
p =0 (2.11) is a consequence of (A.7), (A.26) and (A.27). To prove (2.11) for
p > 1 we argue as in [2, p. 508]. In particular for j = 1, 2 we have

p
(A.33) ’(;ﬁ) /Bj(t)’ < K,hb for tel,
p

where K, Rp does not depend on hi, ha, €1, €2, p, n1, N2 and t;. (A.33) is
trivial in view of (A.20). (A.34) is obtained from the following inequalities via
[2, Lemma 3]:

d\"* L,mhy for tel
A.35 — ) <P ’
( ) ‘(dt) wl( )‘ - {Lpnlhzl)eslhlpl/Q for t S Ig,

d\" 2L,nohbec22p2/2 for tel
(A.36) ‘() 1/12(15)’ < V2 p22 € or 1
dt Lp"72h2 for t e I,

where Ly = 1 and L, does not depend on hq, he, €1, €2, p, M, N2, t1. (A.35)
and (A.36) can be obtained by induction on p (see [2, p. 509]).

Let us finally show (2.12). Recalling that d(¢,z) = 0 for ¢ in a neighborhood
of I'\ (J1UJ3), it will be sufficient to estimate the derivatives of d for t € J; UJs.
Suppose first that ¢t € J,. Setting

(A.37) fit) = 28101 (1) + 57 (D)¢a (1),

we have 0 "
Ji(t)e™
d(t,z) = . —— .
( 1‘) ﬂl(t),lpl(t)e”llm 4 Q,Z)Q(t)em?“’
Since |11 (t) /1=2(t)| < 1/2 for t € J3, we deduce from (A.37) that

+oo }
(A.38) d(t,z) = Z A (=B )1 ()" (o)) "meinhe,
where h = hy — hy. By (A.33), (A.35) and (A.37) we have

d P
\%)ﬁ

< E Omigteeshmns2,
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where Ly = 1. Again by (A.33) and (A.35) using [2, Lemma 3], we deduce that

p
‘(i) B

with Ko = 1. Arguing similarly we have

< Kpnlhé’e*ﬂhlm/?

d\? . - e
‘(_> (ﬁl¢1)”_l SKp(n—l)pn? lhige ( 1)61h1P1/2,

dt
d\" ~ 2\"
el < KaP | 2} RpP
() o= () 2

d\? ~
‘(E) (fl(ﬂﬂ/h)n—l) SKanpn?hg"'%—"Elhwl/Z

IN

with Ky = 1; finally

(A.39) ‘(%)p (F1(Bi)" 3 ™)

n
< C’pnp (%) hg+2€_n€1hl’ol/2.
B M2

By using (2.3) and (A.11) we obtain from (A.39) that

p
‘ <%> (FL(Brpr)" 3 ™)| < CpnPhbt2emneihar

and since |h| < hy the inequality (2.12) follows from (A.38). We let to the
interested reader to verify the similar estimate for t € J;. The proof of Lemma 1
is concluded.
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