
�

�

�

�

�

�

�

�

J. Math. Kyoto Univ. (JMKYAZ)
42-3 (2002), 517–530

An example of non-uniqueness
for a hyperbolic equation with

non-Lipschitz-continuous coefficients

By

Ferruccio Colombini and Daniele Del Santo

1. Introduction and main result

Let Ω be an open neighborhood of the origin in Rn+1 and let P be a second
order operator of the form

P = ∂2
t −

n∑
j,k=1

ajk(t, x)∂xj
∂xk

+
n∑

j=1

bj(t, x)∂xj
+ c(t, x)∂t + d(t, x),(1.1)

with bounded complex valued coefficients defined in Ω.
We say that the operator P has the uniqueness in the Cauchy problem

with respect to {t = 0} at the origin if there exists Ω′ open neighborhood of
the origin, Ω′ ⊆ Ω, such that if u ∈ C2(Ω), supp u ⊆ {(t, x) ∈ Ω : t ≥ 0} and
Pu = 0 in Ω then u = 0 in Ω′.

Suppose that the operator P is strictly hyperbolic (with respect to {t = c}
in Ω) i.e. the coefficients ajk are real valued, ajk = akj and there exists λ0 > 0
such that

n∑
j,k=1

ajk(t, x)ξjξk ≥ λ0|ξ|2(1.2)

for all (t, x) ∈ Ω and for all ξ ∈ Rn; the question we are interested in is the
following: how the uniqueness in the Cauchy problem for the operator P is
related with the regularity of the coefficients of the principal part of P?

It is well known that if the coefficients ajk are Lipschitz-continuous then
P has the uniqueness in the Cauchy problem. Conversely Colombini, Jannelli
and Spagnolo proved that there exists a hyperbolic operator P̃ of the form (1.1)
such that for all α < 1 the coefficients of the principal part of P̃ are Hölder-
continuous of exponent α and P̃ does not have the cited uniqueness property
(see [2]).
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In the present note we improve the result of [2] showing that there is a
quite precise relation between the modulus of continuity of the coefficients of
the principal part and the possibility of constructing a non-uniqueness example.

Let µ be a modulus of continuity, i.e. µ is a non-negative function defined
on [0, r] for some r ∈ (0, 1), continuous, strictly increasing, concave and such
that µ(0) = 0. We say that the function f defined on Ω is µ-continuous (and
we will write f ∈ Cµ(Ω)) if for all K compact set in Ω there exists ε > 0 such
that

sup
y,z∈K, 0<|y−z|<ε

|f(y) − f(z)|
µ(|y − z|) < +∞.

Our result is the following.

Theorem 1. Suppose that∫ r

0

1
µ(s)

ds < +∞(1.3)

and

the function s �→ − µ(s)
s log(s)

is decreasing in (0, r].(1.4)

Then there exist a real valued function a(t) and two complex valued func-
tions d(t, x) and u(t, x) such that

a ∈ Cµ(R) and 1/2 ≤ a(t) ≤ 3/2 for all t ∈ R;

d ∈ C∞(R2) and supp d ⊆ {(t, x) ∈ R2 : t ≥ 0};
u ∈ C∞(R2) and supp u = {(t, x) ∈ R2 : t ≥ 0};

utt(t, x) − a(t)uxx(t, x) + d(t, x)u(t, x) = 0 for all (t, x) ∈ R2.

It is worthy to compare the result of Theorem 1 with the similar results
known in the case of second order elliptic operators with real principal part.
Consider the operator

Q = ∂2
t +

n∑
j,k=1

ajk(t, x)∂xj
∂xk

+
n∑

j=1

bj(t, x)∂xj
+ c(t, x)∂t + d(t, x),

under the condition (1.2). Let µ be a modulus of continuity such that

lim
s→0+

µ(s)
sα

= 0 for all α ∈ [0, 1)(1.5)

and ∫ r

0

1
µ(s)

ds = +∞.(1.6)
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If the coefficients of the principal part of Q are in Cµ(Ω) then Q has the unique-
ness in the Cauchy problem with respect to {t = 0} at the origin (see [6]). On
the other hand if the modulus of continuity satisfies the conditions (1.5) and
(1.3) it is possible to construct a non-uniqueness example for an elliptic op-
erator like Q with the coefficients of the principal part in Cµ(Ω) (see [5] and
[4]).

It would be very interesting to prove a result similar to that one of [6] in
the case of hyperbolic operators. We think that the condition (1.6) is related
to the uniqueness in the Cauchy problem also for hyperbolic operators, but
unfortunately we are not able to prove it.

Let us finally recall what is known for a similar subject, namely the relation
between the well-posedness of the Cauchy problem for a second order hyperbolic
operator and the regularity of the coefficients of its principal part. Also in this
case the crucial condition is given in terms of the modulus of continuity of the
coefficients of the principal part. Consider the operator

P2 = ∂2
t −

n∑
j,k=1

ajk(t, x)∂xj
∂xk

,

under the condition (1.2). Suppose that the coefficients ajk are C∞ in the x
variables for all fixed t, the ajk’s and its first and second derivatives in the x
variables are bounded in Rn+1 and

sup
0<|t−s|<1/2, x∈Rn

|ajk(t, x) − ajk(s, x)|
µ(|t− s|) < +∞,

where µ(τ ) = τ | log τ |; then the Cauchy problem for P2 is C∞-well-posed. This
result is sharp in the sense that if a modulus of continuity is of the type µ(τ ) =
τ | log τ |ψ(| log τ |) with ψ increasing, concave and such that limσ→+∞ ψ(σ) =
+∞, then there exists a function a ∈ Cµ with 1/2 ≤ a(t) ≤ 3/2 such that for
the operator

∂2
t − a(t)∂2

x

the Cauchy problem is not C∞-well-posed (see [1] and [3]).

2. Proof of Theorem 1

The main step of the proof of Theorem 1 is the following refinement of the
‘change of phase’ Lemma (see [2, Lemma 2]). A detailed proof of this result
can be found in the Appendix.

Lemma 1. There exists a positive constant M > 1 such that for all
positive integers h1, h2, for all positive constants ε1, ε2, ρ, η1, η2 and for all
t1 ∈ R, if

0 < ε2 ≤ ε1 ≤ 1
2M

,(2.1)
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ε2h2

ε1h1
≥ 2M2,(2.2)

and

4e−ε1h1ρ ≤ η2
η1

≤ 1
4
eε2h2ρ,(2.3)

then there exist t2 > t1, a C∞ real valued function a(t) defined on I = [t1, t2]
and two complex valued functions d(t, x), u(t, x) defined on I×R, C∞ in t and
2π-periodic and analytic in x, such that

t2 − t1 ≤ 12Mρ+
4π
h1
,(2.4)

utt(t, x) − a(t)uxx(t, x) + d(t, x)u(t, x) = 0 for all (t, x) ∈ I × R,(2.5)
supp(u) = I × R,(2.6)

a(t) = 1 and d(t, x) = 0 for t near tj , j = 1, 2,(2.7)

u(t, x) = ηj cos(hj |t− tj |)eihjx for t near tj , j = 1, 2.(2.8)

Moreover

sup
t∈I

|1 − a(t)| ≤ 1
2
,(2.9)

|a|Cµ(I) = sup
t,τ∈I, t�=τ

|a(t) − a(τ )|
µ(|t− τ |) ≤ C0 max

{
ε1

µ(1/h1)
,

ε2
µ(1/h2)

}
,(2.10)

and finally

sup
(t,x)∈I×R

∣∣∣∣
(
∂

∂t

)p(
∂

∂x

)q

u

∣∣∣∣ ≤ Cph
p+q
2 max{η1, η2} for all p, q ∈ N,

(2.11)

sup
(t,x)∈I×R

∣∣∣∣
(
∂

∂t

)p(
∂

∂x

)q

d

∣∣∣∣
≤ Cph

p+q+2
2

+∞∑
n=1

np+qe−nε1h1ρ for all p, q ∈ N,

(2.12)

where C0, Cp do not depend on h1, h2, ε1, ε2, ρ, η1, η2 and t1.

In what follows we find T > 0 and we construct a(t), d(t, x), u(t, x) such
that

a ∈ Cµ(R) and 1/2 ≤ a(t) ≤ 3/2 for all t ∈ R,

a(t) = 1 for all t ≤ 0 and t ≥ T,

d ∈ C∞(R2) and supp(d) ⊆ [0, T ] × R,
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u ∈ C∞(R2) and supp(u) ⊆ (−∞, T ] × R,

and

utt(t, x) − a(t)uxx(t, x) + d(t, x)u(t, x) = 0 for all (t, x) ∈ R2.

The conclusion of the proof will be easily obtained by a reflection respect to
t = T/2.

Let us consider four sequences {hk}, {εk}, {ρk}, {ηk} of real positive
numbers such that

hk ∈ N for all k ∈ N and lim
k→+∞

hk = +∞,(2.13)

{εk} is decreasing and lim
k→+∞

εk = lim
k→+∞

ρk = lim
k→+∞

ηk = 0,(2.14)

εk ≤ 1
2M

for all k ∈ N,(2.15)

εk+1hk+1

εkhk
≥ 2M2 for all k ∈ N,(2.16)

and

4e−εkhkρk ≤ ηk+1

ηk
≤ 1

4
eεk+1hk+1ρk for all k ∈ N.(2.17)

Using Lemma 1 we construct an increasing sequence of positive real num-
bers {tk}, with t1 = 0, such that the functions a(t), d(t, x), u(t, x) are defined
on each strip [tk, tk+1]×R and satisfy (2.5), . . . , (2.12) with h1, h2, ε1, ε2, ρ,
η1, η2 and t1 replaced by hk, hk+1, εk, εk+1, ρk, ηk, ηk+1 and tk respectively.

Since |tk+1 − tk| ≤ 12Mρk + 4π/hk, if

+∞∑
k=1

ρk < +∞ and
+∞∑
k=1

1
hk

< +∞,(2.18)

then the sequence {tk} is convergent. We define limk→+∞ tk = T . We set

a(t) = 1 and d(t, x) = 0 for t ≤ 0 and t ≥ T,

u(t, x) = η1 cos(h1t)eih1x for t ≤ 0, u(t, x) = 0 for t ≥ T.

In view of (2.6) through (2.8) we have that a ∈ C∞(R \ {T}), d, u ∈ C∞(R2 \
{(t, x) : t = T}) and supp(u) = (−∞, T ] × R. From (2.10) we easily deduce
that if there exists C > 0 such that

εk

µ(1/hk)
≤ C for all k ∈ N,(2.19)

then a ∈ Cµ(R). Finally (2.11) and (2.12) will imply the C∞-regularity for u
and d on R2 provided the following conditions hold

lim
k→+∞

hp
k+1 max{ηk, ηk+1} = 0 for all p ∈ N,(2.20)
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lim
k→+∞

hp+2
k+1

+∞∑
n=1

npe−nρkεkhk = 0 for all p ∈ N.(2.21)

To end the proof it will be sufficient to choose the sequences {hk}, {εk}, {ρk}
and {ηk} in such a way that (2.13), . . . , (2.21) are verified.

We remark that (1.3) and (1.4) imply that for any positive integer N the
function

s �→ 2−2Ns

2Ns

µ(2−2Ns)

is decreasing in [1, +∞[ and

∫ +∞

1

2−2Ns

2Ns

µ(2−2Ns)
ds < +∞.

Consequently
+∞∑
k=1

2−2Nk

2Nk

µ(2−2Nk)
< +∞.

Moreover it is possible to find a function µ̃ : [0 , r] → [0 ,+∞) such that

+∞∑
k=1

2−2Nk

2Nk

µ̃(2−2Nk)
< +∞,(2.22)

and

lim
s→0

µ(s)
µ̃(s)

= +∞.(2.23)

Let N ∈ N, N ≥ 1. We define

hk = 22Nk

, εk = µ(2−2Nk

), ρk =
2−2Nk

2Nk

µ̃(2−2Nk)
for all k ∈ N

and

ηk =




1 for k = 1,

exp


−1

2

k−1∑
j=1

εjhjρj


 for k ≥ 2.

With these choices the condition (2.13) holds; easily, using also (2.22) and
remarking that (2.23) implies

lim
k→+∞

εkhkρk = lim
k→+∞

2Nkµ(2−2Nk

)
µ̃(2−2Nk)

= +∞,(2.24)
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we obtain (2.14). If N is sufficiently large (2.15) is verified. Since the function
s �→ 2−2Ns

2Ns/µ(2−2Ns

) is decreasing on [1,+∞) we have

µ(2−2N(k+1)
)

2−2N(k+1)2N(k+1)
≥ µ(2−2Nk

)
2−2Nk2Nk

so that εk+1hk+12−N(k+1) ≥ εkhk2−Nk, consequently

εk+1hk+1

εkhk
≥ 2N

and (2.16) follows for N is sufficiently large. For k ≥ 1 we have ηk+1/ηk =
e−εkhkρk/2 and then (2.17) is a consequence of (2.24). The first part of (2.18)
is deduced by (2.22) while the second is trivial. Let us finally come to (2.20)
and (2.21). We have ∣∣∣∣∣

+∞∑
n=1

npe−nεkhkρk

∣∣∣∣∣ ≤ Cpe
−εkhkρk ,

then ∣∣∣∣∣hp+2
k+1

+∞∑
n=1

npe−nεkhkρk

∣∣∣∣∣ ≤ Cp2(p+2)2N(k+1)
exp

(
−2Nk µ(2−2Nk

)
µ̃(2−2Nk)

)
.

Since, by (2.23),

lim
k→+∞

(log 2)(p+ 2)2N(k+1) − 2Nk µ(2−2Nk

)
µ̃(2−2Nk)

= −∞ for all p ∈ N,

we obtain (2.21). Similarly, since the sequence {ηk} is decreasing and ηk ≤
e−εk−1hk−1ρk−1/2, we have

hp
k+1 max{ηk, ηk+1} ≤ 2p2N(k+1)

exp

(
−2(N(k−1)−1)µ(2−2N(k−1)

)
µ̃(2−2N(k−1))

)

and (2.20) follows. The proof is complete.

A. Appendix

In this Appendix we prove Lemma 1. We will follow closely the proof of
[2, Lemma 2] and for the reader’s convenience we will point out the different
parts. We need first the following lemma. The proof of this result can be found
in [2, p. 502].

Lemma 2 ([2, Lemma 1]). For all ε ∈ (0, 1] there exist two real valued
functions αε(τ ), wε(τ ) satisfying the following properties{

w′′
ε (τ ) + αε(τ )wε(τ ) = 0 on R,

wε(0) = 1, w′
ε(0) = 0,

(A.1)
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αε(τ ) is 2π − periodic,(A.2)

αε(τ ) = 1 for all τ ∈
[−π

3
,
π

3

]
,(A.3)

wε(τ ) = e−ετ w̃ε(τ ) with w̃ε(τ ) 2π − periodic,(A.4)
|αε(τ ) − 1| ≤M0ε for all τ ∈ R,(A.5)

|α′
ε(τ )| ≤

1
2
M0ε for all τ ∈ R,(A.6)

where M0 does not depend on ε. Moreover

|wε(τ )| ≤ 1 for all τ ≥ 0,(A.7)

|α(p)
ε (τ )| ≤Mp for all τ ∈ R and for all p ∈ N,(A.8)

|w(p)
ε (τ )| ≤Mpe

−ετ for all τ ∈ R and for all p ∈ N,(A.9)

where Mp does not depend on ε for all p ∈ N.

Let M = M0, where M0 is the constant which appears in Lemma 2. Let
then h1, h2, ε1, ε2, ρ, η1, η2 satisfying the conditions (2.1) through (2.3). We
claim that there exist two positive numbers ρ1, ρ2 such that

ρjhj

2π
is a positive integer for j = 1, 2,(A.10)

ρj ≥ 4ρ for j = 1, 2,(A.11)
M ≤ ρ1/ρ2 ≤ 2M,(A.12)

and

ρ1 + ρ2 ≤ 12Mρ+ 4π/h1.(A.13)

In fact, from (2.1) and (2.2), we have that

h2 ≥ 2M2h1ε1/ε2 ≥ 2M2h1.(A.14)

We take ρ1 = 8Mρ+ θ1 with θ1 ∈ [0, 2π/h1] and θ1 such that

ρ1h1

2π
=

8Mρh1 + θ1h1

2π
is a positive integer.

Consequently ρ1 ≥ 4ρ. Then we take ρ2 = ρ1/(2M) + θ2 with θ2 ∈ [0, 2π/h2]
and θ2 such that

ρ2h2

2π
=
ρ1h2

4Mπ
+
θ2h2

2π
=

8Mρh2 + θ1h2 + 2θ2Mh2

4Mπ
is a positive integer.

As a consequence ρ2 ≥ 4ρ. Moreover ρ2/ρ1 = 1/(2M)+ θ2/ρ1 and from (A.10)
and (A.14) we deduce that

θ2
ρ1

≤ 2π
ρ1h2

≤ 2π
2M2ρ1h1

≤ 1
2M2

.
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Recalling that M ≥ 1 we obtain (A.12). Finally, again using the fact that
M ≥ 1 and h1 ≤ h2/2, we have

ρ1 + ρ2 = 8Mρ+ θ1 + 4ρ+ θ1/(2M) + θ2 ≤ 12Mρ+ 4π/h1.

We set

t̄ = t1 + ρ1, t2 = t̄+ ρ2 = t1 + ρ1 + ρ2.(A.15)

We denote by I1, I2, I the intervals [t1, t̄], [t̄, t2], [t1, t2] respectively. We define

a(t) =

{
αε1(h1(t− t1)) for t ∈ I1,

αε2(h2(t2 − t)) for t ∈ I2,
(A.16)

where αε is the function constructed in Lemma 2. By (A.2), (A.3), (A.10) and
(A.15) we deduce that a(t) = 1 for t in a neighborhood of t1, t̄, t2; consequently
a ∈ C∞(I) and the first part of (2.7) holds. More precisely (A.3) implies that

a(t) = 1 for t ∈ J1 ∪ J2,(A.17)

where

J1 =
[
t1, t1 +

π

3h1

]
, J2 =

[
t2 − π

3h2
, t2

]
(A.18)

and a consequence of (A.10) is that Jj ⊆ Ij for j = 1, 2.
Let us verify (2.9) and (2.10). (2.9) is a trivial consequence of (A.5) and

(2.1), while from (A.6) and the concavity of µ we have that

|a|Cµ(Ij) = sup
t,τ∈Ij , t�=τ

|a(t) − a(τ )|
µ(|t− τ |)

= sup
t,τ∈Ij , 0<|t−τ |<2π/hj

|a(t) − a(τ )|
µ(|t− τ |)

= sup
t,τ∈Ij , 0<|t−τ |<2π/hj

|a(t) − a(τ )|
|t− τ |

|t− τ |
µ(|t− τ |)

≤ 1
2
Mεjhj sup

t,τ∈Ij , 0<|t−τ |<2π/hj

|t− τ |
µ(|t− τ |)

≤Mπ
εj

µ(1/hj)
for j = 1, 2

and (2.10) follows. Moreover∣∣∣∣a′(t)a(t)

∣∣∣∣ ≤Mεjhj for all t ∈ Ij , j = 1, 2.(A.19)

Consider now a C∞ real valued function β defined on R such that, for all
t ∈ R, 0 ≤ β(t) ≤ 1 and

β(t) =




0 for t ≤ 1
4
,

1 for t ≥ 3
4
.
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We set

β1(t) = β

(
3
π

(h2(t2 − t))
)
, β2(t) = β

(
3
π

(h1(t− t1))
)
.(A.20)

Let ψ1, ψ2 be the solutions of{
ψ′′

j (t) + h2
ja(t)ψj(t) = 0 on I,

ψj(tj) = ηj , ψ
′
j(tj) = 0,

(A.21)

for j = 1, 2. We define

u(x, t) = β1ψ1e
ih1x + β2ψ2e

ih2x.(A.22)

It is immediate to verify that u is C∞ in t and 2π-periodic and analytic in x.
Moreover u does not vanish identically on any open set of I × R, i.e. (2.6)
holds. Since a(t) = 1 for all t ∈ J1 ∪ J2 then

ψj(t) = ηj cos(hj(t− tj)) for t ∈ Jj , j = 1, 2,(A.23)

and (2.8) follows.
We claim now that

u(t, x) 	= 0 for (t, x) ∈ (J1 ∪ J2) × R.(A.24)

(A.24) will be deduced by the following facts:

ψj(t) ≥ ηj

2
for t ∈ Jj , j = 1, 2,(A.25)

and

|ψ1(t)| ≤ η2
4

for t ∈ I2, |ψ2(t)| ≤
√

2
4
η1 for t ∈ I1.(A.26)

In fact (A.25) and (A.26) will give

|u(t, x)| ≥ η1
8

for (t, x) ∈ J1 × R

and

|u(t, x)| ≥ η2
4

for (t, x) ∈ J2 × R.

The inequalities of (A.25) are a consequence of (A.23). Let’s estimate ψ1 on I2
and ψ2 on I1. From (A.4) we have that

ψj(t) = ηjwεj
(hj |t− tj |)

= ηje
−εjhj |t−tj |w̃εj

(hj |t− tj |) for t ∈ Ij
(A.27)
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and, recalling (A.10), (A.15) and the properties of the function wε as stated in
Lemma 2, we deduce that

ψj(t̄) = ηje
−εjhjρj , ψ′

j(t̄) = 0, j = 1, 2.

Let’s introduce the quantities

ej(t) = h2
jψ

2
j (t) + (ψ′

j(t))
2, Ej(t) = h2

ja(t)ψ
2
j (t) + (ψ′

j(t))
2.

Since a(t̄) = 1 we have

ej(t̄) = Ej(t̄) = h2
jη

2
j e

−2εjhjρj , j = 1, 2.(A.28)

Using the fact that ψj solves the Cauchy problem (A.21) it is easy to obtain
via differentiation and Gronwall’s lemma that

e1(t) ≤ e1(t̄)eh1
R t

t̄
|1−a(s)| ds for t ≥ t̄(A.29)

and

E2(t) ≤ E2(t̄)e
h1

R t̄
t

|a′(s)|
a(s) ds for t ≤ t̄.(A.30)

Let now t ∈ I2. Then from (A.28) and (A.29) we deduce

e1(t) ≤ h2
1η

2
1e

−2ε1h1ρ1eMh1ε2ρ2 = h2
1η

2
1e

−h1(2ε1ρ1−Mε2ρ2).

By (2.1) and (A.12) we have ε1ρ1 ≥Mε2ρ2 and then

e1(t) ≤ h2
1η

2
1e

−ε1h1ρ1 for all t ∈ I2.(A.31)

On the other hand if t ∈ I1 we obtain from (A.19), (A.28) and (A.30)

E2(t) ≤ h2
2η

2
2e

−2ε2h2ρ2+Mh1ε1ρ1 .

From (2.2) and (A.12) we have ε2h2ρ2 ≥Mh1ε1ρ1 and hence

E2(t) ≤ h2
2η

2
2e

−ε2h2ρ2 for all t ∈ I1.(A.32)

Recalling (A.11), the inequality (A.31) gives

|ψ1(t)| ≤
√
e1(t)
h1

≤ η1e
−h1ε1ρ1/2 ≤ η1e

−2h1ε1ρ for t ∈ I2

but (2.3) implies that 4η1 ≤ η2e
h1ε1ρ, and then the first part of (A.26) follows.

Similarly by (A.32)

|ψ2(t)| ≤
√

2E2(t)
h2

≤
√

2η2e−h2ε2ρ2/2 ≤
√

2η2e−2h2ε2ρ for t ∈ I1,

again by (2.3) we have 4η2 ≤ η1e
h2ε2ρ and from this we obtain the second part

of (A.26).
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We finally define

d(t, x) =


−utt(t, x) − a(t)uxx(t, x)

u(t, x)
for (t, x) ∈ (J1 ∪ J2) × R,

0 for (t, x) ∈ (I \ (J1 ∪ J2)) × R.

Since utt(t, x) − a(t)uxx(t, x) is identically 0 in a neighborhood of (I \ (J1 ∪
J2))×R and u(t, x) is never 0 in (J1 ∪ J2)×R the function d is C∞ in I ×R.

To end the proof of the lemma it remains to show (2.11) and (2.12). For
p = 0 (2.11) is a consequence of (A.7), (A.26) and (A.27). To prove (2.11) for
p ≥ 1 we argue as in [2, p. 508]. In particular for j = 1, 2 we have∣∣∣∣

(
d

dt

)p

βj(t)
∣∣∣∣ ≤ Kph

p
2 for t ∈ I,(A.33)

∣∣∣∣
(
d

dt

)p

ψj(t)
∣∣∣∣ ≤ K̃pηjh

p
2 for t ∈ I,(A.34)

where Kp, K̃p does not depend on h1, h2, ε1, ε2, ρ, η1, η2 and t1. (A.33) is
trivial in view of (A.20). (A.34) is obtained from the following inequalities via
[2, Lemma 3]:∣∣∣∣

(
d

dt

)p

ψ1(t)
∣∣∣∣ ≤

{
Lpη1h

p
1 for t ∈ I1,

Lpη1h
p
1e

ε1h1ρ1/2 for t ∈ I2,
(A.35)

∣∣∣∣
(
d

dt

)p

ψ2(t)
∣∣∣∣ ≤

{√
2Lpη2h

p
2e

ε2h2ρ2/2 for t ∈ I1,

Lpη2h
p
2 for t ∈ I2,

(A.36)

where L0 = 1 and Lp does not depend on h1, h2, ε1, ε2, ρ, η1, η2, t1. (A.35)
and (A.36) can be obtained by induction on p (see [2, p. 509]).

Let us finally show (2.12). Recalling that d(t, x) = 0 for t in a neighborhood
of I \(J1∪J2), it will be sufficient to estimate the derivatives of d for t ∈ J1∪J2.
Suppose first that t ∈ J2. Setting

f1(t) = 2β′
1(t)ψ

′
1(t) + β′′

1 (t)ψ1(t),(A.37)

we have

d(t, x) =
f1(t)eih1x

β1(t)ψ1(t)eih1x + ψ2(t)eih2x
.

Since |ψ1(t)/ψ2(t)| ≤ 1/2 for t ∈ J2, we deduce from (A.37) that

d(t, x) =
+∞∑
n=1

f1(t)(−β1(t)ψ1(t))n−1(ψ2(t))−ne−inh̃x,(A.38)

where h̃ = h2 − h1. By (A.33), (A.35) and (A.37) we have∣∣∣∣
(
d

dt

)p

f1

∣∣∣∣ ≤ L̃pCη1h
p+2
2 e−ε1h1ρ1/2,



�

�

�

�

�

�

�

�

An example of non-uniqueness for a hyperbolic equation 529

where L̃0 = 1. Again by (A.33) and (A.35) using [2, Lemma 3], we deduce that∣∣∣∣
(
d

dt

)p

β1ψ1

∣∣∣∣ ≤ Kpη1h
p
2e

−ε1h1ρ1/2

with K0 = 1. Arguing similarly we have∣∣∣∣
(
d

dt

)p

(β1ψ1)n−1

∣∣∣∣ ≤ K̃p(n− 1)pηn−1
1 hp

2e
−(n−1)ε1h1ρ1/2,

∣∣∣∣
(
d

dt

)p

ψ−n
2

∣∣∣∣ ≤ K̃pn
p

(
2
η2

)n

hp
2,

∣∣∣∣
(
d

dt

)p

(f1(β1ψ1)n−1)
∣∣∣∣ ≤ K̃pCn

pηn
1 h

p+2
2 e−nε1h1ρ1/2

with K̃0 = 1; finally∣∣∣∣
(
d

dt

)p

(f1(β1ψ1)n−1ψ−n
2 )

∣∣∣∣ ≤ C̃pn
p

(
2η1
η2

)n

hp+2
2 e−nε1h1ρ1/2.(A.39)

By using (2.3) and (A.11) we obtain from (A.39) that∣∣∣∣
(
d

dt

)p

(f1(β1ψ1)n−1ψ−n
2 )

∣∣∣∣ ≤ C̃pn
php+2

2 e−nε1h1ρ

and since |h̃| ≤ h2 the inequality (2.12) follows from (A.38). We let to the
interested reader to verify the similar estimate for t ∈ J1. The proof of Lemma 1
is concluded.
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