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Direct limit Lie groups and manifolds

By

Helge GLOCKNER

Abstract

We show that every countable strict directed system of finite-
dimensional Lie groups has a direct limit in the category of smooth Lie
groups modelled on sequentially complete, locally convex spaces. Similar
results are obtained for countable directed systems of finite-dimensional
manifolds, and for countable directed systems of finite-dimensional Lie
groups and manifolds over totally disconnected local fields. An uncount-
able strict directed system of finite-dimensional Lie groups has a direct
limit in the category of Lie groups in the sense of convenient differential
calculus, provided certain technical hypotheses are satisfied.

1. Introduction

Let M; C M5 C --- be an ascending sequence of finite-dimensional topo-
logical manifolds, where M,, is a closed submanifold of M, ; for all n, and
dim M,, — oo as n — oo. Then the direct limit topological space M :=
liﬁ)l]\/[n = U,en My is a topological manifold modelled on R>, the real vector
space of finite sequences, equipped with the finite topology (Hansen [12], 1971).
Our main result is an analogue of this classical fact in the setting of smooth
manifolds: if each M,, is a smooth manifold and M,, a closed C'°°-submanifold
of M+ for all n, then M can be given a smooth manifold structure modelled
on R* making it the direct limit of the sequence (M, )nen in the category of
smooth manifolds (Theorem 4.3). The charts for the direct limit manifolds
are limit maps of certain compatible families of charts of the finite-dimensional
manifolds; to obtain these compatible families, we start with a suitable chart
of M; and inductively use tubular neighbourhoods to extend the chart already
constructed for M,,, restricted to a slightly smaller open set, to a chart of M, ;1.
The finite-dimensional manifolds M,, considered here need not be second count-
able, but we have to assume that each M,, is paracompact.

In the special case where M,, = G, is a finite-dimensional Lie group, our
construction allows us to turn the direct limit topological group G := lim G,
into a smooth Lie group modelled on R*°, which is the direct limit of the
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sequence (Gp)nen in the category of smooth Lie groups. In contrast to earlier
constructions of direct limits of Lie groups, we do not use the direct limit
exponential function

expg = limexpg @ Im L(Gy) — lim G,

to define charts for G (an approach followed by Natarajan et al. [27], 1991, [28§],
1993, [29], 1994; Kriegl and Michor [22], 1997). Our method allows us to equip
the direct limit topological group G with a Lie group structure even if expg
does not induce a local homeomorphism at 0 (as in Example 5.5): this was
not possible before.”! Direct limits of ascending sequences of manifolds or Lie
groups over totally disconnected local fields can be constructed along similar
lines (Section 8).

Now suppose that ((Gi)ier, (¢:)i>;) is an uncountable directed system
of finite-dimensional real Lie groups. Under certain technical assumptions
(cf. Definition 6.2, Remark 6.3), it was shown by Natarajan et al. that the direct
limit exponential map expg := limexpg, : ImL(G;) — lim G; =: G induces a
local homeomorphism at 0, which can be used to define charts for G, whose
transition maps are analytic on each finite-dimensional subspace ([27, Section
8]). Here, the direct limit group G and direct limit Lie algebra g := lim L(G})
are equipped with the respective topology of direct limit topological space. Ex-
amples show that G need not be a topological group, and g has discontinuous
addition and Lie bracket in general (Theorem 7.1); it is therefore not obvious
a priori in which sense G can be considered as a Lie group. The authors of [27]
were unaware of these problems, and gave incorrect proofs to the contrary in
[28], Appendix (see [30], Appendix for corrections; the main problem has also
been pointed out in Edamatsu [6]). We prove that G is a Lie group in the sense
of ‘convenient differential calculus,” as defined in [21], [22] (a convenient Lie
group for short). We show that the charts specified by Natarajan et al. make
G the direct limit convenient Lie group of the directed system ((G;), (¢i5)), if
the direct limit Lie algebra g is equipped with the finest locally convex topol-
ogy instead of the direct limit topology (Theorem 6.4)."2 Another definition of
Lie groups with separately analytic multiplication, modelled on topological Lie
algebras, is proposed in ([30, Definition A.8]). However, this definition does
not always apply in the situation we are interested in: neither the direct limit
topology nor the finest locally convex topology make g a topological Lie algebra
in general (Theorem 7.1 (b)). We remark that the direct limit convenient Lie
groups for certain countable strict directed systems of classical groups are al-
ready discussed in [22, Section 47], where it is shown that every Lie subalgebra
of gl(N,R) = RM*M) 5 the Lie algebra of some smoothly arcwise connected Lie
subgroup of GL(N,R) € R™MN 11 (loc. cit. Theorem 47.9).

*1Whenever the method of Natarajan et al. applies, the Lie group we construct is the
smooth Lie group underlying the analytic Lie group provided by that method.

*21t was already proposed to consider the finest locally convex topology on g in [28], but our
approach differs essentially since we do not transport the finest locally convex topology on g
to the group G, but only use it to make g a convenient vector space on which the manifold
is modelled in the sense of convenient differential calculus. Here, the ¢®°-refinement of the
finest locally convex topology on g is the finite topology (Lemma 6.1).
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Our abstract results are illustrated by a discussion of the infinite matrix
groups GL(I,R) € RUXD 4+ 1 and their Lie algebras (Section 7); all of the
described pathologies occur even for these most natural examples of direct
limit Lie groups.

For more information concerning direct limits of topological groups, the
reader is referred to Tatsuuma et al. [34], 1998; discussions of specific exam-
ples of direct limits of Lie groups, considered as topological groups, can be
found in Kolomytsev and Samoilenko [20], 1977, Ol’'shanskii [32], 1990, and
Yamasaki [36], 1998. Information concerning universal complexifications of di-
rect limit Lie groups can be found in [30] and [9].

2. Preliminaries and Notation

Let (I, <) be a directed set and A a category. Recall that a directed system
is a pair S = ((Xi)ie], (d)ji)jz’i)a where X; € obA and d)ji S MOI‘(X,L',X]') such
that ¢; = idx, and ¢ij © ¢j; = @i, for all elements £ > j > i of I. A
cone over S is a pair (X, (¢:)icr), where X € obA and ¢,: X; — X such
that ¢; o ¢j; = ¢; whenever j > i. A cone (X, (¢;)icr) is a direct limit of S
(and we write X = limS or X = lim X;), if for every cone (Y, (¢;)ier) over
S, there exists a unique morphism ¢: X — Y such that ¢ o ¢; = 9; for all
tel. ItT = ((Yi)ier, (¥5i)j>i) is another directed system over the same index
set, (Y, (¥i)ier) a cone over 7, and (n;);cr a family of morphisms 7;: X; — Y;
which is compatible in the sense that 1;; on; = n; o ¢;; for all j > 4, then
(Y, (¢b; o mi)ier) is a cone over S. We write li_rr)lm for the induced morphism
Y: X — Y, determined by 1 o ¢; = 1; o n;. The directed systems S and 7
are called equivalent if there exists a compatible family (n;);c; such that all
morphisms 7; are isomorphisms.

The existence of direct limits in many algebraic or topological categories
can be proved by standard category-theoretical arguments. For the following,
however, it is important that there are explicit realizations of the direct limits
in the categories SET (sets and maps), TOP (not necessarily Hausdorff topo-
logical spaces, and continuous maps), G (groups and homomorphisms), and in
the categories of vector spaces, Lie algebras, and semitopological groups (i.e.,
groups equipped with a topology which makes inversion continuous and the
group multiplication separately continuous; morphisms are continuous group
homomorphisms), cf. [24, Chapter IX.1], and [27]:

Suppose that S = ((X;)icr, (¢5i);>:) is a directed system of sets. Let
Q= ]_L-E[ X; C I x Uiel X; be the disjoint union of the sets X;, together
with the canonical inclusions A;: X; — Q, 2 +— (i, z). We define an equivalence
relation on Q via \;(x) ~ A;(y) if there exists k > 4, j such that ¢p;(z) = ¢w;(y).
Set X :=Q/ ~ and ¢; := qgo \;, where ¢: Q — Q/ ~ is the canonical quotient
map. Then (X, (¢;)) is easily seen to be the direct limit of S in SET. Note that
X is the directed union of the sets im¢;. If ((Y;)ier, (¢):);>:) is another directed
system in SET with the same index set, with direct limit (Y, (¢;)ier), then
Clearly (X X K ((bZ X wi)iEI) is the direct limit of ((Xz X Yvi)ieh ((bjl X wjl)JZl)

If S = ((Xi), (¢5:)) is a directed system in TOP, the direct limit (X, (¢;))
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of § in SET becomes the direct limit in TOP if we give X the final topology
with respect to the family (¢;);c;. Thus, by definition, a subset U C X is open
(resp., closed) if and only if d)i_l(U) is open (resp., closed) in X;, for all ¢ € I.
The directed system is called strict if all maps ¢;; are topological embeddings;
then all maps ¢; are embeddings, see [28, Lemma A.5].

If S = ((Gi), (¢;i)) is a directed system of groups, let (G, (¢;)) be its direct
limit in SET. There is a unique group structure on G which makes all maps ¢;
homomorphisms; the multiplication is yu = h_r)nui, the inversion is k = h_H)llii,
where p; and k; denote multiplication and inversion on G, respectively. Direct
limits of vector spaces or Lie algebras can be treated similarly.

If S = ((Gi),(¢j:)) is a directed system of semitopological groups, the
direct limit (G, (¢;)) in SET becomes the direct limit of S in the category of
semitopological groups if we equip it with the topology and group structure
which make it the direct limit of S in TOP and G, respectively. Following [28],
if all semitopological groups involved are topological Hausdorff groups, we call
the direct limit G of S in the category of semitopological groups the naive direct
limit of S; it need not be Hausdorff, nor a topological group. Naive direct limits
of topological vector spaces and topological Lie algebras are defined similarly,
equipping the algebraic direct limit with the final topology.

3. Direct limits of topological spaces

In this section, we assemble some basic facts concerning direct limits of
topological spaces for later use.

Let S = ((Xi)ier, (¢j:);>i) be a strict directed system of topological
spaces, with direct limit (X, (¢;);cr). Then every map ¢; is a topological em-
bedding by [28, Lemma A.5], whence S is equivalent to the directed system
S = ((Ya)ier, (Wji)j>i), where Y; :=im¢; and 1j;: ¥; — Y denotes inclusion;
furthermore, (X, (¥;)icr) is the direct limit of S’, where ¢;: Y; — X. Hence
the investigation of strict directed systems of topological spaces can be reduced
to the case that each X; is a subspace of the direct limit X, all maps ¢;; and ¢;
being the respective inclusion maps. Then, a subset U of X is open if and only
if U N X, is open in X; for all 4, and a map f: X — Y into a topological space
Y is continuous if and only if all restrictions f|x, are so. If U is an open subset
of X, asubset V of U is open in U if and only if all intersections with the sub-
spaces X; NU are open in X; NU: hence U is the direct limit of the subspaces
X; NU. We shall need a slight generalization of this simple observation:

Lemma 3.1.  Let ((Xi)ier, (¢;i)j>i) be a strict directed system of topo-
logical spaces and U; an open subset of X; for i € I, where ¢;;(U;) C U; for
all i < j. Then the maps ¢;; == ¢ji|gj define a directed system ((U;), (¥ji)).
If (X, (¢;)) and (U, (¥;)) denote the direct limits of the respective systems, the
map A :=1limA\;: U — X induced by the family of inclusions A;: U; — X; is a
topological embedding onto an open subset of X.

Proof. As U = J;imt; and Ao ; = ¢; o A; is injective for all i € I,
we conclude that A is injective. A being continuous, it only remains to check
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that A is an open map. To this end, let V' be an open subset of U. Then,
for every i € I, we have ¢; '(M(V)) = U;»; & (AW (¢; (V). Since Ao
¥ = ¢; 0 Aj, we have )\(wj(wj_l(V))) = qu(wj_l(V)) for j > ¢. Furthermore,
Wi = ¢;1(¢j(1/1j_1(V))) = gi)j_il(ilzj_l(V)). Now wj_l(V) is open in Uj, hence
in X;, and by continuity of ¢;;, the subset W;; of X; is open. Hence so is
¢i_1()‘(v)) = UjZi Wij. O

Note that category-theoretical direct limits are unaffected by passage to
cofinal subsystems of the directed system. If the directed set I is countable, we
easily construct a cofinal sequence i; < iy < i3 < --- and can therefore assume
that I = (N, <) whenever this is convenient.

Lemma 3.2. Let ((Xi)ie], (¢ji)j2i) and ((i/z’)ieb (1/)”)]21) be strict di-
rected systems of topological spaces, with direct limits (X, (¢;)) and (Y, (v;)), re-
spectively. Let (P, (m;)) be the direct limit of S = ((Xi X Y3)icr, (¢ji X 1)) j>i)-
Then (X XY, (¢; X;)ier) is a cone over S, and the induced mapn: P — X XY,
determined by n o m; = ¢; X Y;, is a continuous bijection.

Proof.  [5, Appendix 2, (1.9)(3)]. O

By Lemma 3.2, we can always identify lii)nXi X Y; with h_H)lXi X li_I)nY;, up
to a possible refinement of the topology. Under suitable hypotheses, also the
topologies will coincide:

Proposition 3.3.  If, in the situation of Lemma 3.2, the set I is count-
able and all spaces X; and Y; are locally compact Hausdorff, then n is a home-
omorphism.

Proof. We may assume without loss of generality that I = (N, <) and
X1 CXpC---CXandY; CY, C--- CY,all maps ¢;, ¢4, ¥ji, and 1; being
the respective inclusion maps. Let P = li_I)nXi X Y;; as a set, we can identify
P with X x Y by the preceding. Then also the maps m; are the respective
inclusion maps. Let (z,y) € P and suppose that W is an open neighbourhood
of (z,y) in P. We show that W is a neighbourhood of (z,y) in X x Y as
well. Passing to a cofinal subsystem, we may assume without loss of generality
that (z,y) € X1 x Y;. For i € N, set W; := W N (X; xY;); then every W;
is an open subset of X; x Y;. Since Wj is an open neighbourhood of (x,y) in
X1 X Y7, there exist compact neighbourhoods Cy, Dy of z and y in X; and Y7,
respectively, such that C; x D; € W;. Now Wj is an open neighbourhood of
C1 x D1 in X5 x Ys; therefore there exist compact subsets Cy and Dy of X5 and
Y5, respectively, such that Cy x Ds is a neighbourhood of C7 x Dy in X5 X Y,
and Cy X Dy C Wi, Inductively, we find sequences of compact subsets C; and
D; of X; and Y}, respectively, such that C; x D; is a neighbourhood of (x,y)
in X7 x Y7, C; x D; € W;, and such that C;11 x D;41 is a neighbourhood of
C;xD;in X;11xY;41, foralli € N. Fori € N, let U; and V; denote the interior
of C; and D; relative X; and Yj, respectively. Set U := J;cy Ui, V i= U;en Vi
Since Uy C Uy C -+, Lemma 3.1 shows that U is open in X; similarly, V is
open in Y. Now U x V C W is an open neighbourhood of (z,y) in X xY. O
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Proposition 3.3 has been found independently by Hirai et al. [14] and the
author (as witnessed by [8]).

The following corollary is essential for the study of direct limit Lie groups,
since it allows us to form limits of continuous maps other than homomorphisms.

Corollary 3.4. Let S = ((Gi)ier, (¢ji)j>i) be a countable, strict di-
rected system of locally compact Hausdorff groups G;, with naive direct limit
(G, (¢i)ier). Then G is a topological Hausdorff group, and hence G is the direct
limit of S in TG.

Proof. (cf. [28, Corollary A.11 (a)]). For i € I, let p;: G; x G; — G
denote the respective multiplication map. Then (u;);¢s is a family of continuous
maps compatible with the directed systems 7 = ((G; x G;), (¢;: X ¢;:)) and S.
By Proposition 3.3, (G x G, (¢; X ¢;)) is the direct limit of 7 in the category
of topological spaces. Multiplication on G is the limit map lim z1;, and hence is
continuous. By Proposition 3.6 below or [28, Corollary A.12], G is Hausdorff.

O

For an alternative proof of Corollary 3.4, we refer to [34, Theorem 2.7].
The hypotheses of local compactness of the groups and countability of the
directed system in Proposition 3.3 are essential:

Example 3.5. Let V be a real vector space, I its set of finite-
dimensional subspaces, with inclusion as the ordering. For ¢ € I, set V; := 1,
and, for j > 4, let ¢;; denote the inclusion map V; — V;. We obtain a strict
directed system of finite-dimensional vector spaces (hence of Lie groups), and
V' is its naive direct limit if we equip it with the final topology with respect
to the inclusion maps ¢;: V; < V. This topology is called the finite topology
on V, or also the topology of finitely open sets [13]; by definition, a subset U
of V' is open in the finite topology if and only if all of its intersections with
finite-dimensional vector subspaces of V' are open in these.

In addition to the finite topology on the real vector space V', certain par-
ticular vector space topologies will be relevant later on. There exists a finest
locally convex (vector space) topology on V; the set of all balanced, absorb-
ing, convex subsets of V' is a basis of 0-neighbourhoods for this topology (see,
e.g., [16, Proposition 7.25, Definition 7.27]). There is also a finest vector space
topology on V; to see its existence, form the product P := [[ ., (V,7), where
7 ranges through the set 7 of all vector space topologies on V', and give V' the
topology making the diagonal map V' — P, v — (v),e7 a topological embed-
ding. Clearly, we obtain a vector space topology on V' which is finer than any
other vector space topology on V.

If dimV < Ny, then the finite topology on V', the finest locally convex
topology, and the finest vector space topology coincide. If dimV > ¥;, the
finest vector space topology is properly finer than the finest locally convex
topology ([16, Proposition A4.21]). Furthermore, in this case, the finite topol-
ogy on V is not a group topology, the addition map is not jointly continuous,
see [17], [2]. Thus the naive direct limit V' of the uncountable strict directed
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system of locally compact groups V; fails to be a topological group here, and we

deduce that the mapping n: Iim(V; x V;) — lim V; x lim V; defined in Lemma
[— e —

3.2 is not a homeomorphism.

For an example of a countable strict directed system of non-locally compact
topological groups whose naive direct limit is not a topological group, see [34,
Example 1.2]. For later use, we recall from [12, Lemma 2.4 and Proposition 4.1]:

Proposition 3.6.  Let X be a topological space which is the direct limit
of an ascending sequence X1 C Xo C --- of topological subspaces. Then the
following holds:

(a) If X,, is locally compact for all n € N, then X is Hausdorff.

(b) If X, is Ty for alln € N, then every compact subset of X is contained
in some of the subspaces X, . O

4. Countable direct limits of manifolds

In this section, we construct the direct limit smooth manifolds of suitable
countable directed systems of finite-dimensional smooth manifolds. The direct
limit manifolds will be either finite-dimensional or modelled on R>® := RM),
equipped with the finite topology.

There are many different concepts of differentiability and differentiable
manifolds in infinite dimensions (and indeed we shall use two different ones).
In this section and the next, we consider infinite-dimensional manifolds and Lie
groups in the sense of Milnor [25], modelled on sequentially complete, locally
convex Hausdorff (s.c.l.c.) topological vector spaces, based on the concept of
smooth mappings in the Michal-Bastiani sense (also known as Keller’s CS°-
maps [19]). In Section 6, we consider manifolds and Lie groups in the sense of
convenient differential calculus.

Let X and Y be s.c.l.c. topological vector spaces, U be an open subset of X,
and f: U — Y be a continuous map. Given x € U and h € X, the derivative of
f at x in the direction h is defined as df (z)(h) := limy_ot~1(f(z+th) — f(x)),
whenever the limit exists. We say that f is differentiable at x if df (z)(h) exists
for all h € X; it is C! if it is differentiable at all z in U and df: U x X — Y,
(z,h) — df(xz)(h) is continuous. Higher derivatives are defined recursively
by means of the familiar formula d"f(x)(h,...,h,) := lim;_ot = (d" "1 f(z +
thy)(hi,. .. hy_1) —d* L f(x)(hy,..., hny_1)), provided that all limits involved
exist. The function f is said to be of class C" if d" f: Ux X™ — Y is continuous;
it is of class C* (or smooth) if it is of class C™ for all n. It can be shown that
composites of CP-maps are of class CP for p € NU {oco}, whence CP-manifolds
modelled on s.c.l.c. topological vector spaces (and CP-maps between these) can
be defined in the usual way [25], [31] (cf. also [11]).

In the above situation, suppose that X is a vector space of countable
dimension, equipped with the finite topology, and suppose that V; < Vo < - .-
is a sequence of finite-dimensional subspaces such that X = (J,. Vi; we set
U, :=UnNYV,. Itis clear from the definitions that all derivatives (of a given
order) of f exist if and only if this holds for the derivatives of f|y, for all i. If
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this is the case, for a given n € N the function d" f is continuous if and only if
all functions d"f ‘Uixvi" =d" (f|u,) are so, by Lemma 3.1 and Proposition 3.3.

Lemma 4.1.  Let S = ((M;)ien, (¢ji);>:) be a directed system of finite-
dimensional paracompact CP-manifolds such that every map ¢;; is a CP-diffeo-
morphism onto a closed CP-submanifold of M;, where p € NU {oc0}, p > 3.
Let (M, (¢:)ien) denote the direct limit of S in TOP. Set d; := dim M;, and,
for j > i, let \ji denote the mapping R% — R%: v — (v,0). Then, for
every © = ¢ (y) € M, there exists an open neighbourhood O, of x in M such
that, setting U; := ¢ *(O,) for i > n, there is a family (hgx))iZn of CP~2-
diffeomorphisms hz(-z): R% — U; such that h;z) o \j; = (bﬂ|gj o hgm) for all
j>i>mn, and hgf)(O) =y.

Proof. By the remarks in Section 3, we may assume w.l.o.g. that M; C
My C --- C M, all maps ¢;; and ¢; being the respective inclusion maps.
Then z = y. Passing to a cofinal subsystem, we may assume that x € M;.
Choose 71 > ry > --- > 1. There is a CP-diffeomorphism H;: |—ry,r [ — W,
onto an open neighbourhood W; of z in My, such that H,(0) = 2. By [23],
Corollary IT 3.8 and Theorem IV 5.1, there exists a tubular neighbourhood of
M in My, of class CP~2. That is, there is a CP~2-vector bundle 7: E — M,
over Mj, an open neighbourhood Z of the zero section 1 in E, and a CP~2-
diffeomorphism f: Z — V onto an open neighbourhood V' of M; in M5 such
that f on|? is the inclusion map M; < M. Set F = 7~ Y(Wy), Z' =
FnNnZ and q := w\‘}vl. Then g: F — W is a vector bundle of class CP~2.
Being homeomorphic to |—7r1,71[%, the topological space W is paracompact
and contractible. By [15], Corollary 2.5, F' is a trivial bundle, i.e., we find a
fiber-preserving CP~2-diffeomorphism g: Wi x R®* — F, where s + d; = ds.
Now ¢g~!(Z’) is an open neighbourhood of the compact subset W] x {0} in
Wi x R®, where W := H;(]—ra,m9[%), and after re-parametrization in the
R*-directions, we may assume that W] x J is contained in this neighbourhood,

where J :=|—rq,m3[*. We abbreviate Wy := f(g(W] x J)); then the map
Hy = f|)2 o 9|5V/1'XJ o (Hy x idJ)\]Vfl;:‘:z[dz is a CP~2-diffeomorphisms.

Proceeding in this fashion, we obtain open neighbourhoods W; of x in M;
and CP~2-diffeomorphisms H;: |—r;,;[% — W; such that, for all i € N,

Wig1 N M; = Hi(l—rit1,mip1]%) = Higa (J=rig1, ripa [% x{0})

and Wip1nM, Wip1NM
A WigriNM; _ . i+1MM; X
Hll]—’”i+17m+1[di B HZ+1‘]—T1+1,7“i+1[di x {0} © 0i,
where 0;: |—rii1, rio1 [P —=]—rii1, i1 [¥x{0}. Let U; := H;(]—1,1[%) and
hl(.w) = H; ]Ujl 1[4 © udi, where u: R —]—1, 1] is a C*°-diffeomorphism such that

1(0) = 0. Then O, := |J, . U; has the required properties. |

€N

For the remainder of this section, we introduce the following notation: we
suppose that M; C Ms C --- is a directed system of CP-manifolds, as described
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in Lemma 4.1 and its proof, with direct limit topological space M = J,; oy M;.
We abbreviate V := li_rr)le'i. Given v € M, x € M,,(,), say, we let (hl('x))iZn(x)
be a family of CP~2-diffeomorphisms hl(-x): R% — UZ-(I)7 as constructed in
Lemma 4.1, and define O,, := UiZn(m) U, We let hy = h_H)th(-z)Z V — O,

K2

denote the homeomorphism whose restriction to R% is hl(-x) for all i > n(z),
and we set g, := h '

Proposition 4.2. M is a Hausdorff space, and A := {g,: * € M} is an
atlas for M which makes M a CP~2-manifold. For every i € N, the inclusion
map ¢;: M; — M is an embedding of CP~2-manifolds. A map f: M — N
into a CP~2-manifold N is of class CP~2 if and only if f o ¢; is of class CP—?2
for all i, whence M is the direct limit of the above system in the category of
CP~2_manifolds.

Proof. For simplicity of notation, we regard each R% (and V = Uien R%)
as a subspace of R>® (via t — (¢,0)). Note that, for every z € M and
i > n(z), the bijection g, maps O, N M; onto R%. Now given x,y € M,

let n := max{n(z),n(y)}. Then x,y € M,. Set 7 := g,|o,no, og;1|8””mOy7

where @ = g,(O; N Oy). Let (hEz))iZn and (h(y))@n denote the families of

K3
CP~2-diffeomorphisms used to define h, = g;* and h, = 9y 1 respectively.
Then 7 is of class CP~2, since, by construction of the maps hgx) and hgy), for
every i > n we have

() (v)
_ (y)y—1 (z),U; ' nU;
T|Q0Rdi = Ao (hz ) |U(z)nU,(y> o hz |QLm]Rd7¢ C

where hz(m) and hgy) are CP~2-diffeomorphisms onto the open submanifolds Ui(m)

and Ui(y) of M;, respectively, and \;: R% < V denotes inclusion. The transi-
tion functions being of class C?~2, A is a CP~2-atlas for M. Since M is Hausdorff
by Proposition 3.6 (a), we obtain a manifold of class CP~2.

Now suppose that f: M — N is a map into a CP~2-manifold N such
that all maps f; := f|a, are of class CP=2. Then f is continuous since the
maps f; are continuous, M being the direct limit of its subspaces M; as a
topological space. Given x € M, let g,: O, — V be the chart as above.
Furthermore, let ¢: W — U be a chart around f(z) in N, where U is an
open subset of the vector space on which N is modelled. Then there is an
open neighbourhood P C O, of x in M such that f(P) C W, since f is
continuous. Thus F := ¢o f| 0g;'[f is defined, where Q := g,(P). Let E be
a finite-dimensional subspace of V; without loss of generality F = R% for some
i > n(x). Now g;!|g is a CP~2-diffeomorphism of E onto an open submanifold
S of M;, by the construction of g, 1. Since f; is of class CP~2 by assumption,
the formula Flone = (¢ o filhng) © g;ﬂSﬂ% shows that F is of class CP~2.
Hence f is of class CP~2. The remainder is obvious. O
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As a special case, we obtain:

Theorem 4.3.  Let M1 C My C --- be an ascending sequence of finite-
dimensional paracompact smooth manifolds, where M, is a closed C*-
submanifold of M,+1 for all n. Then there exists a unique smooth manifold
structure on the direct limit topological space M = hL)nMn = Upen Mn which
makes M the direct limit of its submanifolds M, in the category of smooth
manifolds.

We conclude this section with further technical information.

Proposition 4.4. Let My C My C--- C M be as in Lemma 4.1 above,
and © € M,. Then the path component P of x in M is open, coincides with
the connected component C' of x in M, and C = h_n)liZnCi, where C; is the
connected component of x in M; for i > n.

Proof. For i > n, let U; denote the path component of = in M;. Then U;
is open in M; and coincides with the connected component of x in M;. The
family (U;);>n satisfies the requirements of Lemma 3.1; thus U := |J,~,, U; is
open in M, is path connected, and contains z. If v:[0,1] — M is any path
starting at x, its image is contained in some M; by Proposition 3.6 (b), whence
v(1) € U; C U. Thus U is the path component of x in M. Since all path
components of M are open by the preceding, they coincide with the connected
components. L

Here is an analogue of Proposition 3.3 for smooth manifolds.

PI‘OpOSitiOH 4.5. Let ((Mi)iEN; ((,25]1)]22) and ((Nz)zeNa(qpﬂ)]Zl) be
strict directed systems of finite-dimensional CP-manifolds, as in Lemma 4.1,
with direct limit CP~2-manifolds M and N, respectively. Then lim M; x N; =

M x N in the category of CP~2-manifolds.

Proof. If (z,y) € M x N and g5, g, are the above-defined charts of N
and M around z and y, respectively, with respective domains of definition O,
and Oy, then O, x O, is open in the direct limit manifold S := h_rr}Ml X Nj,
and clearly g, x g, is a chart of S as constructed in Lemma 4.1. 1

5. Countable direct limits of Lie groups

A smooth Lie group is a group, equipped with a smooth manifold struc-
ture modelled on some s.c.l.c. topological vector space, such that the group
operations are smooth maps. LIE., denotes the category of smooth Lie groups
and smooth homomorphisms. As a consequence of Theorem 4.3, we deduce in
this section that every countable strict directed system of finite-dimensional Lie
groups has a direct limit in the category LIE,, (Theorem 5.1). We then inves-
tigate continuous homomorphisms between direct limit Lie groups (Proposition
5.2), provide an alternative description of the Lie algebras of direct limit Lie
groups (Proposition 5.4), and describe a direct limit Lie group whose exponen-
tial function does not induce a local homeomorphism at 0 (Example 5.5).
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Theorem 5.1.  Let S := ((Gi)ier, (¢ji);>i) be a countable strict di-
rected system of finite-dimensional Lie groups, with topological group direct
limit (G, (¢:)). Then there is a unique smooth manifold structure on G which
makes G the direct limit of S in the category LIE.,. The maps ¢; are embed-
dings onto C*°-submanifolds of G.

Proof. The identity component K of a Lie group L is a o-compact locally
compact space and therefore paracompact. Hence so is L, being the topological
coproduct of the open closed cosets of K. Theorem 4.3 yields a smooth man-
ifold structure on G which makes it a direct limit in the category of smooth
manifolds modelled on s.c.l.c. spaces. Since G is, at the same time, a direct
limit in the sense of abstract groups, and in the sense of sets, cones of smooth
homomorphisms induce smooth homomorphisms. The remainder is plain. [

Proposition 5.2. Let G and L be the direct limits of countable strict
directed systems of finite-dimensional Lie groups G; < G and L; < L, respec-
tively, and assume that H is a finite-dimensional Lie group. Then

(a) every continuous homomorphism f: H — G is smooth;

(b) every continuous homomorphism f: G — L is smooth.

Proof. (a) We may assume w.l.o.g. that H is connected, since translations
in H and G are smooth and H has an open identity component. Let C' be a com-
pact identity neighbourhood in H; then f(C) C G; for some i by Proposition
3.6 (b). Hence f(H) C G, because C generates H. Since G; is a submanifold
of G and the continuous homomorphism f|% between finite-dimensional Lie
groups is smooth, so is f.

(b) f is induced by the cone (L, (f|g,)ier), where each continuous homo-
morphism f|g, is smooth by Part (a). |

5.3.  Suppose that S and G are as in Theorem 5.1. Let (g, (¥;):cr) be
the direct limit of 7 := ((L(G;))ier, (L(¢5:));>:) in the category of topological
Lie algebras, where L(G;) = Hom(R, G;) and L(¢j;) = Hom(R, ¢;;). The set
underlying g being the direct limit of the sets L(G;), the cone (Hom(R, G),
(Hom(R, ¢;))ier) over 7 in SET induces a mapping 7: g — Hom(R, G). Let us
check that 7 is bijective: we may assume [ = (N, <)and G; C G, C --- C G, all
maps ¢; and ¢;; being the respective inclusion maps. Suppose X € Hom(R, G).
By Proposition 3.6 (b), we have X([-1,1]) € G; for some i € N, whence
imX < G; indeed since [—1, 1] generates R. We have proved that every one-
parameter subgroup of G is a one-parameter subgroup of some G;. It follows
from this that 7 is surjective. All maps Hom(R, ¢;) being injective, so is n. We
use the bijection n to transport the topological Lie algebra structure of g to
Hom(R, G).

Note that g is isomorphic to the Lie algebra of G as defined in [25].

Proposition 5.4.  In the above situation, the following holds:
(a) Addition and Lie bracket on Hom(R, G) are given by the Trotter Prod-
uct and Commutator Formulas, respectively (which do converge). Thus, given
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X,Y € Hom(R, G), we have, for all t € R,

(X +Y)(H) = lim <X <;> % <2>)n
v (4 (¥ ()

(b) The exponential map exp: Hom(R,G) — G: X — X (1) is smooth.

and

Proof. The function exp is induced by the compatible family of the
smooth maps expg, : L(G;) = Hom(R,G;) — G: X — X(1) (via the univer-
sal property of lim L(G;) in the category of smooth manifolds). Hence exp is
smooth. Hom(R, G) being the directed union of the Lie algebras Hom(R, G;),
Part (a) easily follows from the finite-dimensional theory (cf. [4, Chapter 3,
Section 4.3, Proposition 4]). O

In the situation of the preceding proposition, the exponential map of G
need not be locally regular at 0, nor locally injective at 0, nor locally open at
0: then the method of [27]-[30] cannot be used to produce a direct limit Lie
group (whenever the method applies, the exponential function will induce a
local diffeomorphism at 0). Here is an example of a direct limit group with a
bad exponential function:

Example 5.5. Let G :=R x C*, where R acts on C* via t.(zg)gen =
(€ 2 )ren. Then G is an infinite-dimensional Lie group in a natural way; its
manifold structure is determined by the global chart id: G — R x C*°, where
the real vector space R x C* is equipped with the finite topology. Clearly the
Lie group G is the direct limit of its subgroups R x Vj,, where Vj, := {(z;)jen €
C>: z; = 0for all j > k}. The Lie algebra g of G can be identified with RxC*°,
with R acting on C* via t.(zg)gen = (iktzy)ren. Using this identification, the
exponential map is given by exp: g — G, (t, (zk)ken) — (&, (f(kt)2k)ken),
where f(s) = (e —1)/is. We set X := (27,0) € g.

Suppose that U is an open 0-neighbourhood in g. Since k~!X — 0 as
k — o0, there exists n € N such that n™'X € U. Since U is open, there is
e > 0 such that n='X +re,, C U for all r €]—¢, e[, where e, = §,,. € C*. Now
exp(n~!X +re,) = (2m/n,0) for all r shows that exp is not injective on U.
Hence exp is not locally injective at 0.

If W is an open identity neighbourhood in G, the continuity of exp implies
that g := (27/n,0) = exp(n='X) € W for some n € N. Since W is open,
there is r # 0 with ¢’ := g + re,, € W. We claim that ¢’ € imexp. In fact,
suppose to the contrary that we could find some Z = (¢, (zk)ken) € g such
that exp(Z) = ¢’. The above explicit formula for exp shows that ¢ = 27 /n and
r = ((e"™ —1)/int)z, = 0. But r # 0. Hence indeed ¢’ ¢ imexp and therefore
W & imexp. We conclude: The exponential image imexp is not an identity
neighbourhood of G.
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Note that expg, = eXp\D(g;Vk has a non-invertible derivative at k=1X.

Hence exp is not locally regular at 0: every O-neighbourhood U in g contains
an element Y such that dexp(Y) is not injective, hence not invertible.

In infinite-dimensional Lie theory, it is interesting (and in many cases hard
to decide) whether a given Lie algebra is integrable, i.e., isomorphic to the Lie
algebra of some Lie group. Clearly direct limit Lie groups are natural candidates
of Lie groups one would try to associate with locally finite Lie algebras, i.e.,
Lie algebras which are the direct limit of their finite-dimensional subalgebras.
From Theorem 5.1 above, we easily deduce the following integrability criterion:

Corollary 5.6.  Let g be a locally finite real Lie algebra of countable
dimension. Suppose that there exists an ascending sequence g1 C go C --- of

. . . . . ®2, ?3,
finite-dimensional subalgebras of g, a strict directed sequence G fiN G i

of finite-dimensional Lie groups, and isomorphisms ~y,: L(G,) — g, of Lie
algebras for n € N with the following properties:

(a) 9= UnGN n;

(b) €n41,n9Yn = Yn+1°L(Pnt1,n) holds for alln € N, where e,41,, denotes
the inclusion map gn — Gn+1-
Then G :=lim G,, exists as a smooth Lie group, and L(G) 2g.

6. Direct limit convenient Lie groups

We have already seen in Example 3.5 that the naive direct limit of an un-
countable strict directed system of finite-dimensional Lie groups need not be a
topological group, in which case it cannot be made a Lie group in the ordinary
sense (as described in Section 5). In this situation, it is unclear whether the di-
rected system has a direct limit in the category LIE., of Lie groups modelled on
s.c.l.c. topological vector spaces, and the naive direct limit group does not seem
to be helpful for its construction. However, the system still has a direct limit
in another category of Lie groups (under suitable hypotheses), the category of
Lie groups in the sense of ‘convenient differential calculus’ ([7], [22]), as defined
in [21] and [22]. These Lie groups are the group objects in the category of
smooth manifolds in the sense of convenient differential calculus; we call them
convenient Lie groups for brevity. Let us assemble the required preliminaries
concerning convenient differential calculus.

A sequence (z,)nen in a locally convex topological vector space V' is called
a Mackey-Cauchy sequence if there exists a sequence (L, )nen in R converging
to 0, and a bounded absolutely convex subset B C V such that z, € u,B
for all n € N (cf. [22, Lemma 1.6]). A topological vector space V is said
to be convenient if it is locally convex, Hausdorff, and every Mackey-Cauchy
sequence converges ([22, Theorem 2.14 (5)]). If V is a convenient topological
vector space, we let C*°(R, V) denote the set of smooth curves R — V. The
™ -topology on V is the final topology on V with respect to the mappings in
C>®(R,V); we write ¢ (V) for V, equipped with the ¢>-topology. Note that
the ¢*°-topology is finer than the original topology. If V is a Fréchet-space,
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¢ (V) =V holds ([22, Theorem 4.11]); in general, ¢>°(V') is not a topological
vector space, and if V, W are convenient vector spaces, although the map
PV xW) — (V) xc>®(W), (v,w) — (v,w) is easily seen to be continuous,
it need not be a homeomorphism. If V. W are convenient topological vector
spaces, U is a ¢®-open subset of V, and f: V — W is a map, we say that
fis smooth if foc: R — W is smooth for all smooth maps ¢: R — V with
image in U. Then composites of smooth maps are smooth. A smooth manifold
(in the sense of convenient differential calculus) is a pair (M, A), where M is
a topological space and A is a set of homeomorphisms (called charts) ¢: U —
W from an open subset U of M onto a c>-open subset W of a convenient
topological vector space V; (equipped with the ¢*°-topology), such that M is
the union of the domains of the charts ¢ € A and, for all charts ¢: Uy — Wy
and ¢: Uy — Wha, the coordinate change 7 := v¢|y,nu, © ¢—1|g(181%2U2) is a
smooth map. If there is a convenient vector space V' such that Vj is linearly
diffeomorphic to V for all charts ¢, we say that M is modelled on V.

Given smooth manifolds M and N, a map f: M — N is said to be smooth
if it is continuous and if, for every x € M and charts ¢: Uy — Wi and ¢: Uy —
Wy around « and f(x), respectively, the mapping o f|g2 o1 |§(Q) is smooth,
where Q := f~1(Uy) N Uy.

If (M1, A1) and (M2, As) are smooth manifolds, we equip M7 x Ms with
the final topology with respect to the maps ¢f1 X ¢;1 Wi x Wy — U x Uy C
My x Ms, where ¢;: U; — W; is a chart of M; for i = 1,2 and Uy xUs is equipped
with its topology as a subspace of ¢ (V; x V3 ), where V; is the convenient vector
space such that W; C V;. Note that we do not use the topology induced by
> (V1) x ¢ (V): this is essential. Let C denote the collection of all the maps
1 X ¢o; we call (M x N,C) the direct product of the manifolds M and N.

A convenient Lie group is a group G, together with a smooth manifold
structure on G (in the preceding sense), such that the group operations are
smooth (see [22], Definition 36.1, where convenient Lie groups are simply called
“Lie groups”). Unlike [22], we shall not presume that G be smoothly Hausdorff
(which means that the smooth functions f: G — R separate points on G). Note
that the topology underlying the product manifold G x G can be properly finer
than the product topology; hence although the group multiplication y: GXG —
G is smooth, G need not be a topological group.

Lemma 6.1.  Let V be a real vector space, equipped with the finest locally
convex topology. Then V is a convenient topological vector space. The ¢ -
topology on V' coincides with the topology of finitely open sets.

Proof. Any real vector space is complete in its finest locally convex topol-
ogy ([18, Theorem 8]); therefore it is a convenient topological vector space. Let
F be a finite-dimensional subspace of V. Then F' is a convenient vector space
in its Hausdorff vector topology. By [22, Theorem 2.14 (3)], F' is ¢*-closed in
V', whence the c¢*-topology on V induces the c*°-topology on F', by loc. cit.
Lemma 4.28, which is the Hausdorff vector topology on F' since F is Fréchet.
Thus F'NU is open in F for every finite-dimensional subspace F' if U is ¢*°-open
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in V: hence U is finitely open and we have proved that the ¢*°-topology on V'
is coarser than the finite topology. On the other hand, if ¢: R — V is a smooth
curve, for every k € Z the compact set ¢([k—1,k=+1]) has finite-dimensional
span Fj in V, equipped with the finest locally convex topology ([18, Lemma
2]). Since the finite topology on V induces the Hausdorff vector topology on
each FJ, we conclude that c is continuous as a mapping into V', equipped with
the finite topology. By definition of the ¢*°-topology as a final topology, we
deduce that it is finer than the finite topology. This completes the proof. [

The heart of the following definition is a variant of the “spectral growth
condition” defined in [27]:

Definition 6.2. Let S := ((Gi)ier, (¢5:)j>i) be a strict directed sys-
tem of finite-dimensional Lie groups. We say that S is admissible if there
exists a strict directed system 7 := ((V;)ier, (nj:);>i) of finite-dimensional
complex vector spaces and complex linear maps and a family (7;);cs of con-
tinuous complex linear actions m;: G; X V; — V; which is compatible with the
directed systems ((G; X V;)ier, (¢ji X 1;:)j>i) and 7, with the following prop-
erty: Let dm := h_n)ldm: g XV — V be the limit map of the family of Lie
algebra actions dm;: L(G;) x V; — V which is compatible with the directed
systems ((L(Gi) X Vi)ier, (L(;ji) X 1j:);j>i) and T, where g := limL(G;) and
Vo= li_r)nVi.*3 It is required that the Lie algebra representation g — gl(V),
X — dr(X, ) is faithful, and that there exists a finitely open 0-neighbourhood
@ in g such that

(1) sup{|ImA|: X € @, \ € specdn(X,-)} < 0.

Remark 6.3. In the situation of Definition 6.2, there is a useful crite-
rion for the existence of @, the “bounded growth condition” or “operator norm
growth condition” ([28], p. 62, [30] (3.4b)): If there exists a family (|| - ||;)icr of
norms on the spaces V; such that, for every i € [ and X € g,,

lim sup [dm;(L(j:)(X), )IIF" < o0
Jj=t
(where || - [|7” denotes the operator norm with respect to || - [|;), then there is
a neighbourhood () in g with the required property.

We can now state an existence theorem for direct limit convenient Lie
groups:

Theorem 6.4. Let S = ((Gi)ier, (¢ji)j>i) be an admissible strict di-
rected system of finite-dimensional Lie groups. Then the naive direct limit
(G, (¢i)icr) of S can be given a smooth manifold structure in the sense of con-
venient differential calculus which makes it the direct limit of S in the category
of convenient Lie groups. If I is countable or if the compatible family (7;);cr in
the definition of admissibility can be chosen such that h_n}lm 1s a faithful action
of G, then G is smoothly Hausdorff.

*3Here dm;(X,v) := d1(n)(1,v).X for X € g, v € V, where d; denotes the partial derivative
with respect to the variables in g.
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Proof. Let (G, (¢;i)icr) denote the naive direct limit of S; we may assume
without loss of generality that G; C G for all 4, all maps ¢;; and ¢; being the
respective inclusion maps. Also, we consider all Lie algebras g; as subalgebras
of their direct limit g. Let @ be as in Definition 6.2; after shrinking @ by
multiplication with a suitable positive real, we may assume that the supremum
in Definition 6.2, Inequality (1) is smaller than 7. Let exp := h_r)neXpGi g — G
By [27, Proposition 7.1], U := exp(Q) is an open subset of G, and « := exp |g
is a homeomorphism if @ is equipped with the topology induced by the finite
topology. Given z € G, define 3,: U — @Q via y — o '(x7'y). By the
considerations in [27], for every i € I such that = € G;, the map ﬁﬂ?gﬂG is a
chart of G;.

We claim that the family (8;)zeq can be used as a family of charts which
makes G a convenient Lie group modelled on g, equipped with the finest locally
convex topology. Note first that the sets zU cover G (for z € G). Given
x,y € G, consider the coordinate change 7: By |,y oﬂ;lﬁgmy[], where W :=
Be(xU NyU). Then W is finitely open by the above, i.e., W is ¢*-open by
Lemma 6.1. If c: R — W is a smooth curve, consider ¢ := c|jp_1 p41 for
k € N. Then ¢ has relatively compact image, whence there exists ¢ € I such
that imc;, C g;. Increasing i if necessary, we may assume that z,y € G;. Now

— |QNg; QnNg; - . . .
Tock = T|ngli o ¢y, where T\qu? is analytic by the above (being a coordinate

change on G;). Thus Tocy is smooth for all k, whence also 7o ¢ is smooth. We
conclude that 7 is smooth in the sense of convenient differential calculus.

To see that G, equipped with the smooth manifold structure defined by the
above coordinate cover, is a convenient Lie group, it remains to show that the
group multiplication and inversion are smooth. Let us show smoothness of the
multiplication u (smoothness of inversion is even easier to prove). Regard GxG
as a smooth manifold modelled on g x g (equipped with the product topology,
which is again the finest locally convex topology), using the family of charts
(Bz X By)zyec as a coordinate cover. Let ¢c: R — G x G be a smooth curve.
Given t € R, there exist (z,y) € Gx G and a neighbourhood V =]t —r,t+r[of t
in Rsuch ¢(V) C 2U xyU and such that (5, x3,) o c|f/UXyU V- QxQ Cgxg
is smooth. Let 0 < s < r and set W :=]t — s,t + s[; then (8, X By)(c(W)) is
relatively compact, hence contained in g; xg; for some i € I. We may assume
that z,y € G;. Then ¢(W) C G; x G4, and ¢ := ¢ IC,’{}XGi is a smooth curve,

using that (8, x By)\gggfngggl(é’jia) is a chart of G; x G;. We now write
poclw = A op;oc, where p;: G; x G; — G; is the smooth multiplication on
G; and \;: G; — G denotes inclusion. It is easy to check that A; is smooth.
Hence p o ¢l is smooth as well. Since ¢t € R was arbitrary, we conclude that
w o cis smooth. Hence y is smooth.

Let us prove now that G, equipped with the above convenient Lie group
structure, is the direct limit of S in the category of convenient Lie groups. To
this end, let (H, (fi)icr) be a cone over S in the category of convenient Lie
groups. Since (G, (¢;)icr) is the direct limit of S in the category of groups,
there is a unique homomorphism f: G — H such that f|g, = f; foralli € I. If
c: R — G is asmooth curve, for every ¢t € G there exists an open neighbourhood
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W of z in R such that ¢(W) C G; for some i € I, as above. Hence f oc|ly =
fioc 5{, shows that f o c|w is smooth, and hence that so is f o ¢. Therefore f
is smooth.

Suppose now that (m;);cs is a compatible family of continuous linear ac-
tions 7;: G; x V; — V; on finite-dimensional complex vector spaces which is
compatible with S in the sense described in Definition 6.2; assume that the
representation g — 7r(g,-), where 7 := h_n)mri, separates points on G. Let
V .= h_n)lVi, equipped with the finite topology; we consider V as a smooth
manifold, modelled on the real vector space V', equipped with the finest locally
convex topology. Given distinct elements g,h € G, by hypothesis there exists
v € V such that 7(g,v) # m(h,v). Let A € V' such that A(7(g,v)) # Mw(h,v)).
Then f:= Aow(-,v): G — R is smooth since A and 7 are so, and f(g) # f(h).

If I is countable, then G is a regular topological space in view of Corollary
3.4; furthermore, g (which is finite-dimensional or 2 R*°) admits smooth bump
functions, i.e., for every X € g and every neighbourhood U of X, there exists a
smooth function b: g — R, vanishing on the complement of U, such that b(X) =
1. These properties together will entail that G is smoothly Hausdorff. Here, the
existence of smooth bump functions is trivial if g is finite-dimensional. To settle
the infinite-dimensional case, it suffices to construct smooth bump functions
around X = 0 € R*. To this end, let U be any open zero-neighbourhood
in R*. Inductively, we find a sequence of real numbers 7, > 0 such that
R® N [[,en[="n,mn] € U. In fact, if C := 1, [=rn, ] € U for some

n=1

N € N, then U N RY*! is an open neighbourhood of the compact subset C
of RN*1. Since C is compact, the neighbourhood U N RN*! of C is in fact a
uniform neighbourhood of C' in RV*!, whence we find some ry,; > 0 with
I =rn, ] = C+ [=rny1,rysilenss € UNRNTL Let h be a smooth

n=1
function on R supported in [—1,1], such that h(0) = 1. We let b: R® —
R be the function given by b(t1,...,tn) := h(t1/r1) - h(ta/r2) - ... - h(tn/rs)

for (t1,...,t,) € R® C R*°. Then b is smooth, being smooth on each R";
furthermore, b(0) = 1 and b|ge\y = 0.

To deduce that G is smoothly Hausdorff, assume that g, h € G are distinct
elements. Let W be a neighbourhood of g which is diffeomorphic to an open
subset of g; since G is Hausdorff, we may assume that h ¢ W. Now G being
regular, there exists a closed neighbourhood U of ¢ in G, such that U C W.
Since g admits smooth bump functions, there is a smooth function H: W — R
such that H|y\y = 0. We extend H to a function F' defined on all of G' by
setting F(x) := 0 for x € G\W. Then F is smooth on the open sets W and
G\U, whose union is G: therefore F' is smooth. Furthermore, F(g) = 1 and
F(h) =0. Thus the smooth functions separate points on G, as required. O

Remark 6.5. We remark that the atlas constructed in the proof of
Theorem 6.4 is real-analytic in the sense of [22, (27.1)], whence G is an analytic
convenient Lie group; it is the direct limit of S in the category of analytic
convenient Lie groups. The proof of these assertions is completely analogous to
the preceding proof in view of the definition of analytic maps (loc. cit. (10.3))
in convenient differential calculus. Similarly, if we are given an admissible
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directed system of finite-dimensional complex Lie groups and complex analytic
homomorphisms, we obtain a complex analytic structure on the direct limit
convenient Lie group.

Remark 6.6. The direct limit Lie groups constructed in Theorem 5.1
are also the direct limits in the category of convenient Lie groups, by arguments
similar to those used in the proof of Theorem 6.4.

Remark 6.7. It is not known to the author whether all of the direct
limit convenient Lie groups constructed above are smoothly Hausdorff (without
extra hypotheses).

7. An instructive example

Let I be an infinite set and J be the set of finite subsets of I, directed by
inclusion. We consider the group G = GL(I,R) C RI*! of I x I-matrices A such
that A—1 € RU*D) and A is invertible. Then (G, (¢r)res) is the direct limit
group of the directed system S := ((Gr), (¢rr)), where G := GL(RF) for F €
J and ¢gp: A— A @ idge\r for FF < E (the homomorphisms ¢p: Ggp — G
being defined analogously). Equip G with the naive direct limit topology. We
let gl(I,R) := RU*1) denote the real (non-unital) algebra of I x I-matrices with
only finitely many non-zero entries; as a Lie algebra, gl(I,R) li_r)ngl(]RF) =
@L(GL(RF)). If I is countable, we make G a Lie group modelled on the
s.c.l.c. space gl(I,R) = R*°; the group operation will be continuous, and the
Lie bracket on gl(I,R)? is continuous, as any bilinear map on this space. Of
course, we can also consider GL(I,R) as the direct limit convenient Lie group.
Now assume that I is uncountable.

Theorem 7.1. The above directed system S is admissible, whence
GL(I,R) can be made the direct limit convenient Lie group of S. Then GL(I,R)
is smoothly Hausdorff, and the following holds:

(a) GL(I,R) is not a topological group, because the group multiplication
w: GL(I,R)? — GL(I,R) is discontinuous with respect to the product topology
on GL(I,RR)2.

(b) Equip gl(I,R) := RUXD with the finest locally convex topology, or with
the topology of finitely open sets. Then the matriz multiplication

m: gl(I,R) x gl(I,R) — gl(I,R)
is discontinuous, and so is the Lie bracket
[-,-]: gl(I,R) x gl(I,R) — gl(I,R).
Here, the product is equipped with the respective product topology.

Proof. The family of inclusions vyp: GL(RY) — GL(CY) gives rise to
a compatible family (7z)res of linear actions GL(RY) x CF' — CF. 1t is
easy to verify the bounded growth condition (Remark 6.3), using the 2-norms
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|- 1l7: (ri)ier — /> icp Iril> on CF: hence S is admissible. All representa-
tions vg being faithful, so is the the direct limit representation li_nwp corre-
sponding to the action lii>n7rp. We deduce from Theorem 6.4 that GL(I,R) is
smoothly Hausdorff.

(a) This part of the theorem is known, but we give the short proof. Con-
sider for F' € J the closed subgroup Hr of G g consisting of all diagonal matrices
with positive diagonal entries; we let H denote the closed subgroup of G which
is the naive direct limit of the groups Hp (note that the considerations preced-
ing Lemma 3.1 have analogues for closed subspaces). The compatible family
of isomorphisms (np)res, where np: RF — Hp maps (¢j)jer to the diago-
nal matrix with entries €%, induces an isomorphism of semitopological groups
R — H, where RU) is equipped with the finite topology. By Example 3.5,
H is not a topological group, and hence neither is G.

(b) The proof is achieved via a series of lemmas. First, we discuss the case
where gl(I,R) is equipped with the finest locally convex topology.

Definition 7.2. Let V be a real vector space, and (e;);ca be a basis
for V. Given r = (r;)ica € (RT)4, we set U(r) := conv{+r;e;: i € A} (here
RT :=]0, o0]).

It is plain that the sets U(r) form a basis of the filter Uy(V) of
0-neighbourhoods of V', equipped with the finest locally convex topology.

Lemma 7.3.  Let V be a real vector space, (€;);ca be a basis for V, and
B:V xV — X be a bilinear map into a real locally convex space X. Equip V
with the finest locally convex topology. Then the following holds:

(i) B is continuous if and only if B is continuous at (0,0), i.e., if and only
if for every convexr symmetric 0-neighbourhood W in X, there is r € (RT)4
such that B(U(r) x U(r)) C W.

(ii) If W is a convex symmetric 0-neighbourhood in X and r € (R*)4, we
have B(U(r) x U(r)) € W if and only if B(rie;,rjej) € W for alli,j € A.

Proof. (i) It is well-known that multilinear maps between topological vec-
tor spaces are continuous if and only if they are continuous at the origin ([3,
Chapter I, Section 1, No. 6, Proposition 5]).

(ii) The implication ‘=’ is trivial. Conversely, suppose that 3(r;e;, j€e;) €
W for all 4,5 € A; then also B(r;e;, —rje;) € W for all 4,7, by symmetry of
W. Fix ¢ € A. Since ((r;e;,+) is linear and W is convex, we deduce from
B(rie;, £rrej) € W for all j that B(rie;,U(r)) € W. Fix u € U(r). Since
B(xrie;,u) € W for all ¢ € A by the preceding, we conclude as above that
B(U(r),u) € W. Since u was arbitrary, 3(U(r) x U(r)) C W follows. O

Lemma 7.4.  Consider gl(I,R), equipped with the finest locally convex
topology, where I > Ry. Then the following statements are equivalent:

(i) The Lie bracket [-,-]: gl(I,R) x gl(I,R) — gl(I,R) is continuous;

(ii) Matriz multiplication m : gl(I,R) x gl(I,R) — gl(I,R) is continuous.
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Proof. Since matrix addition is continuous and so is taking negatives, the
implication ‘(ii)=-(i)’ is obvious.

(i)=(ii): Suppose that the Lie bracket is continuous. We partition I into
three disjoint sets I, Is, I3 of equal cardinality and define

V= span{Eij: 1€ Il,j S IQ},
Vo :=span{E;;: i € I, j € I3},
Vs :=span{E;;: i € I,j € I3},

where the E;;’s are the matrix units. Then [V;,V5] C V3, and [, '”%xvz is
continuous. For k € {1,2,3}, there is a bijection fy: I — I; and a linear
isomorphism ¢y : gl(I,R) — V}, determined by

Eij = Enopg i k=1,
Eij = Enupg i k=2,
Eij = EnGypg i k=3

Then m = ¢35 ' o [, ~]|¥?XV2 o (¢1 X ¢2); hence m is continuous. |
We now recall the following fact from [2]:

Lemma 7.5. A set I is uncountable if and only if there is a function
g: I? — RT such that for every function f: I — RT, there is (i,j) € I? such
that g(i, j) < f(i) f(j)-

Lemma 7.6.  The matriz multiplication m: gl(I,R)? — gl(I,R) is dis-
continuous if gl(I,R) is equipped with the finest locally convex topology, for
every uncountable set I.

Proof. The matrix units F;; (where (i,7) € I?) form a basis of gl(I,R);
therefore the sets U(r) := conv{+£r;;F;;: (i,j) € I?} (where r = (r;;) €
(R*)T*T) constitute a filter basis for the filter of 0-neighbourhoods in gl(I,R).
Let g: I? — Rt be a function with the properties described in Lemma 7.5.
I claim that m(U(r) x U(r)) € U(g), for every r = (r;;) € (RT)!*1. Re-
placing each r;; by min{r;;,7;;}, we may assume that r is symmetric. Fix
any ig € I and define f: I — R* via f(i) := ry,. By definition of g, there
is a pair (Z,]) S 12 such that TiigTi05 = TiigTjig = f(Z)f(_]) > g(Z,j) Now
(Tiio Biig, Tigj Bigj) € U(r) xU(r) and m(rii, Eiig, Tigj Bigj) = TiigTigj Eij € U(g)-
We have proved that m is not continuous at (0, 0); hence m is discontinuous. O

Note that in the situation of the preceding lemma, the commutator bracket
is discontinuous as well, by Lemma 7.4. Thus all assertions of Theorem 7.1 (b)
concerning gl(I, R), equipped with the finest locally convex topology, are proved.
The remainder of (b) can be deduced easily from the following lemma:

Lemma 7.7. Let V be a real vector space, X be a locally convex vector
space, and 3: V xV — X be a bilinear map. Let Osop, be the topology of finitely
open sets onV, and Oex the finest locally convex topology. If B: (V, Otop)? — X
is continuous at (0,0), then so is 3: (V,O1x)? — X.
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Proof. Let W be a convex symmetric 0-neighbourhood in X. If the map
B: (V,Ogp)? — X is continuous at 0, there is a symmetric 0-neighbourhood
U in (V,Ogp) such that (U x U) € W. Set U’ := conv(U); then U’ is
convex, symmetric, and absorbing, and hence is a 0-neighbourhood in (V, Ojex).
Furthermore, as in the proof of Lemma 7.3 (b), we find that (U’ x U’) C W.
Thus B: (V, O1ex)? — X is continuous at (0, 0). O

To complete the proof of Theorem 7.1 (b), let I be any uncountable set.
The matrix multiplication and Lie bracket (gl(Z,R), Oix)? — (gl(I,R), O1x)
are discontinuous; by Lemma 7.3, these mappings are discontinuous at (0, 0).
We deduce from Lemma 7.7 that matrix multiplication and Lie bracket are also
discontinuous at (0,0) when considered as mappings

(gl(lv R)’ Ofop)2 - (gl(I’ R)v OICX)'

Since Oiex C Orop, we deduce that matrix multiplication and Lie bracket are
discontinuous a fortiori as mappings (gl(I,R), Op)? — (gl(I,R), Ofop). This
completes the proof. O

8. Non-archimedian analogues

Most of the results obtained by now are not specific for real Lie groups
and hold equally well for Lie groups over totally disconnected local fields, as
we shortly sketch in the following.

Let K be a totally disconnected commutative local field [35], with valuation
ring R and valuation ideal P = wR. For information concerning topological
vector spaces over K, the reader is referred to [26]; the necessary background
concerning K-Lie groups can be found in [33] and [4, Chapter 3].

We set K> := KM equipped with the finite topology (which is defined
as in the real case); it coincides with the finest vector space topology on KM,
Suppose that X; and X, are K-vector spaces of countable dimension (finite or
infinite), equipped with their finite topologies, and U an open subset of X;. Let
f: U — X3 be a continuous map, and F' a finite-dimensional subspace of X;.
For every « € FNU, there is an open neighbourhood C of z in F N U which is
relatively compact in F NU. Then f(C) is a relatively compact subset of a K-
vector space equipped with the finite topology; by Proposition 3.6 (b), f(C) has
finite-dimensional span S. We say that f: U — X5 is analytic if it is continuous
and if for every F', x, C, S as above, the map f|‘g is analytic in the usual sense.
If V1, Vo, and V3 are vector spaces of countable dimension, equipped with their
finite topologies, and if f: U; — V5 and g: Us — V3 are analytic maps such that
f(Uy) C Uy, where Uy and Us are open subsets of V4 and V5, respectively, then
the composition g o f|U2 is analytic. Hence analytic K-manifolds modelled on
topological vector spaces of the above type, and analytic maps between these,
can be defined in the usual way. All manifolds discussed below will be assumed
to be of this form. A group G equipped with an analytic K-manifold structure
modelled on K> (or some K™) with respect to which the group operations are
analytic will be called a Lie group of countable dimension in the following.
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Lemma 8.1.  Let M be a finite-dimensional analytic K-manifold and N
be an analytic submanifold of M. Let m := dim M and n := dim N. Suppose
that v: W — V is a chart of N, where W is an open compact subset of N and
V' an open compact subset of K™, and suppose that 2 is an open neighbourhood
of W in M. Then there exists an open compact subset U C Q of M and
a chart ¢: U — VXR™™™ such that UNN = W and ¢|lw = X o), where
AV S VXR™ ™ v (v,0).

Proof. Let W’ be an open subset of M such that W/ NN = W. Since N
is a submanifold of M, every point € W has an open compact neighbourhood
C CQNW’ in M on which a chart v: C' — Q is defined such that v|20x " is
a chart of N (where we identify K™ with the subspace K™x{0} of K™, and
@ is an open compact subset of K™). By compactness, W is covered by the
domains Cq,...,C; C Q of finitely many of these charts ~v;: C; — @;. Set
C{:=Cyand C] == C\(C1 U---UC;_q) for i = 2,...,k. Then the maps
Mg?cé are also charts of the above type, whence we may assume w.l.o.g. that
the sets C1,Cs, ..., C) are disjoint.

Fix i. For every z € @Q;, there exists a minimal number s, € Z such that
the ball z 4+ 7%= R™ is contained in @);, and clearly these balls partition @;.
Note that there are finitely many maximal balls by compactness. Hence we
find finitely many disjoint balls By, ..., Bs C Q; which cover ~;(W N C;), such
that B; Nv(WNC;) #0for j =1,...,s. Now 7; can be replaced by the maps
s,

By the preceding, we may assume w.l.o.g. that every @); is a ball and hence
w.l.o.g. that @Q; = R™ (thus v,(W N C;) = R™ x {0}).

Set U := CyU---UCy. Then T'(v,r) := v, '(7(y"(v)) + (0,7)) for
v € P(C; NW) defines a C¥-diffeomorphism I': V' x R™~" — U, since the open
subsets C1, ..., C) partition U. Now ¢ := I'"! is the required chart. O

(where j =1,...,s).

Proposition 8.2.  Suppose that S = ((M;)icr, (¢5i)j>i) is a countable
directed system of finite-dimensional analytic K-manifolds such that every ¢;; is
an embedding of analytic manifolds. Then the direct limit (M, (¢;)icr) in TOP
can be equipped with an analytic manifold structure which makes (M, (¢;)icr)
the direct limit of S in the category of analytic K-manifolds of countable di-
mension. All maps ¢; are embeddings of analytic manifolds; M is regular and
totally disconnected.

Proof. We may assume that I = (N, <) and M; C My C --- C M, the
morphisms ¢;; and ¢; being the respective inclusion maps. Let d; := dim M;.

Suppose that = € M,; let Q be any open neighbourhood of x in M.
There is an open compact neighbourhood U, C Q of z in M, and an open
neighbourhood V;, of 0 in K% such that there is a chart ¢, : U, — V,,; w.Lo.g.
V, = R,

By the preceding lemma and induction, we find open compact subsets Uy C
Q of M, and charts ¢y, : U, — R% for k > n such that U, N Mj,_; = Uj_; and
br|u._, = A—100r_1, where \,_; denotes inclusion R%-1 «— R : s (r,0).
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Set U := Up>,, Ur- Then U C Q, and U is open and closed in the direct
limit topology. Since 2 was arbitrary, we conclude that M is regular and totally
disconnected.

By Lemma 3.1, U is the direct limit of its subspaces Uy, (with the inclusion
maps), and this directed system is equivalent via the family (¢x)r>n to the
directed system of the subspaces R% of the subspace R™ of K* (or some
RY if the dimensions dj, are bounded), with direct limit R* (or RY). Set
ge: = 11_11>1¢k3 U — R>® (or RN). As in the real case, one verifies that the
maps g, form an analytic atlas for M (where z € M), and that M has the
asserted properties.

Corollary 8.3. Let S = ((Gi)icr, (¢i);>i) be a countable directed sys-
tem of finite-dimensional K -Lie groups and analytic embeddings ¢;;, with direct
limit (G, (¢i)icr) in TG. Then there exists a unique analytic manifold structure
on G which makes (G, (¢i)icr) the direct limit of S in the category of K-Lie
groups of countable dimension; every ¢; is an analytic embedding. O

Let G be a topological group. A local p-adic one-parameter subgroup of
G is a continuous homomorphism £: U — G, where U is an open subgroup
of Qp. Its germ at 0 is the set of all local p-adic one-parameter subgroups
¢ of G such that £ and ( coincide on some 0O-neighbourhood. The set of all
germs at 0 of local p-adic one-parameter subgroups of G will be denoted by
Homyoe(Qp, G). If G is a p-adic Lie group, it is well-known that its Lie algebra
L(G) can be identified with Homy,.(Q,, G) in a natural way. The identification
can be described as follows: Let ¢: M — G be an exponential function for G,
defined on some open Z,-submodule M of L(G) (see [4, Chapter 3, Sections 4.3
and 4.2, Lemma 3 (iii)]). Then X € L(G) corresponds to the germ at 0 of the
local p-adic one-parameter subgroup &: kap — G, t— ¢(tX), where k € Ny
is chosen so large that p*X € M.

Along the lines of Proposition 5.2 and paragraph 5.3 above, we deduce:

Corollary 8.4.  The direct limit topological group (G, (¢;i)icr) of any
countable strict directed system S = ((Gi)ier, (¢5i)j>i) of finite-dimensional
p-adic Lie groups can be given a p-adic Lie group structure which makes it the
direct limit of S in the category of p-adic Lie groups of countable dimension.
The set Homyoc(Qp, G) of germs at 0 of local p-adic one-parameter subgroups
can be identified with the direct limit Lie algebra h_rr)lL(Gﬁ, and every local
p-adic one-parameter subgroup of G is an analytic mapping. ]

The classes of manifolds and Lie groups “of countable dimension”, and the
corresponding notion of analytic map, are slightly special. After this research
was completed, a general differential calculus of smooth mappings between open
subsets of topological vector spaces over non-discrete topological fields has been
developed [1]. It can be shown that the smooth Lie groups underlying the direct
limit Lie groups constructed in the present section are also the direct limits of
the given directed systems in the category of smooth Lie groups modelled on
(arbitrary) topological K-vector spaces [10]; likewise for manifolds.
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