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Missing terms in generalized Hardy’s
inequalities and its applications

By

Toshio Horiuchi

Abstract

In this article we shall investigate the Hardy inequalities and im-
prove them by finding out missing terms. Although the missing terms
for the higher order Hardy inequality can not be determined in a unique
way, we shall give a canonical form of the remainder. As a direct appli-
cation we shall study blow-up solutions of a semilinear elliptic boundary
value problem and give some lower estimate of the first eigenvalue of
the linearized operator. We also improve the weighted Hardy inequali-
ties, which will be fundamental to study singular solutions of quasilinear
elliptic equations.

1. Introduction

Let N be a positive integer and let Ω be a bounded open set of R
N . Let

l be an arbitrary nonnegative integer. By C∞
0 (Ω) and Cl

0(Ω) we denote the
spaces of all smooth functions and k times continuously differentiable functions
having compact supports in Ω respectively. By H l(Ω) we denote the space of
all functions on Ω, whose generalized derivatives ∂γu of order ≤ l satisfy

(1.1) ||u||l =
∑
|γ|≤l

(∫
Ω

|∂γu(x)|2 dx
)1/2

< +∞.

By H l
0(Ω) we denote the completion of C∞

0 (Ω) with respect to the norm defined
by (1.1). Convensionally we set L2(Ω) = H0(Ω).

In the first place we recall the classical Hardy inequalities.

Theorem 1.1. If l < N/2, then it holds that for any u ∈ H l
0(Ω)

(1.2)
∫

Ω

|∇lu|2 dx ≥ Cl

∫
Ω

|u(x)|2
|x|2l

dx.
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236 Toshio Horiuchi

Here ∇l = {∂γ}, where |γ| = l and ∇ = ∇1, namely

(1.3) |∇lu|2 =
∑
|γ|=l

|∂γu(x)|2,

where γ = (γ1, γ2, . . . , γN ) is a multi-index as usual, and then ∂γ = (∂/∂x1)γ1 ·
(∂/∂x2)γ2 · · · (∂/∂xN )γN . Cl is a positive number independent of each u.

In this paper we shall mainly study the Hardy inequalities of the following
type: For any u ∈ H2l

0 (Ω),

(1.4)
∫

Ω

|∆lu|2 dx ≥ H(N,∆l)
∫

Ω

|u(x)|2
|x|4l

dx for l = 1, 2.

Here the best constants H(N,∆l) (l = 1, 2) are given by the infimum of the
next variational problems:

(1.5) inf
[∫

Ω

|∆lu|2 dx : u ∈ H2l
0 (Ω),

∫
Ω

|u(x)|2
|x|4l

dx = 1
]
, l = 1, 2.

It is well-known that if 0 ∈ Ω and N > 4l, H(N,∆l) (l = 1, 2) are given by

(1.6)



H(N,∆) =

(
N(N − 4)

4

)2

,

H(N,∆2) =
(
N(N − 4)(N + 4)(N − 8)

16

)2

.

For the references, see [1] and [4]. Moreover there exists no extremal function
in H2l

0 (Ω) which attains the infimum of these problems. Roughly speaking, the
candidates of extremals are singular at the origin, hence they can not be admis-
sible in the energy class H2l

0 (Ω). Therefore it is natural to consider that there
exist “missing terms” in the right-hand side of the classical Hardy inequalities
(1.2) and (1.4). In this spirit we shall investigate the Hardy inequalities (1.4)
and improve them by finding out missing terms. Although the missing terms
for the higher order Hardy inequality can not be determined in a unique way,
we shall give a canonical form of the remainder.

As an application we shall consider in the last section the semi-linear
boundary value problem defined by

(1.7)

{
∆2u = λf(u, r) in B,

u = ∆u = 0 on ∂B,

where r = |x|, B = {x ∈ R
N : |x| < 1} and λ is a nonnegative parameter. We

shall adopt as the nonlinearity f(u, r) the following fp and fe, that is,

(1.8)

{
fp(u, r) = (1 + u+Qp(r))p,

fe(u, r) = eu+Qe(r).
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Here Qp(r) and Qe(r) are nonnegative polynomials on B which will be defined
in Section 7. Then we shall study fundamental properties of blow-up solution
of these problems. We shall also establish the weighted Hardy inequalities,
which are not only of interest by itself but also essential to study the blow-up
solutions of p-harmonic equations (See [5]).

This paper is organized in the following way. In Section 2 we shall describe
our main results on Hardy’s inequalities. In Section 3 we shall prepare lemmas
which are needed in the proofs of the theorems stated in Section 2. In Sections
4 and 5 we shall establish Theorems 2.1 and 2.2 using lemmas in the previous
section. In Section 6 we shall prove Theorems 2.3 and 2.4. In Section 7 we
shall apply our theorems to study semilinear boundary value problems which
are stated in Section 1.

2. Main results

In this section we state our main results concerned with Hardy’s inequal-
ities. To this end we prepare more notations. Let r > 0 and let M be an
arbitraly positive integer. We set

(2.1) BM
r = {x ∈ R

M : |x| < r}.
By |Ω| and ωN we denote the N -dimensional measure of the domain Ω and
that of a unit ball BN

1 respectively. Further, by ∆M and ∇M , we denote the
M -dimensional Laplacian and the M -dimensional gradient in R

M respectively;

(2.2)




∆M =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
M

,

∇M =
(

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xM

)
.

Conventionally we set ∆ = ∆N and ∇ = ∇N . In the next we introduce the
first eigenvalues for various elliptic problems.

Definition 2.1. Let us set

(2.3)




λ1 = inf
[∫

B2
1
|∇2v|2 dx : v ∈ H1

0 (B2
1),
∫

B2
1
|v|2 dx = 1

]
,

λ2 = inf
[∫

B4
1
|∆4v|2 dx : v ∈ H2

0 (B4
1),
∫

B4
1
|v|2 dx = 1

]
,

λ3 = inf
[∫

B6
1
|∇6(∆6v)|2 dx : v ∈ H3

0 (B6
1),
∫

B6
1
|v|2 dx = 1

]
,

λ4 = inf
[∫

B8
1
|∆2

8v|2 dx : v ∈ H4
0 (B8

1),
∫

B8
1
|v|2 dx = 1

]
,

λ∗2 = inf
[∫

B4
1
|∆4v|2 dx : v ∈ H2(B4

1) ∩H1
0 (B4

1),
∫

B4
1
|v|2 dx = 1

]
.

Then the numbers λk (k = 1, 2, 3, 4) and λ∗2 are characterized as follows:

Proposition 2.1. The numbers λk (k = 1, 2, 3, 4) and λ∗2 are the first
eigenvalues of the elliptic boundary value problems below. Namely there exist
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positive smooth functions vk in B2k
1 (k = 1, 2, 3, 4) and v∗2 in B4

1 such that they
satisfy
(2.4)


−∆2v1 = λ1v1 in B2
1 , v1 = 0 on ∂B2

1 ,

∆2
4v2 = λ2v2 in B4

1 , v2 =
d

dn
v2 = 0 on ∂B4

1 ,

−∆3
6v3 = λ3v3 in B6

1 , v3 =
d

dn
v3 =

d2

dn2
v3 = 0 on ∂B6

1 ,

∆4
8v4 = λ4v4 in B8

1 , v4 =
d

dn
v4 =

d2

dn2
v4 =

d3

dn3
v4 = 0 on ∂B8

1 ,

∆2
4v

∗
2 = λ∗2v

∗
2 in B4

1 , v∗2 = ∆4v
∗
2 = 0 on ∂B4

1 .

Here by n we denote the unit outer normal on ∂B2k
1 (k = 1, 2, 3, 4) for simplic-

ity.

Now we are in a position to state our results:

Theorem 2.1. Suppose N > 4. Let Ω be a bounded domain of R
N .

Then we have the following two inequalities.
(1) For any u ∈ H2

0 (Ω), it holds that∫
Ω

|∆u|2 dx ≥ H(N,∆)
∫

Ω

|u|2
|x|4 dx(2.5)

+λ1 ·
(
ωN

|Ω|
) 2

N N(N − 4)
2

∫
Ω

|u|2
|x|2 dx+ λ2 ·

(
ωN

|Ω|
) 4

N
∫

Ω

|u|2 dx.

(2) For any u ∈ H2(Ω) ∩H1
0 (Ω), it holds that∫

Ω

|∆u|2 dx ≥ H(N,∆)
∫

Ω

|u|2
|x|4 dx(2.6)

+λ1 ·
(
ωN

|Ω|
) 2

N N(N − 4)
2

∫
Ω

|u|2
|x|2 dx+ λ∗2 ·

(
ωN

|Ω|
) 4

N
∫

Ω

|u|2 dx,

where

(2.7) H(N,∆) =
(
N(N − 4)

4

)2

.

Theorem 2.2. Suppose N > 8. Let Ω be a bounded domain of R
N .

Then it holds that for any u ∈ H4
0 (Ω)∫

Ω

|∆2u|2 dx ≥ H(N,∆2)
∫

Ω

|u|2
|x|8 dx(2.8)

+ a1 · λ1 ·
(
ωN

|Ω|
) 2

N
∫

Ω

|u|2
|x|6 dx+ a2 · λ2 ·

(
ωN

|Ω|
) 4

N
∫

Ω

|u|2
|x|4 dx

+ a3 · λ3 ·
(
ωN

|Ω|
) 6

N
∫

Ω

|u|2
|x|2 dx+ λ4 ·

(
ωN

|Ω|
) 8

N
∫

Ω

|u|2 dx.
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Here

(2.9) H(N,∆2) =
(
N(N − 4)(N + 4)(N − 8)

16

)2

.

By a1, a2 and a3 we denote positive constants defined by

(2.10)




a1 =
1
16
N2(N − 4)2(N + 4)(N − 8),

a2 =
3
8
N(N − 4)(N + 4)(N − 8),

a3 = (N + 4)(N − 8).

Remark 2.1. The missing terms for the higher order Hardy inequal-
ity can not be determined in a unique way, therefore these are considered as
canonical forms of the remainder.

In the next we state the results concerned with the weighted Hardy in-
equalities.

Theorem 2.3. Suppose that a positive integer N and a real number α
satisfy N + α > 2. Then it holds that for any u ∈ H1

0 (Ω)

∫
Ω

|∇u|2|x|α dx ≥ H(N,∇, α)
∫

Ω

|u|2|x|α−2 dx(2.11)

+ λ1

(
ωN

|Ω|
) 2

N
∫

Ω

|u|2|x|α dx,

where

(2.12) H(N,∇, α) =
(
N − 2 + α

2

)2

.

Remark 2.2. When α = 0, this result was initially established in [3]
by H. Brezis and J. L. Vázquez. They also investigated in [3] fundamental
properties of blow-up solutions of some nonlinear elliptic problems.

We also note that when one linearizes the p-laplacian at the singular func-
tion such as log |x|, the weighted Hardy inequalities appear in a natural way.

A similar result can be expected for ∆. In fact, the following weighted
inequality holds.

Theorem 2.4. Suppose that a positive integer N and a real number α
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satisfy N + α > 4. Then it holds that for any u ∈ H2
0 (Ω)

∫
Ω

|∆u|2|x|α dx+
α(α− 4)

2

∫
Ω

(
|∇u|2 − 2

(
x

|x| · ∇u
)2
)
|x|α−2 dx

≥ I(N,∆, α)
∫

Ω

|u|2|x|α−4 dx+ λ1
N(N − 4)

2

(
ωN

|Ω|
) 2

N
∫

Ω

|u|2|x|α−2 dx

+ λ2

(
ωN

|Ω|
) 4

N
∫

Ω

|u|2|x|α dx,

(2.13)

where

(2.14) I(N,∆, α) =
(
N(N − 4)

4

)2

− α(α− 4)(α+ 2N − 4)(α+ 2N − 8)
16

.

If we further assume either α ≤ 0 or α ≥ 4, we have the following.

Corollary 2.1. Suppose that the same assumptions as in the previous
Theorem 2.4. Moreover we assume either α ≤ 0 or α ≥ 4. Then it holds that
for any u ∈ H2

0 (Ω)

∫
Ω

|∆u|2|x|α dx+ α(α− 4)
∫

Ω

(
|∇u|2 −

(
x

|x| · ∇u
)2
)
|x|α−2 dx(2.15)

≥ H(N,∆, α)
∫

Ω

|u|2|x|α−4 dx+ b1λ1

(
ωN

|Ω|
) 2

N
∫

Ω

|u|2|x|α−2 dx

+ λ2

(
ωN

|Ω|
) 4

N
∫

Ω

|u|2|x|α dx,

where

(2.16)



H(N,∆, α) =

(
N(N − 4)

4
− α(α− 4)

4

)2

,

b1 =
N(N − 4)

2
+
α(α− 4)

2
.

Proof of Corollary 2.1. From Theorem 2.3 we have∫
Ω

|∇u|2|x|α−2 dx(2.17)

≥ H(N,∇, α− 2)
∫

Ω

|u|2|x|α−4 dx+ λ1

(
ωN

|Ω|
) 2

N
∫

Ω

|u|2|x|α−2 dx.

We note that α(α− 4) ≥ 0 and

(2.18) I(N,∆, α) +
α(α− 4)

2
H(N,∆, α− 2) = H(N,∆, α).
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Then the desired inequality ealily follows from Theorem 2.4.

In a similar way we have the following.

Corollary 2.2. Suppose that the same assumptions as in the previous
Theorem 2.4. Moreover we assume that 0 ≤ α ≤ 4. Then it holds that for any
u ∈ H2

0 (Ω)

∫
Ω

|∆u|2|x|α dx+
α(4 − α)

2

∫
Ω

|∇u|2|x|α−2 dx

≥ I(N,∆, α)
∫

Ω

|u|2|x|α−4 dx+ λ1

(
ωN

|Ω|
) 2

N N(N − 4)
2

∫
Ω

|u|2|x|α−2 dx

+ λ2

(
ωN

|Ω|
) 4

N
∫

Ω

|u|2|x|α dx.

(2.19)

Proof. It suffices to note that α(α − 4) < 0 and |∇u|2 − (x/|x| · ∇u)2 ≥
0.

Remark 2.3. In Theorem 2.4 and its corollaries, we can replace the
admissible space H2

0 (Ω) by H2(Ω) ∩H1
0 (Ω). Then the same results hold if we

replace λ2 by λ∗2 as before.

3. Lemmas

In this section we shall prepare fundamental lemmas which are not only
needed to prove our results but also very interesting by itself. First we recall
the rearrangement of domains and functions. For a domain Ω we define the
ball having the same measure as Ω by

(3.1) Ω∗ = {x ∈ R
N : ωN |x|N < |Ω|},

where by ωN we denote the measure of a unit ball. If |Ω| = +∞, we put
Ω∗ = R

N . For a measurable function u, we denote by u∗(x) the spherically
symmetric decreasing rearrangement of u (the Schwarz symmetrization of u).
Namely,

(3.2)

{
u∗(x) = inf{t ≥ 0 : µ(t) < ωN |x|N} in Ω∗,
µ(t) = |{x ∈ Ω : |u(x)| > t}|.

Then it is well-known that

Lemma 3.1. Under these notations we have for every p > 0

(3.3)

{∫
Ω
|u(x)|p dx =

∫
Ω∗ u

∗(x)p dx,∫
Ω
|∇u(x)|p dx ≥ ∫

Ω∗ |∇u∗(x)|p dx.
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Let g ∈ C0((0,∞)) be a nonnegative decreasing function. Then we have

(3.4)
∫

Ω

|u(x)|pg(|x|) dx ≤
∫

Ω∗
u∗(x)pg(|x|) dx.

From this we see in particular that the symmetric rearrangement does not
change the L2-norm and increases the integral

∫
Ω
(|u2|/|x|l) dx. The following

is due to G. Talenti (See [9]). For the sake of completeness, we give a short
proof.

Lemma 3.2 (Talenti). Let Ω be a domain of R
N . Assume that N ≥ 3

and f ∈ Lp(Ω), where p = 2N/(N + 2).
If a measurable function u is the weak solution to the Dirichlet problem

−∆u = f in Ω, u
∣∣
∂Ω

= 0; v is the weak solution to the Dirichlet problem −∆v =
|f |∗ in Ω∗, v

∣∣
∂Ω∗ = 0; then

v ≥ |u|∗ pointwise.

Proof. From the hypothesis and Kato’s inequality, we see that u satisfies
the inequality −∆|u| ≤ |f |. Hence |u| is a subsolution of the Dirichlet problem
−∆U = |f | in Ω, u

∣∣
∂Ω

= 0, and so |u| ≤ U . Therefore we assume u ≥ 0 and
f ≥ 0 without a loss of generality. Let us set

(3.5) ϕ(s) =




0 if s ≤ t,

s− t

h
if t < s ≤ t+ h,

1 if s > t+ h.

Then we see using ϕ(u) as a test function,

1
h

∫
{t<u<t+h}

|∇u|2 dx ≤
∫
{t<u}

f(x) dx.

By Hölder inequality,(
1
h

∫
{t<u<t+h}

|∇u| dx
)2 (

1
h
|{t < u < t+ h}|

)−1

≤
∫
{t<u}

f(x) dx.

Then (
− d

dt

∫
{t<u}

|∇u| dx
)2

(µ′(t))−1 ≤
∫
{t<u}

f(x) dx.

By the isoperimetric inequality ((2.26); p. 172 in [9] by G. Talenti) we have

− d

dt

∫
{t<u}

|∇u| dx ≥ Nω
1/N
N µ(t)1−

1
N .

So that
N2ω

2/N
N µ(t)2−

2
N (−µ′(t))−1 ≤

∫
{t<u}

f(x) dx.
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Let us set f∗(x) = f(ωN |x|N ) and u∗(x) = u(ωN |x|N ). Note that∫
{t<u}

f(x) dx ≤
∫ µ(t)

0

f(σ) dσ.

For the proof of this, see (2.6b) in [9] for example. Therefore we get

t ≤
∫ t

0

N−2ω
−2/N
N µ(t)−2+2/N (−µ′(t))

∫ µ(t)

0

f(σ) dσ dt

=
∫ |Ω|

µ(t)

N−2ω
−2/N
N t−2+2/N

∫ t

0

f(σ) dσ dt.

Hence

u(s) ≤
∫ |Ω|

s

N−2ω
−2/N
N t−2+2/N

∫ t

0

f(σ) dσ dt.

On the otherhand

v(x) =
∫ |Ω|

ωN |x|N
N−2ω

−2/N
N s−2+2/N

∫ s

0

f(σ) dσ ds.

After all we see
u∗(x) = u(ωN |x|N ) ≤ v(x).

Let us set

(3.6)




I l(u; Ω) =
∫

Ω

|∆lu|2 dx, u ∈ C∞
0 (Ω),

I l = inf
[
I l(u; Ω) : u ∈ C∞

0 (Ω),
∫

Ω

|u|2
|x|2l

dx = 1
]
,

I l
r = inf

[
I l(u; Ω∗) : u ∈ C∞

0,rad(Ω
∗),
∫

Ω∗

|u|2
|x|2l

dx = 1
]
.

By C∞
0,rad(Ω

∗) we denote the set of all spherically symmetric functions u ∈
C∞

0 (Ω∗). Under these preparations, we can show the following:

Lemma 3.3 (Reduction). Under these notations, it holds that I l ≥ I l
r

for every positive integer l. If Ω is a ball with its center being the origin, then
it holds that I l = I l

r.

Proof. Let u ∈ C∞
0 (Ω) be nonnegative without a loss of generality. It

suffices to show that there is a function v ∈ C∞
0,rad(Ω

∗) such that

(3.7)
I l(u; Ω)∫

Ω
|u|2/|x|2l dx

≥ I l
r(v; Ω∗)∫

Ω∗ |v|2/|x|2l dx
.

Assume l = 1. We put −∆u = f ∈ C∞
0 (Ω). From the definition of the

decreasing rearrangement, we see that |f |∗ is spherically symmetric in Ω∗ and
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Lipschitz continuous. Let v ∈ C2(Ω∗) be the unique solution of the Dirichilet
problem defined by

(3.8) −∆v = |f |∗ in Ω∗, v = 0 on ∂Ω∗.

Here we note that v is radial. Then we see from Lemma 3.2 that u∗ ≤ v in Ω∗

and

(3.9)
∫

Ω

|∆u|2 dx =
∫

Ω

|f |2 dx =
∫

Ω∗
|f |∗2

dx =
∫

Ω∗
|∆v|2 dx.

Further we see that

(3.10)
∫

Ω

|u|2
|x|4 dx ≤

∫
Ω∗

|u∗|2
|x|4 dx ≤

∫
Ω∗

|v|2
|x|4 dx.

Since v can be approximated by elements in C∞
0 (Ω∗), we see I1 ≥ I1

r . This
proves the assertion when l = 1.

Now we assume that l ≥ 2. Again we choose and fix a smooth nonnegative
function u ∈ C∞

0 (Ω) and put (−∆)lu = f ∈ C∞
0 (Ω). Let us set u0 = (−∆)l−1u

and v0 = (−∆)l−1V . By V ∈ C2l(Ω∗) we denote the unique radial solution of
the boundary value problem defined by

(3.11)

{
(−∆)lV = |f |∗ in Ω∗,
(−∆)mV = 0 on ∂Ω∗ for m = 0, 1, . . . , l − 1.

In fact it is not difficult to see the solvability of this boundary value problem
(See [8] for example). Then u0 ∈ C∞(Ω) and v0 ∈ C2(Ω∗) satisfy the following
equations with homogeneous Dirichlet conditions:

(3.12)

{
−∆u0 = f in Ω,
−∆v0 = |f |∗ in Ω∗.

From Lemma 3.2 we have

(3.13) |u0|∗ ≤ v0.

By w ∈ C2l−2(Ω∗) we denote the unique radial solution of the following:

(3.14)

{
(−∆)l−1w = |u0|∗ in Ω∗,
(−∆)mw = 0 on ∂Ω∗ for m = 0, 1, . . . , l − 2.

Now we claim that

(3.15) u∗ ≤ w

We prove this inductively. If l = 2, this follows from Lemma 3.2. Assume that
(3.15) holds for l ≤ k, where k ≥ 2. We consider the case that l = k + 1. We
set (−∆)k−1u = ũ and (−∆)k−1w = w̃. Then we see

(3.16)

{
−∆ũ = u0 in Ω ũ = 0 on ∂Ω,
−∆w̃ = |u0|∗ in Ω∗, w̃ = 0 on ∂Ω∗.
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Therefore we have |ũ|∗ ≤ w̃∗ = w̃. By the assumption of induction and maxi-
mum principle we see u∗ ≤ w with replacing u0 by ũ.

Here we recall that V satisfies

(3.17)

{
(−∆)l−1V = v0 in Ω∗,
(−∆)mV = 0 on ∂Ω∗ for m = 0, 1, . . . , l − 2.

Since |u0|∗ ≤ v0, by making use of the maximum principle l − 1 times we also
see w ≤ V so that we have u∗ ≤ V . As before we see

(3.18)




∫
Ω

|∆lu|2 dx =
∫

Ω∗
|∆lV |2 dx,∫

Ω

|u|2
|x|2l

dx ≤
∫

Ω∗

|u∗|2
|x|2l

dx ≤
∫

Ω∗

|V |2
|x|2l

dx,

and this proves Lemma 3.3.

4. Proof of Theorems 2.1 and 2.2

We begin with the definition:

Definition 4.1 (m Laplacian). For m ∈ R and v ∈ C2((0,∞)), we set

(4.1) δmv(r) = r1−m ∂

∂r

(
rm−1 ∂

∂r
v(r)

)
=
∂2v(r)
∂r2

+
m− 1
r

∂v(r)
∂r

.

Then we can show

Lemma 4.1. Let M and m be positive integers. Let us set r = |x| for
x ∈ R

M . For α ∈ R and v ∈ C∞((0,∞)) it holds that

∆Mv(r) = δMv(r),

∆m
M (rαv(r)) = rα

(
δM+2α +

α(M + α− 2)
r2

)m

v(r).

Proof of Theorem 2.1. Since the assertion (2) follows in a quite similar
way, we prove the assertion (1) only. From Lemma 3.3, it is enough to prove
the result in the symmetric case. To this end we set

(4.2) ωNR
N = |Ω|

and replace Ω by Ω∗. In addition to this fact, since C∞
0 (Ω) is densely contained

in H2
0 (Ω), we also replace the function space H2

0 (Ω) by C∞
0,rad(Ω

∗). Moreover,
a simple scaling allows to consider the case R = 1.

Let us set for u ∈ C∞
0,rad(B)

(4.3) u = r2−
N
2 v, v ∈ C∞

0,rad(B).
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Here we note that v and its derivatives vanish at the origin, if N > 4. We see
from Lemma 4.1 with α = 2 −N/2 that

(4.4) ∆(r2−
N
2 v(r)) = r2−

N
2

(
δ4v(r) +Q

v(r)
r2

)
, Q = −N(N − 4)

4
.

Then

∫
B

|∆u|2 dx =
∫

B

|∆(r2−
n
2 v)|2 dx

= |SN−1|
∫ 1

0

(
δ4v +

Q

r2
v

)2

r3 dr (Polar coordinate)

= |SN−1|
∫ 1

0

(
|δ4v|2 − 2Q

r2
|∂rv|2 +

Q2

r4
v2

)
r3 dr

=
|SN−1|
|S3|

∫
B4

1

|∆v(|y|)|2 dy − 2Q|SN−1|
|S2|

∫
B2

1

|∇2v(|y|)|2 dy +Q2

∫
B

v(|y|)2
rN

dy.

(4.5)

Here by |SM−1| we denote the measure of theM -dimensional unit sphere. Then
it holds that

∫
B

|∆u|2 dx =
∫

B

|∆(r2−
N
2 v)|2 dx

≥ λ2
|SN−1|
|S3|

∫
B4

1

|v(|y|)|2 dy − 2Qλ1
|SN−1|
|S2|

∫
B2

1

|v(|y|)|2 dy +Q2

∫
B

v(|y|)2
rN

dy

≥ H(N,∆)
∫

B

|u|2
|x|4 dx+ λ1 · N(N − 4)

2

∫
B

|u|2
|x|2 dx+ λ2 ·

∫
B

|u|2 dx,

(4.6)

where λ1 and λ2 are defined in (2.3). This proves the assertion.

Remark 4.1. To prove the assertion (1), it suffices to replace C∞
0 (Ω)

by H2(Ω) ∩ C1
0 (Ω).

5. Proof of Theorem 2.2

Again from Lemmas 3.2 and 3.3, it is enough to prove the result in the
symmetric case. Let us set for B = BN

1 (0) and u ∈ C∞
0,rad(B)

(5.1) u = r4−
N
2 v, v ∈ C∞

0,rad(B).

Here we note that v and its derivatives vanish at the origin, if N > 8. We see
from Lemma 4.1 with α = 4 −N/2 that

(5.2) ∆(r4−
N
2 v(r)) = r4−

N
2

(
δ8v(r) + P

v(r)
r2

)
, P = − (N + 4)(N − 8)

4
.
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As before we see∫
B

|∆2u|2 dx =
∫

B

|∆2(r4−
N
2 v)|2 dx

= |SN−1|
∫ 1

0

∣∣∣∣∣
(
δ8 +

P

r2

)2

v(r)

∣∣∣∣∣
2

r7 dr (Polar coordinate)

= |SN−1|
∫ 1

0

(
δ28v(r) +

2P
r2
δ6v(r) +

S

r4
v(r)

)2

r7 dr,

where

(5.3) S =
N(N − 4)(N + 4)(N − 8)

16
= H(N,∆2)

1
2 .

Integration by parts gives

Lemma 5.1. For any v ∈ C∞
0 ((0, 1)), we have∫ 1

0

(
δ28v +

2P
r2
δ6v +

S

r4
v

)2

r7 dr

=
∫ 1

0

|δ28v|2r7 dr + S2

∫ 1

0

v2

r
dr

+ a1

∫ 1

0

|∂rv|2r dr + a2

∫ 1

0

|δ4v|2r4 dr + a3

∫ 1

0

|∂rδ6v|2r5 dr.

(5.4)

Here a1, a2 and a3 are defined by (2.10).

Proof. First we have(
δ28v +

2P
r2
δ6v +

S

r4
v

)2

r7

= r7(δ28v)
2 + S2 v

2

r
+
a2
3

4
r3(δ6v)2 − a3r

5δ28v · δ6v + 2Sr3δ28v · v − Sa3rδ6v · v.

When we integrate the both sides on the interval (0, 1), the each term is calcu-
lated as follows.

J1 =
∫ 1

0

r3(δ6v)2 dr =
∫ 1

0

[r3(∂2
rv)

2 + 15r(∂rv)2] dr(5.5)

J2 =
∫ 1

0

r5δ28v · δ6v dr(5.6)

= −
∫ 1

0

[r5(∂3
rv)

2 + 23r3(∂2
rv)

2 + 165r(∂rv)2] dr

J3 =
∫ 1

0

r3δ28v · v dr =
∫ 1

0

[r3(∂2
rv)

2 − 5r(∂rv)2] dr(5.7)

J4 = −
∫ 1

0

rδ6v · v dr =
∫ 1

0

r(∂rv)2 dr(5.8)
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Then we have

∫ 1

0

(
δ28v +

2P
r2
δ6v +

S

r4
v

)2

r7 dr(5.9)

=
∫ 1

0

(
(δ28v)

2 + S2 v
2

r8

)
r7 dr +

a2
3

4
J1 − a3J2 + 2SJ3 + Sa3J4

=
∫ 1

0

(
(δ28v)

2 + S2 v
2

r8

)
r7 dr

+ b1

∫ 1

0

r(∂rv)2 dr + b2

∫ 1

0

r3(∂2
rv)

2 dr + a3

∫ 1

0

r5(∂3
rv)

2 dr.

Here,

(5.10)




b1 = 45a3 +
1
16
a3N(N − 4)(N2 − 4N + 18),

b2 = 15a3 +
3
8
a3N(N − 4),

a3 = (N + 4)(N − 8).

Putting

(5.11)

{
b1 = a1 + 3b2,
b2 = a2 + 15a3,

we have

∫ 1

0

(
δ28v +

2P
r2
δ6v +

S

r4
v

)2

r7 dr

=
∫ 1

0

(δ28v)
2r7 dr + a1

∫ 1

0

r(∂rv)2 dr + a2

∫ 1

0

[r3(∂2
rv)

2 + 3r(∂rv)2] dr

+ a3

∫ 1

0

[r5(∂3
rv)

2 + 15r3(∂2
rv)

2 + 45r(∂ru)2] dr +
∫ 1

0

S2 v
2

r
dr.

(5.12)

Here

(5.13)



a1 =

1
16
N2(N − 4)2(N + 4)(N − 8),

a2 =
3
8
N(N − 4)(N + 4)(N − 8).

Now we prepare the following:
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Lemma 5.2. For any α ∈ R and any v ∈ C4
0 ((0, 1)) we have

∫ 1

0

(
∂2

rv +
α

r
∂rv
)2

r3 dr =
∫ 1

0

[r3(∂2
rv)

2 + (α(α− 2)r(∂rv)2] dr,(5.14)
∫ 1

0

(
∂r

(
∂2

r +
α

r
∂r

)
v
)2

r5 dr(5.15)

=
∫ 1

0

[r5(∂3
rv)

2 + α(α− 2)r3(∂2
rv)

2 + 3α(α− 2)r(∂rv)2] dr.

The end of proof of Theorem 2.2. From the previous lemma, we see∫
B

|∆2u|2 dx = S2

∫
B

v(|y|)2
|y|N dy + a1

|SN−1|
|S1|

∫
B2

1

|∇2v(|y|)|2 dy

+ a2
|SN−1|
|S3|

∫
B4

1

|∆4v(|y|)|2 dy + a3
|SN−1|
|S5|

∫
B6

1

|∇6∆6v(|y|)|2 dy

+
|SN−1|
|S7|

∫
B8

1

|∆2
8v(|y|)|2 dy

≥ S2

∫
B

v(|y|)2
|y|N dy + a1λ1

|SN−1|
|S1|

∫
B2

1

|v(|y|)|2 dy

+ a2λ2
|SN−1|
|S3|

∫
B4

1

|v(|y|)|2 dy + a3λ3
|SN−1|
|S5|

∫
B6

1

|v(|y|))|2 dy

+ λ4
|SN−1|
|S7|

∫
B8

1

|v(|y|)|2 dy

= H(N,∆2)
∫

B

u2

|x|8 dx+ a1λ1

∫
B

|u|2
|x|6 dx

+ a2λ2

∫
B

|u|2
|x|4 dx+ a3λ3

∫
B

|u|2
|x|2 dy + λ4

∫
B

|u|2 dx.

This proves the assertion.

6. Proofs of Theorems 2.3 and 2.4

First we prepare two elementary lemmas.

Lemma 6.1. Let Ω be a domain of R
N . Assume that u ∈ C∞

0 (Ω) and
f ∈ C2(Ω). Then it holds that

(6.1)
∫

Ω

|∇(uf)|2 dx =
∫

Ω

|∇u|2f dx− 1
2

∫
Ω

u2(∆(f2) − 2|∇f |2) dx.

Proof. Integration by parts leads us to obtain (6.1).

Lemma 6.2. Let Ω be a domain of R
N . Assume that u ∈ C∞

0 (Ω) and
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f ∈ C4(Ω). Then it holds that∫
Ω

|∆(uf)|2 dx =
∫

Ω

(|∆u|2f2 +
∫

Ω

u2f∆2f) dx(6.2)

+ 2
∫

Ω


|∇u|2|∇f |2 − 2f

N∑
j,k=1

∂2f

∂xj∂xk

∂u

∂xj

∂u

∂xk


 dx.

Proof. First we see

|∆(uf)|2 = f2(∆u)2 + u2(∆f)2 + 4(∇u · ∇f)2(6.3)
+ 2uf∆u∆f + 4f∆u(∇u · ∇f) + 4u∆f(∇u · ∇f).

Then integration by parts gives us∫
Ω

uf∆u∆f dx = −
∫

Ω

∇u · ∇(uf∆f) dx

= −
∫

Ω

|∇u|2f∆f +
1
2

∫
Ω

u2∆(f∆f) dx,

(6.4)

∫
Ω

u∆f(∇u · ∇f) dx = −1
2

∫
Ω

u2 div(∆f∇f) dx

= −1
2

∫
Ω

u2
(
(∆f)2 + ∇(∆f) · ∇f) dx,

(6.5)

∫
Ω

f∆u(∇u · ∇f) dx = −
∫

Ω

∇u · ∇ (f(∇u · ∇f)) dx

= −
∫

Ω

(∇f · ∇u)2 dx+
1
2

∫
Ω

|∇u|2(|∇f |2 + f∆f) dx

−
N∑

j,k=1

∫
Ω

f∂2
j,kf∂ju∂ku dx.

(6.6)

Using these formula we can easily show the assertion.

Proof of Theorem 2.3. From this the proof of Theorem 2.3 is reduced to
the case α = 0, which was established by H. Brezis and J. J. Vazquez in [3]. In
fact, for f = |x|α/2, we have

(6.7)
∫

Ω

|∇u|2|x|α dx =
α(α+ 2N − 4)

4

∫
Ω

|u|2|x|α−2 dx+
∫

Ω

|∇(u|x|α
2 )|2 dx.

Here we note that the proof of Lemma 6.1 still works for this weight f , since
N +α > 2. Then we can apply the inequality (2.11) with a parameter α being
0, and we obtain∫

Ω

|∇(u|x|α
2 )|2 dx

≥ (N − 2)2

4

∫
Ω

|u|2|x|α−2 dx+ λ1

(
ωN

|Ω|
) 2

N
∫

Ω

|u|2|x|α dx.
(6.8)
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The desired inequality follows from this and (6.7).

Proof of Theorem 2.4. We put f = |x|α/2 for N+α > 4 and apply Lemma
6.2. Then we have∫

Ω

|∆(u|x|α
2 )|2 dx

=
∫

Ω

(∆u)2|x|α dx+
α(α− 4)

2

∫
Ω

(
|∇u|2 − 2

∣∣∣∣dudr
∣∣∣∣
2
)
|x|α−2 dx

+
α(α− 4)(α+ 2N − 4)(α+ 2N − 8)

16

∫
Ω

u2|x|α−4 dx,

(6.9)

where

(6.10)
du

dr
=

x

|x| · ∇u.

Then we apply Theorem 2.1 to u|x|α/2 and obtain

∫
Ω

|∆(u|x|α
2 )|2 dx ≥ H(N,∆)

∫
Ω

|u|2|x|α−4 dx

+ λ1 ·
(
ωN

|Ω|
) 2

N N(N − 4)
2

∫
Ω

|u|2|x|α−2 dx+ λ2 ·
(
ωN

|Ω|
) 4

N
∫

Ω

|u|2|x|α dx.

(6.11)

Combining this with (6.9) we have the desired inequality.

7. Applications

Let Ω be a bounded domain of R
N . In connection with combustion theory

and other applications, many authors have been studied positive solutions of
the semi-linear elliptic boundary value problem defined by

(7.1) −∆u = λf(u) in Ω, u = 0 on ∂Ω.

Here λ is a nonnegative parameter, and the nonlinearity f is, roughly speaking,
continuous, positive, increasing, superlinear and convex function. A typical
example is f(u) = eu. It is well-known that there is a finite number λ∗ such
that (7.1) has a classical positive solution u ∈ C2(Ω) if 0 < λ < λ∗. On the
other hand no solution exists, even in the weak sense, for λ > λ∗. This value λ∗

is often called the extremal value and solutions for this extremal value are called
extremal solutions. It has been a very interesting problem to find and study
the properties of these extremal solutions. In this section we shall consider a
similar problem for the fourth order equations.

Let B be a unit ball of R
N . Let f(t, r) be a continuous positive function

defined for t ∈ [0,+∞) and r ∈ [0, 1]. Moreover we assume that f(·, r) is
increasing and strictly convex with

(7.2) f(0, r) > 0 and lim
t→∞

f(t, r)
t

= ∞ uniformly in r ∈ [0, 1].
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Now we consider the boundary value problem: For r = |x|

(7.3)

{
∆2u = λf(u, r) in B,

u = ∆u = 0, on ∂B.

This problem is a generalization of (7.1). First we define a weak solution of the
problem (7.3).

Definition 7.1 (Weak solution of (7.3)). Let us set δ(x) = dist(x, ∂B)
(the distance to the boundary from x). A function u ∈ L1(B) is called a weak
solution of (7.3) if f(u, |x|) satisfy

(7.4) δ(x)f(u, |x|) ∈ L1(B)

and u satisfies (7.3) in the following weak sense:

(7.5)
∫

B

(u∆2ϕ− λf(u, r)ϕ) dx = 0

for all ϕ ∈ C4(B) with ϕ = ∆ϕ = 0 on ∂B.

From the standard elliptic regularity theory it follows that bounded weak
solutions for this problem are classical solutions. Moreover u satisfies the
boundary conditions u = ∆u = 0 in this case. Now we consider unbounded
solutions. To this end we introduce an energy solution and a singular energy
solution.

Definition 7.2 (Energy solution, singular energy solution). A weak
solution u of (7.3) is said to be an energy solution if u ∈ H2(B) ∩ H1

0 (B).
If an energy solution u is not bounded, u is said to be singular.

Remark 7.1. Later we shall specify the nonlinearity f(u, r) in order
to study singular extremal solutions precisely. From the definition, an energy
solution u satisfies

(7.6)
∫

B

(∆u∆ϕ− λf(u, |x|)ϕ) dx = 0

for all ϕ ∈ C2(B) with ϕ = ∆ϕ = 0 on ∂B.
If u ∈ H4(B) and u is an energy solution of (7.3), then u satisfies the

boundary conditions u = ∆u = 0.

Let u ∈ H4(B) be an energy solution of (7.3), and we set −∆u = v. Then
we see v ∈ H2(B) ∩H1

0 (B) solves

(7.7)

{
−∆v = λf(u, r) in B,

v = 0 on ∂B.
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From the maximum principle for the second order elliptic equation, we see v is
nonnegative. As a result we have u ≥ 0, since u ∈ H2(B) ∩H1

0 (B) solves

(7.8)

{
−∆u = v in B,

u = 0 on ∂B.

In other words, the maximum principle works in this boundary value problem
even if the operator is of the fourth order. Therefore we can show that there
exists a solution to (7.3) for sufficiently small λ > 0. In fact we can construct
so-called supersolution and subsolution of (7.3) as follows.

Lemma 7.1. There exist a supersolution and a subsolution of (7.3) for
a sufficiently small λ > 0. Moreover there exists at least one classical solution
u of (7.3).

Proof. Let λ0 and ϕ0 be the first eigenvalue and nonnegative eigenfunc-
tion of the operator ∆2 under the boundary conditions ϕ0 = ∆ϕ0 = 0 on
∂B respectively. For ε > 0, we set ψ(x) = ϕ0(x) + ε(r2 − 1)4. Then we see
ψ = ∆ψ = 0 on ∂B. Since ϕ0 > 0 on B and ∆2(r2 − 1)4 > 0 on ∂B, it
holds that ∆2ψ = λ0ϕ0 + ε∆2(r2 − 1)4 > 0 on B for a sufficiently small ε > 0.
Therefore for a small λ > 0 we see

(7.9) ∆2ψ ≥ λf(ψ, r).

Then ψ becomes a supersolution. As a subsolution it suffices to take u = 0.
Then from the method of nonlinear iteration, we can show the existence of a
classical solution.

By virtue of this, we can define the mimimal solution uλ ∈ C4(B) which
is minimal among all possible solutions. Then we define the extremal value λ∗

as a upper bound of λ for which the minimal solution exists. The family of
such solutions depends smoothly and monotonically on λ. Then the following
property is well known.

Lemma 7.2. Minimal solutions are stable. More precisely, the lin-
earized operator

(7.10) Lλϕ = ∆2ϕ− λf ′(uλ, r)ϕ

has a positive first eigenvalue for all 0 < λ < λ∗.

We also have

Lemma 7.3. As λ ↑ λ∗, a finite limit a.e. u∗(x) = limλ↑λ∗ uλ(x) exists,
where u∗ is a weak solution of (7.3) with λ = λ∗.

Proof. It follows from (7.2) that there is C such that f(u, r) ≥ (2µ1/λ
∗)u

−C, for all u ≥ 0. Here µ1 is the first eigenvalue of (−∆)2 in H2(B) with
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boundary conditions u = ∆u = 0 on ∂B, and let ϕ1 be a corresponding eigen-
function. Multiplying (7.3) by ϕ1, we obtain

(7.11) λ

∫
B

f(uλ, r)ϕ1 dx = µ1

∫
B

uλϕ1 dx ≤ λ∗

2

∫
B

(
f(uλ, r) + C

)
ϕ1 dx.

Letting λ ↑ λ∗, we get

(7.12) lim
λ↑λ∗

∫
B

f(uλ, r)ϕ1 dx <∞.

Let ψ satisfy ∆2ψ = 1 in B with ψ = ∆ψ = 0 on ∂B. Multiplying now (7.3)
by ψ, we obtain for some positive number C

(7.13)
∫

B

uλ dx = λ

∫
B

f(uλ, r)ψ dx ≤ Cλ

∫
B

f(uλ, r)ϕ1 dx.

Hence uλ is bounded in L1(B). Since uλ is increasing on λ, it follows that uλ

has a limit u∗ ∈ L1(B) and that δ(x)f(uλ, r) converges to δ(x)f(u∗, r) ∈ L1(B).
Then it follows that u∗ is a weak solution of (7.3) with λ = λ∗.

Remark 7.2. From these lemmas, it holds that for any λ ∈ (0, λ∗]

(7.14)
∫

B

λf ′(uλ, r)ϕ2 dx ≤
∫

B

|∆ϕ|2 dx, ϕ ∈ C2
0 (B).

The limit u∗ can be classical or singular. If u∗ is classical, then it is clear
from the implicit function theorem that the linearized operator

(7.15) Lλ∗ϕ = ∆2ϕ− f ′(u∗, r)ϕ

has zero first eigenvalue.
The following characterizes singular solutions to some extent:

Proposition 7.1. Assume that u ∈ H2(B) ∩ H1
0 (B) is an unbounded

weak solution of (7.3) for some λ > 0. Assume that

(7.16) λ

∫
B

f ′(u, r)ϕ2 dx ≤
∫

B

|∆ϕ|2 dx

for all ϕ ∈ C2
0 (B). Then λ ≥ λ∗.

Conversely, if λ = λ∗ and u = u∗, then (7.16) holds.

Remark 7.3. In the first assertion, we can not conclude λ = λ∗ so far.
But in the examples below we have λ = λ∗ and we can determine exactly the
singular extremal solutions with somewhat more consideration.
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Proof. First we assume that u is a unbounded energy solution satisfying
(7.16). Assume that λ < λ∗. Then we have

λ

∫
B

f ′(u, r)(u− uλ)2 dx ≤
∫

B

|∆(u− uλ)|2 dx

= λ

∫
B

(f(u, r) − f(uλ, r))(u− uλ) dx.
(7.17)

Hence we have

(7.18) λ

∫
B

(
f(u, r) − f(uλ, r) − λf ′(u, r)(u− uλ)

)
(u− uλ) dx ≥ 0.

Since f(·, r) is convex the integrand is nonpositive, so that the inequality is
only possible if

(7.19) f(u, r) = f(uλ, r) + f ′(u, r)(u− uλ) a.e. in B.

Since f is strictly convex, we see that u = uλ, hence u is the minimal solution,
which is a contradiction. Hence λ ≥ λ∗ holds.

Now we assume that λ = λ∗ and u = u∗. Then (7.16) clearly holds. In fact
u∗ is a monotone limit of a sequence of minimal solutions {uλ}. The assertion
follows from the monotone convergence theorem.

Remark 7.4. If f(u, r) satisfies

(7.20) lim inf
t→∞

f ′(t, r)t
f(t, r)

> 1 (uniformly in r ∈ [0, 1]),

then any extremal solution u∗ lies in the energy class (cf. Section 3 in [3]).

Now we consider the concrete example for which we can apply our refined
Hardy inequalities. For 1 < p < ∞ and r = |x|, we adopt as the nonlinearity
f(u, r) the following fp and fe, that is,

(7.21)

{
fp(u, r) = (1 + u+Qp(r))p,

fe(u, r) = eu+Qe(r).

Here

(7.22)



Qp(r) = β(1 − r2),
λN (p) = α(α− 2)(N + α− 2)(N + α− 4),

α = − 4
p− 1

, β =
2(N − 2)
N(p− 1)2

(
p− N + 2

N − 2

)
.

We define the function Up as follows:

(7.23) Up(r) = rα − 1 −Qp(r), α = − 4
p− 1

.

Under these notations, we have the following.
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Lemma 7.4. Assume that λ = λN (p) and f = fp. Then it holds that :
(1) If p > N/(N − 4), then Up is a weak solution of (7.3).
(2) If p > (N +4)/(N − 4), then Up is a singular energy solution of (7.3).
(3) If p > N/(N − 8), then Up ∈ H4(B).

Now we define

(7.24) H(p) = pλN (p).

Since it holds that

(7.25) lim
p→+∞H(p) = 8(N − 2)(N − 4),

we see limp→+∞H(p) < (N(N − 4)/4)2 (the best constant of the Hardy in-
equality) if and only if N ≥ 13. For N > 4 we also note that H(N −
4)/(N + 4) > (N(N − 4)/4)2 and that H(p) is monotonously decreasing for
p ≥ (N − 4)/(N + 4). Then the results of Section 2 (Theorem 2.1 and the
related proposition) allow us to study the singular energy solutions. First we
have

Theorem 7.1 (Polynomial case). Assume that N ≥ 13.
(1) There exists a number p∗ ∈ ((N + 4)/(N − 4),∞) such that Up is a

singular extremal solution with λ∗ = λN (p) for any p ≥ p∗.
(2) If p ∈ ((N +4)/(N − 4), p∗), the Up is not a singular extremal solution

and λN (p) < λ∗. Here p∗ is the same number in (1).
(3) If p ∈ (4/(N − 4), (N + 4)/(N − 4)], Up is not an energy solution but

a weak solution. Therefore Up is not singular extremal and λN (p) < λ∗.

Proof. It suffices to show the assertion (1). From the arguement just
before this theorem, p∗ ∈ ((N + 4)/(N − 4),∞) is geven as the unique solution
of the equation H(p) = (N(N −4)/4)2. Since Up is singular and satisfies (7.16)
with u = Up in this case, from Propositon 7.1 it follows that λN (p) ≥ λ∗. Hence
we have only to show λN (p) ≤ λ∗. This follows from the same arguement in
[2] (Theorem 3) replacing Lemma 4 for the next one.

For a positive small number ε set

(7.26)

{
Uε

p (r) = g(r) − 1 −Qε
p(r),

fε
p (u, r) = (1 + u+Qε

p(r))
p,

where

(7.27)



g(r) = (ε+ (1 − ε)r2)

2
1−p ,

Qε
p(r) = β(ε)(1 − r2),

β(ε) =
2(N − 2)(1 − ε)
N(p− 1)2

(
p+

2ε(1 + p)
N − 2

− N + 2
N − 2

)
.
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Lemma 7.5. For any δ > 0 there is a positive number ε0 such that for
any ε ∈ (0, ε0)

(7.28)

{
∆2Uε

p (r) ≥ (1 − δ)λN (p)fp(Uε
p (r), r) in B,

Uε
p = ∆Uε

p = 0 on ∂B.

Proof of Lemma. By a direct calculation we see

∆2g(r) =
8(1 − ε)2(p+ 1)(ε+ (1 − ε)r2)−4+ 2

1−p

(p− 1)4

× ((Np−N − 4p)(Np−N − 2p− 2)(ε+ (1 − ε)r2)2

+ 8εp((Np−N − 4p)r2 + ε(N(p− 1)(1 − r2) + 4pr2 − p− 1)))

≥ 8(1 − ε)2(p+ 1)(ε+ (1 − ε)r2)−4+ 2
1−p

(p− 1)4

× (Np−N − 4p)(Np−N − 2p− 2)(ε+ (1 − ε)r2)2

= (1 − ε)2λN (p)g(r)p for r ∈ [0, 1).

Therefore we have

∆2Uε
p (r) ≥ (1 − ε)2λN (p)fε

p(Uε
p (r), r)

= (1 − ε)2λN (p)(1 + Uε
p (r) +Qp(r) + (Qε

p(r) −Qp(r)))p.

Here we note that for some constant C > 0

(7.29) |Qε
p(r) −Qp(r)| = |(β(ε) − β)(1 − r2)| ≤ Cε.

Hence for any ε′ ∈ (0, 1) there is some ε0 > 0 such that for any ε ∈ (0, ε0]

(1 + Uε
p (r) +Qp(r) + (Qε

p(r) −Qp(r))p

(1 + Uε
p (r) +Qp(r))p

≥ 1 − ε′.

After all we have

(7.30) ∆2Uε
p (r) ≥ (1 − ε′)(1 − ε)2λN (p)fp(Uε

p (r), r),

and this proves the desired inequality for a sufficiently small ε0 > 0.

End of the proof of Theorem. Assume that λN (p) > λ∗. Since Uε
p becomes

a bounded supersolution, we have a bounded solution for λ = λ∗ by a standard
monotone iteration arguement. But this contradicts to the fact that λ∗ is
extremal. The uniqueness of the singular extremal also follows from the same
arguement in the proof of the first assertion of Proposition 7.1.

Remark 7.5. In the case that N ≥ 13 and p > p∗, the linealized oper-
ator Lp

λ defined by

Lp
λϕ = ∆2ϕ− λf ′p(Up, r)ϕ(7.31)

= ∆2ϕ− pλ
ϕ

r4
.
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has a positive first eigenvalue µ(λ) for any λ ∈ (0, λN (p)] corresponding to an
eigenfunction ϕ ∈ H2(B)∩H1

0 (B). In order to characterize the first eigenvalue
we may consider the variational inequality∫

B

|∆ϕ|2 dx− λN (p)
∫

B

f ′p(Up, r)ϕ2 dx(7.32)

=
∫

B

(
|∆ϕ|2 −H(p)

ϕ2

r4

)
dx

≥
(

1 − 16H(p)
(N(N − 4))2

)∫
B

|∆ϕ|2 dx.

Therefore we see

(7.33) µ(λN (p)) ≥
(

1 − 16H(p)
(N(N − 4))2

)
µ1,

where µ1 is the first eigenvalue of ∆2 with the boundary condition ϕ = ∆ϕ = 0
on ∂B.

If p = p∗, then H(p) = (N(N − 4)/4)2 and Lp
λN(p)

does not have a first
eigenfunction in H2(B) ∩ H1

0 (B). However, the previous arguement gives a
positive value for µ(λN (p)) defined as a decreasing limit

(7.34) µ(λN(p)) = lim
λ→λN(p)

µ(λ) ≥ λ1
N(N − 4)

2
+ λ2.

Since uλ ≤ Up and λf ′p(uλ, r) ≤ H(p)(1/r4), this is clear from Theorem 2.1.

Remark 7.6. We consider the case that 4 < N < 13. Assume that p >
(N − 4)/(N + 4). Then Up is not singular extremal, since the Hardy inequality
(7.16) does not holds. In the next we assume that p ≤ (N − 4)/(N + 4). Then
Up is not an energy solution but a (singular) weak solution. Therefore we see
that there exists a range of p where Up is a weak solution and satisfies the
Hardy inequality (7.16).

In the next we consider the limit of this problem as p→ +∞. Let us set

(7.35)


Qe(r) =

2(N − 2)
N

(1 − r2),

λe
N = 8(N − 2)(N − 4),

and we set

(7.36) Ue = −4 log r −Qe(r).

As p→ +∞ we see that

(7.37)
(
pQp(r), fp

(
u

p
, r

)
, pλN (p), pUp

)
−→ (Qe(r), fe(u, r), λe

N , Ue)

for any r ∈ (0, 1).
Therefore the boundary value problem (7.3) with λ = λe

N and f = fe is
considered as a formal limit of the previous one.
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Lemma 7.6. Assume that λ = λe
N and f = fe. Then it holds that :

(1) If N > 4, Ue is a singular energy solution of (7.3).
(2) If N > 8 then Ue ∈ H4(B).

Then we have the following:

Theorem 7.2 (Exponential case).
(1) If N ≥ 13, then Ue is a singular extremal solution with λ∗ = λe

N .
(2) If N < 13, then Ue is not a singular extremal solution and λe

N < λ∗.

Proof. As the proof in the polynomial case, it suffices to show that λe
N ≤

λ∗. But this follows from the next elementary lemma as before.

Set

(7.38) Qε
e(r) =

2(1 − ε)(N + 2ε− 2)
N

(1 − r2),

and set

(7.39) Uε
e = −2 log(ε+ (1 − ε)r2) −Qε

e(r).

Lemma 7.7. For any δ > 0 there is a positive number ε0 such that for
any ε ∈ (0, ε0)

(7.40)

{
∆2Uε

e (r) ≥ (1 − δ)λe
Nfp(Uε

e (r), r) in B,

Uε
e = ∆Uε

e = 0 on ∂B.

Proof of Lemma. For any ε > 0 we see

∆2Uε
e ≥ (1 − ε)28(N − 2)(N − 4)eUε

e +Qε
e(r)

= (1 − ε)28(N − 2)(N − 4)eQε
e(r)−Qe(r)eUε

e +Qe(r)

Noting that Qε
e(r) − Qe(r) = −2ε(1 − r2)(N − 4 + 2ε)/N < 0, we have the

desired estimate for a sufficiently small ε0 > 0.

Remark 7.7. In the case that N ≥ 13, the linealized operator Le
λ∗

defined by

Le
λ∗ϕ = ∆2ϕ− λe

Nf
′
e(Ue, r)ϕ(7.41)

= ∆2ϕ− λe
N

ϕ

r4

has a positive first eigenvalue µ(λe
N ) as before.
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