KO-theory of complex Stiefel manifolds

By

Daisuke KISHIMOTO

1. Introduction

The purpose of this paper is to determine the KO^* -group of the complex Stiefel manifold $V_{n,q}$ which is q-frames in \mathbb{C}^n . We compute it by making use of the Atiyah-Hirzebruch spectral sequence of $KO^*(V_{n,q})$ and obtain the following:

Theorem. Let a_k , b_k and c_k be as follows, then we have

$$KO^{-i}(V_{n,q}) \cong a_k \mathbf{Z} \oplus c_k \mathbf{Z}_2$$

for n = 2k, $q \le 4$ and n = 2k + 1, $q \le 3$, and

$$KO^{-i}(V_{n,q}) \cong KO^{-i-4}(V_{n,q}) \cong a_k \mathbf{Z} \oplus b_k \mathbf{Z}_2$$

for otherwise.

q	a_0	a_{-1}	a_{-2}	a_{-3}
2l	$2^{2l-2} + 2^{l-1}$	2^{2l-2}	$2^{2l-2} - 2^{l-1}$	2^{2l-2}
2l + 1	$2^{2l-2} + 2^{l-1}$	$2^{2l-2} - (-1)^n 2^{l-1}$	$2^{2l-2} - 2^{l-1}$	$2^{2l-2} + (-1)^n 2^{l-1}$

(n,q)	b_0	b_{-1}	b_{-2}	b_{-3}
(2k, 2l)	2^{q-4}	$3 \cdot 2^{q-4}$	$3 \cdot 2^{q-4}$	2^{q-4}
(2k, 2l + 1)	0	2^{q-3}	2^{q-2}	2^{q-3}
(2k + 1, 2l)	0	2^{q-2}	2^{q-2}	0
(2k+1, 2l+1)	2^{q-3}	2^{q-2}	2^{q-3}	0

Received June 24, 2004

Daisuke Kishimoto

(n,q)	c_0	c_{-1}	c_{-2}	c_{-3}
() 1)	c_{-4}	c_{-5}	c_{-6}	c_{-7}
(2k, 2)	$\frac{1}{2}(1-(-1)^k)$	$\frac{1}{2}(3-(-1)^k)$	$\frac{1}{2}(3+(-1)^k)$	$\frac{1}{2}(1+(-1)^k)$
(210, 2)	$\frac{1}{2}(1+(-1)^k)$	$\frac{1}{2}(3+(-1)^k)$	$\tfrac{1}{2}(3-(-1)^k)$	$\tfrac{1}{2}(1-(-1)^k)$
(2k, 3)	0	2	$3 + (-1)^k$	$1 + (-1)^k$
$(2\kappa, 3)$	0	0	$1 - (-1)^k$	$1 - (-1)^k$
(2k, 4)	$1 - (-1)^k$	$3 - (-1)^k$	$3 + (-1)^k$	$1 + (-1)^k$
(270, 1)	$1 + (-1)^k$	$3 + (-1)^k$	$3 - (-1)^k$	$1 - (-1)^k$
(2k+1,2)	0	2	2	0
(2n + 1, 2)	0	0	0	0
(2k+1,3)	$1 - (-1)^k$	$3 - (-1)^k$	2	0
(2n + 1, 0)	$1 + (-1)^k$	$1 + (-1)^k$	0	0

2. The Atiyah-Hirzebruch spectral sequence

First we recall that the coefficient ring of KO-theory is that

$$KO^* = \mathbf{Z}[\alpha, x, \beta, \beta^{-1}]/(2\alpha, \alpha^3, \alpha x, x^2 - 4\beta),$$

where $|\alpha| = -1$, |x| = -4 and $|\beta| = -8$.

Let X be a finite CW-complex. The Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ is the spectral sequence with $E_2^{p,q} \cong H^p(X; KO^q)$ converging to $KO^*(X)$. It is well known that the differential d_2 of the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ is given by the following ([1]).

$$d_2^{*,q} = \begin{cases} Sq^2 \, \pi_2, & q \equiv 0 \ (8), \\ Sq^2, & q \equiv -1 \ (8), \\ 0, & \text{otherwise}, \end{cases}$$

where π_2 is the modulo 2 reduction.

In this paper we compute the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ with X in two special classes of CW-complexes.

Let \mathcal{E} be the class of CW-complexes of only even cells and \mathcal{O} be those of only odd cells and 0-cells. The Atiyah-Hirzebruch spectral sequence of $KO^*(X)$ for X in \mathcal{E} is considered in [2]. It is easily seen that Proposition 1 in [2] is valid for CW-complexes in \mathcal{O} and we have the following.

Proposition 2.1. Let X be a finite CW-complex in either \mathcal{E} or \mathcal{O} and $E_r(X)$ be the r-th term of the Atiyah-Hirzebruch spectral sequence of $KO^*(X)$. Then we have the following.

- 1. $E_3^{p,-1}(X) \cong H^p(H^*(X; \mathbf{Z}_2); Sq^2).$
- 2. Let d_r be the first non-trivial differential for $r \ge 3$. (a) $r \equiv 2$ (8).
 - (b) There exists $x \in E_r^{*,0}(X)$ such that $\alpha x \neq 0$ and $\alpha d_r x \neq 0$.

Corollary 2.1. Let X and X_i (i = 1, 2, ..., k) be pointed finite CWcomplexes such that X_i is in \mathcal{E} or \mathcal{O} and there exists a homotopy equivalence $X \simeq \bigvee_{i=1}^k X_i$. Then we have:

- 1. $E_3^{p,-1}(X) \cong H^p(H^*(X; \mathbf{Z}_2); Sq^2).$
- 2. Let d_r be the first non-trivial differential for $r \geq 3$.
 - (a) $r \equiv 2$ (8).
 - (b) There exists $x \in E_r^{*,0}(X)$ such that $\alpha x \neq 0$ and $\alpha d_r x \neq 0$.

Proof. Since X_i is in \mathcal{E} or \mathcal{O} and $X \simeq \bigvee_s^k \bigvee_{i=1}^k X_i$, $E_r(X)$ splits into $E_r(X_i)$. Then we can apply Proposition 2.1 to $E_r(X_i)$ for each i.

3. Convergence of $E_r(V_{n,q})$

Let $G_{q,k}$ denote the complex Grassmannian which is the homogeneous space $U(q)/U(k) \times U(q-k)$. In [4] it is shown that there exists a stable homotopy equivalence :

(*)
$$V_{n,q} \simeq \bigvee_{k=1}^{q} G_{q,k}^{E_k},$$

where $G_{q,k}^{E_k}$ is the Thom space of the real vector bundle $E_k \to G_{q,k}$. Note that $G_{q,k}^{E_k}$ is in \mathcal{E} or \mathcal{O} , then we can apply Corollary 2.1 to $V_{n,q}$. Then we compute the Sq^2 -cohomology of $V_{n,q}$, which is $H^*(H^*(V_{n,q}; \mathbb{Z}_2); Sq^2)$, to consider the convergence of $E_r(V_{n,q})$ by Corollary 2.1.

It is well known that $V_{n,q} \simeq U(n)/U(n-q)$ and

$$H^*(V_{n,q}; \mathbf{Z}) \cong \bigwedge (e_{2(n-q)+1}, e_{2(n-q)+3}, \dots, e_{2n-1}),$$

where U(k) is the k-dimensional unitary group and $|e_i| = i$. Since

$$Sq^2e_{4i-1} = e_{4i+1},$$

we have the following.

Proposition 3.1. $H^*(H^*(V_{n,q}; \mathbb{Z}_2); Sq^2)$ is the exterior algebra generated by the elements in the table below.

Daisuke Kishimoto

(n,q)	
(2k, 2l)	$[e_{2(n-q)+1}], [e_{2(n-q)+3}e_{2(n-q)+5}], \dots, [e_{2n-5}e_{2n-3}], [e_{2n-1}]$
(2k + 1, 2l)	$[e_{2(n-q)+1}e_{2(n-q)+3}], \dots, [e_{2n-3}e_{2n-1}]$
(2k, 2l + 1)	$[e_{2(n-q)+1}e_{2(n-q)+3}], \dots, [e_{2n-5}e_{2n-3}], [e_{2n-1}]$
(2k+1, 2l+1)	$[e_{2(n-q)+1}], [e_{2(n-q)+3}e_{2(n-q)+5}], \dots, [e_{2n-3}e_{2n-1}]$

Lemma 3.1. The Atiyah-Hirzebruch spectral sequence $E_r(V_{n,q})$ collapses at the third term.

Proof. By Corollary 2.1 we only have to show that all generators of $E_3^{*,-1}(V_{n,q}) \cong H^*(H^*(V_{n,q}; \mathbb{Z}_2); Sq^2)$ in the table of Proposition 3.1 are the permanent cycles.

For (n,k) = (2k + 1, 2l), $H^*(H^*(V_{n,q}\mathbf{Z}_2); Sq^2)$ has elements of degree 8i only. Then the elements in the table of Proposition 3.1 are the permanent cycles by Corollary 2.1 and the degree reason.

For (n,k) = (2k+1,2l+1), $[e_{4i-1}e_{4i+1}]$ $(k-l+2 \le i \le k)$ are the permanent cycles by Corollary 2.1 and the degree reason as the above. Then $[e_{2(n-q)+1}]$ is also the permanent cycle by Corollary 2.1 and the degree reason.

For (n,k) = (2k, 2l+1), it is similar to the case of (n,k) = (2k+1, 2l+1).

For (n, k) = (2k, 2l) consider the homomorphism $E_r(V_{n+1,q+1}) \to E_r(V_{n,q})$ induced from the inclusion $V_{n,q} \to V_{n+1,q+1}$. Then we see that $d_r[e_{2(n-q)+1}] = 0$ and $d_r[e_{4i-1}e_{4i+1}] = 0$ $(k-l+2 \le i \le k-1)$ for $r \ge 3$. Then we also see that $d_r[e_{2n-1}] = 0$ by Corollary 2.1 and the degree reason.

4. Proof of Theorem

It is easily seen that $K^n(X)$ is torsion free and concentrated in even (odd) dimension, if X is in $\mathcal{E}(\mathcal{O})$. Consider the Bott sequence

$$\cdots \to K^n(X) \to KO^{n+2}(X) \to KO^{n+1}(X) \stackrel{\mathbf{c}}{\to} K^{n+1}(X) \to \cdots$$

where $\mathbf{c} : KO^i(X) \to K^i(X)$ is the complexification map. Since $\mathbf{rc} = 2$ we have the following, where $\mathbf{r} : K^i(X) \to KO^i(X)$ is the realization map ([3]).

Proposition 4.1. If X is in \mathcal{E} , we have

$$KO^{2i+1}(X) \cong s\mathbf{Z}_2,$$

$$KO^{2i}(X) \cong r\mathbf{Z} \oplus s\mathbf{Z}_2.$$

If X is in \mathcal{O} , we have

$$KO^{2i}(X) \cong s\mathbf{Z}_2,$$

$$KO^{2i-1}(X) \cong r\mathbf{Z} \oplus s\mathbf{Z}_2.$$

Proof of Theorem. By Proposition 4.1 we have

$$\bigoplus_{p+q=2n-1} E^{p,q}_{\infty}(X) \cong \bigoplus_{i} E^{2n+8i,-1}_{\infty} \cong KO^{2n-1}(X) \text{ for } X \text{ in } \mathcal{E},$$

$$\bigoplus_{p+q=2n} E^{p,q}_{\infty}(X) \cong \bigoplus_{i} E^{2n+8i+1,-1}_{\infty} \cong KO^{2n}(X) \text{ for } X \text{ in } \mathcal{O}$$

Note that the Thom space $G_{q,k}^{E_k}$ in the stable splitting (*) is either in $\mathcal E$ or $\mathcal O$, then we obtain that

$$KO^i(V_{n,q}) \cong r\mathbf{Z} \oplus s\mathbf{Z}_2$$

for (r,s) below by the argument above, where $s_k = \sum_i \operatorname{rank} H^{4i+k}(V_{n,q}; \mathbf{Z}), t_k = \sum_i \dim_{\mathbf{Z}_2} E_{\infty}^{8i+k+1,-1}(V_{n,q}).$

i	0	-1	-2	-3
ι	-4	-5	-6	-7
(r, e)	$(s_0, t_{-7} + t_0)$	$(s_{-1}, t_0 + t_{-1})$	$(s_{-2}, t_{-1} + t_{-2})$	$(s_{-3}, t_{-2} + t_{-3})$
(r,s)	$(s_0, t_{-3} + t_{-4})$	$(s_{-1}, t_{-4} + t_{-5})$	$(s_{-2}, t_{-5} + t_{-6})$	$(s_{-3}, t_{-2} + t_{-3})$ $(s_{-3}, t_{-6} + t_{-7})$

Let P(t) and Q(t) be the polynomials

$$\sum_{i} \operatorname{rank} H^*(V_{n,q}; \mathbf{Z}) t^i$$

and

$$\sum_{i} \dim_{\mathbf{Z}_2} E_{\infty}^{i,-1}(V_{n,q}) t^i.$$

Then we have the following by Proposition 3.1 and Lemma 3.1.

$$P(t) = \prod_{i=n-q+1}^{n} (1+t^{2i-1}).$$

(n,q)	Q(t)
(2k, 2l)	$(1+t^{2(n-q)+1})(1+t^{2n-1})\prod_{i=n-q+2}^{n-2}(1+t^{4i})$
(2k + 1, 2l)	$\prod_{i=n-q+1}^{n-1} (1+t^{4i})$
(2k, 2l+1)	$(1+t^{2n-1})\prod_{i=n-q+1}^{n-2}(1+t^{4i})$
(2k+1, 2l+1)	$(1+t^{2(n-q)+1})\prod_{i=n-q+2}^{n-1}(1+t^{4i})$

Daisuke Kishimoto

By setting $t = \pm 1, \sqrt{-1}$ for P(t) and $t = \pm 1, \sqrt{-1}, e^{\sqrt{-1}\pi/4}$ for Q(t), we obtain s_i and t_j . Therefore the proof is completed.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: kishi@math.kyoto-u.ac.jp

References

- M. Fujii, KO-groups of projective spaces, Osaka J. Math. 4 (1967), 141– 149.
- [2] S. Hara and A. Kono, KO-theory of complex Grassmannians, J. Math. Kyoto Univ. **31** (1991), 827–833.
- [3] S. G. Hogger, On KO theory of Grassmannians, Quart. J. Math. Oxford (2) 20 (1969), 447–463.
- [4] H. Miller, Stable splitting of Stiefel manifolds, Topology 24 (1985), 411– 419.