Special linearly unrelated sequences

By
Jaroslav HaNčL* and Simona Sobková

Abstract

The main result of this paper are a criteria giving conditions that the certain infinite sequence of rational numbers be linearly unrelated. The proof is direct and does not require any special theorems.

1. Introduction

In 1975 Erdős [1] defined irrational sequences.
Definition 1.1. Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive real numbers. We say the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is irrational if for every sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive integers the series

$$
\sum_{n=1}^{\infty} \frac{1}{a_{n} c_{n}}
$$

is an irrational number. If $\left\{a_{n}\right\}_{n=1}^{\infty}$ is not an irrational sequence, then we say it is a rational sequence.

Erdős also proved a theorem giving a criteria for an irrational sequences in the same paper. Other criteria for a sequences to be irrational can also be found in [2]. Hančl [3] gave an extension of the Erdős definition to linear independence in the following way.

Definition 1.2. Let $\left\{a_{i, n}\right\}_{n=1}^{\infty}$ for $i=1, \ldots, K$ be sequences of positive real numbers. If for every sequence $\left\{c_{n}\right\}_{n=1}^{\infty}$ of positive integers the numbers $\sum_{n=1}^{\infty} \frac{1}{a_{1, n} c_{n}}, \sum_{n=1}^{\infty} \frac{1}{a_{2, n} c_{n}}, \ldots, \sum_{n=1}^{\infty} \frac{1}{a_{K, n} c_{n}}$, and 1 are linearly independent over rational numbers, then the sequences $\left\{a_{i, n}\right\}_{n=1}^{\infty} i=1, \ldots, K$ are said to be linearly unrelated.

There are not many results in this field. Some criteria can be found in [3] and [4] for linear independence. Our main result is Theorem 2.1 below and it gives the criterion of linearly unrelated sequences.

2. Main result

Theorem 2.1. Let K be a positive integer and ε, μ, ν be real numbers such that $0<\varepsilon, 0 \leq \mu, 0 \leq \nu$ and $1-\mu-\nu>\frac{1}{1+\varepsilon}$. Suppose that $\left\{a_{i, n}\right\}_{n=1}^{\infty}$ and $\left\{b_{i, n}\right\}_{n=1}^{\infty} i=1, \ldots, K$ are sequences of positive integers with $\left\{a_{1, n}\right\}_{n=1}^{\infty}$ non-decreasing, such that

$$
\begin{gather*}
\limsup _{n \rightarrow \infty} a_{1, n}^{\left.\frac{1(+K-1) \nu}{(1-\mu-\nu}+1\right)^{n}}
\end{gathered}=\infty, \begin{gathered}
a_{1, n} \geq n^{1+\varepsilon} \tag{2.1}\\
b_{i, n} \leq a_{1, n}^{\mu}, \quad i=1, \ldots, K \tag{2.2}\\
\lim _{n \rightarrow \infty} \frac{a_{i, n} b_{j, n}}{b_{i, n} a_{j, n}}=0, \quad i, j=1, \ldots, K, \quad i>j \tag{2.3}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{i, n} a_{1, n}^{-\nu} \leq a_{1, n} \leq a_{i, n} a_{1, n}^{\nu}, \quad i=1, \ldots, K \tag{2.5}
\end{equation*}
$$

hold for every sufficiently large n. Then the sequences $\left\{\frac{a_{i, n}}{b_{i, n}}\right\}_{n=1}^{\infty} i=1, \ldots, K$ are linearly unrelated.

Example 2.1. The sequences

$$
\left\{\frac{n^{6 \cdot 9^{n}}+7}{n^{9^{n}}+5}\right\}_{n=1}^{\infty}
$$

and

$$
\left\{\frac{n^{3 \cdot 9^{n}}+11}{n^{9^{n}}+13}\right\}_{n=1}^{\infty}
$$

are linearly unrelated. It is enough to put $K=2, \mu=\frac{1}{6}, \nu=\frac{1}{2}$ and $\varepsilon=4$ in Theorem 2.1.

Remark 1. Theorem 5 from [4] can not be used for Example 2.1 because condition (2.3) from Theorem 5 is not fulfilled.

Remark 2. Theorem 2.1 of this paper is not generalization of Theorem 5 in [4]. From Theorem 5 in [4] we obtain that the sequence $\left\{\frac{2^{n 2^{n}}}{n}\right\}_{n=1}^{\infty}$ is irrational but Theorem 2.1 of this paper does not imply this fact.

Example 2.2. Let K be a positive integer with $K>2$. Then the sequences

$$
\left\{\frac{n^{j(K+5)^{n}}+j}{n^{(K+5)^{n}}+j}\right\}_{n=1}^{\infty}
$$

$j=1,2, \ldots, K$ are linearly unrelated.

Remark 3. If we put $K=1, \mu=0, \nu=0$ in Theorem 2.1 then we obtain Erdő's Theorem from [1].

Open problem 2.1. Are the sequences $\left\{2^{3^{n}}+1\right\}_{n=1}^{\infty}$ and $\left\{3^{2^{n}}+1\right\}_{n=1}^{\infty}$ linearly unrelated?

3. Proof

Lemma 3.1. Let K, ε, μ, ν and the sequences $\left\{a_{i, n}\right\}_{n=1}^{\infty},\left\{b_{i, n}\right\}_{n=1}^{\infty} i=$ $1, \ldots, K$ satisfy all conditions stated in Theorem 2.1. Then there is a positive real number $B=B(K, \varepsilon, \mu, \nu)$ which does not depend on n such that

$$
\begin{equation*}
\sum_{i=1}^{K} \sum_{j=0}^{\infty} \frac{b_{i, n+j}}{a_{i, n+j}}<\frac{1}{a_{1, n}^{B}} \tag{3.1}
\end{equation*}
$$

holds for all sufficiently large n.
Proof. (of Lemma 3.1)
From (2.3) and (2.5) we obtain

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{b_{i, n+j}}{a_{i, n+j}} \leq \sum_{j=0}^{\infty} \frac{a_{1, n+j}^{\mu} a_{1, n+j}^{\nu}}{a_{1, n+j}}=\sum_{j=0}^{\infty} \frac{1}{a_{1, n+j}^{1-\mu-\nu}} \tag{3.2}
\end{equation*}
$$

for every n sufficiently large.
Now we have

$$
\begin{equation*}
\sum_{j=0}^{\infty} \frac{1}{a_{1, n+j}^{1-\mu-\nu}}=\sum_{n+j<a_{1, n}^{\frac{1}{1+\epsilon}}} \frac{1}{a_{1, n+j}^{1-\mu-\nu}}+\sum_{n+j \geq a_{1, n}^{\frac{1}{1+\epsilon}}} \frac{1}{a_{1, n+j}^{1-\mu-\nu}} \tag{3.3}
\end{equation*}
$$

We will estimate the first summand on the right hand side of (3.3) as

$$
\begin{equation*}
\sum_{\substack{n+j<a_{1, n}^{\frac{1}{1+\epsilon}}}} \frac{1}{a_{1, n+j}^{1-\mu-\nu}} \leq \frac{1}{a_{1, n}^{1-\mu-\nu}} a_{1, n}^{\frac{1}{1+\epsilon}}=\frac{1}{a_{1, n}^{1-\mu-\nu-\frac{1}{1+\varepsilon}}}=\frac{1}{a_{1, n}^{B_{1}}} \tag{3.4}
\end{equation*}
$$

Here $B_{1}=1-\mu-\nu-\frac{1}{1+\varepsilon}$ is a positive real number which does not depend on n.

We now estimate the second summand on the right hand side of (3.3).
From (2.2) we obtain

$$
\begin{align*}
& \quad \sum_{n+j \geq a_{1, n}^{\frac{1}{1+\epsilon}}} \frac{1}{a_{1, n+j}^{1-\mu-\nu}} \leq \sum_{n+j \geq a_{1, n}^{\frac{1}{1+\varepsilon}}} \frac{1}{(n+j)^{(1+\varepsilon)(1-\mu-\nu)}} \leq \int_{a_{1, n}^{1+\varepsilon}}^{\infty} \frac{d x}{x^{1+\frac{(1+\varepsilon)(1-\mu-\nu)-1}{2}}} \\
& (3.5) \quad \leq \frac{1}{\left(a_{1, n}^{\frac{1}{1+\varepsilon}}\right)^{\frac{(1+\varepsilon)(1-\mu-\nu)-1}{3}}}=\frac{1}{a_{1, n}^{B_{2}}}, \tag{3.5}
\end{align*}
$$

where $B_{2}=\frac{(1+\varepsilon)(1-\mu-\nu)-1}{3(1+\varepsilon)}$ is a positive real constant which does not depend on n.

Hence (3.2), (3.3), (3.4) and (3.5) imply

$$
\sum_{i=1}^{K} \sum_{j=0}^{\infty} \frac{b_{i, n+j}}{a_{i, n+j}} \leq \sum_{i=1}^{K} \sum_{j=0}^{\infty} \frac{1}{a_{1, n+j}^{1-\mu-\nu}} \leq K\left(\frac{1}{a_{1, n}^{B_{1}}}+\frac{1}{a_{1, n}^{B_{2}}}\right) \leq \frac{1}{a_{1, n}^{B}}
$$

where $B=\frac{1}{2} \min \left(B_{1}, B_{2}\right)$ is a positive real constant which does not depend on n and (3.1) follows.

Lemma 3.2. Let K, ε, μ, ν and the sequences $\left\{a_{i, n}\right\}_{n=1}^{\infty},\left\{b_{i, n}\right\}_{n=1}^{\infty} i=$ $1, \ldots, K$ satisfy all conditions stated in Theorem 2.1 except that instead of (2.2) we have

$$
\begin{equation*}
a_{1, n}>2^{n} \tag{3.6}
\end{equation*}
$$

for all sufficiently large n. Then

$$
\begin{equation*}
\sum_{i=1}^{K} \sum_{j=0}^{\infty} \frac{b_{i, n+j}}{a_{i, n+j}} \leq \frac{2 K \log _{2} a_{1, n}}{a_{1, n}^{1-\mu-\nu}} \tag{3.7}
\end{equation*}
$$

holds for every sufficiently large n.
Proof. (of Lemma 3.2)
As in the proof of Lemma 3.1 from (2.3) and (2.5) we obtain
(3.8) $\sum_{j=0}^{\infty} \frac{b_{i, n+j}}{a_{i, n+j}} \leq \sum_{j=0}^{\infty} \frac{1}{a_{1, n+j}^{1-\mu-\nu}}=\sum_{n+j<\log _{2} a_{1, n}} \frac{1}{a_{1, n+j}^{1-\mu-\nu}}+\sum_{n+j \geq \log _{2} a_{1, n}} \frac{1}{a_{1, n+j}^{1-\mu-\nu}}$.

We now estimate both sums on the right hand side of equation (3.8). For the first summand, we have

$$
\begin{equation*}
\sum_{n+j<\log _{2} a_{1, n}} \frac{1}{a_{1, n+j}^{1-\mu-\nu}} \leq \frac{\log _{2} a_{1, n}}{a_{1, n}^{1-\mu-\nu}} \tag{3.9}
\end{equation*}
$$

Estimating the second summand of equation (3.8) inequality (3.6) implies that

$$
\begin{align*}
\sum_{n+j \geq \log _{2} a_{1, n}} \frac{1}{a_{1, n+j}^{1-\mu-\nu}} & \leq \sum_{n+j \geq \log _{2} a_{1, n}} \frac{1}{\left(2^{(n+j)}\right)^{(1-\mu-\nu)}} \\
& =\sum_{n+j \geq \log _{2} a_{1, n}} \frac{1}{\left(2^{(1-\mu-\nu)}\right)^{(n+j)}} \tag{3.10}\\
& \leq \frac{1}{2^{(1-\mu-\nu) \log _{2} a_{1, n}} C} \\
& =\frac{C}{a_{1, n}^{(1-\mu-\nu)}}
\end{align*}
$$

where C is positive real constants which does not depend on n. Therefore (3.8), (3.9) and (3.10) together imply that

$$
\sum_{i=1}^{K} \sum_{j=0}^{\infty} \frac{b_{i, n+j}}{a_{i, n+j}} \leq \sum_{i=1}^{K} \sum_{j=0}^{\infty} \frac{1}{a_{1, n+j}^{1-\mu-\nu}} \leq K\left(\frac{\log _{2} a_{1, n}}{a_{1, n}^{1-\mu-\nu}}+\frac{C}{a_{1, n}^{1-\mu-\nu}}\right) \leq \frac{2 K \log _{2} a_{1, n}}{a_{1, n}^{1-\mu-\nu}}
$$

So (3.7) follows.
Proof. (of Theorem 2.1)
Let $\left\{c_{n}\right\}_{n=1}^{\infty}$ be a sequence of positive integers. Then the sequences $\left\{a_{i, n} c_{n}\right\}_{n=1}^{\infty}$ and $\left\{b_{i, n}\right\}_{n=1}^{\infty} i=1, \ldots, K$ also satisfy conditions (2.1)-(2.5) and if in addition we reorder the sequence $\left\{a_{1, n} c_{n}\right\}_{n=1}^{\infty}$ and obtain the non-decreasing sequence $\left\{A_{1, n}\right\}_{n=1}^{\infty}$ then the new sequence together with the relevant sequences $\left\{A_{i, n}\right\}_{n=1}^{\infty} i=2, \ldots, K$ and $\left\{B_{i, n}\right\}_{n=1}^{\infty} i=1, \ldots, K$ will also immediatelly satisfy (2.1), (2.3), (2.4) and (2.5). From the fact that $A_{1, n} \geq a_{1, n} \geq n^{1+\varepsilon}$ we obtain that the sequence $\left\{A_{1, n}\right\}_{n=1}^{\infty}$ also satisfies condition (2.2). It follows that $\left\{A_{i, n}\right\}_{n=1}^{\infty} i=1, \ldots, K$ and $\left\{B_{i, n}\right\}_{n=1}^{\infty} i=1, \ldots, K$ will satisfy all the conditions stated in Theorem 2.1. Thus it suffices to prove that if K, μ, ν, ε and the sequences $\left\{a_{i, n}\right\}_{n=1}^{\infty},\left\{b_{i, n}\right\}_{n=1}^{\infty} i=1, \ldots, K$ satisfy all conditions stated in Theorem 2.1 then the numbers $\sum_{n=1}^{\infty} \frac{b_{1, n}}{a_{1, n}}, \ldots, \sum_{n=1}^{\infty} \frac{b_{K, n}}{a_{K, n}}$ and the number 1 are linearly independent over the rational numbers. To establish this we will prove that for every K-tuple of integers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{K}$ (not all equal to zero) the sum

$$
I=\sum_{i=1}^{K} \alpha_{i} \sum_{n=1}^{\infty} \frac{b_{i, n}}{a_{i, n}}
$$

is an irrational number. Suppose that I is a rational number. Let R be the maximal index such that $\alpha_{R} \neq 0$. Then we have

$$
I=\sum_{i=1}^{K} \alpha_{i} \sum_{n=1}^{\infty} \frac{b_{i, n}}{a_{i, n}}=\sum_{n=1}^{\infty} \sum_{i=1}^{R} \alpha_{i} \frac{b_{i, n}}{a_{i, n}}=\sum_{n=1}^{\infty} \frac{b_{R, n}}{a_{R, n}}\left(\sum_{i=1}^{R-1} \alpha_{i} \frac{b_{i, n} a_{R, n}}{a_{i, n} b_{R, n}}+\alpha_{R}\right)
$$

By (2.4) the number

$$
\sum_{i=1}^{R-1} \alpha_{i} \frac{b_{i, n} a_{R, n}}{a_{i, n} b_{R, n}}+\alpha_{R}
$$

and the number α_{R} have the same sign for all sufficiently large n. Without loss of generality assume that

$$
\begin{equation*}
\sum_{i=1}^{K} \alpha_{i} \frac{b_{i, n}}{a_{i, n}}>0 \tag{3.11}
\end{equation*}
$$

for every sufficiently large n. Since I is a rational number there must be integers $p, q,(q>0)$ such that

$$
I=\frac{p}{q}=\sum_{i=1}^{K} \alpha_{i} \sum_{n=1}^{\infty} \frac{b_{i, n}}{a_{i, n}} .
$$

From this and (3.11) we obtain that

$$
\begin{align*}
C_{N} & =\left(p-q \sum_{i=1}^{K} \alpha_{i} \sum_{n=1}^{N-1} \frac{b_{i, n}}{a_{i, n}}\right) \prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{i, n} \tag{3.12}\\
& =q\left(\prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{i, n}\right) \sum_{i=1}^{K} \alpha_{i} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}}
\end{align*}
$$

is a positive integer for every sufficiently large N. So (3.12) implies

$$
\begin{equation*}
1 \leq Q_{1}\left(\prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{i, n}\right) \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}} \tag{3.13}
\end{equation*}
$$

for all sufficiently large N, where $Q_{1}=q \max _{i=1, \ldots, K}\left|\alpha_{i}\right|$ is a positive integer constant which does not depend on N. From (2.5) we obtain

$$
\begin{equation*}
\prod_{n=1}^{N-1} \prod_{i=1}^{K} a_{i, n} \leq Q_{2}\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K}\left(\prod_{n=1}^{N-1} a_{1, n}^{\nu}\right)^{K-1} \tag{3.14}
\end{equation*}
$$

for every sufficiently large N, where Q_{2} is a positive real constant which does not depend on N. Then (3.13) and (3.14) imply

$$
\begin{align*}
1 & \leq Q\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K}\left(\prod_{n=1}^{N-1} a_{1, n}^{\nu}\right)^{K-1} \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}} \\
& =Q\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K+(K-1) \nu} \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}} \tag{3.15}
\end{align*}
$$

for every sufficiently large N, there Q is a positive real constant which does not depend on N. Now the proof falls into several cases.

1. Let us assume that (3.6) holds for every sufficiently large n and there is a $\delta>0$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a_{1, n}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{n}}}=\infty \tag{3.16}
\end{equation*}
$$

This implies that there exist infinitely many N such that

$$
a_{1, N}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{N}}}>\max _{k=1, \ldots, N-1} a_{1, k}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{k}}} .
$$

It follows that

$$
\begin{aligned}
a_{1, N} & >\left(\max _{k=1, \ldots, N-1} a_{1, k}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{k}}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{N}} \\
& >\left(\max _{k=1, \ldots, N-1} a_{1, k}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{k}}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta\right)\left(\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{N-1}+\cdots+1\right)} \\
& >\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta}
\end{aligned}
$$

From this we obtain

$$
\begin{equation*}
a_{1, N}^{\frac{1}{\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta}}>\prod_{n=1}^{N-1} a_{1, n} \tag{3.17}
\end{equation*}
$$

Lemma 3.2, (3.15) and (3.17) imply that

$$
\begin{aligned}
& 1 \leq Q\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K+(K-1) \nu} \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}} \\
& \leq Q\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K+(K-1) \nu} \frac{2 K \log _{2} a_{1, N}}{a_{1, N}^{1-\mu-\nu}} \\
& <\frac{2 K Q a_{1, N}^{\frac{\frac{K+(K-1) \nu}{K+(K-1) \nu}}{1-\mu-\nu}+\delta}}{} \log _{2} a_{1, N} \\
& =\frac{2 K Q \log _{2} a_{1, N}}{1-\mu-\nu-\frac{K+(K-1) \nu}{\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta}}=\frac{2 K Q \log _{2} a_{1, N}}{a_{1, N} \frac{\delta(1-\mu-\nu)^{2}}{a_{1, N}^{K+(K-1) \nu+\delta(1-\mu-\nu)}}}<1
\end{aligned}
$$

for infinitely many sufficiently large N. This is a contradiction.
2. Let us assume that (3.6) holds for every sufficiently large n and there is no $\delta>0$ such that (3.16) holds. Hence for every $\delta>0$ we have

$$
\limsup _{n \rightarrow \infty} a_{1, n}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\frac{\delta}{2}\right)^{n}}}<\infty
$$

This and the fact that

$$
\lim _{n \rightarrow \infty} \frac{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\frac{\delta}{2}\right)^{n}}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{n}}=0
$$

imply that
$\left.\limsup _{n \rightarrow \infty} a_{1, n} \frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{n}} \quad=\limsup _{n \rightarrow \infty}\left(a_{1, n}^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\frac{\delta}{2}\right)^{n}}\right)\right)^{\frac{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\frac{\delta}{2}\right)^{n}}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{n}}}=1$.
From this we see that

$$
\begin{equation*}
a_{1, n}<2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+2\right)^{n}} \tag{3.18}
\end{equation*}
$$

holds for every sufficiently large n. Equation (2.1) implies

$$
\begin{equation*}
a_{1, N}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N}}}>\left(1+\frac{1}{N^{2}}\right) \max _{k=1, \ldots, N-1} a_{1, k}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{k}}} \tag{3.19}
\end{equation*}
$$

for infinitely many N. Otherwise there would exist n_{0} such that for every $n \geq n_{0}$

$$
\begin{aligned}
a_{1, n}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{n}}} & \leq\left(1+\frac{1}{n^{2}}\right) \max _{k=1, \ldots, n-1} a_{1, k}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{k}}} \\
& \leq\left(1+\frac{1}{n^{2}}\right)\left(1+\frac{1}{(n-1)^{2}}\right) \max _{k=1, \ldots, n-2} a_{1, k} \frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{k}} \\
& \leq \cdots \leq \prod_{j=n_{0}+1}^{n}\left(1+\frac{1}{j^{2}}\right) a_{1, n_{0}}^{\overline{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{n}}} \\
& \leq \cdots \leq \prod_{j=n_{0}+1}^{\infty}\left(1+\frac{1}{j^{2}}\right) a_{1, n_{0}}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{n_{0}}}}<\text { const. }
\end{aligned}
$$

which contradicts (2.1). Hence for infinitely many N

$$
\begin{align*}
a_{1, N}> & \left(1+\frac{1}{N^{2}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N}}\left(\max _{k=1, \ldots, N-1} a_{1, k}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{k}}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N}} \tag{3.20}\\
> & \left(1+\frac{1}{N^{2}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N}} \times \\
& \times\left(\max _{k=1, \ldots, N-1} a_{1, k}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{k}}}\right)^{\frac{K+(K-1) \nu}{1-\mu-\nu}\left(\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N-1}+\cdots+1\right)} \\
> & \left(1+\frac{1}{N^{2}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N}}\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{\frac{K+(K-1) \nu}{1-\mu-\nu}} .
\end{align*}
$$

Using Lemma 3.2, (3.15), (3.18) and (3.20) we obtain

$$
\begin{aligned}
1 & \leq Q\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K+(K-1) \nu} \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}} \\
& \leq Q\left(\prod_{n=1}^{N-1} a_{1, n}\right)^{K+(K-1) \nu} \frac{2 K \log _{2} a_{1, N}}{a_{1, N}^{1-\mu-\nu}} \\
& <Q \frac{a_{1, N}^{1-\mu-\nu}}{\left(1+\frac{1}{N^{2}}\right)}\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N}(1-\mu-\nu) \\
& =\frac{2 K \log _{2} a_{1, N}}{a_{1, N}^{1-\mu-\nu}} \\
& =\frac{2 K Q \log _{2} a_{1, N}}{2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N}(1-\mu-\nu) \log _{2}\left(1+\frac{1}{N^{2}}\right)}} \\
& <\frac{2 K Q \log _{2} 2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+2\right)^{N}}}{\left.2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N}(1-\mu-\nu) \nu}+1\right)^{N}(1-\mu-\nu) \log _{2}\left(1+\frac{1}{\left.N^{2}\right)}\right.} \\
& =\frac{2 K Q\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+2\right)^{N}}{2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{N}(1-\mu-\nu) \log _{2}\left(1+\frac{1}{N^{2}}\right)}}<1
\end{aligned}
$$

for infinitely many N. This is a contradiction.
3 . Now let us assume for infinitely many n that

$$
\begin{equation*}
a_{1, n} \leq 2^{n} \tag{3.21}
\end{equation*}
$$

and that there is a $\delta>0$ such that (3.16) holds. Let A be a sufficiently large positive integer. From (3.16) we see that there exists n such that

$$
\begin{equation*}
a_{1, n}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{n}}}>A \tag{3.22}
\end{equation*}
$$

Let k be the least positive integer satisfying (3.22) and s be the greatest positive integer less than k such that (3.21) holds. So

$$
\begin{equation*}
a_{1, k}>A^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{k}}=2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{k} \log _{2} A} . \tag{3.23}
\end{equation*}
$$

Then there is a positive integer n such that

$$
\begin{equation*}
a_{1, n}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{n}}}>2 . \tag{3.24}
\end{equation*}
$$

Let t be the least positive integer greater than s such that (3.24) holds. It follows that for every $r=s, s+1, \ldots, t-1$

$$
\begin{equation*}
a_{1, r}<2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{r}} \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1, t}>2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{t}} . \tag{3.26}
\end{equation*}
$$

The fact that the number A is sufficiently large such that $A>2$ and the definitions of the numbers t and k imply $t \leq k$. From (3.25) and (3.26) we obtain

$$
\begin{align*}
a_{1, t} & >2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{t}} \\
& >2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta\right)\left(\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{t-1}+\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{t-2}+\cdots+1\right)} \\
& >\left(\prod_{n=1}^{t-1} 2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{n}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta\right)} \tag{3.27}\\
& >\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta\right)}\left(\prod_{n=1}^{s} a_{1, n}\right)^{-\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta\right)} .
\end{align*}
$$

The sequence $\left\{a_{1, n}\right\}_{n=1}^{\infty}$ is non-decreasing and $a_{1, s} \leq 2^{s}$. It follows that

$$
\begin{equation*}
\prod_{n=1}^{s} a_{1, n}<2^{s^{2}} \tag{3.28}
\end{equation*}
$$

Together with (3.27) this implies that

$$
\begin{align*}
a_{1, t} & >\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta\right)}\left(\prod_{n=1}^{s} a_{1, n}\right)^{-\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta\right)} \tag{3.29}\\
& >\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta\right)} \cdot 2^{-\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta\right) s^{2}}
\end{align*}
$$

Inequalities (3.25) and (3.28) yield

$$
\begin{align*}
\prod_{n=1}^{t-1} a_{1, n}=\prod_{n=1}^{s-1} a_{1, n} \cdot \prod_{n=s}^{t-1} a_{1, n} & <\prod_{n=1}^{s-1} a_{1, n} \cdot \prod_{n=1}^{t-1} 2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{n}} \tag{3.30}\\
& <2^{s^{2}} \cdot 2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{t} \frac{K+(K-1) \nu}{\frac{K-\nu}{1-\mu-\nu}+\delta}}
\end{align*}
$$

The definitions of the numbers s, t and k imply that $a_{1, n}>2^{n}$ for all $n=$ $t, t+1, \ldots, k$. From this fact, Lemma 3.1 and Lemma 3.2 we obtain

$$
\begin{equation*}
\sum_{i=1}^{K} \sum_{n=t}^{\infty} \frac{b_{i, n}}{a_{i, n}}=\sum_{i=1}^{K} \sum_{n=t}^{k-1} \frac{b_{i, n}}{a_{i, n}}+\sum_{i=1}^{K} \sum_{n=k}^{\infty} \frac{b_{i, n}}{a_{i, n}}<\frac{2 K \log _{2} a_{1, t}}{a_{1, t}^{1-\mu-\nu}}+\frac{1}{a_{1, k}^{B}} . \tag{3.31}
\end{equation*}
$$

Now (3.15), (3.23), (3.29), (3.30) and (3.31) imply

$$
\begin{aligned}
1 & \leq Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu} \sum_{i=1}^{K} \sum_{n=t}^{\infty} \frac{b_{i, n}}{a_{i, n}} \\
& <Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}\left(\frac{2 K \log _{2} a_{1, t}}{a_{1, t}^{1-\mu-\nu}}+\frac{1}{a_{1, k}^{B}}\right) \\
& =\frac{\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{2 K Q \log _{2} a_{1, t}}+\frac{Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, t}^{1-\mu-\nu}}+\frac{a_{1, k}^{B}}{l}
\end{aligned}
$$

$$
=\frac{\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, t}^{(1-\mu-\nu) \frac{K+(K-1) \nu}{K+(K-1) \nu+\delta(1-\mu-\nu)}}} \cdot \frac{2 K Q \log _{2} a_{1, t}}{a_{1, t}^{(1-\mu-\nu) \frac{\delta(1-\mu-\nu)}{K+(K-1) \nu+\delta(1-\mu-\nu)}}}
$$

$$
+\frac{Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, k}^{B}}
$$

$$
<\frac{a_{1, t}^{\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta}}{\frac{{ }^{K+1) \nu}}{s^{2}(K+(K-1) \nu)}} a_{1, t}^{(1-\mu-\nu) \frac{K+(K-1) \nu}{K+(K-1) \nu+\delta(1-\mu-\nu)}} \cdot \frac{2 K Q \log _{2} a_{1, t}}{a_{1, t}^{\frac{\delta(1-\mu-\nu)^{2}}{K+(K-1) \nu+\delta(1-\mu-\nu)}}}
$$

$$
+\frac{Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, k}^{B}}
$$

$$
=2^{s^{2}(K+(K-1) \nu)} \cdot \frac{2 K Q \log _{2} a_{1, t}}{a_{1, t}^{\frac{\delta(1-\mu-\nu)^{2}}{K+(K-1) \nu+\delta(1-\mu-\nu)}}}+\frac{Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, k}^{B}}
$$

$$
<2^{s^{2}(K+(K-1) \nu)} \cdot \frac{2 K Q \log _{2} a_{1, t}}{a_{1, t}^{\frac{\delta(1-\mu-\nu)^{2}}{K+(K-1) \nu+\delta(1-\mu-\nu)}}}
$$

$$
+\frac{Q 2^{s^{2}(K+(K-1) \nu)} \cdot 2^{(K+(K-1) \nu)\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{t} \frac{1}{\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta}}}{a_{1, k}^{B}}
$$

$$
<2^{s^{2}(K+(K-1) \nu)} \cdot \frac{2 K Q \log _{2} a_{1, t}}{a_{1, t}^{\frac{\delta(1-\mu-\nu)^{2}}{K+(K-1) \nu+\delta(1-\mu-\nu)}}}
$$

$$
+\frac{Q 2^{s^{2}(K+(K-1) \nu)} \cdot 2^{(K+(K-1) \nu)\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{t} \frac{1}{\frac{K+(K-1) \nu}{1-\mu-\nu}+\delta}}}{2^{B\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1+\delta\right)^{k} \log _{2} A}}<1
$$

and this is a contradiction for A large enough because $s \leq t \leq k$ tend to infinity with A.
4. Finally let us assume that (3.21) holds for infinitely many n and that there is no $\delta>0$ such that (3.16) holds. This implies that (3.18) holds for every sufficiently large n. Let A be also sufficiently large. From (2.1) we obtain

$$
\begin{equation*}
a_{1, n}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{n}}}>A \tag{3.32}
\end{equation*}
$$

for infinitely many n. Let k be the least positive integer satisfying (3.32). Then

$$
\begin{equation*}
a_{1, k}>A^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{k}}=2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{k} \log _{2} A} . \tag{3.33}
\end{equation*}
$$

Let s be the greatest positive integer less than k such that (3.21) holds. As in case 2 , (3.19) holds for infinitely many N. Let t be the least positive integer greater than s satisfying

$$
\begin{equation*}
a_{1, t}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}}}>\left(1+\frac{1}{t^{2}}\right) \max _{j=s, \ldots, t-1} a_{1, j} \frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{j}} \tag{3.34}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{1, r}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{r}}} \leq\left(1+\frac{1}{r^{2}}\right) \max _{j=s, \ldots, r-1} a_{1, j} \frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{j}} \tag{3.35}
\end{equation*}
$$

for every $r=s+1, \ldots, t-1$. From (3.35) we obtain

$$
\begin{aligned}
a_{1, r}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{r}}} & \leq\left(1+\frac{1}{r^{2}}\right) \max _{j=s, \ldots, r-1} a_{1, j}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{j}}} \\
& \leq\left(1+\frac{1}{r^{2}}\right)\left(1+\frac{1}{\left.(r-1)^{2}\right)} \max _{j=s, \ldots, r-2} a_{1, j} \frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{j}}\right. \\
& \leq \ldots \leq \prod_{j=s+1}^{r}\left(1+\frac{1}{j^{2}}\right) a_{1, s}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{s}}} \leq D
\end{aligned}
$$

where $D<\prod_{j=1}^{\infty}\left(1+\frac{1}{j^{2}}\right)$ is a positive real constant which does not depend on A and k. It follows that

$$
\begin{equation*}
a_{1, r} \leq D^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{r}}=2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{r} \log _{2} D} \tag{3.36}
\end{equation*}
$$

for every $r=s+1, \ldots, t-1$. From this together with $a_{1, s}<2^{s}$ and the fact
that the sequence $\left\{a_{1, n}\right\}_{n=1}^{\infty}$ is non-decreasing, we obtain that

$$
\begin{align*}
\left(\prod_{r=1}^{t-1} a_{1, r}\right) & =\left(\prod_{r=1}^{s} a_{1, r}\right)\left(\prod_{r=s+1}^{t-1} a_{1, r}\right) \\
& \leq\left(\prod_{r=1}^{s} 2^{s}\right)\left(\prod_{r=s+1}^{t-1} 2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{r} \log _{2} D}\right) \tag{3.37}\\
& =2^{s^{2}} \cdot 2^{\frac{\left(\frac{K+(K-1),}{1-\mu-\nu}+1\right)^{t}-\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{s+1}}{\frac{K+(K-1) \nu}{1-\mu-\nu}} \log _{2} D} \\
& \leq 2^{\frac{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right.}{\frac{K+(K-1) \nu}{1-\mu-\nu}} \log _{2} D} .
\end{align*}
$$

Notice that (3.33) and (3.36) also imply that $t \leq k$. Now from (3.34) with $a_{1, s} \leq 2^{s}$ and the fact that the sequence $\left\{a_{1, n}\right\}_{n=1}^{\infty}$ is non-decreasing, we obtain that

$$
\begin{align*}
& a_{1, t}>\left(1+\frac{1}{t^{2}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}}\left(\max _{j=s, \ldots, t-1} a_{1, j}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{j}}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}} \tag{3.38}\\
& >\left(1+\frac{1}{t^{2}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}} \\
& \left(\max _{j=s, \ldots, t-1} a_{1, j}^{\frac{1}{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{j}}}\right)^{\frac{K+(K-1) \nu}{1-\mu-\nu}\left(\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t-1}+\cdots+\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{s}\right)} \\
& >\left(1+\frac{1}{t^{2}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}}\left(\prod_{j=1}^{t-1} a_{1, j}\right)^{\frac{K+(K-1) \nu}{1-\mu-\nu}}\left(\prod_{j=1}^{s-1} a_{1, j}\right)^{-\frac{K+(K-1) \nu}{1-\mu-\nu}} \\
& >\left(1+\frac{1}{t^{2}}\right)^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}}\left(\prod_{j=1}^{t-1} a_{1, j}\right)^{\frac{K+(K-1) \nu}{1-\mu-\nu}} 2^{-\frac{K+(K-1) \nu}{1-\mu-\nu} t^{2}} .
\end{align*}
$$

As in the third case Lemma 3.1 and Lemma 3.2 imply (3.31) for our definition of the number t.

Finally from (3.15), (3.18), (3.31), (3.33), (3.37), (3.38) we obtain

$$
\begin{aligned}
& 1 \leq Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu} \sum_{i=1}^{K} \sum_{n=N}^{\infty} \frac{b_{i, n}}{a_{i, n}} \\
& <Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}\left(\frac{2 K \log _{2} a_{1, t}}{a_{1, t}^{1-\mu-\nu}}+\frac{1}{a_{1, k}^{B}}\right) \\
& =Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu} \frac{2 K \log _{2} a_{1, t}}{a_{1, t}^{1-\mu-\nu}}+\frac{Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, k}^{B}} \\
& <\frac{Q a_{1, t}^{1-\mu-\nu} 2^{(K+(K-1) \nu) t^{2}}}{\left(1+\frac{1}{t^{2}}\right)^{(1-\mu-\nu)\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}} \frac{2 K \log _{2} a_{1, t}}{a_{1, t}^{1-\mu-\nu}}+\frac{Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, k}^{B}}} \\
& =\frac{2 K Q 2^{(K+(K-1) \nu) t^{2}} \log _{2} a_{1, t}}{\left(1+\frac{1}{t^{2}}\right)^{(1-\mu-\nu)\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}}}+\frac{Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, k}^{B}} \\
& <\frac{2 K Q 2^{(K+(K-1) \nu) t^{2}} \log _{2} 2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+2\right)^{t}}}{2^{(1-\mu-\nu)\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t} \log _{2}\left(1+\frac{1}{t^{2}}\right)}}+\frac{Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, k}^{B}} \\
& =\frac{2 K Q 2^{(K+(K-1) \nu) t^{2}}\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+2\right)^{t}}{2^{(1-\mu-\nu)\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t} \log _{2}\left(1+\frac{1}{t^{2}}\right)}}+\frac{Q\left(\prod_{n=1}^{t-1} a_{1, n}\right)^{K+(K-1) \nu}}{a_{1, k}^{B}} \\
& \leq \frac{2 K Q 2^{(K+(K-1) \nu) t^{2}}\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+2\right)^{t}}{2^{(1-\mu-\nu)\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t} \log _{2}\left(1+\frac{1}{t^{2}}\right)}+\frac{Q\left(2^{\frac{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}}{\frac{K+(K-1) \nu}{1-\mu-\nu}} \log _{2} D}\right)^{K+(K-1) \nu}}{a_{1, k}^{B}}}
\end{aligned}
$$

$$
\begin{aligned}
& <\frac{2 K Q 2^{(K+(K-1) \nu) t^{2}}\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+2\right)^{t}}{2^{(1-\mu-\nu)\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t} \log _{2}\left(1+\frac{1}{t^{2}}\right)}}+\frac{Q 2^{\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{t}(1-\mu-\nu) \log _{2} D}}{2^{B\left(\frac{K+(K-1) \nu}{1-\mu-\nu}+1\right)^{k} \log _{2} A}}<1
\end{aligned}
$$

This is a contradiction. Now the proof of Theorem 2.1 is complete.
Acknowledgement. We would like thank Professor Radhakrishnan

Nair of the Department of Mathematical Sciences, Liverpool University for his help with this article.

```
Department of Mathematics and
Institute for Research and Applications of Fuzzy Modeling
University of Ostrava
30. Dubna 22, }70103\mathrm{ Ostrava 1
Czech Republic
e-mail: hancl@osu.cz
Department of Mathematical Methods in Economics
Faculty of Economics
VŠB - Technical University of Ostrava
SokolSkÁ tŘída 33, 70121 Ostrava 1
Czech Republic
e-mail: simona.sobkova@vsb.cz
```


References

[1] P. Erdős, Some problems and results on the irrationality of the sum of infinite series, J. Math. Sci. 10 (1975), 1-7.
[2] J. Hančl, Criterion for irrational sequences, J. Number Theory 43-1 (1993), 88-92.
[3] , Linearly unrelated sequences, Pacific J. Math. 190-2 (1999), 299 310.
[4] J. Hančl and S. Sobková, A general criterion for linearly unrelated sequences, Tsukuba J. Math. 27-2 (2003), 341-357.

