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Special linearly unrelated sequences

By

Jaroslav Hančl∗ and Simona Sobková

Abstract

The main result of this paper are a criteria giving conditions that
the certain infinite sequence of rational numbers be linearly unrelated.
The proof is direct and does not require any special theorems.

1. Introduction

In 1975 Erdős [1] defined irrational sequences.

Definition 1.1. Let {an}∞n=1 be a sequence of positive real numbers.
We say the sequence {an}∞n=1 is irrational if for every sequence {cn}∞n=1 of
positive integers the series

∞∑
n=1

1
ancn

is an irrational number. If {an}∞n=1 is not an irrational sequence, then we say
it is a rational sequence.

Erdős also proved a theorem giving a criteria for an irrational sequences
in the same paper. Other criteria for a sequences to be irrational can also
be found in [2]. Hančl [3] gave an extension of the Erdős definition to linear
independence in the following way.

Definition 1.2. Let {ai,n}∞n=1 for i = 1, . . . ,K be sequences of positive
real numbers. If for every sequence {cn}∞n=1 of positive integers the numbers
∞∑

n=1

1
a1,ncn

,
∞∑

n=1

1
a2,ncn

, . . . ,
∞∑

n=1

1
aK,ncn

, and 1 are linearly independent over

rational numbers, then the sequences {ai,n}∞n=1 i = 1, . . . ,K are said to be
linearly unrelated.
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There are not many results in this field. Some criteria can be found in [3]
and [4] for linear independence. Our main result is Theorem 2.1 below and it
gives the criterion of linearly unrelated sequences.

2. Main result

Theorem 2.1. Let K be a positive integer and ε, µ, ν be real numbers
such that 0 < ε, 0 ≤ µ, 0 ≤ ν and 1 − µ − ν > 1

1+ε . Suppose that {ai,n}∞n=1

and {bi,n}∞n=1 i = 1, . . . ,K are sequences of positive integers with {a1,n}∞n=1

non-decreasing, such that

lim sup
n→∞

a

1
“

K+(K−1)ν
1−µ−ν

+1

”n

1,n = ∞(2.1)

a1,n ≥ n1+ε(2.2)
bi,n ≤ aµ

1,n, i = 1, . . . ,K(2.3)

lim
n→∞

ai,nbj,n

bi,naj,n
= 0, i, j = 1, . . . ,K, i > j(2.4)

and

(2.5) ai,na−ν
1,n ≤ a1,n ≤ ai,naν

1,n, i = 1, . . . ,K

hold for every sufficiently large n. Then the sequences {ai,n

bi,n
}∞n=1 i = 1, . . . ,K

are linearly unrelated.

Example 2.1. The sequences{
n6·9n

+ 7
n9n + 5

}∞

n=1

and {
n3·9n

+ 11
n9n + 13

}∞

n=1

are linearly unrelated. It is enough to put K = 2, µ = 1
6 , ν = 1

2 and ε = 4 in
Theorem 2.1.

Remark 1. Theorem 5 from [4] can not be used for Example 2.1 be-
cause condition (2.3) from Theorem 5 is not fulfilled.

Remark 2. Theorem 2.1 of this paper is not generalization of Theorem
5 in [4]. From Theorem 5 in [4] we obtain that the sequence { 2n2n

n }∞n=1 is
irrational but Theorem 2.1 of this paper does not imply this fact.

Example 2.2. Let K be a positive integer with K > 2. Then the
sequences {

nj(K+5)n

+ j

n(K+5)n + j

}∞

n=1

j = 1, 2, . . . ,K are linearly unrelated.
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Remark 3. If we put K = 1, µ = 0, ν = 0 in Theorem 2.1 then we
obtain Erdő’s Theorem from [1].

Open problem 2.1. Are the sequences {23n

+1}∞n=1 and {32n

+1}∞n=1

linearly unrelated?

3. Proof

Lemma 3.1. Let K, ε, µ, ν and the sequences {ai,n}∞n=1, {bi,n}∞n=1 i =
1, . . . ,K satisfy all conditions stated in Theorem 2.1. Then there is a positive
real number B = B(K, ε, µ, ν) which does not depend on n such that

(3.1)
K∑

i=1

∞∑
j=0

bi,n+j

ai,n+j
<

1
aB
1,n

holds for all sufficiently large n.

Proof. (of Lemma 3.1)
From (2.3) and (2.5) we obtain

(3.2)
∞∑

j=0

bi,n+j

ai,n+j
≤

∞∑
j=0

aµ
1,n+ja

ν
1,n+j

a1,n+j
=

∞∑
j=0

1
a1−µ−ν
1,n+j

for every n sufficiently large.
Now we have

(3.3)
∞∑

j=0

1
a1−µ−ν
1,n+j

=
∑

n+j<a
1

1+ϵ
1,n

1
a1−µ−ν
1,n+j

+
∑

n+j≥a
1

1+ϵ
1,n

1
a1−µ−ν
1,n+j

.

We will estimate the first summand on the right hand side of (3.3) as

(3.4)
∑

n+j<a
1

1+ϵ
1,n

1
a1−µ−ν
1,n+j

≤ 1
a1−µ−ν
1,n

a
1

1+ϵ

1,n =
1

a
1−µ−ν− 1

1+ε

1,n

=
1

aB1
1,n

.

Here B1 = 1−µ− ν − 1
1+ε is a positive real number which does not depend on

n.
We now estimate the second summand on the right hand side of (3.3).
From (2.2) we obtain∑

n+j≥a
1

1+ϵ
1,n

1
a1−µ−ν
1,n+j

≤
∑

n+j≥a
1

1+ε
1,n

1
(n + j)(1+ε)(1−µ−ν)

≤
∫ ∞

a
1

1+ε
1,n

dx

x1+
(1+ε)(1−µ−ν)−1

2

≤ 1(
a

1
1+ε

1,n

) (1+ε)(1−µ−ν)−1
3

=
1

aB2
1,n

,(3.5)
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where B2 = (1+ε)(1−µ−ν)−1
3(1+ε) is a positive real constant which does not depend

on n.
Hence (3.2), (3.3), (3.4) and (3.5) imply

K∑
i=1

∞∑
j=0

bi,n+j

ai,n+j
≤

K∑
i=1

∞∑
j=0

1
a1−µ−ν
1,n+j

≤ K

(
1

aB1
1,n

+
1

aB2
1,n

)
≤ 1

aB
1,n

,

where B = 1
2 min(B1, B2) is a positive real constant which does not depend on

n and (3.1) follows.

Lemma 3.2. Let K, ε, µ, ν and the sequences {ai,n}∞n=1, {bi,n}∞n=1 i =
1, . . . ,K satisfy all conditions stated in Theorem 2.1 except that instead of (2.2)
we have

(3.6) a1,n > 2n

for all sufficiently large n. Then

(3.7)
K∑

i=1

∞∑
j=0

bi,n+j

ai,n+j
≤ 2K log2 a1,n

a1−µ−ν
1,n

holds for every sufficiently large n.

Proof. (of Lemma 3.2)
As in the proof of Lemma 3.1 from (2.3) and (2.5) we obtain

(3.8)
∞∑

j=0

bi,n+j

ai,n+j
≤

∞∑
j=0

1
a1−µ−ν
1,n+j

=
∑

n+j<log2 a1,n

1
a1−µ−ν
1,n+j

+
∑

n+j≥log2 a1,n

1
a1−µ−ν
1,n+j

.

We now estimate both sums on the right hand side of equation (3.8). For the
first summand, we have

(3.9)
∑

n+j<log2 a1,n

1
a1−µ−ν
1,n+j

≤ log2 a1,n

a1−µ−ν
1,n

.

Estimating the second summand of equation (3.8) inequality (3.6) implies that

(3.10)

∑
n+j≥log2 a1,n

1
a1−µ−ν
1,n+j

≤
∑

n+j≥log2 a1,n

1
(2(n+j))(1−µ−ν)

=
∑

n+j≥log2 a1,n

1

(2(1−µ−ν))(n+j)

≤ 1
2(1−µ−ν) log2 a1,n

C

=
C

a
(1−µ−ν)
1,n

,
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where C is positive real constants which does not depend on n. Therefore (3.8),
(3.9) and (3.10) together imply that

K∑
i=1

∞∑
j=0

bi,n+j

ai,n+j
≤

K∑
i=1

∞∑
j=0

1
a1−µ−ν
1,n+j

≤ K

(
log2 a1,n

a1−µ−ν
1,n

+
C

a1−µ−ν
1,n

)
≤ 2K log2 a1,n

a1−µ−ν
1,n

So (3.7) follows.

Proof. (of Theorem 2.1)
Let {cn}∞n=1 be a sequence of positive integers. Then the sequences {ai,ncn}∞n=1

and {bi,n}∞n=1 i = 1, . . . ,K also satisfy conditions (2.1)–(2.5) and if in addi-
tion we reorder the sequence {a1,ncn}∞n=1 and obtain the non-decreasing se-
quence {A1,n}∞n=1 then the new sequence together with the relevant sequences
{Ai,n}∞n=1 i = 2, . . . ,K and {Bi,n}∞n=1 i = 1, . . . ,K will also immediatelly sat-
isfy (2.1), (2.3), (2.4) and (2.5). From the fact that A1,n ≥ a1,n ≥ n1+ε we
obtain that the sequence {A1,n}∞n=1 also satisfies condition (2.2). It follows
that {Ai,n}∞n=1 i = 1, . . . ,K and {Bi,n}∞n=1 i = 1, . . . ,K will satisfy all the
conditions stated in Theorem 2.1. Thus it suffices to prove that if K,µ, ν, ε and
the sequences {ai,n}∞n=1, {bi,n}∞n=1 i = 1, . . . ,K satisfy all conditions stated in

Theorem 2.1 then the numbers
∞∑

n=1

b1,n

a1,n
, . . . ,

∞∑
n=1

bK,n

aK,n
and the number 1 are

linearly independent over the rational numbers. To establish this we will prove
that for every K-tuple of integers α1, α2, . . . , αK (not all equal to zero) the sum

I =
K∑

i=1

αi

∞∑
n=1

bi,n

ai,n

is an irrational number. Suppose that I is a rational number. Let R be the
maximal index such that αR ̸= 0. Then we have

I =
K∑

i=1

αi

∞∑
n=1

bi,n

ai,n
=

∞∑
n=1

R∑
i=1

αi
bi,n

ai,n
=

∞∑
n=1

bR,n

aR,n

(
R−1∑
i=1

αi
bi,naR,n

ai,nbR,n
+ αR

)
.

By (2.4) the number
R−1∑
i=1

αi
bi,naR,n

ai,nbR,n
+ αR

and the number αR have the same sign for all sufficiently large n. Without loss
of generality assume that

(3.11)
K∑

i=1

αi
bi,n

ai,n
> 0

for every sufficiently large n. Since I is a rational number there must be integers
p, q, (q > 0) such that

I =
p

q
=

K∑
i=1

αi

∞∑
n=1

bi,n

ai,n
.
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From this and (3.11) we obtain that

CN =

(
p − q

K∑
i=1

αi

N−1∑
n=1

bi,n

ai,n

)
N−1∏
n=1

K∏
i=1

ai,n

= q

(
N−1∏
n=1

K∏
i=1

ai,n

)
K∑

i=1

αi

∞∑
n=N

bi,n

ai,n

(3.12)

is a positive integer for every sufficiently large N . So (3.12) implies

(3.13) 1 ≤ Q1

(
N−1∏
n=1

K∏
i=1

ai,n

)
K∑

i=1

∞∑
n=N

bi,n

ai,n

for all sufficiently large N , where Q1 = q max
i=1,...,K

| αi | is a positive integer

constant which does not depend on N . From (2.5) we obtain

(3.14)
N−1∏
n=1

K∏
i=1

ai,n ≤ Q2

(
N−1∏
n=1

a1,n

)K (
N−1∏
n=1

aν
1,n

)K−1

for every sufficiently large N , where Q2 is a positive real constant which does
not depend on N . Then (3.13) and (3.14) imply

1 ≤ Q

(
N−1∏
n=1

a1,n

)K (
N−1∏
n=1

aν
1,n

)K−1 K∑
i=1

∞∑
n=N

bi,n

ai,n

= Q

(
N−1∏
n=1

a1,n

)K+(K−1)ν K∑
i=1

∞∑
n=N

bi,n

ai,n

(3.15)

for every sufficiently large N , there Q is a positive real constant which does not
depend on N . Now the proof falls into several cases.
1. Let us assume that (3.6) holds for every sufficiently large n and there is a
δ > 0 such that

(3.16) lim sup
n→∞

a

1
“

K+(K−1)ν
1−µ−ν

+1+δ

”n

1,n = ∞.

This implies that there exist infinitely many N such that

a

1
“

K+(K−1)ν
1−µ−ν

+1+δ

”N

1,N > max
k=1,...,N−1

a

1
“

K+(K−1)ν
1−µ−ν

+1+δ

”k

1,k .
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It follows that

a1,N >

 max
k=1,...,N−1

a

1
“

K+(K−1)ν
1−µ−ν

+1+δ

”k

1,k


“

K+(K−1)ν
1−µ−ν +1+δ

”N

>

 max
k=1,...,N−1

a

1
“

K+(K−1)ν
1−µ−ν

+1+δ

”k

1,k


“

K+(K−1)ν
1−µ−ν +δ

”““

K+(K−1)ν
1−µ−ν +1+δ

”N−1
+···+1

”

>

(
N−1∏
n=1

a1,n

)K+(K−1)ν
1−µ−ν +δ

.

From this we obtain

(3.17) a

1
K+(K−1)ν

1−µ−ν
+δ

1,N >

N−1∏
n=1

a1,n.

Lemma 3.2, (3.15) and (3.17) imply that

1 ≤ Q

(
N−1∏
n=1

a1,n

)K+(K−1)ν K∑
i=1

∞∑
n=N

bi,n

ai,n

≤ Q

(
N−1∏
n=1

a1,n

)K+(K−1)ν

2K log2 a1,N

a1−µ−ν
1,N

<
2KQa

K+(K−1)ν
K+(K−1)ν

1−µ−ν
+δ

1,N log2 a1,N

a1−µ−ν
1,N

=
2KQ log2 a1,N

a
1−µ−ν− K+(K−1)ν

K+(K−1)ν
1−µ−ν

+δ

1,N

=
2KQ log2 a1,N

a
δ(1−µ−ν)2

K+(K−1)ν+δ(1−µ−ν)

1,N

< 1

for infinitely many sufficiently large N . This is a contradiction.
2. Let us assume that (3.6) holds for every sufficiently large n and there is no
δ > 0 such that (3.16) holds. Hence for every δ > 0 we have

lim sup
n→∞

a

1
“

K+(K−1)ν
1−µ−ν

+1+ δ
2

”n

1,n < ∞.

This and the fact that

lim
n→∞

“ K+(K−1)ν
1−µ−ν + 1 + δ

2

”n

“ K+(K−1)ν
1−µ−ν + 1 + δ

”n = 0
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imply that

lim sup
n→∞

a

1
“

K+(K−1)ν
1−µ−ν

+1+δ

”n

1,n = lim sup
n→∞

(a

1
“

K+(K−1)ν
1−µ−ν

+1+ δ
2

”n

1,n )

“

K+(K−1)ν
1−µ−ν

+1+ δ
2

”n

“

K+(K−1)ν
1−µ−ν

+1+δ

”n

= 1.

From this we see that

(3.18) a1,n < 2
“

K+(K−1)ν
1−µ−ν +2

”n

holds for every sufficiently large n. Equation (2.1) implies

(3.19) a

1
“

K+(K−1)ν
1−µ−ν

+1

”N

1,N >

(
1 +

1
N2

)
max

k=1,...,N−1
a

1
“

K+(K−1)ν
1−µ−ν

+1

”k

1,k

for infinitely many N . Otherwise there would exist n0 such that for every
n ≥ n0

a

1
“

K+(K−1)ν
1−µ−ν

+1

”n

1,n ≤
(

1 +
1
n2

)
max

k=1,...,n−1
a

1
“

K+(K−1)ν
1−µ−ν

+1

”k

1,k

≤
(

1 +
1
n2

)(
1 +

1
(n − 1)2

)
max

k=1,...,n−2
a

1
“

K+(K−1)ν
1−µ−ν

+1

”k

1,k

≤ · · · ≤
n∏

j=n0+1

(
1 +

1
j2

)
a

1
“

K+(K−1)ν
1−µ−ν

+1

”n0

1,n0

≤ · · · ≤
∞∏

j=n0+1

(
1 +

1
j2

)
a

1
“

K+(K−1)ν
1−µ−ν

+1

”n0

1,n0
< const.,

which contradicts (2.1). Hence for infinitely many N

a1,N >

(
1 +

1
N2

)“

K+(K−1)ν
1−µ−ν +1

”N  max
k=1,...,N−1

a

1
“

K+(K−1)ν
1−µ−ν

+1

”k

1,k


“

K+(K−1)ν
1−µ−ν +1

”N

>

(
1 +

1
N2

)“

K+(K−1)ν
1−µ−ν +1

”N

×

×

 max
k=1,...,N−1

a

1
“

K+(K−1)ν
1−µ−ν

+1

”k

1,k


K+(K−1)ν

1−µ−ν

““

K+(K−1)ν
1−µ−ν +1

”N−1
+···+1

”

>

(
1 +

1
N2

)“

K+(K−1)ν
1−µ−ν +1

”N (
N−1∏
n=1

a1,n

)K+(K−1)ν
1−µ−ν

.

(3.20)
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Using Lemma 3.2, (3.15), (3.18) and (3.20) we obtain

1 ≤ Q

(
N−1∏
n=1

a1,n

)K+(K−1)ν K∑
i=1

∞∑
n=N

bi,n

ai,n

≤ Q

(
N−1∏
n=1

a1,n

)K+(K−1)ν

2K log2 a1,N

a1−µ−ν
1,N

< Q
a1−µ−ν
1,N(

1 + 1
N2

)“

K+(K−1)ν
1−µ−ν +1

”N
(1−µ−ν)

2K log2 a1,N

a1−µ−ν
1,N

=
2KQ log2 a1,N(

1 + 1
N2

)“

K+(K−1)ν
1−µ−ν +1

”N
(1−µ−ν)

=
2KQ log2 a1,N

2
“

K+(K−1)ν
1−µ−ν +1

”N
(1−µ−ν) log2(1+

1
N2 )

<
2KQ log2 2

“

K+(K−1)ν
1−µ−ν +2

”N

2
“

K+(K−1)ν
1−µ−ν +1

”N
(1−µ−ν) log2(1+

1
N2 )

=
2KQ

(K+(K−1)ν
1−µ−ν + 2

)N

2
“

K+(K−1)ν
1−µ−ν +1

”N
(1−µ−ν) log2(1+

1
N2 )

< 1

for infinitely many N . This is a contradiction.
3. Now let us assume for infinitely many n that

(3.21) a1,n ≤ 2n

and that there is a δ > 0 such that (3.16) holds. Let A be a sufficiently large
positive integer. From (3.16) we see that there exists n such that

(3.22) a

1
“

K+(K−1)ν
1−µ−ν

+1+δ

”n

1,n > A.

Let k be the least positive integer satisfying (3.22) and s be the greatest positive
integer less than k such that (3.21) holds. So

(3.23) a1,k > A

“

K+(K−1)ν
1−µ−ν +1+δ

”k

= 2
“

K+(K−1)ν
1−µ−ν +1+δ

”k
log2 A

.

Then there is a positive integer n such that

(3.24) a

1
“

K+(K−1)ν
1−µ−ν

+1+δ

”n

1,n > 2.

Let t be the least positive integer greater than s such that (3.24) holds. It
follows that for every r = s, s + 1, . . . , t − 1

(3.25) a1,r < 2
“

K+(K−1)ν
1−µ−ν +1+δ

”r
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and

(3.26) a1,t > 2
“

K+(K−1)ν
1−µ−ν +1+δ

”t

.

The fact that the number A is sufficiently large such that A > 2 and the
definitions of the numbers t and k imply t ≤ k. From (3.25) and (3.26) we
obtain

a1,t > 2
“

K+(K−1)ν
1−µ−ν +1+δ

”t

> 2
“

K+(K−1)ν
1−µ−ν +δ

”““

K+(K−1)ν
1−µ−ν +1+δ

”t−1
+

“

K+(K−1)ν
1−µ−ν +1+δ

”t−2
+···+1

”

>

(
t−1∏
n=1

2
“

K+(K−1)ν
1−µ−ν +1+δ

”n
)“

K+(K−1)ν
1−µ−ν +δ

”

>

(
t−1∏
n=1

a1,n

)“

K+(K−1)ν
1−µ−ν +δ

” (
s∏

n=1

a1,n

)−
“

K+(K−1)ν
1−µ−ν +δ

”

.

(3.27)

The sequence {a1,n}∞n=1 is non-decreasing and a1,s ≤ 2s. It follows that

(3.28)
s∏

n=1

a1,n < 2s2
.

Together with (3.27) this implies that

a1,t >

(
t−1∏
n=1

a1,n

)“

K+(K−1)ν
1−µ−ν +δ

” (
s∏

n=1

a1,n

)−
“

K+(K−1)ν
1−µ−ν +δ

”

>

(
t−1∏
n=1

a1,n

)“

K+(K−1)ν
1−µ−ν +δ

”

· 2−
“

K+(K−1)ν
1−µ−ν +δ

”

s2

.

(3.29)

Inequalities (3.25) and (3.28) yield

t−1∏
n=1

a1,n =
s−1∏
n=1

a1,n ·
t−1∏
n=s

a1,n <

s−1∏
n=1

a1,n ·
t−1∏
n=1

2
“

K+(K−1)ν
1−µ−ν +1+δ

”n

< 2s2
· 2

“

K+(K−1)ν
1−µ−ν +1+δ

”t 1
K+(K−1)ν

1−µ−ν
+δ .

(3.30)

The definitions of the numbers s, t and k imply that a1,n > 2n for all n =
t, t + 1, . . . , k. From this fact, Lemma 3.1 and Lemma 3.2 we obtain

(3.31)
K∑

i=1

∞∑
n=t

bi,n

ai,n
=

K∑
i=1

k−1∑
n=t

bi,n

ai,n
+

K∑
i=1

∞∑
n=k

bi,n

ai,n
<

2K log2 a1,t

a1−µ−ν
1,t

+
1

aB
1,k

.
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Now (3.15), (3.23), (3.29), (3.30) and (3.31) imply

1 ≤ Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν K∑
i=1

∞∑
n=t

bi,n

ai,n

< Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν (
2K log2 a1,t

a1−µ−ν
1,t

+
1

aB
1,k

)

=

(
t−1∏
n=1

a1,n

)K+(K−1)ν

2KQ log2 a1,t

a1−µ−ν
1,t

+

Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

aB
1,k

=

(
t−1∏
n=1

a1,n

)K+(K−1)ν

a
(1−µ−ν)

K+(K−1)ν
K+(K−1)ν+δ(1−µ−ν)

1,t

· 2KQ log2 a1,t

a
(1−µ−ν)

δ(1−µ−ν)
K+(K−1)ν+δ(1−µ−ν)

1,t

+

Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

aB
1,k

<
a

K+(K−1)ν
K+(K−1)ν

1−µ−ν
+δ

1,t 2s2(K+(K−1)ν)

a
(1−µ−ν)

K+(K−1)ν
K+(K−1)ν+δ(1−µ−ν)

1,t

· 2KQ log2 a1,t

a
δ(1−µ−ν)2

K+(K−1)ν+δ(1−µ−ν)
1,t

+

Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

aB
1,k

= 2s2(K+(K−1)ν) · 2KQ log2 a1,t

a
δ(1−µ−ν)2

K+(K−1)ν+δ(1−µ−ν)
1,t

+

Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

aB
1,k

< 2s2(K+(K−1)ν) · 2KQ log2 a1,t

a
δ(1−µ−ν)2

K+(K−1)ν+δ(1−µ−ν)
1,t

+
Q2s2(K+(K−1)ν) · 2

(K+(K−1)ν)
“

K+(K−1)ν
1−µ−ν +1+δ

”t 1
K+(K−1)ν

1−µ−ν
+δ

aB
1,k

< 2s2(K+(K−1)ν) · 2KQ log2 a1,t

a
δ(1−µ−ν)2

K+(K−1)ν+δ(1−µ−ν)
1,t

+
Q2s2(K+(K−1)ν) · 2

(K+(K−1)ν)
“

K+(K−1)ν
1−µ−ν +1+δ

”t 1
K+(K−1)ν

1−µ−ν
+δ

2B
“

K+(K−1)ν
1−µ−ν +1+δ

”k
log2 A

< 1
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and this is a contradiction for A large enough because s ≤ t ≤ k tend to infinity
with A.
4. Finally let us assume that (3.21) holds for infinitely many n and that there
is no δ > 0 such that (3.16) holds. This implies that (3.18) holds for every
sufficiently large n. Let A be also sufficiently large. From (2.1) we obtain

(3.32) a

1
“

K+(K−1)ν
1−µ−ν

+1

”n

1,n > A

for infinitely many n. Let k be the least positive integer satisfying (3.32). Then

(3.33) a1,k > A

“

K+(K−1)ν
1−µ−ν +1

”k

= 2
“

K+(K−1)ν
1−µ−ν +1

”k
log2 A

.

Let s be the greatest positive integer less than k such that (3.21) holds. As in
case 2, (3.19) holds for infinitely many N . Let t be the least positive integer
greater than s satisfying

(3.34) a

1
“

K+(K−1)ν
1−µ−ν

+1

”t

1,t >

(
1 +

1
t2

)
max

j=s,...,t−1
a

1
“

K+(K−1)ν
1−µ−ν

+1

”j

1,j

and

(3.35) a

1
“

K+(K−1)ν
1−µ−ν

+1

”r

1,r ≤
(

1 +
1
r2

)
max

j=s,...,r−1
a

1
“

K+(K−1)ν
1−µ−ν

+1

”j

1,j

for every r = s + 1, . . . , t − 1. From (3.35) we obtain

a

1
“

K+(K−1)ν
1−µ−ν

+1

”r

1,r ≤
(

1 +
1
r2

)
max

j=s,...,r−1
a

1
“

K+(K−1)ν
1−µ−ν

+1

”j

1,j

≤
(

1 +
1
r2

)(
1 +

1
(r − 1)2

)
max

j=s,...,r−2
a

1
“

K+(K−1)ν
1−µ−ν

+1

”j

1,j

≤ . . . ≤
r∏

j=s+1

(
1 +

1
j2

)
a

1
“

K+(K−1)ν
1−µ−ν

+1

”s

1,s ≤ D,

where D <

∞∏
j=1

(
1 +

1
j2

)
is a positive real constant which does not depend on

A and k. It follows that

(3.36) a1,r ≤ D

“

K+(K−1)ν
1−µ−ν +1

”r

= 2
“

K+(K−1)ν
1−µ−ν +1

”r
log2 D

for every r = s + 1, . . . , t − 1. From this together with a1,s < 2s and the fact
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that the sequence {a1,n}∞n=1 is non-decreasing, we obtain that

(
t−1∏
r=1

a1,r

)
=

(
s∏

r=1

a1,r

) (
t−1∏

r=s+1

a1,r

)

≤

(
s∏

r=1

2s

)(
t−1∏

r=s+1

2
“

K+(K−1)ν
1−µ−ν +1

”r
log2 D

)

= 2s2
· 2

“

K+(K−1)ν
1−µ−ν

+1

”t
−

“

K+(K−1)ν
1−µ−ν

+1

”s+1

K+(K−1)ν
1−µ−ν

log2 D

≤ 2

“

K+(K−1)ν
1−µ−ν

+1

”t

K+(K−1)ν
1−µ−ν

log2 D

.

(3.37)

Notice that (3.33) and (3.36) also imply that t ≤ k. Now from (3.34) with
a1,s ≤ 2s and the fact that the sequence {a1,n}∞n=1 is non-decreasing, we obtain
that

a1,t >

(
1 +

1
t2

)“

K+(K−1)ν
1−µ−ν +1

”t  max
j=s,...,t−1

a

1
“

K+(K−1)ν
1−µ−ν

+1

”j

1,j


“

K+(K−1)ν
1−µ−ν +1

”t

>

(
1 +

1
t2

)“

K+(K−1)ν
1−µ−ν +1

”t

 max
j=s,...,t−1

a

1
“

K+(K−1)ν
1−µ−ν

+1

”j

1,j


K+(K−1)ν

1−µ−ν

““

K+(K−1)ν
1−µ−ν +1

”t−1
+···+

“

K+(K−1)ν
1−µ−ν +1

”s”

>

(
1 +

1
t2

)“

K+(K−1)ν
1−µ−ν +1

”t t−1∏
j=1

a1,j


K+(K−1)ν

1−µ−ν
s−1∏

j=1

a1,j

−K+(K−1)ν
1−µ−ν

>

(
1 +

1
t2

)“

K+(K−1)ν
1−µ−ν +1

”t t−1∏
j=1

a1,j


K+(K−1)ν

1−µ−ν

2−
K+(K−1)ν

1−µ−ν t2 .

(3.38)

As in the third case Lemma 3.1 and Lemma 3.2 imply (3.31) for our definition
of the number t.
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Finally from (3.15), (3.18), (3.31), (3.33), (3.37), (3.38) we obtain

1 ≤ Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν K∑
i=1

∞∑
n=N

bi,n

ai,n

< Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν (
2K log2 a1,t

a1−µ−ν
1,t

+
1

aB
1,k

)

= Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

2K log2 a1,t

a1−µ−ν
1,t

+

Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

aB
1,k

<
Qa1−µ−ν

1,t 2(K+(K−1)ν)t2(
1 + 1

t2

)(1−µ−ν)
“

K+(K−1)ν
1−µ−ν +1

”t

2K log2 a1,t

a1−µ−ν
1,t

+

Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

aB
1,k

=
2KQ2(K+(K−1)ν)t2 log2 a1,t(
1 + 1

t2

)(1−µ−ν)
“

K+(K−1)ν
1−µ−ν +1

”t +

Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

aB
1,k

<
2KQ2(K+(K−1)ν)t2 log2 2

“

K+(K−1)ν
1−µ−ν +2

”t

2(1−µ−ν)
“

K+(K−1)ν
1−µ−ν +1

”t
log2

“

1+ 1
t2

” +

Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

aB
1,k

=
2KQ2(K+(K−1)ν)t2

“ K+(K−1)ν
1−µ−ν + 2

”t

2(1−µ−ν)
“

K+(K−1)ν
1−µ−ν +1

”t
log2

“

1+ 1
t2

” +

Q

(
t−1∏
n=1

a1,n

)K+(K−1)ν

aB
1,k

≤
2KQ2(K+(K−1)ν)t2

“ K+(K−1)ν
1−µ−ν + 2

”t

2(1−µ−ν)
“

K+(K−1)ν
1−µ−ν +1

”t
log2

“

1+ 1
t2

” +
Q

(
2

“

K+(K−1)ν
1−µ−ν

+1

”t

K+(K−1)ν
1−µ−ν

log2 D
)K+(K−1)ν

aB
1,k

=
2KQ2(K+(K−1)ν)t2

“ K+(K−1)ν
1−µ−ν + 2

”t

2(1−µ−ν)
“

K+(K−1)ν
1−µ−ν +1

”t
log2

“

1+ 1
t2

” +
Q2

“

K+(K−1)ν
1−µ−ν +1

”t
(1−µ−ν) log2 D

aB
1,k

<
2KQ2(K+(K−1)ν)t2

“ K+(K−1)ν
1−µ−ν + 2

”t

2(1−µ−ν)
“

K+(K−1)ν
1−µ−ν +1

”t
log2

“

1+ 1
t2

” +
Q2

“

K+(K−1)ν
1−µ−ν +1

”t
(1−µ−ν) log2 D

2B
“

K+(K−1)ν
1−µ−ν +1

”k
log2 A

< 1

This is a contradiction. Now the proof of Theorem 2.1 is complete.
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