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On the modulus of extremal Beltrami
coefficients
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Abstract

Let R be a hyperbolic Riemann surface. Suppose the Teichmüller
space T (R) of R is infinite-dimensional. Let µ be an extremal Beltrami
coefficient on R and let [µ] be the point in T (R). In this note, it is shown
that if µ is not uniquely extremal, then there exists an extremal Beltrami
coefficient ν in [µ] with non-constant modulus. As an application, it fol-
lows, as is well known, that there exist infinitely many geodesics between
[µ] and the base point [0] in T (R) if µ is non-uniquely extremal.

1. Introduction

Let R be a hyperbolic Riemann surface and let QC(R) be the space of all
quasiconformal mappings f from R to a variable Riemann surface f(R). The
Teichmüller spac T (R) is the space of these mappings factored by an equivalence
relation. Two mappings, f and g, are equivalent if there is a conformal mapping
c from f(R) onto g(R) and a homotopy through quasiconformal mappings ht
mapping R onto g(R) such that h0 = c◦f , h1 = g and ht(p) = c◦f(p) = g(p) for
every p in the ideal boundary of R. Let [f ] or [µ] denote the equivalence class
of a quasiconformal mapping f in QC(R), where µ is the Beltrami coefficient
of f . Since the Beltrami coefficient µ uniquely determines the mapping f up
to postcomposition by a conformal mapping, the Teichmüller space T (R) may
be represented as the space of equivalence classes of Beltrami coefficients µ in
the unit ball M(R) of the space L∞(R). The equivalence class of the Beltrami
coefficient zero is the basepoint of T (R).

Given f ∈ QC(R), let µ ∈ M(R) be the Beltrami coefficient of f . Let
K[f ] = 1+‖µ‖∞

1−‖µ‖∞
denote the maximal dilation of f . We define

k0([µ]) = inf{‖ν‖∞ : ν ∈ [µ]},
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and

K0[f ] = K0([µ]) =
1 + k0([µ])
1 − k0([µ])

.

We say that µ is extremal in [µ] (f is extremal in [f ]) if ‖µ‖∞ = k0([µ]),
and uniquely extremal if ‖ν‖∞ > k0([µ]) for any other ν ∈ [µ]. We call that a
Beltrami coefficient µ is of constant modulus if |µ| is a constant almost every-
where on R.

For any µ, let h∗(µ) be the infimum over all compact subsets E contained
in R of the essential supremum norm of the Beltrami coefficient µ(z) as z
varies over R\E. Define h([µ]) to be the infimum of h∗(µ) taken over all
representatives µ of the class [µ]. The number

H([µ]) =
1 + h([µ])
1 − h([µ])

is called the boundary dilatation of the class [µ]. Obviously h([µ]) ≤ k0([µ]) and
following [3], [5], we call a point [µ] in T (R) a Strebel point if h([µ]) < k0([µ]).

Let A(R) be the Banach space of all holomorphic functions ϕ on R with
L1−norm ∫

R

|ϕ(z)| <∞,

and let A1(R) be the unit sphere of A(R). By Strebel’s frame mapping theorem,
every Strebel point [µ] is represented by the unique Beltrami differential of the
form k|ϕ|/ϕ, where k = k0([µ]) ∈ (0, 1) and ϕ is a unit vector in A1(R).

Two elements µ and ν in L∞(R) are infinitesimally equivalent, which is
denoted by µ ≈ ν, if

∫∫
R
µφdxdy =

∫∫
R
νφdxdy for all φ ∈ A(R). Denote by

N(R) the set of all the elements in L∞(R) which are infinitesimally equivalent
to zero. Then B(R) = L∞(R)/N(R) is the tangent space of the Teichmüller
space T (R) at the basepoint.

Given µ ∈ L∞(R), we denote by [µ]B the set of all elements ν ∈ L∞(R)
infinitesimally equivalent to µ, and set

(1.1) ‖µ‖ = inf{‖ν‖∞ : ν ∈ [µ]B}.
We say that µ is infinitesimally extremal (in [µ]B) if ‖µ‖∞ = ‖µ‖, and we say
it is infinitesimally uniquely extremal if ‖ν‖∞ > ‖µ‖ for any other ν ∈ [µ]B.

In a parallel manner we can define the boundary dilatation for the infinites-
imal Teichmüller class [µ]B . The boundary dilatation b([µ]B) is the infimum
over all elements in the equivalence class [µ]B of the quantity b∗(ν). Here
b∗(ν) is the infimum over all compact subsets E contained in R of the essential
supremum of the Beltrami coefficient ν as z varies over R − E.

An infinitesimally equivalent class [µ]B is called an infinitesimal Strebel
point if ‖µ‖ > b([µ]B). It follows from the infinitesimal frame mapping theorem
(see Theorem 2.4 in [7]) that if [µ]B is an infinitesimal Strebel point, then there
exists a unique vector ϕ in A1(R) such that µ and ‖µ‖|ϕ|/ϕ are infinitesimally
equivalent.
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In [1], Božin, Lakic et al. gave a series of characteristic conditions for a
Beltrami coefficient µ to be (infinitesimally) uniquely extremal. For simplicity,
we state parts of characteristic conditions in the special case.

Theorem A. Let µ be a Beltrami coefficient in M(R) with constant
modulus. Then the following conditions are equivalent:
(a) µ is uniquely extremal in its class [µ] in T (R);
(b) µ is infinitesimally uniquely extremal in its class [µ]B in B(R);
(c) for every measurable subset E of R with nonzero measure, there exists a
sequence of unit vectors ϕn in A1(R) such that

1∫
E
|ϕn|

(
‖µ‖∞ −Re

∫
R

µϕn

)
→ 0, as n→ ∞;

(d) µ is extremal in [µ] and, for every compact subset E of R with nonzero
measure and every r > 0, [µχE + 1

1+rµχR−E ] is a Strebel point in T (R);
(e) µ is infinitesimally extremal in [µ]B and, for every compact subset E of R
with nonzero measure and every r > 0, [µχE + 1

1+rµχR−E]B is an infinitesimal
Strebel point in B(R).

When [µ] in T (R) contains more than one extremal Beltrami coefficient,
the situation is very complicated. It is of interest to consider the problem as
follows.

Problem 1. If [µ] in T (R) admits more than one extremal Beltrami
coefficient, can we say that there always exists an extremal Beltrami coefficient
in [µ] with non-constant modulus?

When R is the unit disk ∆, a positive answer to this problem is actually
implied by Reich’s proof of his theorem in [8] (also see [16]). His proof depends
on the Polygon Inequality due to Reich and Strebel [10]. However, the Polygon
Inequality is not generalized for general hyperbolic Riemann surfaces except
for some special surfaces, for example, see [13]. And hence for more general
hyperbolic Riemann surfaces, the solution requires a different technique. The
main aim of this paper is to answer Problem 1 affirmatively. We avoid using
the Polygon Inequality and our proof is self-contained.

Theorem 1.1. Suppose µ in M(R) is extremal with ‖µ‖∞ = k and is
not uniquely extremal. Then there exists a compact subset E of R with nonzero
measure and an extremal Beltrami coefficient ν ∈ [µ] such that |ν| ≤ k

1+r0
on

E for some r0 > 0.

Corollary 1.1. Suppose µ in M(R) is extremal with ‖µ‖∞ = k. If for
every extremal Beltrami coefficient ν in [µ], |ν| = k a.e in R, then µ is uniquely
extremal with constant modulus.

Corollary 1.1 shows that the case (2) of Theorem 1 in [11] really does not
exist.
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The analogous problem in the infinitesimal setting is considered in Section
4. Applying Theorem 1.1 and the result in [2], in Section 5 we give an alternative
proof that there exist infinitely many geodesics between [µ] and the base point
[0] in T (R) if µ is non-uniquely extremal.

2. Non-Strebel Points

The first lemma is inspired by the lemma in [8].

Lemma 2.1. If µ ∈ M(R) is extremal with ‖µ‖∞ = k, then for every
measurable subset E of R with nonzero measure and every r > 0, the Beltrami
coefficient µr = µχE + 1

1+rµχR−E has the property k0([µr]) ≥ k
1+r .

Proof. Let η be an extremal Beltrami coefficient in [µr]. Then there exist
homotopic quasiconformal mappings g and h with Beltrami coefficient µr and
η, respectively, such that g(R) = h(R) and g(p) = h(p) for every point on the
ideal boundary of R. Let f be the quasiconformal mapping with the Beltrami
coefficient µ. It follows that f and f ◦ g−1 ◦ h are equivalent in T (R). Since f
is extremal by hypothesis, it follows that

(2.1)
1 + k

1 − k
= K[f ] ≤ K[f ◦ g−1 ◦ h] ≤ K[F ]K[h],

where F = f ◦ g−1. Note that

|µF (g(z))| = | µ(z) − µr(z)
1 − µ(z)µr(z)

| =

{
r|µ(z)|

1+r−|µ(z)|2 , z ∈ R− E,

0, z ∈ E.

We have

|µF (g(z))| ≤ rk

1 + r − k2
, z ∈ R.

Thus,

(2.2) K[F ] ≤ 1 + k

1 − k

1 + r − k

1 + r + k
.

Combining (2.1) and (2.2), we obtain

K[h] = K0[h] ≥ 1 + r + k

1 + r − k
=

1 + k
1+r

1 − k
1+r

,

which proves the lemma.

Theorem 2.1. Suppose that µ 	= 0 is extremal with ‖µ‖∞ = k and
there exists a compact subset E of R such that

(2.3) inf
{

1∫
E
|ϕ|
(
k −Re

∫
R

µϕ

)
: ϕ ∈ A1(R)

}
= γ > 0.

Then [µr] = [µχE + 1
1+rµχR−E] is a non-Strebel point and k0([µr]) = k

1+r for

every r ∈ [0, (1−k)γ
k(1+k) ).
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Proof. Suppose [µr] is a Strebel point for some r ≥ 0. By Lemma 2.1,
we have k0([µr]) ≥ s = k

1+r . Thus, by Strebel’s frame mapping theorem, there

exists sr = k0([µr]) ≥ s and a unit vector ϕ in A1(R) such that µr and sr
|ϕ|
ϕ

are equivalent. Therefore, by the Main Inequality [9, 4], we have

1 + s

1 − s
≤ 1 + sr

1 − sr
= K0([µr]) ≤

∫
R

|ϕ| |1 + µrϕ/|ϕ||2
1 − |µr|2 .

Let λ = µ
1+r . We have

1 + s

1 − s
≤
∫
R−E

|ϕ| |1 + λϕ/|ϕ||2
1 − |λ|2 +

∫
E

|ϕ| |1 + µϕ/|ϕ||2
1 − |µ|2 = X + Y,

where

X =
∫
R

|ϕ| |1 + λϕ/|ϕ||2
1 − |λ|2 , Y =

∫
E

|ϕ|[ |1 + µϕ/|ϕ||2
1 − |µ|2 − |1 + λϕ/|ϕ||2

1 − |λ|2 ].

By a simple computation,

X ≤ 1 + s2 + 2Re
∫
R
λϕ

1 − s2
,

Y ≤ 2kr
(1 − k)(1 + r − k)

∫
E

|ϕ|.

Thus,

1 + s

1 − s
≤ 1 + s2 + 2Re

∫
R
λϕ

1 − s2
+

2kr
(1 − k)(1 + r − k)

∫
E

|ϕ|,
namely,

2
(
s−Re

∫
R

λϕ

)
≤ 2kr(1 − s2)

(1 − k)(1 + r − k)

∫
E

|ϕ|.

Therefore, we get

k −Re

∫
R

µϕ ≤ (1 + r + k)kr
(1 − k)(1 + r)

∫
E

|ϕ| ≤ k(1 + k)r
1 − k

∫
E

|ϕ|.

Hence,

r ≥ 1 − k

k(1 + k)
∫
E
|ϕ|
(
k −Re

∫
R

µϕ

)
≥ (1 − k)γ
k(1 + k)

.

Thus, [µr] is a non-Strebel point for every r ∈ [0, (1−k)γ
k(1+k) ). Hence, k0([µr]) =

H([µr]) ≤ k
1+r . Again by Lemma 2.1, we must have k0([µr]) = k

1+r .

Lemma 2.2. Suppose that µ is extremal but not (infinitesimally)
uniquely extremal with ‖µ‖∞ = k. Then there exists a compact subset E of
R with nonzero measure such that

(2.4) inf
{

1∫
E
|ϕ|
(
k −Re

∫
R

µϕ

)
: ϕ ∈ A1(R)

}
= γ > 0.
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Proof. If µ is of constant modulus, then the lemma is an immediate corol-
lary of Theorem A.

If µ is not of constant modulus even if µ is (infinitesimally) uniquely ex-
tremal, then there exists a compact subset E of R such that |µ| < s < k on E.
Thus, for any unit vector ϕ in A1(R),

1∫
E
|ϕ|
(
k −Re

∫
R

µϕ

)
≥ 1∫

E
|ϕ|
(
k

∫
E

|ϕ| −Re

∫
E

µϕ

)
≥ k − s > 0.

3. Extremal Beltrami coefficients with non-constant modulus

By Lemma 2.2, Theorem 1.1 is a direct corollary of the following theorem.

Theorem 3.1. Suppose µ in M(R) is extremal with ‖µ‖∞ = k. If there
exists a compact subset G of R with nonzero measure such that

(3.1) inf
{

1∫
G
|ϕ|
(
k −Re

∫
R

µϕ

)
: ϕ ∈ A1(R)

}
= γ > 0,

then there exists a compact subset E of R with nonzero measure and an extremal
Beltrami coefficient ν ∈ [µ] such that |ν| ≤ k

1+r0
on E for some r0 > 0.

Proof. Since µ satisfies (3.1), applying Theorem 2.1 to G, we can find
some r0 > 0 such that [µr] = [µχG + 1

1+rµχR−G] is a non-Strebel point and
k0([µr]) = k

1+r for every r ∈ [0, r0].
Let η be an extremal Beltrami coefficient in [µr]. Then there exist ho-

motopic quasiconformal mappings g and h with Beltrami coefficient µr and η,
respectively, such that g(R) = h(R) and g is homotopic to h by a homotopy
which fixes every point on the ideal boundary of R. Let f be the quasiconfor-
mal mapping with the Beltrami coefficient µ. By the same computation as in
the proof of Lemma 2.1, we have

|µF (g(z))| = | µ(z) − µr(z)
1 − µ(z)µr(z)

| =

{
r|µ(z)|

1+r−|µ(z)|2 , z ∈ R−G,

0, z ∈ G,

and

K[F ] ≤ 1 + k

1 − k

1 + r − k

1 + r + k
,

where F = f ◦ g−1. Since K[h] = 1+k0([µr])
1−k0([µr])

, we obtain

K[f ◦ g−1 ◦ h] ≤ K[F ]K[h] ≤ 1 + k

1 − k

1 + r − k

1 + r + k

1 + k
1+r

1 − k
1+r

=
1 + k

1 − k
.

Let ν denote the Beltrami coefficient of f ◦ g−1 ◦ h. Then ν is extremal in [µ].
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Let E = h−1 ◦ g(G). Note that f ◦ g−1 is conformal on g(G), we have
ν(z) = η(z) for almost every z ∈ E, and hence |ν| ≤ k

1+r on E.
This completes the proof of Theorem 1.1.

We end the section with the following open problem.

Problem 2. If [µ] in T (R) contains more than one extremal Beltrami
coefficient, can we say that there always exists an extremal Beltrami coefficient
ν in [µ] and a measurable subset E of R with non-empty interior such that
|ν| ≤ k0([µ])

1+r0
a.e. on E for some r0 > 0?

4. Infinitesimally extremal Beltrami differentials with non-constant
modulus

Lemma 4.1. If µ ∈ L∞(R) is infinitesimally extremal with ‖µ‖∞ = k,
then for every measurable subset E of R with nonzero measure and every r > 0,
the Beltrami coefficient µr = µχE + 1

1+rµχR−E has the property ‖µr‖ ≥ k
1+r .

Proof. Let η be an extremal in [µr]B. Then µ is infinitesimally equivalent
to µ+ η − µr, and

µ− µr =

{
rµ(z)
1+r , z ∈ R− E,

0, z ∈ E.

So, ‖µ− µr‖∞ ≤ rk
1+r . Then we have

(4.1) k = ‖µ‖∞ ≤ ‖µ+ η − µr‖∞ ≤ ‖η‖∞ + ‖µ− µr‖∞.
Therefore,

‖η‖∞ ≥ k − rk

1 + r
=

k

1 + r
,

proving the lemma.

Theorem 4.1. Suppose that µ 	= 0 is infinitesimally extremal with
‖µ‖∞= k and there exists a compact subset E of R such that

(4.2) inf
{

1∫
E
|ϕ|
(
k −Re

∫
R

µϕ

)
: ϕ ∈ A1(R)

}
= γ > 0.

Then [µr]B = [µχE + 1
1+rµχR−E]B is an infinitesimal non-Strebel point and

‖µr‖ = k
1+r for every r ∈ [0, γk ).

Proof. Suppose [µr]B is an infinitesimal Strebel point for some r ≥ 0.
Then by the infinitesimal frame mapping theorem, there exists a unit vector ϕ
in A1(R) such that µr and ‖µr‖ |ϕ|

ϕ are infinitesimally equivalent. By Lemma
4.1, we have ‖µr‖ ≥ k

1+r . Therefore, we have

k

1 + r
≤
∫
R

‖µr‖ |ϕ|
ϕ
ϕ =

∫
R

µrϕ =
∫
E

µϕ+
∫
R−E

µ

1 + r
ϕ.
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Thus,

k −Re

∫
R

µϕ ≤ kr

∫
E

|ϕ|.
Hence,

r ≥ 1
k
∫
E
|ϕ|
(
k −Re

∫
R

µϕ

)
≥ γ

k
.

Thus, [µr]B is an infinitesimal non-Strebel point for every r ∈ [0, γk ). Hence,
‖µr‖ = b([µr]B) ≤ k

1+r . Again by Lemma 4.1, we must have ‖µr‖ = k
1+r .

Lemma 4.2. Suppose µ in L∞(R) is infinitesimally extremal with
‖µ‖∞= k. If there exists a compact subset E of R with nonzero measure such
that

(4.3) inf
{

1∫
E
|ϕ|
(
k −Re

∫
R

µϕ

)
: ϕ ∈ A1(R)

}
= γ > 0,

then there exists an extremal Beltrami coefficient ν ∈ [µ]B such that |ν| ≤ k
1+r0

on E for some r0 > 0.

Proof. Since µ satisfies (4.3), applying Theorem 4.1 to E, we can find
some r0 > such that [µr]B = [µχG + 1

1+rµχR−E]B is an infinitesimal non-
Strebel point and ‖µr‖ = k

1+r for every r ∈ [0, r0].
Let η be an extremal element in [µr]B. Then ‖η‖∞ = k

1+r and

‖µ+ η − µr‖∞ ≤ ‖η‖∞ + ‖µ− µr‖∞ = k.

Since µ is infinitesimally equivalent to ν = µ + η − µr, ν is infinitesimally
extremal in [µ]B. In addition, ν = η on E and hence |ν| ≤ k

1+r on E.
The proof of Lemma 4.2 is completed.

Lemma 2.2 and Lemma 4.2 give

Corollary 4.1. Suppose µ in L∞(R) is infinitesimally extremal with
‖µ‖∞ = k. If for every extremal element ν in [µ]B, |ν| = k a.e in R, then µ is
uniquely extremal with constant modulus k.

Here, we give a stronger result than the above corollary in a simple way.

Theorem 4.2. Suppose µ in L∞(R) is infinitesimally extremal. If for
every extremal element ν in [µ]B, |ν| = |µ| a.e in R, then µ is uniquely extremal.

Proof. Suppose ν is an extremal element in [µ]B. Put µt = tµ+ (1 − t)ν
for t ∈ (0, 1). Then by hypothesis, µt ∈ [µ]B and for almost all z ∈ R,

|µ(z)| = |tµ(z) + (1 − t)ν(z)| ≤ t|µ(z)| + (1 − t)|ν(z)| = |µ(z)|.
This happens if and only if µ(z) = ν(z) a.e. in R, which implies that µ is
uniquely extremal in [µ]B .

We note that we cannot prove a parallel global result corresponding to
Theorem 4.2 for [µ], that is, the following problem is still unsettled.
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Problem 3. Suppose µ in M(R) is an extremal Beltrami coefficient in
[µ]. If for every extremal Beltrami coefficient ν in [µ], |ν| = |µ| a.e in R, can
we say that µ is uniquely extremal?

Our main result of the paper is actually to solve Problem 3 in the special
case that µ is of constant modulus.

Remark 1. Problem 3 cannot be reduced to Problem 1. The first au-
thor recently showed [15] that there exists a point [µ] in T (R) admitting in-
finitely many extremal Beltrami coefficients such that every extremal Beltrami
coefficient in [µ] is not of constant modulus, and so is its infinitesimal version.

It is easy to see from the proof of Theorem 4.2 that there exist infinitely
many extremal elements in [µ]B with non-constant modulus if µ is non-uniquely
extremal. Is it also true for [µ]?

Combining Lemma 2.2, 4.2, Theorem 4.1 with Theorem A, the following
theorem is proved.

Theorem 4.3. Suppose µ 	= 0 in L∞(R) is infinitesimally extremal
with ‖µ‖∞ = k. Then the following three conditions are equivalent:
(1) there exists an extremal element in [µ]B with non-constant modulus;
(2) for any given extremal element ν ∈ [µ]B, there exists a compact subset E
of R with nonzero measure such that

inf
{

1∫
E
|ϕ|
(
k −Re

∫
R

νϕ

)
: ϕ ∈ A1(R)

}
= γ > 0;

(3) for any given extremal element ν ∈ [µ]B, there exists a compact subset E
of R with nonzero measure such that [νχE + 1

1+rνχR−E]B is an infinitesimal
non-Strebel point for every r ∈ [0, r0) for some r0 > 0.

5. Geodesics in Teichmüller spaces

A hyperbolic Riemann surface can be viewed as a quotient space ∆/Γ in
certain sense, where Γ is a Fuchsian group acting on the unit disk ∆. M(R) is
canonically identified with the set of Beltrami coefficients µ inM(∆) compatible
with Γ, that is, those µ for which

(µ ◦ γ)γ′/γ′ = µ, for all γ ∈ Γ.

Let fµ : ∆ → ∆ be the quasiconformal mapping with complex dilatation µ
keeping 1, −1 and i fixed. It is well known that µ and ν in M(R) are equivalent
if and only if fµ and fν coincide on ∂∆.

For any Beltrami coefficient µ ∈ M(∆), let H be the usual Hilbert trans-
form defined by

Hµ(z) = − 1
π

∫∫
∆

µ(ζ)
(ζ − z)2

dξdη.
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Put

hµ = µ+ µHµ+ µH(µHµ) + · · · .
The following useful lemma can be found in [12].

Lemma 5.1. Let µ and ν be two Beltrami coefficients in M(∆), Then
µ and ν are equivalent in T (∆) if and only if hµ − hν ∈ N(∆).

For two given points [µ] and [ν] in T (R), the Teichmüller distance between
them is defined as

d([µ], [ν]) =
1
2

log
1 + ‖η‖∞
1 − ‖η‖∞ ,

where η is an extremal Beltrami coefficient in the equivalence class of the Bel-
trami coefficient of fµ ◦ (fν)−1.

A geodesic α in T (R) is defined to be the image of an injective continuous
map Φ from a non-trivial compact real interval [a, b] into T (R) such that

d(Φ(x),Φ(z)) = d(Φ(x),Φ(y)) + d(Φ(y),Φ(z)),

whenever a ≤ x ≤ y ≤ z ≤ b. The points Φ(a) and Φ(b) are called the endpoints
of α. In particular, if µ is extremal, then the image of the Φ : [0, ‖µ‖∞] → T (R)
determined by Φ(t) = [tµ/‖µ‖∞] is a geodesic joining [0] and [µ].

Geodesic plays an important role in the geometry of Teichmüller spaces.
If µ is uniquely extremal with constant modulus, then there exists a unique
geodesic between two points [0] and [µ]. This was proved by Li Zhong [6] when
the group Γ is trivial and by Tanigawa [14] in the general case. Earle et al. [2]
proved that the converse is also true. Now, as an application of Theorem 1.1,
we give a somewhat different proof from that of Earle et al.

Suppose that µ is extremal with non-constant modulus. Then the set
E = {z ∈ R : |µ(z)| ≤ r‖µ‖∞} has nonzero measure for some r ∈ (0, 1). For
t ∈ ∆, put

Φ(t) = [tµ/‖µ‖∞]

and

Φϕ(t) = [µ(t, ϕ)],

where µ(t, ϕ) = tµ/‖µ‖∞ + 1−r
2 t(t − ‖µ‖∞)χE |ϕ|/ϕ) and ϕ ∈ A1(R). These

functions are holomorphic maps from ∆ to T (R) sending 0 to 0 and ‖µ‖∞ to
[µ]. So, by Theorem 5 in [2], they are holomorphic isometries with respect
to the Poincaré metric on ∆ and the Teichmüller metric on T (R). Thus,
Φϕ([0, ‖µ‖∞]) is a geodesic joining [0] and [µ].

It remains to show that, the holomorphic isometries Φϕ are different from
each other when ϕ varies in A1(R). Suppose to the contrary, there would exist
two different elements ϕ and ψ in A1(R) such that [µ(t, ϕ)] = [µ(t, ψ)] for all
t ∈ ∆.

Let p : ∆ → R = ∆/Γ be the canonical projection. Let µ̃ϕ, µ̃ψ, ϕ̃ and ψ̃
denote the lifts of µ(t, ϕ), µ(t, ψ), ϕ and ψ to ∆, respectively. Then µ̃ϕ and µ̃ψ
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are equivalent in T (∆). By Lemma 5.1, heµϕ − heµψ ∈ N(∆) for all |t| < 1. By
a simple computation, we have

heµϕ − heµψ =
1 − r

2
‖µ‖∞χp−1(E)

(
|ψ̃|
ψ̃

− |ϕ̃|
ϕ̃

)
t+ o(t), as t→ 0.

Thus, we conclude χp−1(E)(
| eψ|

eψ
− |eϕ|

eϕ ) ∈ N(∆) and consequently χE( |ψ|ψ − |ϕ|
ϕ ) ∈

N(R). This implies that ϕ = ψ which contradicts the hypothesis, and hence
Φϕ and Φψ are different from each other.

Combing Theorem 6 in [2], Lemma 2.2, Theorem 2.1, Theorem 4.3 and
the proof of Theorem 3.1 with the above discussion, one can easily prove the
following theorem.

Theorem 5.1. Suppose µ 	= 0 is an extremal Beltrami coefficient in
M(R) with ‖µ‖∞ = k. Then the following conditions are equivalent:
(1) there exists an extremal Beltrami coefficient in [µ] with non-constant mod-
ulus;
(2) there exists an extremal element in [µ]B with non-constant modulus;
(3) for any given extremal Beltrami coefficient ν ∈ [µ], there exists a compact
subset E of R with nonzero measure such that

inf
{

1∫
E
|ϕ|
(
k −Re

∫
R

νϕ

)
: ϕ ∈ A1(R)

}
= γ > 0;

(4) for any given extremal element ν ∈ [µ]B, there exists a compact subset E
of R with nonzero measure such that

inf
{

1∫
E
|ϕ|
(
k −Re

∫
R

νϕ

)
: ϕ ∈ A1(R)

}
= γ > 0;

(5) for any given extremal Beltrami coefficient ν ∈ [µ], there exists a compact
subset E of R with nonzero measure such that [νχE + 1

1+rνχR−E] is a non-
Strebel point for every r ∈ [0, r0) for some r0 > 0;
(6) for any given extremal element ν ∈ [µ]B, there exists a compact subset E
of R with nonzero measure such that [νχE + 1

1+rνχR−E]B is an infinitesimal
non-Strebel point for every r ∈ [0, r0) for some r0 > 0;
(7) there exist infinitely many geodesics joining [0] and [µ];
(8) there exist infinitely many holomorphic isometries Φ : ∆ → T (R) such that
Φ(0) = 0 and Φ(‖µ‖∞) = [µ].

Obviously, we have

Corollary 5.1. Suppose µ 	= 0 is an extremal Beltrami coefficient in
M(R). Then the following conditions are equivalent:
(a) µ is uniquely extremal with constant modulus;
(b) µ is infinitesimally uniquely extremal with constant modulus;
(c) for any compact subset E of R with nonzero measure,

inf
{

1∫
E
|ϕ|
(
‖µ‖∞ −Re

∫
R

µϕ

)
: ϕ ∈ A1(R)

}
= 0;



246 Guowu Yao and Yi Qi

(d) for any compact subset E of R with nonzero measure, [µχE + 1
1+rµχR−E ]

is a Strebel point for every r > 0;
(e) for any compact subset E of R with nonzero measure, [µχE + 1

1+rµχR−E ]B
is an infinitesimal Strebel point for every r > 0;
(f) there exists a unique geodesic joining [0] and [µ];
(g) there exists only one holomorphic isometries Φ : ∆ → T (R) such that
Φ(0) = 0 and Φ(‖µ‖∞) = [µ].

Corollary 5.1 indicates that the above condition (c) or the condition (c) in
Theorem A is actually also a sufficient condition for µ to be uniquely extremal
with constant modulus.
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