J. Math. Kyoto Univ. (JMKYAZ) 46-2 (2006), 235–247

On the modulus of extremal Beltrami coefficients

By

Guowu Yao and Yi Qi[∗]

Abstract

Let R be a hyperbolic Riemann surface. Suppose the Teichmüller space $T(R)$ of R is infinite-dimensional. Let μ be an extremal Beltrami coefficient on R and let $[\mu]$ be the point in $T(R)$. In this note, it is shown that if μ is not uniquely extremal, then there exists an extremal Beltrami coefficient ν in $[\mu]$ with non-constant modulus. As an application, it follows, as is well known, that there exist infinitely many geodesics between $[\mu]$ and the base point $[0]$ in $T(R)$ if μ is non-uniquely extremal.

1. Introduction

Let R be a hyperbolic Riemann surface and let $QC(R)$ be the space of all quasiconformal mappings f from R to a variable Riemann surface $f(R)$. The Teichmüller spac $T(R)$ is the space of these mappings factored by an equivalence relation. Two mappings, f and g , are equivalent if there is a conformal mapping c from $f(R)$ onto $g(R)$ and a homotopy through quasiconformal mappings h_t mapping R onto $g(R)$ such that $h_0 = c \circ f$, $h_1 = g$ and $h_t(p) = c \circ f(p) = g(p)$ for every p in the ideal boundary of R. Let $[f]$ or $[\mu]$ denote the equivalence class of a quasiconformal mapping f in $QC(R)$, where μ is the Beltrami coefficient of f. Since the Beltrami coefficient μ uniquely determines the mapping f up to postcomposition by a conformal mapping, the Teichmüller space $T(R)$ may be represented as the space of equivalence classes of Beltrami coefficients μ in the unit ball $M(R)$ of the space $L^{\infty}(R)$. The equivalence class of the Beltrami coefficient zero is the basepoint of $T(R)$.

Given $f \in QC(R)$, let $\mu \in M(R)$ be the Beltrami coefficient of f. Let $K[f] = \frac{1 + ||\mu||_{\infty}}{1 - ||\mu||_{\infty}}$ denote the maximal dilation of f. We define

$$
k_0([\mu]) = \inf \{ ||\nu||_{\infty} : \nu \in [\mu] \},
$$

²⁰⁰⁰ Mathematics Subject Classification(s). Primary 30C75; Secondary 30C62. Received June 28, 2004

Revised December 27, 2005

[∗]The authors were supported by the National Natural Science Foundation of China (Grant No. 10401036, 10271063, 10571009) and a Foundation for the Author of National Excellent Doctoral Dissertation (Grant No. 200518) of PR China.

236 Guowu Yao and Yi Qi

and

$$
K_0[f] = K_0([\mu]) = \frac{1 + k_0([\mu])}{1 - k_0([\mu])}.
$$

We say that μ is extremal in $[\mu]$ (f is extremal in [f]) if $\|\mu\|_{\infty} = k_0([\mu]),$ and uniquely extremal if $||\nu||_{\infty} > k_0([\mu])$ for any other $\nu \in [\mu]$. We call that a Beltrami coefficient μ is of constant modulus if $|\mu|$ is a constant almost everywhere on R.

For any μ , let $h^*(\mu)$ be the infimum over all compact subsets E contained in R of the essential supremum norm of the Beltrami coefficient $\mu(z)$ as z varies over $R\backslash E$. Define $h([\mu])$ to be the infimum of $h^*(\mu)$ taken over all representatives μ of the class $[\mu]$. The number

$$
H([\mu]) = \frac{1 + h([\mu])}{1 - h([\mu])}
$$

is called the boundary dilatation of the class $[\mu]$. Obviously $h([\mu]) \leq k_0([\mu])$ and following [3], [5], we call a point $[\mu]$ in $T(R)$ a Strebel point if $h([\mu]) < k_0([\mu])$.

Let $A(R)$ be the Banach space of all holomorphic functions φ on R with L^1 −norm

$$
\int_R |\varphi(z)| < \infty,
$$

and let $A_1(R)$ be the unit sphere of $A(R)$. By Strebel's frame mapping theorem, every Strebel point $[\mu]$ is represented by the unique Beltrami differential of the form $k|\varphi|/\varphi$, where $k = k_0([\mu]) \in (0,1)$ and φ is a unit vector in $A_1(R)$.

Two elements μ and ν in $L^{\infty}(R)$ are infinitesimally equivalent, which is denoted by $\mu \approx \nu$, if $\iint_R \mu \phi dx dy = \iint_R \nu \phi dx dy$ for all $\phi \in A(R)$. Denote by $N(R)$ the set of all the elements in $L^{\infty}(R)$ which are infinitesimally equivalent to zero. Then $B(R) = L^{\infty}(R)/N(R)$ is the tangent space of the Teichmüller space $T(R)$ at the basepoint.

Given $\mu \in L^{\infty}(R)$, we denote by $[\mu]_B$ the set of all elements $\nu \in L^{\infty}(R)$ infinitesimally equivalent to μ , and set

(1.1)
$$
\|\mu\| = \inf \{ \|\nu\|_{\infty} : \nu \in [\mu]_B \}.
$$

We say that μ is infinitesimally extremal (in $[\mu]_B$) if $||\mu||_{\infty} = ||\mu||$, and we say it is infinitesimally uniquely extremal if $\|\nu\|_{\infty} > \|\mu\|$ for any other $\nu \in [\mu]_B$.

In a parallel manner we can define the boundary dilatation for the infinitesimal Teichmüller class $[\mu]_B$. The boundary dilatation $b([\mu]_B)$ is the infimum over all elements in the equivalence class $[\mu]_B$ of the quantity $b^*(\nu)$. Here $b^*(\nu)$ is the infimum over all compact subsets E contained in R of the essential supremum of the Beltrami coefficient ν as z varies over $R - E$.

An infinitesimally equivalent class $[\mu]_B$ is called an infinitesimal Strebel point if $\|\mu\| > b(\mu\|_B)$. It follows from the infinitesimal frame mapping theorem (see Theorem 2.4 in [7]) that if $[\mu]_B$ is an infinitesimal Strebel point, then there exists a unique vector φ in $A_1(R)$ such that μ and $\|\mu\| |\varphi|/\varphi$ are infinitesimally equivalent.

In [1], Božin, Lakic et al. gave a series of characteristic conditions for a Beltrami coefficient μ to be (infinitesimally) uniquely extremal. For simplicity, we state parts of characteristic conditions in the special case.

Theorem A. Let μ be a Beltrami coefficient in $M(R)$ with constant *modulus. Then the following conditions are equivalent*:

(*a*) μ *is uniquely extremal in its class* [μ] *in* $T(R)$;

(*b*) μ *is infinitesimally uniquely extremal in its class* $[\mu]_B$ *in* $B(R)$;

(*c*) *for every measurable subset* E *of* R *with nonzero measure, there exists a sequence of unit vectors* φ_n *in* $A_1(R)$ *such that*

$$
\frac{1}{\int_E |\varphi_n|} \left(\|\mu\|_\infty - Re \int_R \mu \varphi_n \right) \to 0, \text{ as } n \to \infty;
$$

(*d*) μ *is extremal in* [μ] *and, for every compact subset* E *of* R *with nonzero measure and every* $r > 0$, $[\mu \chi_E + \frac{1}{1+r} \mu \chi_{R-E}]$ *is a Strebel point in* $T(R)$; (e) μ *is infinitesimally extremal in* $[\mu]_B$ *and, for every compact subset* E *of* R *with nonzero measure and every* $r > 0$, $[\mu \chi_E + \frac{1}{1+r} \mu \chi_{R-E}]_B$ *is an infinitesimal Strebel point in* B(R)*.*

When $[\mu]$ in $T(R)$ contains more than one extremal Beltrami coefficient, the situation is very complicated. It is of interest to consider the problem as follows.

Problem 1. If $[\mu]$ *in* $T(R)$ *admits more than one extremal Beltrami coefficient, can we say that there always exists an extremal Beltrami coefficient in* [µ] *with non-constant modulus?*

When R is the unit disk Δ , a positive answer to this problem is actually implied by Reich's proof of his theorem in [8] (also see [16]). His proof depends on the Polygon Inequality due to Reich and Strebel [10]. However, the Polygon Inequality is not generalized for general hyperbolic Riemann surfaces except for some special surfaces, for example, see [13]. And hence for more general hyperbolic Riemann surfaces, the solution requires a different technique. The main aim of this paper is to answer Problem 1 affirmatively. We avoid using the Polygon Inequality and our proof is self-contained.

Theorem 1.1. *Suppose* μ *in* $M(R)$ *is extremal with* $\|\mu\|_{\infty} = k$ *and is not uniquely extremal. Then there exists a compact subset* E *of* R *with nonzero measure and an extremal Beltrami coefficient* $\nu \in [\mu]$ *such that* $|\nu| \leq \frac{k}{1+r_0}$ *on* E for some $r_0 > 0$.

Corollary 1.1. *Suppose* μ *in* $M(R)$ *is extremal with* $\|\mu\|_{\infty} = k$ *. If for every extremal Beltrami coefficient* ν *in* $[\mu]$ *,* $|\nu| = k$ *a.e in* R*, then* μ *is uniquely extremal with constant modulus.*

Corollary 1.1 shows that the case (2) of Theorem 1 in [11] really does not exist.

The analogous problem in the infinitesimal setting is considered in Section 4. Applying Theorem 1.1 and the result in [2], in Section 5 we give an alternative proof that there exist infinitely many geodesics between $[\mu]$ and the base point [0] in $T(R)$ if μ is non-uniquely extremal.

2. Non-Strebel Points

The first lemma is inspired by the lemma in [8].

Lemma 2.1. *If* $\mu \in M(R)$ *is extremal with* $\|\mu\|_{\infty} = k$ *, then for every measurable subset* E *of* R *with nonzero measure and every* r > 0*, the Beltrami coefficient* $\mu_r = \mu \chi_E + \frac{1}{1+r} \mu \chi_{R-E}$ *has the property* $k_0([\mu_r]) \geq \frac{k}{1+r}$ *.*

Proof. Let η be an extremal Beltrami coefficient in $[\mu_r]$. Then there exist homotopic quasiconformal mappings g and h with Beltrami coefficient μ_r and η , respectively, such that $g(R) = h(R)$ and $g(p) = h(p)$ for every point on the ideal boundary of R . Let f be the quasiconformal mapping with the Beltrami coefficient μ . It follows that f and $f \circ g^{-1} \circ h$ are equivalent in $T(R)$. Since f is extremal by hypothesis, it follows that

(2.1)
$$
\frac{1+k}{1-k} = K[f] \le K[f \circ g^{-1} \circ h] \le K[F]K[h],
$$

where $F = f \circ q^{-1}$. Note that

$$
|\mu_F(g(z))|=|\frac{\mu(z)-\mu_r(z)}{1-\overline{\mu(z)}\mu_r(z)}|=\begin{cases}\frac{r|\mu(z)|}{1+r-|\mu(z)|^2}, & z\in R-E,\\ 0, & z\in E.\end{cases}
$$

We have

$$
|\mu_F(g(z))| \le \frac{rk}{1+r-k^2}, z \in R.
$$

Thus,

(2.2)
$$
K[F] \le \frac{1+k}{1-k} \frac{1+r-k}{1+r+k}.
$$

Combining (2.1) and (2.2) , we obtain

$$
K[h] = K_0[h] \ge \frac{1+r+k}{1+r-k} = \frac{1+\frac{k}{1+r}}{1-\frac{k}{1+r}},
$$

which proves the lemma.

Theorem 2.1. *Suppose that* $\mu \neq 0$ *is extremal with* $\|\mu\|_{\infty} = k$ *and there exists a compact subset* E *of* R *such that*

(2.3)
$$
\inf \left\{ \frac{1}{\int_E |\varphi|} \left(k - Re \int_R \mu \varphi \right) : \varphi \in A_1(R) \right\} = \gamma > 0.
$$

Then $[\mu_r] = [\mu \chi_E + \frac{1}{1+r} \mu \chi_{R-E}]$ *is a non-Strebel point and* $k_0([\mu_r]) = \frac{k}{1+r}$ *for every* $r \in [0, \frac{(1-k)\gamma}{k(1+k)}).$

 \Box

Proof. Suppose $[\mu_r]$ is a Strebel point for some $r \geq 0$. By Lemma 2.1, we have $k_0([\mu_r]) \geq s = \frac{k}{1+r}$. Thus, by Strebel's frame mapping theorem, there exists $s_r = k_0(\mu_r) \geq s$ and a unit vector φ in $A_1(R)$ such that μ_r and $s_r \frac{|\varphi|}{\varphi}$ are equivalent. Therefore, by the Main Inequality [9, 4], we have

$$
\frac{1+s}{1-s} \le \frac{1+s_r}{1-s_r} = K_0([\mu_r]) \le \int_R |\varphi| \frac{|1+\mu_r \varphi/|\varphi||^2}{1-|\mu_r|^2}.
$$

Let $\lambda = \frac{\mu}{1+r}$. We have

$$
\frac{1+s}{1-s} \le \int_{R-E} |\varphi| \frac{|1+\lambda \varphi/|\varphi||^2}{1-|\lambda|^2} + \int_{E} |\varphi| \frac{|1+\mu \varphi/|\varphi||^2}{1-|\mu|^2} = X+Y,
$$

where

$$
X = \int_{R} |\varphi| \frac{|1 + \lambda \varphi/|\varphi||^2}{1 - |\lambda|^2}, Y = \int_{E} |\varphi| \left[\frac{|1 + \mu \varphi/|\varphi||^2}{1 - |\mu|^2} - \frac{|1 + \lambda \varphi/|\varphi||^2}{1 - |\lambda|^2} \right].
$$

By a simple computation,

$$
\begin{split} X &\leq \frac{1+s^2+2Re\int_R\lambda\varphi}{1-s^2},\\ Y &\leq \frac{2kr}{(1-k)(1+r-k)}\int_E|\varphi|. \end{split}
$$

Thus,

$$
\frac{1+s}{1-s}\leq \frac{1+s^2+2Re\int_R\lambda\varphi}{1-s^2}+\frac{2kr}{(1-k)(1+r-k)}\int_E|\varphi|,
$$

namely,

$$
2\left(s-Re\int_R \lambda\varphi\right)\leq \frac{2kr(1-s^2)}{(1-k)(1+r-k)}\int_E |\varphi|.
$$

Therefore, we get

$$
k-Re\int_R\mu\varphi\leq \frac{(1+r+k)kr}{(1-k)(1+r)}\int_E|\varphi|\leq \frac{k(1+k)r}{1-k}\int_E|\varphi|.
$$

Hence,

$$
r \ge \frac{1-k}{k(1+k)\int_E |\varphi|} \left(k - Re \int_R \mu \varphi \right) \ge \frac{(1-k)\gamma}{k(1+k)}.
$$

Thus, $[\mu_r]$ is a non-Strebel point for every $r \in [0, \frac{(1-k)\gamma}{k(1+k)})$. Hence, $k_0([\mu_r])$ $H([\mu_r]) \leq \frac{k}{1+r}$. Again by Lemma 2.1, we must have $k_0([\mu_r]) = \frac{k}{1+r}$. \Box

Lemma 2.2. *Suppose that* μ *is extremal but not* (*infinitesimally*) *uniquely extremal with* $||\mu||_{\infty} = k$. Then there exists a compact subset E of R *with nonzero measure such that*

(2.4)
$$
\inf \left\{ \frac{1}{\int_E |\varphi|} \left(k - Re \int_R \mu \varphi \right) : \varphi \in A_1(R) \right\} = \gamma > 0.
$$

Proof. If μ is of constant modulus, then the lemma is an immediate corollary of Theorem A.

If μ is not of constant modulus even if μ is (infinitesimally) uniquely extremal, then there exists a compact subset E of R such that $|\mu| < s < k$ on E. Thus, for any unit vector φ in $A_1(R)$,

$$
\frac{1}{\int_E |\varphi|} \left(k - Re \int_R \mu \varphi \right) \ge \frac{1}{\int_E |\varphi|} \left(k \int_E |\varphi| - Re \int_E \mu \varphi \right) \ge k - s > 0.
$$

3. Extremal Beltrami coefficients with non-constant modulus

By Lemma 2.2, Theorem 1.1 is a direct corollary of the following theorem.

Theorem 3.1. *Suppose* μ *in* $M(R)$ *is extremal with* $\|\mu\|_{\infty} = k$ *. If there exists a compact subset* G *of* R *with nonzero measure such that*

(3.1)
$$
\inf \left\{ \frac{1}{\int_G |\varphi|} \left(k - Re \int_R \mu \varphi \right) : \varphi \in A_1(R) \right\} = \gamma > 0,
$$

then there exists a compact subset E *of* R *with nonzero measure and an extremal Beltrami coefficient* $\nu \in [\mu]$ *such that* $|\nu| \leq \frac{k}{1+r_0}$ *on E for some* $r_0 > 0$ *.*

Proof. Since μ satisfies (3.1), applying Theorem 2.1 to G, we can find some $r_0 > 0$ such that $[\mu_r] = [\mu \chi_G + \frac{1}{1+r} \mu \chi_{R-G}]$ is a non-Strebel point and $k_0([\mu_r]) = \frac{k}{1+r}$ for every $r \in [0, r_0]$.

Let η be an extremal Beltrami coefficient in $[\mu_r]$. Then there exist homotopic quasiconformal mappings q and h with Beltrami coefficient μ_r and η , respectively, such that $g(R) = h(R)$ and g is homotopic to h by a homotopy which fixes every point on the ideal boundary of R . Let f be the quasiconformal mapping with the Beltrami coefficient μ . By the same computation as in the proof of Lemma 2.1, we have

$$
|\mu_F(g(z))|=|\frac{\mu(z)-\mu_r(z)}{1-\overline{\mu(z)}\mu_r(z)}|=\begin{cases}\frac{r|\mu(z)|}{1+r-|\mu(z)|^2}, & z\in R-G,\\ 0, & z\in G,\end{cases}
$$

and

$$
K[F] \le \frac{1+k}{1-k} \frac{1+r-k}{1+r+k},
$$

where $F = f \circ g^{-1}$. Since $K[h] = \frac{1 + k_0([{\mu}_r])}{1 - k_0([{\mu}_r])}$, we obtain

$$
K[f \circ g^{-1} \circ h] \le K[F]K[h] \le \frac{1+k}{1-k} \frac{1+r-k}{1+r+k} \frac{1+\frac{k}{1+r}}{1-\frac{k}{1+r}} = \frac{1+k}{1-k}.
$$

Let ν denote the Beltrami coefficient of $f \circ g^{-1} \circ h$. Then ν is extremal in [μ].

Let $E = h^{-1} \circ g(G)$. Note that $f \circ g^{-1}$ is conformal on $g(G)$, we have $\nu(z) = \eta(z)$ for almost every $z \in E$, and hence $|\nu| \leq \frac{k}{1+r}$ on E. This completes the proof of Theorem 1.1. \Box

We end the section with the following open problem.

Problem 2. *If* $[\mu]$ *in* $T(R)$ *contains more than one extremal Beltrami coefficient, can we say that there always exists an extremal Beltrami coefficient* ν *in* $[\mu]$ *and a measurable subset* E *of* R *with non-empty interior such that* $|\nu| \leq \frac{k_0([\mu])}{1+r_0}$ a.e. on *E* for some $r_0 > 0$?

4. Infinitesimally extremal Beltrami differentials with non-constant modulus

Lemma 4.1. *If* $\mu \in L^{\infty}(R)$ *is infinitesimally extremal with* $\|\mu\|_{\infty} = k$, *then for every measurable subset* E *of* R *with nonzero measure and every* $r > 0$ *, the Beltrami coefficient* $\mu_r = \mu \chi_E + \frac{1}{1+r} \mu \chi_{R-E}$ *has the property* $\|\mu_r\| \ge \frac{k}{1+r}$ *.*

Proof. Let η be an extremal in $[\mu_r]_B$. Then μ is infinitesimally equivalent to $\mu + \eta - \mu_r$, and

$$
\mu - \mu_r = \begin{cases} \frac{r\mu(z)}{1+r}, & z \in R - E, \\ 0, & z \in E. \end{cases}
$$

So, $\|\mu - \mu_r\|_{\infty} \leq \frac{rk}{1+r}$. Then we have

(4.1)
$$
k = \|\mu\|_{\infty} \le \|\mu + \eta - \mu_r\|_{\infty} \le \|\eta\|_{\infty} + \|\mu - \mu_r\|_{\infty}.
$$

Therefore,

$$
\|\eta\|_{\infty} \ge k - \frac{rk}{1+r} = \frac{k}{1+r},
$$

proving the lemma.

Theorem 4.1. *Suppose that* $\mu \neq 0$ *is infinitesimally extremal with* $||\mu||_{\infty}$ = k and there exists a compact subset E of R such that

(4.2)
$$
\inf \left\{ \frac{1}{\int_E |\varphi|} \left(k - Re \int_R \mu \varphi \right) : \varphi \in A_1(R) \right\} = \gamma > 0.
$$

Then $[\mu_r]_B = [\mu \chi_E + \frac{1}{1+r} \mu \chi_{R-E}]_B$ *is an infinitesimal non-Strebel point and* $\|\mu_r\| = \frac{k}{1+r}$ for every $r \in [0, \frac{\gamma}{k})$.

Proof. Suppose $[\mu_r]_B$ is an infinitesimal Strebel point for some $r \geq 0$. Then by the infinitesimal frame mapping theorem, there exists a unit vector φ in $A_1(R)$ such that μ_r and $\|\mu_r\| \frac{|\varphi|}{\varphi}$ are infinitesimally equivalent. By Lemma 4.1, we have $\|\mu_r\| \geq \frac{k}{1+r}$. Therefore, we have

$$
\frac{k}{1+r} \leq \int_R \|\mu_r\| \frac{|\varphi|}{\varphi} \varphi = \int_R \mu_r \varphi = \int_E \mu \varphi + \int_{R-E} \frac{\mu}{1+r} \varphi.
$$

 \Box

242 Guowu Yao and Yi Qi

Thus,

$$
k-Re\int_R\mu\varphi\le kr\int_E|\varphi|.
$$

Hence,

$$
r \geq \frac{1}{k \int_E |\varphi|} \left(k - Re \int_R \mu \varphi \right) \geq \frac{\gamma}{k}.
$$

Thus, $[\mu_r]_B$ is an infinitesimal non-Strebel point for every $r \in [0, \frac{\gamma}{k})$. Hence, $\|\mu_r\| = b(\mu_r|_B) \le \frac{k}{1+r}$. Again by Lemma 4.1, we must have $\|\mu_r\| = \frac{k}{1+r}$.

Lemma 4.2. *Suppose* μ *in* $L^{\infty}(R)$ *is infinitesimally extremal with* µ∞= k*. If there exists a compact subset* E *of* R *with nonzero measure such that*

(4.3)
$$
\inf \left\{ \frac{1}{\int_E |\varphi|} \left(k - Re \int_R \mu \varphi \right) : \varphi \in A_1(R) \right\} = \gamma > 0,
$$

then there exists an extremal Beltrami coefficient $\nu \in [\mu]_B$ *such that* $|\nu| \leq \frac{k}{1+r_0}$ *on* E *for some* $r_0 > 0$ *.*

Proof. Since μ satisfies (4.3), applying Theorem 4.1 to E, we can find some $r_0 >$ such that $[\mu_r]_B = [\mu \chi_G + \frac{1}{1+r} \mu \chi_{R-E}]_B$ is an infinitesimal non-Strebel point and $\|\mu_r\| = \frac{k}{1+r}$ for every $r \in [0, r_0]$.

Let η be an extremal element in $[\mu_r]_B$. Then $\|\eta\|_{\infty} = \frac{k}{1+r}$ and

$$
\|\mu + \eta - \mu_r\|_{\infty} \le \|\eta\|_{\infty} + \|\mu - \mu_r\|_{\infty} = k.
$$

Since μ is infinitesimally equivalent to $\nu = \mu + \eta - \mu_r$, ν is infinitesimally extremal in $[\mu]_B$. In addition, $\nu = \eta$ on E and hence $|\nu| \leq \frac{k}{1+r}$ on E.

The proof of Lemma 4.2 is completed.

Lemma 2.2 and Lemma 4.2 give

uniquely extremal with constant modulus k*.*

 \Box

Corollary 4.1. *Suppose* μ *in* $L^{\infty}(R)$ *is infinitesimally extremal with* $\|\mu\|_{\infty} = k$ *. If for every extremal element* ν *in* $[\mu]_B$ *,* $|\nu| = k$ *a.e in* R*, then* μ *is*

Here, we give a stronger result than the above corollary in a simple way.

Theorem 4.2. *Suppose* μ *in* $L^{\infty}(R)$ *is infinitesimally extremal. If for every extremal element* ν *in* $[\mu]_B$ *,* $|\nu| = |\mu|$ *a.e in* R*, then* μ *is uniquely extremal.*

Proof. Suppose ν is an extremal element in $[\mu]_B$. Put $\mu_t = t\mu + (1-t)\nu$ for $t \in (0, 1)$. Then by hypothesis, $\mu_t \in [\mu]_B$ and for almost all $z \in R$,

$$
|\mu(z)| = |t\mu(z) + (1-t)\nu(z)| \le t|\mu(z)| + (1-t)|\nu(z)| = |\mu(z)|.
$$

This happens if and only if $\mu(z) = \nu(z)$ a.e. in R, which implies that μ is uniquely extremal in $[\mu]_B$. \Box

We note that we cannot prove a parallel global result corresponding to Theorem 4.2 for $[\mu]$, that is, the following problem is still unsettled.

Problem 3. *Suppose* μ *in* $M(R)$ *is an extremal Beltrami coefficient in* [µ]*. If for every extremal Beltrami coefficient* ν *in* [µ], $|\nu| = |\mu|$ *a.e in* R, can *we say that* μ *is uniquely extremal?*

Our main result of the paper is actually to solve Problem 3 in the special case that μ is of constant modulus.

Remark 1. Problem 3 cannot be reduced to Problem 1. The first author recently showed [15] that there exists a point $[\mu]$ in $T(R)$ admitting infinitely many extremal Beltrami coefficients such that every extremal Beltrami coefficient in $[\mu]$ is not of constant modulus, and so is its infinitesimal version.

It is easy to see from the proof of Theorem 4.2 that there exist infinitely many extremal elements in $[\mu]_B$ with non-constant modulus if μ is non-uniquely extremal. Is it also true for $[\mu]$?

Combining Lemma 2.2, 4.2, Theorem 4.1 with Theorem A, the following theorem is proved.

Theorem 4.3. *Suppose* $\mu \neq 0$ *in* $L^{\infty}(R)$ *is infinitesimally extremal with* $||\mu||_{\infty} = k$. Then the following three conditions are equivalent:

(1) *there exists an extremal element in* $[\mu]_B$ *with non-constant modulus*;

(2) *for any given extremal element* $\nu \in [\mu]_B$ *, there exists a compact subset* E *of* R *with nonzero measure such that*

$$
\inf\left\{\frac{1}{\int_E|\varphi|}\left(k-Re\int_R\nu\varphi\right):\, \varphi\in A_1(R)\right\}=\gamma>0;
$$

(3) *for any given extremal element* $\nu \in [\mu]_B$ *, there exists a compact subset* E *of* R with nonzero measure such that $[\nu \chi_E + \frac{1}{1+r} \nu \chi_{R-E}]_B$ *is an infinitesimal non-Strebel point for every* $r \in [0, r_0)$ *for some* $r_0 > 0$ *.*

5. Geodesics in Teichm¨uller spaces

A hyperbolic Riemann surface can be viewed as a quotient space Δ/Γ in certain sense, where Γ is a Fuchsian group acting on the unit disk Δ . $M(R)$ is canonically identified with the set of Beltrami coefficients μ in $M(\Delta)$ compatible with Γ, that is, those μ for which

$$
(\mu \circ \gamma)\overline{\gamma'}/\gamma' = \mu
$$
, for all $\gamma \in \Gamma$.

Let f^{μ} : $\Delta \rightarrow \Delta$ be the quasiconformal mapping with complex dilatation μ keeping 1, -1 and i fixed. It is well known that μ and ν in $M(R)$ are equivalent if and only if f^{μ} and f^{ν} coincide on $\partial \Delta$.

For any Beltrami coefficient $u \in M(\Delta)$, let H be the usual Hilbert transform defined by

$$
H\mu(z) = -\frac{1}{\pi} \iint_{\Delta} \frac{\mu(\zeta)}{(\zeta - z)^2} d\xi d\eta.
$$

244 Guowu Yao and Yi Qi

Put

$$
h_{\mu} = \mu + \mu H \mu + \mu H (\mu H \mu) + \cdots.
$$

The following useful lemma can be found in [12].

Lemma 5.1. *Let* μ *and* ν *be two Beltrami coefficients in* $M(\Delta)$ *, Then* μ *and* ν *are equivalent in* $T(\Delta)$ *if and only if* $h_{\mu} - h_{\nu} \in N(\Delta)$ *.*

For two given points $[\mu]$ and $[\nu]$ in $T(R)$, the Teichmüller distance between them is defined as

$$
d([\mu],[\nu]) = \frac{1}{2}\log\frac{1+\|\eta\|_{\infty}}{1-\|\eta\|_{\infty}},
$$

where η is an extremal Beltrami coefficient in the equivalence class of the Beltrami coefficient of $f^{\mu} \circ (f^{\nu})^{-1}$.

A geodesic α in $T(R)$ is defined to be the image of an injective continuous map Φ from a non-trivial compact real interval [a, b] into $T(R)$ such that

$$
d(\Phi(x), \Phi(z)) = d(\Phi(x), \Phi(y)) + d(\Phi(y), \Phi(z)),
$$

whenever $a \le x \le y \le z \le b$. The points $\Phi(a)$ and $\Phi(b)$ are called the endpoints of α . In particular, if μ is extremal, then the image of the $\Phi: [0, ||\mu||_{\infty}] \to T(R)$ determined by $\Phi(t)=[t\mu/\|\mu\|_{\infty}]$ is a geodesic joining [0] and $[\mu]$.

Geodesic plays an important role in the geometry of Teichmüller spaces. If μ is uniquely extremal with constant modulus, then there exists a unique geodesic between two points $[0]$ and $[\mu]$. This was proved by Li Zhong $[6]$ when the group Γ is trivial and by Tanigawa [14] in the general case. Earle et al. [2] proved that the converse is also true. Now, as an application of Theorem 1.1, we give a somewhat different proof from that of Earle et al.

Suppose that μ is extremal with non-constant modulus. Then the set $E = \{z \in R : ||\mu(z)| \le r ||\mu||_{\infty}\}\$ has nonzero measure for some $r \in (0,1)$. For $t \in \Delta$, put

$$
\Phi(t) = [t\mu/\|\mu\|_{\infty}]
$$

and

$$
\Phi_{\varphi}(t) = [\mu(t, \varphi)],
$$

where $\mu(t,\varphi) = t\mu/\|\mu\|_{\infty} + \frac{1-r}{2}t(t-\|\mu\|_{\infty})\chi_E|\varphi|/\varphi)$ and $\varphi \in A_1(R)$. These functions are holomorphic maps from Δ to $T(R)$ sending 0 to 0 and $||\mu||_{\infty}$ to $[\mu]$. So, by Theorem 5 in [2], they are holomorphic isometries with respect to the Poincaré metric on Δ and the Teichmüller metric on $T(R)$. Thus, $\Phi_{\varphi}([0, \|\mu\|_{\infty}))$ is a geodesic joining [0] and [μ].

It remains to show that, the holomorphic isometries Φ_{φ} are different from each other when φ varies in $A_1(R)$. Suppose to the contrary, there would exist two different elements φ and ψ in $A_1(R)$ such that $[\mu(t, \varphi)] = [\mu(t, \psi)]$ for all $t \in \Delta$.

Let $p: \Delta \to R = \Delta/\Gamma$ be the canonical projection. Let $\tilde{\mu}_{\varphi}, \tilde{\mu}_{\psi}, \tilde{\varphi}$ and $\tilde{\psi}$ denote the lifts of $\mu(t, \varphi)$, $\mu(t, \psi)$, φ and ψ to Δ , respectively. Then $\tilde{\mu}_{\varphi}$ and $\tilde{\mu}_{\psi}$

are equivalent in $T(\Delta)$. By Lemma 5.1, $h_{\tilde{\mu}_{\varphi}} - h_{\tilde{\mu}_{\psi}} \in N(\Delta)$ for all $|t| < 1$. By a simple computation, we have

$$
h_{\widetilde{\mu}_\varphi}-h_{\widetilde{\mu}_\psi}=\frac{1-r}{2}\|\mu\|_{\infty}\chi_{p^{-1}(E)}\left(\frac{|\widetilde{\psi}|}{\widetilde{\psi}}-\frac{|\widetilde{\varphi}|}{\widetilde{\varphi}}\right)t+o(t)\text{, as }t\to 0.
$$

Thus, we conclude $\chi_{p^{-1}(E)}\left(\frac{|\widetilde{\psi}|}{\widetilde{\psi}} - \frac{|\widetilde{\varphi}|}{\widetilde{\varphi}}\right) \in N(\Delta)$ and consequently $\chi_E\left(\frac{|\psi|}{\psi} - \frac{|\varphi|}{\varphi}\right) \in$ $N(R)$. This implies that $\varphi = \psi$ which contradicts the hypothesis, and hence Φ_{φ} and Φ_{ψ} are different from each other.

Combing Theorem 6 in [2], Lemma 2.2, Theorem 2.1, Theorem 4.3 and the proof of Theorem 3.1 with the above discussion, one can easily prove the following theorem.

Theorem 5.1. *Suppose* $\mu \neq 0$ *is an extremal Beltrami coefficient in* $M(R)$ with $\|\mu\|_{\infty} = k$. Then the following conditions are equivalent:

(1) *there exists an extremal Beltrami coefficient in* [µ] *with non-constant modulus*;

(2) *there exists an extremal element in* $[\mu]_B$ *with non-constant modulus*;

(3) *for any given extremal Beltrami coefficient* $\nu \in [\mu]$ *, there exists a compact subset* E *of* R *with nonzero measure such that*

$$
\inf \left\{ \frac{1}{\int_E |\varphi|} \left(k - Re \int_R \nu \varphi \right) : \varphi \in A_1(R) \right\} = \gamma > 0;
$$

(4) *for any given extremal element* $\nu \in [\mu]_B$ *, there exists a compact subset* E *of* R *with nonzero measure such that*

$$
\inf \left\{ \frac{1}{\int_E |\varphi|} \left(k - Re \int_R \nu \varphi \right) : \varphi \in A_1(R) \right\} = \gamma > 0;
$$

(5) *for any given extremal Beltrami coefficient* $\nu \in [\mu]$ *, there exists a compact subset* E of R *with nonzero measure such that* $[\nu \chi_E + \frac{1}{1+r} \nu \chi_{R-E}]$ *is a non-Strebel point for every* $r \in [0, r_0)$ *for some* $r_0 > 0$;

(6) *for any given extremal element* $\nu \in [\mu]_B$ *, there exists a compact subset* E *of* R *with nonzero measure such that* $[\nu \chi_E + \frac{1}{1+r} \nu \chi_{R-E}]_B$ *is an infinitesimal non-Strebel point for every* $r \in [0, r_0)$ *for some* $r_0 > 0$;

(7) *there exist infinitely many geodesics joining* [0] *and* $[\mu]$;

(8) *there exist infinitely many holomorphic isometries* $\Phi : \Delta \to T(R)$ *such that* $\Phi(0) = 0$ *and* $\Phi(||\mu||_{\infty}) = [\mu]$.

Obviously, we have

Corollary 5.1. *Suppose* $\mu \neq 0$ *is an extremal Beltrami coefficient in* M(R)*. Then the following conditions are equivalent*:

(a) μ *is uniquely extremal with constant modulus*;

 (b) μ *is infinitesimally uniquely extremal with constant modulus*;

(*c*) *for any compact subset* E *of* R *with nonzero measure,*

$$
\inf \left\{ \frac{1}{\int_E |\varphi|} \left(\|\mu\|_{\infty} - Re \int_R \mu \varphi \right) : \varphi \in A_1(R) \right\} = 0;
$$

(*d*) *for any compact subset* E *of* R *with nonzero measure,* $[\mu \chi_E + \frac{1}{1+r} \mu \chi_{R-E}]$ *is a Strebel point for every* $r > 0$;

(*e*) *for any compact subset* E *of* R *with nonzero measure,* $[\mu \chi_E + \frac{1}{1+r} \mu \chi_{R-E}]_B$ *is an infinitesimal Strebel point for every* $r > 0$;

(*f*) *there exists a unique geodesic joining* [0] *and* [μ];

(*g*) there exists only one holomorphic isometries $\Phi : \Delta \to T(R)$ such that $\Phi(0) = 0$ *and* $\Phi(||\mu||_{\infty}) = [\mu]$.

Corollary 5.1 indicates that the above condition (c) or the condition (c) in Theorem A is actually also a sufficient condition for μ to be uniquely extremal with constant modulus.

Acknowledgements. The authors wish to thank Professor Edgar Reich for sending them his inspiring paper [8]. Much gratitude is also due to the referee for helpful suggestions and careful corrections.

> Department of Mathematical Sciences Tsinghua University Beijing, 100084 People's Republic of China e-mail: wallgreat@lycos.com

Department of Mathematics & *LMIB* Beijing University of Aeronautics and Astronautics Beijing, 100083 People's Republic of China e-mail: yiqi@buaa.edu.cn

References

- [1] V. Božin, N. Lakic, V. Marković and M. Mateljević, *Unique extremality*, J. Anal. Math. **75** (1998), 299–338.
- [2] C. J. Earle, I. Kra and S. L. Krushkal, *Holomorphic motions and Teichm¨uller spaces*, Trans. Amer. Math. Soc. **343** (1994), 927–948.
- [3] C. J. Earle and Z. Li, *Isometrically embedded polydisks in infinite dimensional Teichm¨uller spaces,* J. Geom. Anal. **9** (1999), 51–71.
- [4] F. P. Gardiner and N. Lakic, *Quasiconformal Teichm¨uller Theory,* Amer. Math. Soc. Providence, RI, 2000.
- [5] N. Lakic, *Strebel points,* Contemp. Math. **211**, Amer. Math. Soc. Providence, RI, 1997, 417–431.
- [6] Z. Li, *Non-uniqueness of geodesics in infinite dimensional Teichm¨uller spaces,* Complex Var. Theory Appl. **16** (1991) 261–272.
- [7] E. Reich, *An extremum problem for analytic functions with area norm,* Ann. Acad. Sci. Fenn. Ser. A. I. Math. **2** (1976), 429–445.
- [8] , *Non-uniquely extremal quasiconformal mappings,* Libertas Mathematica **20** (2000), 33–38.
- [9] E. Reich and K. Strebel, *On quasiconformal mappings which keep the boundary points fixed,* Trans. Amer. Math. Soc. **138** (1969), 211–222.
- [10] , *Extremal quasiconformal mappings with given boundary values,* In: Contributions to Analysis, A Collection of Papers Dedicated to Lipman Bers, Academic Press, New York, 1974, pp. 375–391.
- [11] Y. Shen, *Some remarks on the geodesics in infinite dimensional Teichmüller spaces,* Acta Math. Sinica, English Series **13** (1997), 497–502.
- [12] , *On Teichm¨uller geometry,* Complex Var. Theory Appl. **44** (2001), 73–83.
- [13] K. Strebel, *Extremal quasiconformal polygon mappings for arbitrary subdomains of compact Riemann surfaces,* Ann. Acad. Sci. Fenn. Math. **27** (2002), 237–247.
- [14] H. Tanigawa, *Holomorphic families of geodesic discs in infinite dimensional Teichm¨uller spaces,* Nagoya Math. J. **127** (1992), 117–128.
- [15] G. W. Yao, *Existence of extremal Beltrami coefficients with non-constant modulus,* preprint.
- [16] Z. Zhou, J. Chen and Z. Yang, *On the extremal sets of extremal quasiconformal mappings,* Sci. China Ser. A, Mathematics **46** (2003), 552–561.