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On the modulus of extremal Beltrami
coefficients

By

Guowu YAO and Yi Qr*

Abstract

Let R be a hyperbolic Riemann surface. Suppose the Teichmiiller
space T(R) of R is infinite-dimensional. Let p be an extremal Beltrami
coefficient on R and let [u] be the point in T'(R). In this note, it is shown
that if p is not uniquely extremal, then there exists an extremal Beltrami
coefficient v in [u] with non-constant modulus. As an application, it fol-
lows, as is well known, that there exist infinitely many geodesics between
[#] and the base point [0] in T'(R) if u is non-uniquely extremal.

1. Introduction

Let R be a hyperbolic Riemann surface and let QC(R) be the space of all
quasiconformal mappings f from R to a variable Riemann surface f(R). The
Teichmiiller spac T'(R) is the space of these mappings factored by an equivalence
relation. Two mappings, f and g, are equivalent if there is a conformal mapping
¢ from f(R) onto g(R) and a homotopy through quasiconformal mappings h;
mapping R onto g(R) such that hg = cof, hy = g and h¢(p) = co f(p) = g(p) for
every p in the ideal boundary of R. Let [f] or [u] denote the equivalence class
of a quasiconformal mapping f in QC(R), where u is the Beltrami coefficient
of f. Since the Beltrami coefficient p uniquely determines the mapping f up
to postcomposition by a conformal mapping, the Teichmiiller space T'(R) may
be represented as the space of equivalence classes of Beltrami coefficients p in
the unit ball M(R) of the space L*°(R). The equivalence class of the Beltrami
coefficient zero is the basepoint of T'(R).

Given f € QC(R), let u € M(R) be the Beltrami coefficient of f. Let

K[f] = % denote the maximal dilation of f. We define

ko([u]) = inf{[|v[ec = v €[]},
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and

1+ k()
T~ kol[u))’

We say that p is extremal in [p] (f is extremal in [f]) if ||u|lee = ko([]),
and uniquely extremal if ||v||o > ko([p]) for any other v € [u]. We call that a
Beltrami coefficient pu is of constant modulus if |u| is a constant almost every-
where on R.

For any p, let h*(u) be the infimum over all compact subsets E contained
in R of the essential supremum norm of the Beltrami coefficient u(z) as z
varies over R\E. Define h([p]) to be the infimum of h*(u) taken over all
representatives u of the class [u]. The number

_ L+ h((u)
1 —h([u])

is called the boundary dilatation of the class [u]. Obviously h([u]) < ko([]) and
following [3], [5], we call a point [u] in T(R) a Strebel point if h([u]) < ko([1]).
Let A(R) be the Banach space of all holomorphic functions ¢ on R with

L'—norm
[ el <,
R

and let A; (R) be the unit sphere of A(R). By Strebel’s frame mapping theorem,
every Strebel point [u] is represented by the unique Beltrami differential of the
form k|p|/p, where k = ko([u]) € (0,1) and ¢ is a unit vector in A;(R).

Two elements p and v in L°°(R) are infinitesimally equivalent, which is
denoted by p ~ v, if [[, updzdy = [[,vededy for all ¢ € A(R). Denote by
N(R) the set of all the elements in L>°(R) which are infinitesimally equivalent
to zero. Then B(R) = L*°(R)/N(R) is the tangent space of the Teichmiiller
space T(R) at the basepoint.

Given pu € L*(R), we denote by [u]p the set of all elements v € L*°(R)
infinitesimally equivalent to u, and set

(L.1) ]l = inf{[[v]loc : v € 1B}

We say that p is infinitesimally extremal (in [u]p) if ||p]|co = ||p]|, and we say
it is infinitesimally uniquely extremal if ||v||oc > ||u|| for any other v € [u]p.

In a parallel manner we can define the boundary dilatation for the infinites-
imal Teichmiiller class [u]p. The boundary dilatation b([u]p) is the infimum
over all elements in the equivalence class [u]p of the quantity b*(v). Here
b*(v) is the infimum over all compact subsets E contained in R of the essential
supremum of the Beltrami coefficient v as z varies over R — E.

An infinitesimally equivalent class [p]p is called an infinitesimal Strebel
point if ||g|| > b([u] 5)- It follows from the infinitesimal frame mapping theorem
(see Theorem 2.4 in [7]) that if [u]p is an infinitesimal Strebel point, then there
exists a unique vector ¢ in A (R) such that p and ||p|||¢|/¢ are infinitesimally
equivalent.

Ko[f] = Ko([u])

H([u])
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In [1], Bozin, Lakic et al. gave a series of characteristic conditions for a
Beltrami coefficient u to be (infinitesimally) uniquely extremal. For simplicity,
we state parts of characteristic conditions in the special case.

Theorem A. Let u be a Beltrami coefficient in M(R) with constant
modulus. Then the following conditions are equivalent:
(a) p is uniquely extremal in its class [p] in T(R);
(b) p is infinitesimally uniquely extremal in its class [p]p in B(R);
(¢) for every measurable subset E of R with nonzero measure, there exists a
sequence of unit vectors y, in A1(R) such that

1
T Tonl <|M||oo - Re/ /wn) — 0, as n — o0;
E|Pn R

(d) p is extremal in [p] and, for every compact subset E of R with nonzero
measure and every r > 0, [uxE + ﬁlTNXR—E] is a Strebel point in T(R);

(e) p is infinitesimally extremal in [u]g and, for every compact subset E of R
with nonzero measure and every r > 0, [uxg + 11?,UXR—E]B is an infinitesimal
Strebel point in B(R).

When [p] in T'(R) contains more than one extremal Beltrami coefficient,
the situation is very complicated. It is of interest to consider the problem as
follows.

Problem 1. If [u] in T(R) admits more than one extremal Beltrami
coefficient, can we say that there always exists an extremal Beltrami coefficient
in [u] with non-constant modulus?

When R is the unit disk A, a positive answer to this problem is actually
implied by Reich’s proof of his theorem in [8] (also see [16]). His proof depends
on the Polygon Inequality due to Reich and Strebel [10]. However, the Polygon
Inequality is not generalized for general hyperbolic Riemann surfaces except
for some special surfaces, for example, see [13]. And hence for more general
hyperbolic Riemann surfaces, the solution requires a different technique. The
main aim of this paper is to answer Problem 1 affirmatively. We avoid using
the Polygon Inequality and our proof is self-contained.

Theorem 1.1.  Suppose p in M(R) is extremal with ||p)lec = k and is
not uniquely extremal. Then there exists a compact subset I of R with nonzero
measure and an extremal Beltrami coefficient v € [u] such that |v| < ﬁ on
E for some ro > 0.

Corollary 1.1.  Suppose p in M(R) is extremal with ||u|lec = k. If for
every extremal Beltrami coefficient v in [u], |v| = k a.e in R, then p is uniquely
extremal with constant modulus.

Corollary 1.1 shows that the case (2) of Theorem 1 in [11] really does not
exist.
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The analogous problem in the infinitesimal setting is considered in Section
4. Applying Theorem 1.1 and the result in [2], in Section 5 we give an alternative
proof that there exist infinitely many geodesics between [u] and the base point
[0] in T(R) if p is non-uniquely extremal.

2. Non-Strebel Points
The first lemma is inspired by the lemma in [8].
Lemma 2.1. If u € M(R) is extremal with ||]|cc = k, then for every

measurable subset E of R with nonzero measure and every r > 0, the Beltrami

coefficient p,. = uxg + H%JLXR—E has the property ko([p,]) > 1.];"'

Proof. Let n be an extremal Beltrami coefficient in [u,]. Then there exist
homotopic quasiconformal mappings g and h with Beltrami coefficient pu, and
7, respectively, such that g(R) = h(R) and g(p) = h(p) for every point on the
ideal boundary of R. Let f be the quasiconformal mapping with the Beltrami
coefficient p. It follows that f and f o g~! o h are equivalent in T(R). Since f
is extremal by hypothesis, it follows that

1+ k&
1-k
where F = f o g~!. Note that

(2.1) = K[f] < K[f o g~ o h] < K[FIK[h],

rlu(2)]
pu(z) — (2 ez, < E€R-E,
lur(g9(2)] = |M — { Hr—u=)?
1— w(2)pr(2) 0, z € E.
We have
rk
< — .
hr(9(:)] < T 2 € R
Thus,
1+kl1+r—k
2.2 KFI< ————.
(2:2) []_17k1+7"+k
Combining (2.1) and (2.2), we obtain
l+r+k 1415
K = > =
)= Kolt] > = = T
“+r
which proves the lemma. O

Theorem 2.1.  Suppose that p # 0 is extremal with ||pllcc = k and
there exists a compact subset E of R such that

(2.3) inf{l (k—Re/R/up) : g0€A1(R)} =~>0.

s lel
Then [u,] = [uxe + ﬁuxR_E] is a non-Strebel point and ko([p,]) = % for
every r € [0, Ecl(;f;g)
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Proof. Suppose [u,] is a Strebel point for some r > 0. By Lemma 2.1,
we have ko([ur]) > s = 1fr. Thus, by Strebel’s frame mapping theorem, there
\sol

exists s, = ko([ur]) > s and a unit vector ¢ in A;(R) such that p,. and s,
are equivalent. Therefore, by the Main Inequality [9, 4], we have

1+s 1+4s, 1+ pro/|e|?
< 125 o) < [ AL,
l—s = 1—s, — ||

Let A = ﬁ We have

1+s |1+A<p/|s0||2 1+ po/lell®
e M e D S ¢
A Y ~Iu

where

¥ = /‘ |1+)\90/|<PH2 _/|<p|[|1+u90/|<ﬁ||2|1+/\s0/|<P||2}
B 1—[uf? L=

By a simple computation,

2
X < 1+s +2RefR)\g07
1—s2

Thus,

1+s*+2Re [, A
1+sS + 5%+ 2Re [, L 2kr /M’
1—s 1-—s2 1-K0Q+r-—

2kr( 1—5
2 — <
( Re )_(1 Y1 4+r— /W'

Therefore, we get

147+ k)kr +k
- Re/Rw 1—|—7’/| /l

1-k (1—k)y
TR R T, 1 (’“‘RG/R“*"> Z ORI R

Thus, [u] is a non-Strebel point for every r € [0, 21(;_]:3;)’) Hence, ko([ur]) =

namely,

Hence,

H([pr]) < 1+ . Again by Lemma 2.1, we must have ko([u,]) = % O

Lemma 2.2.  Suppose that p is extremal but not (infinitesimally)
uniquely extremal with ||pl|ee = k. Then there exists a compact subset E of
R with nonzero measure such that

(2.4) inf{f;m <k—Re/R,u<p> : weAl(R)} — 5 >0



240 Guowu Yao and Yi Qi

Proof. 1If p is of constant modulus, then the lemma is an immediate corol-
lary of Theorem A.

If p is not of constant modulus even if 4 is (infinitesimally) uniquely ex-
tremal, then there exists a compact subset E of R such that |u| < s < k on E.
Thus, for any unit vector ¢ in A;(R),

ﬁ(k_Re/Rmp>Zﬁ(k/E|¢|—Re/Eu¢>2k—s>O.

3. Extremal Beltrami coefficients with non-constant modulus
By Lemma 2.2, Theorem 1.1 is a direct corollary of the following theorem.

Theorem 3.1.  Suppose p in M(R) is extremal with ||u||co = k. If there
exists a compact subset G of R with nonzero measure such that

(3.1) inf{f:'(p| (k—Re/R/ch> : g0€A1(R)} =v>0,

then there exists a compact subset E of R with nonzero measure and an extremal

Beltrami coefficient v € [p] such that |v| < 1fro on E for some ro > 0.

Proof. Since p satisfies (3.1), applying Theorem 2.1 to G, we can find
some 19 > 0 such that [u.] = [uxe + 1ir”XR*G] is a non-Strebel point and

ko([ur]) = 1_% for every r € [0, 79).

Let 1 be an extremal Beltrami coefficient in [u,.]. Then there exist ho-
motopic quasiconformal mappings g and h with Beltrami coefficient p, and 7,
respectively, such that g(R) = h(R) and ¢ is homotopic to h by a homotopy
which fixes every point on the ideal boundary of R. Let f be the quasiconfor-
mal mapping with the Beltrami coefficient . By the same computation as in
the proof of Lemma 2.1, we have

rlu(z)|
/U’Z_,Umz T —Ta2? ZGR_G’
lnr(g(2))] = IQ| = TFr=Tu=)P
l—u(z),uT(Z) 0, z € G,
and
1+k1+7r—k
KlFl< ——
e Py
where F' = f o g~!. Since K[h] = %7 we obtain

_ 1+kl+r—kl+:& 14k
K Lo h] < K[F|K[h] < o )
[fog™" oh] < K[F] []_1—k1+r+k1—$ 1k

1

Let v denote the Beltrami coefficient of f o g7 o h. Then v is extremal in [u].
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Let E = h=!' o g(G). Note that fog!is conformal on g(G), we have
v(z) = n(z) for almost every z € E, and hence |v| < 7= on E.
This completes the proof of Theorem 1.1. |

We end the section with the following open problem.

Problem 2.  If [u] in T(R) contains more than one extremal Beltrami
coefficient, can we say that there always exists an extremal Beltrami coefficient
v in [u] and a measurable subset E of R with non-empty interior such that
lv| < %&ﬂ) a.e. on E for somerg > 07

4. Infinitesimally extremal Beltrami differentials with non-constant
modulus

Lemma 4.1. If u € L*°(R) is infinitesimally extremal with ||p]lc = k,
then for every measurable subset E of R with nonzero measure and every r > 0,
the Beltrami coefficient p,. = pxe + ﬁHXR—E has the property | .|| > %

Proof. Let n be an extremal in [u,]p. Then y is infinitesimally equivalent
to u+mn — py, and

H— by = Tl“—ﬁi)’ ZGR*E’
0, ze k.

So, ||l — trlloo < 1+ . Then we have

(4.1) kE=lplleo <ll+n—tirlloc < [nlloo + [I1 = tirlloo-
Therefore,
rk k
>k — =
Il > b= 1o =
proving the lemma. (|

Theorem 4.1.  Suppose that u # 0 is infinitesimally extremal with
ltlloo= k and there exists a compact subset E of R such that

(4.2) inf{fEM <k: Re/ > : @EAl(R)} — >0,

Then [NT]B = [uxe + lJlm,,uxR E|B s an infinitesimal non-Strebel point and
bl = 1+r for every r € [0, 7).

Proof. Suppose [u,]p is an infinitesimal Strebel point for some r > 0.
Then by the infinitesimal frame mapping theorem, there exists a unit vector ¢

in A;(R) such that ur and [pr (|13 Ll are infinitesimally equivalent. By Lemma

4.1, we have ||u, Therefore we have

|| — 1+r

|<P| "
| prp = | pp+ ®
/ I1ar] R E rR-pl+T
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k—Re/mpSkr/ l¢o].-
R E

1 8l
r > k—Re/ugo>2.
ka|50|< R k

Thus, [u-]p is an inﬁmtesnnal non-Strebel point for every r € [0, %) Hence,
| =

1+7" O

Thus,

Hence,

leer]l = 0[] B) < 1+r Again by Lemma 4.1, we must have |||

Lemma 4.2.  Suppose p in L®(R) is infinitesimally extremal with
litlloo= k. If there exists a compact subset E of R with nonzero measure such
that

(4.3) inf{fE|<P| (k Re/ > : g0€A1(R)} =v>0,

then there exists an extremal Beltrami coefficient v € [u]p such that |v| <
on E for some rg > 0.

1+7‘0

Proof. Since p satisfies (4.3), applying Theorem 4.1 to E, we can find
some 1o > such that [,ur]B = [uxc + 1ir”XR g]p is an infinitesimal non-

Strebel point and ||| = for every r € [0, ro].

1+r

Let ) be an extremal element in [u,]5. Then ||n]e = 1+r and

i +1 = trlloo < 1Mlloe + It — prlloe = k-

Since p is infinitesimally equivalent to v = p 4+ n — ., 1/ is infinitesimally
extremal in [p]p. In addition, v = n on £ and hence |v| < 7= on E.
The proof of Lemma 4.2 is completed. O

Lemma 2.2 and Lemma 4.2 give

Corollary 4.1.  Suppose p in L (R) is infinitesimally extremal with
lielloo = k. If for every extremal element v in [u)p, |v| =k a.e in R, then u is
uniquely extremal with constant modulus k.

Here, we give a stronger result than the above corollary in a simple way.

Theorem 4.2.  Suppose p in L*°(R) is infinitesimally extremal. If for
every extremal element v in [, |v| = |p| a.ein R, then y is uniquely extremal.

Proof. Suppose v is an extremal element in [u]|g. Put g =tp+ (1 —¢)v
for ¢ € (0,1). Then by hypothesis, u; € [¢]p and for almost all z € R,

[u(2)| = [tu(z) + (L= ()] < tu(2)] + (1= )v(2)] = |u(2)].

This happens if and only if pu(z) = v(z) a.e. in R, which implies that p is
uniquely extremal in [u]p. O

We note that we cannot prove a parallel global result corresponding to
Theorem 4.2 for [u], that is, the following problem is still unsettled.



On the modulus of extremal Beltrami coefficients 243

Problem 3.  Suppose p in M(R) is an extremal Beltrami coefficient in
[u]. If for every extremal Beltrami coefficient v in [u], |v| = |p| a.e in R, can
we say that w is uniquely extremal?

Our main result of the paper is actually to solve Problem 3 in the special
case that p is of constant modulus.

Remark 1. Problem 3 cannot be reduced to Problem 1. The first au-
thor recently showed [15] that there exists a point [u] in T(R) admitting in-
finitely many extremal Beltrami coefficients such that every extremal Beltrami
coefficient in [p] is not of constant modulus, and so is its infinitesimal version.

It is easy to see from the proof of Theorem 4.2 that there exist infinitely
many extremal elements in [u]p with non-constant modulus if 44 is non-uniquely
extremal. Is it also true for [u]?

Combining Lemma 2.2, 4.2, Theorem 4.1 with Theorem A, the following
theorem is proved.

Theorem 4.3.  Suppose p # 0 in L>®°(R) is infinitesimally extremal
with ||p)lco = k. Then the following three conditions are equivalent:
(1) there exists an extremal element in [u]p with non-constant modulus;
(2) for any given extremal element v € [u]p, there exists a compact subset E
of R with nonzero measure such that

inf{wa| (k: Re/pr) : weAl(R)} =7 >0

(3) for any given extremal element v € [u]|p, there exists a compact subset E
of R with nonzero measure such that [vxg + ﬁr—TVXRfE]B is an infinitesimal
non-Strebel point for every r € [0,1¢9) for some o > 0.

5. Geodesics in Teichmiiller spaces

A hyperbolic Riemann surface can be viewed as a quotient space A/T" in
certain sense, where I' is a Fuchsian group acting on the unit disk A. M (R) is
canonically identified with the set of Beltrami coefficients p in M (A) compatible
with T, that is, those p for which

(mo)' /v = p, forallyeTl.

Let f#: A — A be the quasiconformal mapping with complex dilatation pu
keeping 1, —1 and 4 fixed. It is well known that p and v in M (R) are equivalent
if and only if f# and f* coincide on 0A.

For any Beltrami coefficient € M(A), let H be the usual Hilbert trans-

form defined by
/ / d§d
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Put
hy=p+pHp+ pH(pHp) +--- .

The following useful lemma can be found in [12].

Lemma 5.1.  Let p and v be two Beltrami coefficients in M (A), Then
p and v are equivalent in T(A) if and only if hy, — h, € N(A).

For two given points [u] and [¢v] in T(R), the Teichmiiller distance between
them is defined as

1+ [nll
1—|nllec’
where 7 is an extremal Beltrami coefficient in the equivalence class of the Bel-
trami coefficient of f* o (f¥)~!.

A geodesic « in T'(R) is defined to be the image of an injective continuous
map ® from a non-trivial compact real interval [a, b] into T'(R) such that

d(®(z), ®(2)) = d(®(z), ®(y)) + d(2(y), D(2)),

whenever a < z <y < z <b. The points ®(a) and ®(b) are called the endpoints
of . In particular, if y is extremal, then the image of the @ : [0, ||t]|c0] — T(R)
determined by ®(t) = [tu/||i|loo] is a geodesic joining [0] and [u].

Geodesic plays an important role in the geometry of Teichmiiller spaces.
If p is uniquely extremal with constant modulus, then there exists a unique
geodesic between two points [0] and [u]. This was proved by Li Zhong [6] when
the group T is trivial and by Tanigawa [14] in the general case. Earle et al. [2]
proved that the converse is also true. Now, as an application of Theorem 1.1,
we give a somewhat different proof from that of Earle et al.

Suppose that p is extremal with non-constant modulus. Then the set
E={z€ R: |u(z)| <r|plloo} has nonzero measure for some r € (0,1). For
te A, put

([, ) = 5 los

O(t) = [tr/ll 1]l ]

and
(p%@(t) = [ﬂ(t@)]v

where u(t, @) = tu/|ulloc + 55t — |lulloc)xElel/¢) and ¢ € Ai(R). These
functions are holomorphic maps from A to T(R) sending 0 to 0 and ||/« to
[1]. So, by Theorem 5 in [2], they are holomorphic isometries with respect
to the Poincaré metric on A and the Teichmiiller metric on T'(R). Thus,
O, ([0, ||i]|loo]) is a geodesic joining [0] and [u].

It remains to show that, the holomorphic isometries @, are different from
each other when ¢ varies in A;(R). Suppose to the contrary, there would exist
two different elements ¢ and ¢ in A;(R) such that [u(t, ¢)] = [p(t,v)] for all
te A

Let p: A — R = A/T be the canonical projection. Let fi,, iy, ¢ and {./;
denote the lifts of u(t, ), pu(t,¥), ¢ and ¢ to A, respectively. Then 71, and fi,
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are equivalent in 7(A). By Lemma 5.1, hz, — hg

7, € N(A) for all [t| < 1. By
a simple computation, we have

1—r J
S S L (% jj')t+ oft), as £ — 0.

- %) € N(A) and consequently XE(W’I Ii‘) €

N(R). This implies that ¢ = ¢ which contradicts the hypothesis, and hence
®, and ®, are different from each other.

Combing Theorem 6 in [2], Lemma 2.2, Theorem 2.1, Theorem 4.3 and
the proof of Theorem 3.1 with the above discussion, one can easily prove the
following theorem.

Thus, we conclude x,,-1(g)(

<[

Theorem 5.1.  Suppose p # 0 is an extremal Beltrami coefficient in
M(R) with ||p]|coc = k. Then the following conditions are equivalent:
(1) there exists an extremal Beltrami coefficient in [p] with non-constant mod-
ulus;
(2) there exists an extremal element in [u]p with non-constant modulus;
(3) for any given extremal Beltrami coefficient v € [u], there exists a compact
subset E of R with nonzero measure such that

inf{fEM (k: Re/pr) : weAl(R)} =7 >0

(4) for any given extremal element v € [u]|p, there exists a compact subset E
of R with nonzero measure such that

inf{wa| (k Re/R ):goeAl(R)}—fy>0;

(5) for any given extremal Beltrami coefficient v € [u|, there exists a compact
subset E of R with nonzero measure such that [vxg + ﬁlTVXR—E] s a non-
Strebel point for every r € [0,1q) for some rg > 0;

(6) for any given extremal element v € [u|p, there exists a compact subset E
of R with nonzero measure such that [vxg + 1+T VXR—E|B s an infinitesimal
non-Strebel point for every r € [0,7¢) for some ro > 0;

(7) there exist infinitely many geodesics joining [0] and [u];

(8) there exist infinitely many holomorphic isometries ® : A — T(R) such that
®(0) =0 and O(||ulloc) = [1]-

Obviously, we have

Corollary 5.1.  Suppose p # 0 is an extremal Beltrami coefficient in
M(R). Then the following conditions are equivalent:
(a) p is uniquely extremal with constant modulus;
(b) p is infinitesimally uniquely extremal with constant modulus;
(¢) for any compact subset E of R with nonzero measure,

mf{f;m (Il = e [ wp) s o€ taim } =0,
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(d) for any compact subset E of R with nonzero measure, [uxg + ﬁ,uXR_E]
is a Strebel point for every r > 0;

(€) for any compact subset E of R with nonzero measure, [uxg + H%MXR—E]B
s an infinitesimal Strebel point for every r > 0;

(f) there exists a unique geodesic joining [0] and [u];

(g9) there exists only one holomorphic isometries ® : A — T(R) such that
®(0) =0 and (|| ulloc) = [u]-

Corollary 5.1 indicates that the above condition (c) or the condition (c) in
Theorem A is actually also a sufficient condition for p to be uniquely extremal
with constant modulus.
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