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The compressible Euler equations for an
isothermal gas with spherical symmetry

By

Naoki Tsuge

Abstract

We shall study isothermal gas dynamics with spherical symmetry.
In this case, existence theorems have been obtained outside a solid ball.
However, little is known for the case including the origin, because the
equation has a singularity there. In this paper, we will present discontin-
uous solutions for this case, by introducing a certain non-homogeneous
conservation laws and using a modified Glimm’s scheme.

1. Introduction

The compressible Euler equations for an isentropic gas in three dimensional
space are given by

ρt + ∇ · (ρ�u) = 0,
(ρ�u)t + ∇ · (ρ�u⊗ �u+ pI) = 0

(1.1)

with the equation of state

(1.2) p = a2ργ ,

where density ρ, velocity �u and pressure p are functions of x ∈ R3 and t ≥ 0,
while a > 0 and γ ≥ 1 are given constants and I is a 3 dimensional unit matrix.

In this paper, we will prove the local existence of solution for the case of
spherical symmetry with γ = 1 ; i.e., the isothermal gas case. In this case
global weak solutions are known to exist outside a solid ball at the origin in [5]
and [6]. We consider this problem including the origin.

As we will be seen below, our proof does not work without these restric-
tions. Thus, we look for solutions of the form

(1.3) ρ = ρ(t, |x|), �u =
x

|x|u(t, |x|).

Then, denoting r = |x|, (1.1) becomes

ρt +
1
r2

(r2ρu)r = 0,

ρ(ut + uur) + pr = 0.
(1.4)
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Set ρ̃ = r2ρ. Then we have from (1.4)

ρ̃t + (ρ̃u)r = 0,

ut + uur +
a2ρ̃r

ρ̃
=

2a2

r
.

(1.5)

Now, we suppose u(t, 0) = 0 and introduce the Lagrangian mass coordinates

(1.6) τ = t, ξ =
∫ r

0

ρ̃(t, r)dr.

Then ξ > 0 as long as ρ̃ > 0 for r > 0, and (1.5) is reformulated as

ρ̃t + ρ̃2uξ = 0,

ut + a2ρ̃ξ =
2a2

r
.

(1.7)

Set v = 1/ρ̃ and note that the inverse transformation to (1.6) is given by

(1.8) t = τ, r =
∫ ξ

0

v(t, ζ)dζ.

Then after changing τ to t and ξ to x respectively, (1.7) is written as

vt − ux = 0,

ut +
(
a2

v

)
x

=
2a2∫ x

0
v(t, ξ)dξ

.
(1.9)

Remark 1.1. If w is constant and v(t, x) = wx−2/3, the above trans-
formation implies that ρ(t, x) becomes constant.

We consider the initial boundary value problem for (1.9) in t ≥ 0, x ≥ 0
with following boundary and initial conditions

U(0, x) .= (v̄(x), ū(x)) = (w̄(x)x−
2
3 , ū(x))

=

{
U− = (w−x−

2
3 , 0), 0 < x < x̄,

U+ = (w+(x)x−
2
3 , u(x)), x̄ < x

(1.10)

and

(1.11) u(t, 0) = 0 for t > 0.

Our main result is as follows.

Theorem 1.2. There exist δ0, δ1 and T > 0 with the following property.
For every initial data of the form (1.10) with

(1.12) Tot.Var. (v̄, ū) < δ1, max{sup
x
w+(x), w−} > δ0,

the initial boundary value problem (1.9) through (1.11) has a weak solution
defined in 0 ≤ t ≤ T , where w− is a constant.
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For simplicity, we consider the following initial conditions from now on.

(1.13) U(0, x) .= (v̄(x), ū) = (w̄x−
2
3 , ū) =

{
U− = (w−x−

2
3 , 0), 0 < x < x̄,

U+ = (w+x−
2
3 , u), x̄ < x,

where w−, w+ and u are constants.
First, we consider the auxiliary equation

vt − ux = 0

ut +
(
a2

v

)
x

=
2a2

3xv
.

(1.14)

We will use the idea of [5] and Riemann solutions of (1.14) to construct approx-
imate solutions. Then, notice that both (1.9) and (1.14) have a steady-state
solution of the form v(t, x) = w0x

−2/3, u(t, x) = u0, where w0 and u0 are
constants. This is the key to guarantee the existence of solution.

2. The Cauchy problem of the auxiliary equation

The homogeneous equation corresponding to (1.9) is

wt − ux = 0,

ut +
(
a2

w

)
x

= 0.
(2.1)

Its Jacobian matrix has the two real distinct eigenvalues

(2.2) λ1 = − a

w
, λ2 =

a

w

with corresponding eigenvectors

(2.3) r1 =
(
1,
a

w

)
, r2 =

(
−1,

a

w

)
.

Let

(2.4) U− .= (w−, u−),

where w− and u− are constants and w− > 0. The 1-rarefaction curve through
U− is

(2.5) R1 =
{
(w, u) : u− u− = a logw − a logw−} .

Similarly, the 2-rarefaction curve through U− is

(2.6) R2 =
{
(w, u) : u− u− = −a logw + a logw−} .

These shock curve are computed as

(2.7) S1 =
{

(w, u) : u− u− =
a√
ww− (w − w−), w− > w

}
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(w−, u−)

Figure 2.1. Shock curves and rarefaction curves in (w, u)-plane.

and

(2.8) S2 =
{

(w, u) : u− u− = − a√
ww− (w − w−), w− < w

}
.

Now we consider Cauchy problem for (1.14) with initial data

(2.9) v(0, x) = w̄(x)x−
2
3 , u(0, x) = ū(x),

provided w̄ and ū are BV functions. By BV we denote the space of functions
of bounded variation on R+ = (0,∞). This problem is essentially the same as
that of (2.1). In fact, let v(t, x) = w(t, x)x−2/3, then (1.14) becomes

wt − x
2
3ux = 0,

ut + x
2
3

(
a2

w

)
x

= 0.

Moreover, let

(2.10) ξ = 3x
1
3 .

Then we have

wt − uξ = 0,

ut +
(
a2

w

)
ξ

= 0.
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The equation is solved for the case of large data in [7].
Finally, we observe Riemann problem for (1.14) with initial data

(2.11) U(0, x) =

{
U− = (w−x−

2
3 , u−), 0 < x < x̄,

U+ = (w+x−
2
3 , u+), x̄ < x,

where w+, w−, u− and u+ are constants. In view of above transformation, 1-
and 2-rarefaction waves are

v(t, x) .=




w−x−
2
3 , t < −3w−

a
(x

1
3 − x̄

1
3 ),

w+x−
2
3 , t > −3w+

a
(x

1
3 − x̄

1
3 ),

wx−
2
3 , t = −3w

a
(x

1
3 − x̄

1
3 ), w ∈ [w−, w+],

u(t, x) .=




u−, t < −3w−

a
(x

1
3 − x̄

1
3 ),

u+, t > −3w+

a
(x

1
3 − x̄

1
3 ),

u− + a logw − a logw−, t = −3w
a

(x
1
3 − x̄

1
3 ), w ∈ [w−, w+],

where (w+, u+) ∈ R1, and

v(t, x) .=




w−x−
2
3 , t >

3w−

a
(x

1
3 − x̄

1
3 ),

w+x−
2
3 , t <

3w+

a
(x

1
3 − x̄

1
3 ),

wx−
2
3 , t =

3w
a

(x
1
3 − x̄

1
3 ), w ∈ [w+, w−],

u(t, x) .=




u−, t >
3w−

a
(x

1
3 − x̄

1
3 ),

u+, t <
3w+

a
(x

1
3 − x̄

1
3 ),

u− − a logw + a logw−, t = −3w
a

(x
1
3 − x̄

1
3 ), w ∈ [w+, w−],

where (w+, u+) ∈ R2, respectively.
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Figure 2.2. 1-rarefaction and 2-rarefaction waves.

Similarly, 1- and 2-shocks are

v(t, x) .=



w−x−

2
3 , t < −3

√
w−w+

a
(x

1
3 − x̄

1
3 ),

w+x−
2
3 , t > −3

√
w−w+

a
(x

1
3 − x̄

1
3 ),

u(t, x) .=



u−, t < −3

√
w−w+

a
(x

1
3 − x̄

1
3 ),

u+, t > −3
√
w−w+

a
(x

1
3 − x̄

1
3 ),

where (w+, u+) ∈ S1, and

v(t, x) .=



w−x−

2
3 , t >

3
√
w−w+

a
(x

1
3 − x̄

1
3 ),

w+x−
2
3 , t <

3
√
w−w+

a
(x

1
3 − x̄

1
3 ),

u(t, x) .=



u−, t >

3
√
w−w+

a
(x

1
3 − x

1
3
0 ),

u+, t <
3
√
w−w+

a
(x

1
3 − x

1
3
0 ),

where (w+, u+) ∈ S2, respectively.
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Figure 2.3. 1-shock and 2-shock.

3. Construction of approximate solutions

To construct the approximate solutions, we shall use the difference scheme
developed in [7]. For l, h > 0, define

Y = {(n,m); n = 1, 2, 3, . . . , m = 1, 3, 5, . . .},
A =

∏
(m,n)∈Y

[{nh} × ((m− 1)l, (m+ 1)l)],(3.1)

where l/h will be determined later. Choose a point {anm} ∈ A randomly, and
write anm = (nh, cnm). For n = 0, we set c0m = ml. We denote approximate
solutions by vl = wlx−2/3 and ul. Mesh lengths l and h are chosen so that
l/h > a/(inf wl), for some T . Here T will also be determined later. We shall
show later that there exists a w∗ such that inf wl ≥ w∗ > 0. Considering (2.10),
let ϕ(x) = (1/27)x3.

For 0 ≤ t < h, ϕ(ml) ≤ x < ϕ((m+ 2)l), m:odd, we define

vl(t, x) = vl
0(t, x),

ul(t, x) = ul
0(t, x) + El(t, x)t,

(3.2)

where vl
0(t, x) and ul

0(t, x) are the solutions of (1.14) with initial data

(3.3) U l
0(0, x) =

{
(w̄(ϕ(ml))x−

2
3 , ū(ϕ(ml))), x < ϕ((m+ 1)l),

(w̄(ϕ((m+ 2)l))x−
2
3 , ū(ϕ((m+ 2)l))), ϕ((m+ 1)l) < x,

where w̄, v̄ and ū are in (1.13), and

(3.4) El(t, x) =
2a2∫ ϕ(ml)

0
v̄(ξ)dξ

− 2a2

3v̄(ϕ(ml)) · ϕ(ml)
.
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For 0 ≤ t < h, 0 ≤ x < ϕ(l), we define vl and ul by (3.2) where vl and ul

are the solution of (1.14) with boundary data

vl
0(0, x) = vl(ϕ(l)), ul

0(0, x) = ul(ϕ(l)), x > 0,(3.5)
u(t, 0) = 0, t > 0,(3.6)

and

(3.7) El(t, x) = 0.

Suppose that vl and ul are defined for 0 ≤ t < nh. For nh ≤ t < (n + 1)h,
ϕ(ml) ≤ x < ϕ((m+ 2)l), m:odd, we define

vl(t, x) = vl
0(t, x),

ul(t, x) = ul
0(t, x) + El(t, x) · (t− nh),

(3.8)

where vl
0 and ul

0 are the solutions of (1.14) with initial data (t = nh)

(3.9) U l
0(nh, x) =




(wl(nh− 0, ϕ(cnm))x−
2
3 , ul(nh− 0, ϕ(cnm))),

x < ϕ((m+ 1)l),
(wl(nh− 0, ϕ(cn m+2))x−

2
3 , ul(nh− 0, ϕ(cn m+2))),

x > ϕ((m+ 1)l),

and

(3.10) El(t, x) =
2a2∫ ϕ(ml)

0
vl(nh− 0, ξ)dξ

− 2a2

3vl(nh− 0, ϕ(ml)) · ϕ(ml)
.

For nh ≤ t < (n+1)h, 0 ≤ x < ϕ(l), we define vl and ul as (3.8), where vl
0 and

ul
0 are the solutions of (1.14) with initial (t = nh) boundary data

vl
0(nh, x) = wl(nh− 0, ϕ(cn1))x−

2
3 , ul

0(nh, x) = ul(nh− 0, ϕ(cn1)), x > 0,
(3.11)

u(t, 0) = 0, t > nh,(3.12)

and El(t, x) is as (3.7).

Remark 3.1. If x̄1/3 − (a/3w∗)T > 0,

El(t, x) =
2a2∫ x

0
vl(t, ξ)dξ

− 2a2

3xvl(t, x)
= 0

for 0 ≤ t ≤ T and 0 ≤ x ≤
(
x̄

1
3 − a

3w∗
t

)3

.

(3.13)

Therefore, no jump exists in the area (see a shaded area in Fig. 3.4).
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t

x

T

x̄

↓ t = −3w∗

a
(x

1
3 − x̄

1
3 )

Figure 3.4. Approximate solution.

4. Bounds on the total variation

In this section, we shall prove bounds on total variation of approximate
solutions defined in the previous section. So we must prepare lemma.

Lemma 4.1. Suppose that there exist some positive constants δ2 < δ0
and T such that

Tot. Var. {(wl(t, ·), ul(t, ·))} < δ2 and x̄
1
3 − a

3w∗
T > 0 for 0 ≤ t ≤ T.

Then,

Tot. Var. {El(t, ·)} ≤ 4a2

3w∗(x̄
1
3 − a

3w∗
T )

+
2a2δ2

3w2∗(x̄
1
3 − a

3w∗
T )

for 0 ≤ t ≤ T.

Proof. Before proof, we recall that w∗ is defined in Section 3. Observing
(3.13) and∣∣∣∣ 2a2

3x
1
3w(t, x)

− 2a2

3y
1
3w(t, y)

∣∣∣∣ ≤ 2a2

3x
1
3

∣∣∣∣w(t, x) − w(t, y)
w(t, x)w(t, y)

∣∣∣∣+ 2a2

3w(t, y)

∣∣∣∣ 1
x

1
3
− 1
y

1
3

∣∣∣∣ ,
we have

Tot. Var. {El(t, ·)} ≤ 2a2δ2

3w2∗(x̄
1
3 − a

3w∗
T )

+
2a2

3w∗(x̄
1
3 − a

3w∗
T )

+
2a2

3w∗(x̄
1
3 − a

3w∗
T )

for 0 ≤ t ≤ T.



�

�

�

�

�

�

�

�

746 Naoki Tsuge

Now system (2.1) is hyperbolic provided w > 0, with the characteristic
roots and Riemann invariants given by

(4.1)
λ1 = − a

w
, r = u+ a logw,

λ2 =
a

w
, s = u− a logw.

It is well-known ([7]) that all shock wave curves in the (r, s)-plane have the
same figure (see Fig. 4.5).

The 1-shock wave curve S1, starting from (r̄, s̄) can be express in the form

(4.2) s− s̄ = f(r − r̄) for r ≤ r̄

and the 2-shock wave curve S2, starting from (r̄, s̄) can also be express in the
form

(4.3) r − r̄ = f(s− s̄) for s ≤ s̄,

where
0 ≤ f ′(x) < 1, f ′′(x) ≤ 0, lim

x→−∞ f ′(x) = 1.

The 1-rarefaction wave curve R1, starting from (r̄, s̄) can be express in the
form

(4.4) s− s̄ = 0 for r ≤ r̄,

and the corresponding expression for the 1-rarefaction wave curve R1, starting
from (r̄, s̄) is

(4.5) r − r̄ = 0 for s ≤ s̄.

Let us consider the Riemann problem (4.6) and (1.14). Denote by ∆r
(resp. ∆s) the absolute value of the variation of the Riemann invariant r (resp.
s) in the first (resp. second) shock wave.

Definition 4.2. We denote

P (wl, ul, wr, ur) = ∆r + ∆s.

Lemma 4.3.

(4.6) P (w1, u1, w3, u3) ≤ P (w1, u1, w2, u2) + P (w2, u2, w3, u3),

where u1, u2 and u3 are arbitrary constants and w1, w2 and w3 are arbitrary
positive constants.
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r

s

R1

R2

S1

S2

(r̄, s̄)

Figure 4.5. Shock wave curves and rarefaction wave curves in (r, s)-plane.

Proof. Let g(x) = −f(−x), and set

P (w1, u1, w2, u2) = ∆r1 + ∆s1,
P (w2, u2, w3, u3) = ∆r2 + ∆s2,
P (w1, u1, w3, u3) = ∆r3 + ∆s3.

Then it is obvious that

∆r3 + g(∆s3) + ∆s3 + g(∆r3)
≤ ∆r1 + ∆r2 + ∆s1 + ∆s2 + g(∆r1) + g(∆s1) + g(∆s2).

We notice that f ′′ ≤ 0 and hence

≤ ∆r1 + ∆r2 + ∆s1 + ∆s2 + g(∆r1 + ∆r2) + g(∆s1 + ∆s2).

Let x + g(x) = h(x),∆r3 = p′,∆s3 = q′,∆r1 + ∆r2 = p and ∆s1 + ∆s2 = q.
Then

(4.7) h(p′) + h(q′) ≤ h(p) + h(q).
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Set K = h(p′)+h(q′). Under the restriction (4.15) we shall estimate p+q form
below. To do this, as h is monotone increasing function, we must estimate p+q
from below under the restriction

(4.8) h(p) + h(q) = K.

We do this by using Lagrange’s method of indeterminate coefficients. Set
G(p, q, λ) = p+ q + λ(h(p) + h(q) −K). Then

Gp = 1 + λh′(p) = 0, Gp = 1 + λh′(q) = 0.

Because h′′(x) > 0, we have p = q. So p + q attains its extremum at p = q.
We can show that when p = q, p+ q is minimum under the restriction (4.16).
Therefore

h(p) = h(q) =
k

2
=
h(p′) + h(q′)

2
≥ h

(
p′ + q′

2

)
.

Hence it follows that

p = q ≥ p′ + q′

2
.

We thus have
p+ q ≥ p′ + q′.

We denote

Z1 = {ϕ(l) − 0, ϕ(l) + 0, ϕ(3l) − 0, . . . , ϕ(2ml − 1) − 0, ϕ(2ml − 1) + 0, . . .},
Z2 = {ϕ(2l), ϕ(4l), ϕ(6l), . . . , ϕ(2ml), . . .}.

Let Z(n) = Z1 ∪ Z2 ∪ {ϕ(cnm)} and line up the elements zn,i of Z(n) so that
zn,i ≤ zn,i+1. (We regard ϕ((2m− 1)l) − 0 < ϕ((2m− 1)l) + 0 for m:integer.)

Let

F (nh− 0, wl, ul) =
∑

zn,i∈Z(n)

P (wl(nh− 0, zn,i), ul(nh− 0, zn,i),

wl(nh− 0, zn,i+1), ul(nh− 0, zn,i+1)),

F (nh+ 0, wl, ul) =
∑

m:odd

P (wl(ϕ(anm)),

ul(ϕ(anm)), wl(ϕ(an m+2)), ul(ϕ(an m+2))).

Using Lemma 4.3, we have

(4.9) F ((n+ 1)h+ 0, wl, ul) ≤ F ((n+ 1)h− 0, wl, ul).

The following equality is obvious from the definition of F, ul and vl.

(4.10) F ((n+ 1)h− 0, wl
0, u

l
0) = F (nh+ 0, wl, ul).
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We also have

F ((n+ 1)h− 0, wl, ul) = F (nh− 0, wl
0, u

l
0)

+
∑

m:odd

P (wl((n+ 1)h− 0, ϕ(ml) − 0), ul((n+ 1)h− 0, ϕ(ml) − 0),

wl((n+ 1)h− 0, ϕ(ml) + 0), ul((n+ 1)h− 0, ϕ(ml) + 0)).

(4.11)

Now choose a positive constant δ2 such that δ2 < δ0. We observe that if
Tot. Var. {(wl(t, ·), ul(t, ·))} < δ2, there exists a constant C1 depending on δ2
such that

(4.12) Tot. Var. {(wl(nh+ 0, ·), ul(nh+ 0, ·))} ≤ C1 · F (nh+ 0, wl, ul).

Set

C2 =
4a2

3(δ0 − δ2)x̄
1
3 − a

3(δ0−δ2)
T )

+
2a2δ2

3(δ0 − δ2)2(x̄
1
3 − a

3(δ0−δ2)
T )
.

Then choose T and δ1 suitably small such that

(4.13) C1

{
F (+0, wl, ul) + 2C2T

} ≤ δ2

and
x̄

1
3 − a

3(δ0 − δ2)
T > 0.

Let N = T/h and suppose that

(4.14) F (nh+ 0, wl, ul) ≤ F (+0, wl, ul) + 2C2nh (n = 0, 1, . . . , N).

Then, from (4.12) and (4.13),

(4.15) Tot. Var. {(wl(nh+ 0, ·), ul(nh+ 0, ·))} < δ2 for n = 0, 1, 2, . . . , N

holds. Considering (δ0 − δ2) to be w∗ in Lemma 4.1, we have

F ((n+ 1)h− 0, wl, ul) − F ((n+ 1)h− 0, wl
0, u

l
0)

≤ 2h
∑

m:odd

|El(nh, ϕ((m− 1)l)) − El(nh, ϕ((m+ 1)l))|

≤ 2C2h.

(4.16)

From (4.9), (4.10) and (4.16), we have

(4.17) F ((n+ 1)h+ 0, wl, ul) ≤ F (nh+ 0, wl, ul) + 2C2h.

By induction, we thus obtain the following lemma.

Lemma 4.4.

(4.18) F (nh+ 0, wl, ul) ≤ F (+0, wl, ul) + 2C2nh (n = 0, 1, . . . , N).
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Denote by F (τ ) the sum of the absolute values of variations of rl and sl

for t = τ . Then for nh ≤ τ < (n+ 1)h, we have

F (τ ) ≤ F (nh) + 2h
∑

m:odd

|El(nh, ϕ((m− 1)l)) − El(nh, ϕ((m+ 1)l))|

≤ F (nh) + 2C2h

≤ F (+0) + 2C2nh.

(4.19)

Therefore, we obtain the following theorem.

Theorem 4.5. For some T > 0, the variations of wl and ul are bounded
uniformly for h and {amn}, especially the positive lower bounds of wl is also
uniformly bounded.

Theorem 4.6. For any interval [x1, x2] ⊂ [0,∞), we obtain∫ x2

x1

|wl(t2, x) − wl(t1, x)| + |ul(t2, x) − ul(t1, x)|dx

≤M · (|t2 − t1| + h), 0 ≤ t1, t2 < T,

(4.20)

where M depends on T, x1 and x2, but not on l and h.

Proof. Without loss of generality, we assume that

nh ≤ t1 < (n+ 1)h < · · · < (n+ k)h ≤ t2 < (n+ k + 1)h.

Let ∫ x2

x1

|ul(t2, x) − ul(t1, x)|dx

≤ I1 + I2

+
∫ x2

x1

(|ul(t2, x) − ul((n+ k)h+ 0, x)|

+ |ul(t1, x) − ul((n+ 1)h− 0, x)|)dx,

where

I1 =
∫ x2

x1

k∑
i=1

|ul((n+ i)h+ 0, x) − ul((n+ i)h− 0, x)|dx,

I2 =
∫ x2

x1

k−1∑
i=1

|ul((n+ i+ 1)h− 0, x) − ul((n+ i)h+ 0, x)|dx

and

k =
[
t2 − t1
h

]
.
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Denote by 1[α,β] the characteristic functions of the interval [α, β]. We regard
Tot. Var.−ϕ(l)<x<ϕ(l) = Tot. Var.0<x<ϕ(l). Then

I1 ≤
k+1∑
i=0

∑
m:integer

∫ x2

x1

(Tot. Var.ϕ(2ml)<x<ϕ((2m+2)l)u
l((n+ i)h− 0, x)

· 1[ϕ(2ml),ϕ((2m+2)l)])dx

≤ M̃

([
t2 − t1
h

]
+ 2
)
·
(

sup
0≤t≤T

Tot. Var.ul(t, ·)
)
· l.

I2 ≤
k∑

i=0

∑
m:integer

∫ x2

x1

(Tot. Var.ϕ((2m−1)l)<x<ϕ((2m+1)l)u
l
0((n+ i+ 1)h− 0, x)

· 1[ϕ((2m−1)l),ϕ((2m+1)l)] + C2h)dx

≤
k∑

i=0

M̃l · Tot. Var.ul
0((n+ i+ 1)h− 0, ·) + C2(x2 − x1)h

≤
([

t2 − t1
h

]
+ 1
)
·
(
M̃l sup

0≤t≤T
Tot. Var.ul

0(t, ·) + C2(x2 − x1)h
)
,

provided that h and l are small enough. Here M̃ depends on T, x1 and x2, but
not on l and h. The remaining terms can be evaluated similarly. For

∫ x2

x1

|wl(t2, x) − wl(t1, x)|dx,

we also have a similar estimate. Combining these results gives (4.20).

5. Convergence of approximate solutions

Let T, δ1 and δ2 be the same constants as in the previous section, hn =
T/n and hn/ln = δ̃ < δ

.= a/(δ0 − δ2). Consider the sequence (wln , uln)
(n = 1, 2, . . .). Then from Theorem 4.9, there exists a subsequence which
converges in L1

loc to functions (w, u) uniformly for t ∈ [0, T ]. Now we shall
prove that w(t, x) and u(t, x) are the weak solutions of initial boundary value
problem (1.9) through (1.11) provided {anm} is suitably chosen, namely, they
satisfy the integral identity

(5.1)

∫ T

0

∫ ∞

0

vφt − uφxdtdx+
∫ ∞

0

v̄(x)φ(0, x)dx = 0,

∫ T

0

∫ ∞

0

uψt +
(
a2

v

)
ψx +

2a2∫ x

0
v(t, ξ)dξ

ψdtdx+
∫ ∞

0

ū(x)ψ(0, x)dx = 0

for any smooth functions φ and ψ with compact support in the region {(t, x) :
0 ≤ t < T, 0 ≤ x < ∞} and ψ(t, 0) = 0. Observing that v0 and u0 are weak
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solutions in each time strip nh ≤ t < (n+ 1)h,∫ (n+1)h

nh

∫ ∞

0

ulψt +
(
a2

vl

)
ψx +

1
3vlx

ψ + El(t, x)ψdtdx

+
∫ ∞

0

ul(nh+ 0, x)ψ(nh, x)

−
∫ ∞

0

ul((n+ 1)h− 0, x)ψ((n+ 1)h, x))dx = 0.

(5.2)

If we sum this over n, we have

(5.3)∫ T

0

∫ ∞

0

ulψt +
(
a2

vl

)
ψx +

1
3vlx

ψ + El(t, x)ψdtdx+
∫ ∞

0

ū(x)ψ(0, x)dx

= −
N∑

k=1

∫ ∞

0

{ul(kh+ 0, x) − ul(kh− 0, x)} · ψ(kh, x)dx,

where N = T/h. When N → ∞, the right-hand side of the above equality
tends to 0 for almost every {anm} ∈ A (see [3] or [8]).

Lemma 5.1.

(5.4) El(t, x) → 2a2∫ x

0
v(t, ξ)dξ

− 2a2

3xv(t, x)
(N → ∞),

locally uniform for t and x.

Proof. Observing (3.13), let nh ≤ t < (n + 1)h, x ≥ (x̄1/3 − a
3(δ0−δ2)

t)3

and x ∈ (ϕ((m− 1)l), ϕ((m+ 1)l)), m:odd. Then

(5.5)

∣∣∣∣∣
∫ x

0

vl(nh, ξ)dξ −
∫ ϕ(ml)

0

vl(nh, ξ)dξ

∣∣∣∣∣ ≤ ‖w∗‖∞ · l.

On the other hand

(5.6)
∫ x

0

vl(t, ξ)dξ →
∫ x

0

v(t, ξ)dξ (N → ∞),

locally uniform for t and x.
We have∣∣∣∣

∫ x

0

vl(t, ξ)dξ −
∫ x

0

vl(nh, ξ)dξ
∣∣∣∣

≤
∫ x

0

(∑
m:odd

Tot. Var.ϕ((m−1)l)<ξ<ϕ((m+1)l)w
l(nh, ·)ξ− 2

3

· 1[ϕ((m−1)l),ϕ((m+1)l)]

)
dξ

≤ sup
0≤t≤T

Tot. Var.wl · 2l.

(5.7)
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From (5.5), (5.6) and (5.7), we have (5.4).

For each test function φ, vν and uν also satisfy

∫ T

0

∫ ∞

0

(vlφt − ulφx)dtdx+
∫ ∞

0

v̄(x)φ(0, x)dx

= −
N∑

k=0

{vl(kh+ 0, x) − vl(kh− 0, x)} · φ(kh, x)dx− I1 − I2,

(5.8)

where

I1 =
N−1∑
n=0

∫ (n+1)h

nh

El(t, 0)(t− nh)φ(t, 0)dt

and

I2 =
N−1∑
n=0

∑
m:odd

∫ (n+1)h

nh

{El(t, ϕ(ml) + 0) −El(t, ϕ(ml)− 0)}(t− nh)φ(t, ϕ(ml))dt.

The first term of the right-hand side of equality (5.9) tends to 0 for almost
every {anm} ∈ A (see [3] or [8]).

Observing Remark 3.1, I1 = 0. Therefore, we shall show that I2 →
∞ as N → ∞. From Lemma 4.1,

∑
m:odd

∫ (n+1)h

nh

{El(t, ϕ(ml) + 0) − El(t, ϕ(ml) − 0)}(t− nh)φ(t, ϕ(ml))dt ≤ C2h
2.

We thus have

(5.9) I2 ≤ ‖φ‖∞
N−1∑
n=0

C2h
2 ≤ ‖φ‖∞C2hT,

where C2 is the same constant as in the previous section. We can conclude that
(5.1) holds.

Remark 5.2. From the above arguments, we can replace constants, w+

and u in (1.13), by BV functions, w+(x) and u(x), respectively.
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