On the bounded condition of an o-minimal structure

Bv

Masaru Kageyama

Abstract

We will show that the theory of ordered divisible vector spaces over an ordered field satisfies the bounded condition treated in [5].

1. Introduction

Grothendieck rings for some first-order structures have been calculated by many authors ([1], [2], [4], [5], [6], [7]). In particular, in [5], the bounded condition of o-minimal expansion of ordered abelian groups was introduced as a condition to decide the Grothendieck ring of the category is isomorphic to either \mathbb{Z} or $\mathbb{Z} \oplus \mathbb{Z}$. The same result is proved in [7] independently.

Let $\mathcal{G} = (G, <, +, 0, ...)$ be an o-minimal expansion of an ordered abelian group. We say a definable set $M \subseteq G^n$ is bounded if $M \subseteq [-b,b]^n$ for some positive $b \in G$, where $[-b, b]^n = \{(x_1, ..., x_n) \in G^n | -b \le x_i \le b\}.$

Definition 1.1 (Bounded Condition). Let $\mathcal{G} = (G, <, +, 0, ...)$ be an o-minimal expansion of an ordered abelian group. We say that $\mathcal G$ satisfies the bounded condition if the following property holds:

For all bounded definable sets $M \subseteq G^m$ and definable sets $N \subseteq G^n$, if M is definable isomorphic to N, then N is bounded.

We now give an example of o-minimal expansion of an ordered abelian group where satisfies the bounded condition.

0}, where < is a binary relation symbol, +, - are binary function symbols, and 0 is a constant symbol. The theory of ordered divisible abelian groups in the language \mathcal{L}_{oq} is given by the following sentences. This theory is often denoted

- 1. The axioms for ordered abelian groups.
- 2. For each $n \ge 1$, the axiom $\forall y \exists x \ (y = \underbrace{x + \dots + x}_{n-\text{times}})$.

2000 Mathematics Subject Classification(s). 03C64 Received November 8, 2006

It is known every model of $\mathcal{G} \models \text{ODAG}$ satisfies the bounded condition. Therefore, it has the bounded Euler characteristic $\chi_b(\text{see [5, Definition 24]})$ on $\text{Def}(\mathcal{G}, \mathcal{L}_{\text{og}})$ because it has well geometric properties for cells. In this sense the bounded condition is also a necessary condition for good geometric properties.

We proved that the theory of ordered divisible abelian groups satisfied the bounded condition in [5]. In the present paper, we will show that the theory of ordered divisible vector spaces over an ordered field satisfies the bounded condition.

Acknowledgement. Sincerely, the author wish to express my gratitude to Professor Moriwaki for his encouragement and detailed suggestions, and to Professor Kawaguchi for his valuable comments.

2. Preliminaries of model theory

First, let us introduce several kinds of the main definitions and results which form the basic of model theory. This chapter is based on D. Marker [8].

Let \mathcal{L} be a language. An \mathcal{L} -theory T is a set of \mathcal{L} -sentences. We say that an \mathcal{L} -structure \mathcal{M} is a model of T, which is denoted by $\mathcal{M} \models T$, if $\mathcal{M} \models \phi$ for all sentences $\phi \in T$.

Definition 2.1. A universal sentence is one of the form $\forall \overline{v}\phi(\overline{v})$, where ϕ is a quantifier-free formula. We denote by T_{\forall} the set all of universal sentences which are logical consequences of T, namely,

 $T_{\forall} := \{ \phi \mid \phi \text{ is a universal } \mathcal{L}\text{-sentence and } T \models \phi \}.$

First, let us consider the following lemma concerning T_{\forall} .

Lemma 2.2. Let \mathcal{L} be a language and T an \mathcal{L} -theory. Then $\mathcal{A} \models T_{\forall}$ if and only if there exists $\mathcal{M} \models T$ with $\mathcal{A} \subseteq \mathcal{M}$.

Proof. First assume that there exists $\mathcal{M} \models T$ with $\mathcal{A} \subseteq \mathcal{M}$. By definition of T_{\forall} , for all $\forall v_1 \dots \forall v_n \phi(v_1, \dots, v_n) \in T_{\forall}$, $T \models \forall v_1 \dots \forall v_n \phi(v_1, \dots, v_n)$. Because $\mathcal{M} \models \forall v_1 \dots \forall v_n \phi(v_1, \dots, v_n)$, for all $a_1, \dots, a_n \in A$, $\mathcal{M} \models \phi(a_1, \dots, a_n)$. Since ϕ is a quantifier-free formula, $\mathcal{A} \models \phi(a_1, \dots, a_n)$.

Conversely, suppose \mathcal{A} is a model of T_{\forall} . Let us begin with the following claim.

Claim. Let \mathcal{L}_A be a language $\mathcal{L} \cup \{a\}_{a \in A}$ where each a is a new constant symbol. Let $\operatorname{Diag}(\mathcal{A})$ be the set of $\phi(a_1, \ldots, a_n)$, where $(a_1, \ldots, a_n) \in A^n$ and ϕ is either an atomic \mathcal{L} -formula or negation of an atomic \mathcal{L} -formula with $\mathcal{A} \models \phi(a_1, \ldots, a_n)$. Then $T \cup \operatorname{Diag}(\mathcal{A})$ is satisfiable as an \mathcal{L}_A -theory.

Suppose the contrary. Then, by the compactness theorem, there is a finite subset $\Delta = (\psi_1, \dots, \psi_n) \subseteq \text{Diag}(\mathcal{A})$ such that $T \cup \Delta$ is not satisfiable. Let $\overline{c} = (c_1, \dots, c_m)$ be the new constant symbols from A used in ψ_1, \dots, ψ_n and

say $\psi_i = \phi_i(\overline{c})$, where ϕ_i is a quantifier-free \mathcal{L} -formula. Because T is an \mathcal{L} -theory, the constants in \overline{c} do not occur in T. Hence if $T \cup \{\exists \overline{v} \land \phi_i(\overline{v})\}$ is satisfiable, then by interpreting \overline{c} as witnesses to the existential formula, $T \cup \Delta$ would be satisfiable. Thus $T \models \forall \overline{v} \bigvee \neg \phi_i(\overline{v})$. This formula is universal. Thus, $\forall \overline{v} \bigvee \neg \phi_i(\overline{v}) \in T_\forall$, which is contradict to $\mathcal{A} \models T_\forall$.

By above Claim, there is an $\mathcal{M} \models T \cup \text{Diag}(\mathcal{A})$ as an \mathcal{L}_A -structure. It is clear that \mathcal{M} is a model of T as an \mathcal{L} -structure. Let $j : A \to M$ by $j(a) = a^{\mathcal{M}}$. Then j is an \mathcal{L} -embedding. Thus $\mathcal{A} \subseteq \mathcal{M}$.

We say that a theory T has algebraically prime models if for any $A \models T_{\forall}$ there exist $\mathcal{M} \models T$ and an embedding $i : \mathcal{A} \to \mathcal{M}$ with the following universal property; for all $\mathcal{N} \models T$ and embeddings $j : \mathcal{A} \to \mathcal{N}$, there is $h : \mathcal{M} \to \mathcal{N}$ with $j = h \circ i$.

If $\mathcal{M}, \mathcal{N} \models T$ and $\mathcal{M} \subseteq \mathcal{N}$, we say that \mathcal{M} is $simply \ closed$ in \mathcal{N} , which is denoted by

$$\mathcal{M} \prec_s \mathcal{N}$$
,

if for any quantifier-free formula $\phi(\overline{v}, w)$ and any $\overline{a} \in M$, $\mathcal{N} \models \exists w \phi(\overline{a}, w)$ implies $\mathcal{M} \models \exists w \phi(\overline{a}, w)$.

Proposition 2.3. Let \mathcal{L} be a language and T an \mathcal{L} -theory. We assume the following; for all quantifier-free formulas $\phi(\overline{v}, w)$, if $\mathcal{M}, \mathcal{N} \models T$, $\mathcal{A} \subseteq \mathcal{M}, \mathcal{A} \subseteq \mathcal{N}, \overline{a} \in A$, and there is $b \in M$ such that $\mathcal{M} \models \phi(\overline{a}, b)$, then there is $c \in N$ such that $\mathcal{N} \models \phi(\overline{a}, c)$. Then T has quantifier elimination.

Proof. See [8, Chapter 3, Corollary
$$3.1.6$$
].

The following transformation of the above proposition is suitable for our purpose.

Corollary 2.4. Let \mathcal{L} be a language and T an \mathcal{L} -theory such that

- 1. T has algebraically prime models and that,
- 2. $\mathcal{M} \prec_s \mathcal{N}$ whenever $\mathcal{M} \subseteq \mathcal{N}$ are models of T.

Then T has quantifier elimination.

Proof. Suppose that \mathcal{M}, \mathcal{N} are models of T, \mathcal{H} is a common substructure of \mathcal{M} and $\mathcal{N}, \overline{h} \in H, m \in M$, and $\mathcal{M} \models \phi(\overline{h}, m)$ where ϕ is a quantifier-free \mathcal{L} -formula. Since T has algebraically prime models and $\mathcal{H} \subseteq \mathcal{M}$, by using Lemma 2.2, we get $\mathcal{U} \models T$ and an embedding $i : \mathcal{H} \to \mathcal{U}$ such that for all $\mathcal{G} \models T$ and embeddings $j : \mathcal{H} \to \mathcal{G}$, there is $h : \mathcal{U} \to \mathcal{G}$ with $j = h \circ i$. Considering inclusion map $\mathcal{H} \hookrightarrow \mathcal{M}$, we can embed \mathcal{U} into \mathcal{M} . Since ϕ is a quantifier-free, by second property of T, we get $\mathcal{U} \models \exists w \phi(\overline{h}, w)$. Considering inclusion map $\mathcal{H} \hookrightarrow \mathcal{N}$, we can embed \mathcal{U} into \mathcal{N} and then $\mathcal{N} \models \exists w \phi(\overline{h}, w)$. Thus there exists $n \in \mathcal{N}$ such that $\mathcal{N} \models \phi(\overline{h}, n)$. Therefore, by Proposition 2.3, T has quantifier elimination. \square

Next we define the theory of ordered divisible vector spaces over an ordered field $(F, >_F)$.

Definition 2.5. Let us fix $\mathcal{L}_F := \mathcal{L}_{og} \cup \{\lambda \mid \lambda \in F\}$, where λ is a unary function symbol for each $\lambda \in F$ to be interpreted as multiplication by the scalar. The theory T_{Flin} of ordered divisible vector spaces in the language \mathcal{L}_F is defined by the following sentences:

- 1. The axioms for ordered divisible abelian groups.
- 2. The axioms for vector spaces over F.
- 3. For each $\lambda >_F 0$, $\forall x(x>0 \to \lambda x>0)$.

The next lemma show that T_{Flin} has algebraically prime models.

Lemma 2.6. Let V be an ordered vector space over F. Then there is an ordered divisible vector space W over F, which is called the ordered divisible hull of V over F, and an embedding $\varphi: V \to W$ such that if $\chi: V \to W'$ is an embedding of V into an ordered divisible vector space W' over F, then there is a unique homomorphism $\psi: W \to W'$ with $\chi = \psi \circ \varphi$.

Proof. We set $X = \{(g,n) \mid g \in V, n \in \mathbb{N}, n > 0\}$. We define an equivalence relation \sim on X by $(g,n) \sim (h,m)$ if and only if mg = nh. We define W to be the quotient X/\sim . For (g,n), let [(g,n)] or g/n denote the equivalence class of (g,n).

We can define + and scalar $\lambda \cdot$ for each $\lambda \in F$ on W by

$$[(g,n)] + [(h,m)] = [(mg+nh,mn)],$$

 $\lambda \cdot [(g,n)] = [(\lambda g,n)].$

It is easy to see that W is a vector space over F. Suppose that $g/m \in W$ and n > 0, then

$$n[(g, mn)] = [(ng, mn)] = [(g, m)],$$

which show that W is divisible.

We can define an order < on W by

$$g/n < h/m \iff mg < nh$$
.

It is clear that (W, \mathcal{L}_F) is an ordered divisible vector space over F.

We can embed V into W by the map $\varphi(g)=g/1$. Suppose that W' is an ordered divisible vector space over F and $\chi:V\to W'$ is an embedding. Let $\psi:W\to W'$ by $\psi(g/n):=\chi(g)/n$. This ψ is a well-defined embedding and $\chi=\psi\circ\varphi$.

Lemma 2.7. Suppose that V, W are models of T_{Flin} with $V \subseteq W$. Then $V \prec_s \mathcal{G}$.

Proof. Suppose that $\phi(v, \overline{w})$ is a quantifier-free formula, $\overline{a} \in V$, and that for some $b \in W, W \models \phi(b, \overline{a})$. Because $\phi(v, \overline{w})$ is quantifier-free formula, there are atomic or negated atomic formulas $\theta_{i,j}(v, \overline{w})$ such that

$$\phi(v, \overline{w}) \leftrightarrow \bigvee_{i=1}^{n} \bigwedge_{j=1}^{m} \theta_{i,j}(v, \overline{w}).$$

Because $\mathcal{W} \models \phi(b, \overline{a}), \ \mathcal{W} \models \bigwedge_{j=1}^{m} \theta_{i,j}(b, \overline{a})$ for some i. Thus without loss of

generality, we may assume that $\phi(v, \overline{w})$ is a conjunction of atomic and negated atomic formulas.

If $\theta(v, w_1, \dots, w_m)$ is an atomic formula, then for some elements $\lambda_1, \dots, \lambda_l$, $\lambda \in F$,

$$\theta(v, w_1, \dots, w_m) \leftrightarrow \sum_{k=1}^m \lambda_k w_k + \lambda v = 0$$

or

$$\theta(v, w_1, \dots, w_m) \leftrightarrow \sum_{k=1}^m \lambda_k w_k + \lambda v > 0.$$

In particular, there is an element $g \in V$ such that $\theta(v, \overline{a})$ is either the form $\lambda v = g$ or $\lambda v > g$. Also note that every formula $\lambda v \neq g$ is equivalent to $\lambda v > g$ or $-\lambda v > -g$. Thus we may assume that

$$\phi(v, \overline{a}) \leftrightarrow \bigwedge_{i=1}^{s} (\lambda_i v = g_i) \wedge \bigwedge_{j=1}^{t} (\lambda_j v > h_j),$$

where $g_i, h_j \in V$ and $\lambda_i, \lambda_j \in F$.

Case 1. If $\lambda_i \neq 0$ for some $1 \leq i \leq s$.

Then

$$\phi(v, \overline{a}) \leftrightarrow \bigwedge_{i=1}^{s} (\lambda_i v = g_i) \wedge \bigwedge_{j=1}^{t} (\lambda_j v > h_j).$$

Because $\mathcal{W} \models \phi(b, \overline{a})$, we must have $b = \lambda^{-1}g_i \in V$.

Case 2. If $\lambda_i = 0$ for all $1 \le i \le s$.

Then we assume

$$\phi(v, \overline{a}) \leftrightarrow \bigwedge_{j=1}^{t} (\lambda_j v > h_j),$$

where $\lambda_j \neq 0$ (j = 1, ..., t). Let $k_0 = \min\{\lambda^{-1}h_j \mid \lambda_j < 0\}$ and $k_1 = \max\{\lambda^{-1}h_j \mid \lambda_j > 0\}$. Then $c \in W$ satisfies $\phi(v, \overline{a})$ if and only if $k_1 < c < k_0$. Since $\mathcal{W} \models \phi(b, \overline{a})$, we must have $k_1 < k_0$, so that V is a dense linearly ordered set. Thus there exists $d \in V$ such that $k_1 < d < k_0$.

Consequently we have $\mathcal{V} \prec_s \mathcal{W}$.

We are now ready to prove that T_{Flin} has quantifier elimination.

Theorem 2.8. The theory T_{Flin} in the language \mathcal{L}_F has quantifier elimination.

Proof. Suppose that $\mathcal{A} \models (T_{Flin})_{\forall}$. By Lemma 2.2 there is an $\mathcal{M} \models T_{Flin}$ such that $\mathcal{A} \subseteq \mathcal{M}$. By Lemma 2.6, we can take the divisible hull \mathcal{H} of \mathcal{A} . Hence T_{Flin} has algebraically prime models, so that T_{Flin} satisfies first property of Corollary 2.4.

By Lemma 2.7, T_{Flin} satisfies the second property of Corollary 2.4. Thus T_{Flin} has quantifier elimination.

3. Preliminaries to o-minimal geometry

Let us recall the definition of o-minimal structure and two important results in the subject of o-minimality: the monotonicity theorem and the cell decomposition theorem.

Definition 3.1 (O-minimal Structure). We say that a dense linearly ordered structure $(G, <, \ldots)$ without endpoints is an *o-minimal structure* if for any definable set $X \subseteq G$ there are finite many intervals I_1, \ldots, I_m and a finite set X_0 such that

$$X = X_0 \cup I_1 \cup \cdots \cup I_m$$
.

A theory T is said to be an o-minimal theory if every model of T is an o-minimal structure.

Proposition 3.2. The theory T_{Flin} in the language \mathcal{L}_F is an o-minimal theory.

Proof. Let \mathcal{V} be a model of T_{Flin} . We need to show every definable set

$$M = \{ x \in V \mid \mathcal{V} \models \phi(x, a_1, \dots, a_n) \}$$

is a finite union of points and intervals with endpoints in $V \cup \{\pm \infty\}$, where ϕ is a formula and $a_1, \ldots, a_n \in V$. By quantifier elimination,

$$M = \bigcup_{i=1}^{m} \bigcap_{j=1}^{n_i} A_{i,j}$$

where $A_{i,j}$ is equal to either

$$\{x \in V \mid \lambda_{i,j}x = g_{i,j}\}$$
 or $\{x \in V \mid \mu_{i,j}x > h_{i,j}\}$

for some $g_{i,j}, h_{i,j} \in V$ and $\lambda_{i,j}, \mu_{i,j} \in F$. Solution sets of nontrivial equations yield finite sets and solution sets of the second form give rise to finite union of intervals.

We work with a fixed but arbitrary o-minimal expansion of an ordered abelian group (G, <, 0, +, -, ...) from here through the end of this section.

Theorem 3.3 (Monotonicity Theorem). Let $f:(a,b) \to G$ be a definable function on the interval (a,b). Then there are points $a_1 < \cdots < a_k$ in (a,b) such that on each subinterval (a_j,a_{j+1}) , with $a_0 = a, a_{k+1} = b$, the function is either constant, or strictly monotone and continuous.

Proof. See [3, Chapter 3, Theorem 1.2].

A decomposition of G^m is defined by induction on m as follows:

(I) A decomposition of $G^1 = G$ is a collection:

$$\{(-\infty, a_1), (a_1, a_2), \dots, (a_k, +\infty), \{a_1\}, \dots, \{a_k\}\},\$$

where $a_1 < \cdots < a_k$ are points in G.

(II) Suppose that a decomposition of G^m is already defined inductively, then a decomposition of G^{m+1} is a finite collection of pairwise disjoint cells $\{C_i\}$ such that $\bigcup C_i = G^{m+1}$ and the set of projections $\{\pi(C_i)\}$ is a decomposition of G^m , where $\pi: G^{m+1} \to G^m$ is the projection of first m-coordinates.

A decomposition \mathcal{D} of G^m is called a partition of a set $M \subseteq G^m$ if each cell in \mathcal{D} is either part of M or disjoint from M.

We are now ready to state the cell decomposition theorem.

Theorem 3.4 (Cell Decomposition Theorem). Let $M_1, \ldots, M_k \subseteq G^m$ be finitely many definable sets. Then there is a decomposition of G^m partitioning each of M_1, \ldots, M_k .

Proof. See
$$[3, Chapter 3, Theorem 2.11]. $\square$$$

For each definable set M in G^m , we put

$$C(M) := \{ f : M \to G \mid f \text{ is definable and continuous} \},$$

 $C_{\infty}(M) := C(M) \cup \{ \pm \infty \},$

where we regard $\pm \infty$ as constant functions on G. For $f \in C(M)$, the graph of f is denoted by $\Gamma(f) \subseteq M \times G$.

Next we show the following useful properties of bounded definable sets.

Lemma 3.5. Let $M \subseteq G^n$ be a bounded definable set with dim M = 1. Then there exists a definable bijection $M \xrightarrow{\sim} D$ for some bounded definable set $D \subseteq G$.

Proof. Since $\dim M=1$, by Theorem 3.4 we have the following decomposition

$$M = C_1 \cup \cdots \cup C_l \cup C_{l+1} \cup \cdots \cup C_m, \ C_i \cap C_j = \emptyset \ (i \neq j)$$

where C_1, \ldots, C_m are cells, $\dim C_1 = 1, \ldots, \dim C_l = 1$ and $\dim C_{l+1} = 0, \ldots, \dim C_m = 0$.

Claim. Let $C \subseteq G^n$ be a cell such that $\dim C = 1$ and C is bounded. Then there exists the projection of n_i th-coordinate $p_{n_i}: G^n \to G$ for some $1 \le n_i \le n$ such that $p_{n_i}|_C: C \to p_{n_i}(C)$ is definably bijective. Here, note that $p_{n_i}(C)$ is a bounded interval.

We prove this claim by induction on n. In the case where n=1, since each C is equal to either an interval or a point, it is easy to see that the claim holds. Suppose that the claim is true for n=k, and we show that it holds for n=k+1. Let $p_1:G^{k+1}\to G$ be the projection to the first coordinate.

Case 1.
$$\dim p_1(C) = 0$$
.

Since dim $p_1(C)=0$, there are a point $a\in G$ and a cell $D\subseteq G^k$ such that $C=\{a\}\times D$. By inductive assumption, there is a projection $p_{n_i}:G^k\to G$ such that $p_{n_i}|D$ is bijective. Let τ be a projection such that $\tau:G^{k+1}\to G^k((x_1,\ldots,x_{k+1})\mapsto (x_2,\ldots,x_{k+1}))$. Then $p_{n_i+1}=p_{n_i}\circ \tau$ and $p_{n_i+1}|C$ is a definably bijective function from C to $p_{n_i}(C)$.

Case 2.
$$\dim p_1(C) = 1$$
.

Let $\pi_q: G^{k+1} \to G^q(q=1,\ldots,k+1)$ be the projection to the first q-coordinates. Since $p_1(C)$ is an interval, C is a $(1,0,\ldots,0)$ -cell. Thus we have $\dim \pi_q(C)=1$ for all $q=1,\ldots,k+1$. Hence each cell $\pi_q(C)$ $(q=2,\ldots,k+1)$ is the graph of a definable function $f_q\in C(\pi_{q-1}(C))$.

By using f_2, \ldots, f_k , we inductively define functions $g_2, \ldots, g_{k+1} : p_1(C) \to G$ as follows: $g_2(x) := f_2(x)$. If g_j is already given inductively, then we define g_{j+1} by $g_{j+1}(x) := f_{j+1}(x, g_2(x), \ldots, g_j(x))$ where $2 \le j \le k+1$ and $x \in p_1(C)$. Then for a definable function $g: p_1(C) \to G^k$ $(x \mapsto (g_2(x), \ldots, g_{k+1}(x)))$, $C = \Gamma(g)$. Thus we obtain a definable bijection $p_1|C: C \to p_1(C)$.

By Claim, each C_i $(i=1,\ldots,l)$ is definably bijective to an interval of G and each C_i $(i=l+1,\ldots,m)$ is a point set. Thus we can define a definable bijection $M \to D$ for some bounded definable set $D \subseteq G$.

Let σ be a permutation of $\{1,\ldots,m\}$ and A a subset of G^m . We set $x\sigma := (x_{\sigma(1)},\ldots,x_{\sigma(m)})$ for $x = (x_1,\ldots,x_m) \in G^m$ and $A\sigma = \{x\sigma \mid x \in A\}$.

Lemma 3.6. Let $C \subseteq G^m$ be a non-bounded cell. Then there exists a non-bounded cell $C' \subseteq G^m$ such that the projection of first coordinate of C' is a non-bounded interval and C' is definably embedded into C.

Proof. Since C is non-bounded, there exists the projection p_{n_i} of n_i th-coordinate such that $p_{n_i}(C)$ is a non-bounded interval. We denote the transposition $(1, n_i)$ by σ . Since symmetric group on $\{1, \ldots, m\}$ is generated by the transpositions (i, i + 1), there exist the transpositions τ_1, \ldots, τ_n such that $\sigma = \tau_n \circ \cdots \circ \tau_1$. We give a proof only for the case $\sigma = \tau_2 \circ \tau_1$, but the generalization is straightforward. By using [3, Chapter 4, Proposition 2.13], there exist pairwise disjoint cells C_1, \ldots, C_l such that

$$C = C_1 \cup \cdots \cup C_l$$
 and $C_1 \tau_1, \ldots, C_l \tau_1$ are also cells.

Since $p_{n_i}(C_{l_1})$ is a non-bounded interval for some $1 \leq l_1 \leq l$, $p_{\tau_1(n_i)}(C_{l_1}\tau_1)$ is a non-bounded interval. By using the proposition again for the non-bounded cell $C_{l_1}\tau_1$, we have pairwise disjoint cells $D_1, \ldots, D_{l'}$ such that

$$C_{l_1}\tau_1 = D_1 \cup \cdots \cup D_{l'}$$
 and $D_1\tau_2, \ldots, D_{l'}\tau_2$ are also cells.

Since $p_{\tau_1(n_i)}(D_{l_2})$ is a non-bounded interval for some $1 \leq l_2 \leq l'$, we have a non-bounded interval $p_{\tau_2(\tau_1(n_i))}(D_{l_2}\tau_2) = p_1(D_{l_2}\tau_2)$ and a non-bounded cell $D_{l_2}\tau_2$.

Corollary 3.7. Let $M \subseteq G^m$ be a non-bounded definable set and $N \subseteq G^n$ a bounded definable set. If there exists a definable bijection $\theta : M \xrightarrow{\sim} N$, then $(0, +\infty)$ is definably bijective to D for some bounded definable set $D \subseteq G$.

Proof. Let $\pi_q:G^n\to G^q$ be the projection to the first q-coordinates. By Theorem 3.4,

$$M = C_1 \cup \cdots \cup C_m, \ C_i \cap C_j = \emptyset \ (i \neq j),$$

where C_1, \ldots, C_m are cells. Since M is a non-bounded definable set, we can choose a non-bounded cell C_i for some $1 \leq i \leq m$. Since C_i is non-bounded, there exists the projection of n_i th-coordinate $p_{n_i}: G^n \to G$ such that $p_{n_i}(C_i)$ is a non-bounded interval. By using Lemma 3.6, we assume that $\pi_1(C_i)$ is a non-bounded interval I.

If $\pi_2(C_i)$ is a (1,0)-cell $\Gamma(f)$ for some $f \in C(I)$, then we define a definable injection $\iota_2 : I \to \pi_2(C_i)$ by $\iota_2(x) := (x, f(x))$.

If $\pi_2(C_i)$ is a (1,1)-cell $\{(x,y) \in I \times G \mid g(x) < y < h(x)\}$ for some $g,h \in C_{\infty}(I)$, then we define a definable injection $\iota_2: I \to \pi_2(C_i)$ by

$$\iota_2(x) := \left\{ \begin{array}{ll} (x,x) & \text{if } g = -\infty, h = +\infty, \\ (x,h(x) - a) & \text{if } g = -\infty, h \in C(I), \\ (x,g(x) + a) & \text{if } g \in C(I), h = +\infty, \\ (x,(g(x) + h(x))/2) & \text{if } g \in C(I), h \in C(I), \end{array} \right.$$

where a is a positive element of G. By continuing in this process, we have a sequence of definable injections

$$I \xrightarrow{\iota_2} \pi_2(C_i) \xrightarrow{\iota_3} \cdots \xrightarrow{\iota_{n-1}} \pi_{n-1}(C_i) \xrightarrow{\iota_n} C_i.$$

Let $\iota:I\to C_i$ be the composition of these definable injections. Since $\dim\theta(\iota(I))=1$ and $\theta(\iota(I))\subseteq N$ is bounded, by Lemma 3.5, there is a bounded definable set $D\subseteq G$ such that D is definably bijective to $\theta(\iota(I))$. The interval $(0,+\infty)$ is definably embedded into I, we have a sequence of definable injections as follow:

$$(0,+\infty) \longrightarrow I \stackrel{\sim}{\longrightarrow} \iota(I) \stackrel{\sim}{\xrightarrow{\theta|_{\iota(I)}}} \theta(\iota(I)) \stackrel{\sim}{\xrightarrow{\text{Lemma 3.5}}} D.$$

Hence we have a definable bijection between $(0, +\infty)$ and D.

4. The bounded condition of the ordered divisible vector spaces over an ordered field ${\cal F}$

In this section, we prove the main result of this paper.

Theorem 4.1. Let V be a model of T_{Flin} in the language of \mathcal{L}_F . Then V satisfies the bounded condition.

Proof. Suppose the contrariety. Then there are a non-bounded definable set $X \subseteq V^m$ and a bounded definable set $Y \subseteq V^n$ such that X is definably bijective to Y. By Corollary 3.7, there is a definable bijection $f:(0,+\infty)\to D$ where D is bounded definable set of V. By the monotonicity theorem 3.3, there are points $a_1 < \cdots < a_n$ in $(0,+\infty)$ such that on each subinterval (a_j,a_{j+1}) with $a_0 = 0, a_{n+1} = +\infty$, the function f is strictly monotone. Since T_{Flin} admits quantifier elimination, we may assume that $f(x) = \lambda x + c$ on $x \in (a_n, +\infty)$ for some $\lambda \in F(\lambda \neq 0)$ and $c \in V$.

Since D is bounded, there exist two points $d_1, d_2 \in V$ such that $d_2 < x < d_1$ for all $x \in D$.

If $\lambda > 0$, we can choose $x_0 \in (a_n, +\infty)$ such that $x_0 > (-c + d_1)/\lambda$. Then $f(x_0) = \lambda x_0 + c > d_1$. If $\lambda < 0$, we can choose $x_0 \in (a_n, +\infty)$ such that $x_0 > (-c + d_2)/\lambda$. Then $f(x_0) = \lambda x_0 + c < d_2$. They are contradicting to $f|_{(a_n, +\infty)}: (a_n, \infty) \to D$.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE KYOTO UNIVERSITY, KYOTO 606-8502, JAPAN e-mail: kageyama@math.kyoto-u.ac.jp

References

- [1] R. Cluckers and D. Haskell, *Grothendieck rings of* Z-valued fields, Bull. Symbolic Logic **7** (2001), 262–269.
- [2] R. Cluckers, Grothendieck rings of Laurent series fields, J. Algebra 272 (2004), 692–700.
- [3] L. van den Dries, *Tame Topology and O-minimal Structures*, London Mathematical Society Lecture Note Series, **248**, Cambridge University Press, 1998.
- [4] E. Hrushovski and D. Kazhdan, *Integration in valued fields*, arXiv.org e-Print archive math.AG/0510133.
- [5] M. Kageyama and M. Fujita, Grothendieck rings of o-minimal expansions of ordered abelian groups, J. Algebra 299 (2006), 8–20.
- [6] J. Krajíček and T. Scanlon, Combinatorics with definable sets: Euler Characteristics and Grothendieck rings, Bull. Symbolic Logic 6 (2000), 311–330.
- [7] J. Maříková, Geometric properties of semilinear and semibounded sets, Math. Log. Quart. 52-2 (2006), 190–202.
- [8] D. Marker, *Model Theory: An Introduction*, Graduate Texts in Mathematics **217**, Springer, 2002.