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Hypoellipticity for a class of kinetic equations

By

Yoshinori Morimoto and Chao-Jiang Xu

Abstract

In this work, we study a class of operators coming from the lineariza-
tion of some kinetic equations such as Boltzmann equations and Vlasov-
Fokker-Planck equations. Since it is not a standard class of pseudo-
differential operators, we obtain hypoelliptic estimates in some weight
functions space and show the regularity of weak solutions for linear and
semilinear equations.

1. Introduction

Recently the mathematical study of Boltzmann equation without Grad’s
angular cut-off has been developed from a new point of view in [1], [5], [6], [7],
where it is stressed that the nonlinear collision term Q(f, f) behaves essentially
as a fractional power of the Laplacian (−�)2αf if the collision kernel has a
singularity θ1−N−2α at the angular θ = 0, where 0 < α < 1 and N is the
number of space dimension ( physically equal to 3). The smoothness of the
solution for the spatially homogeneous case was fairly well discussed ([6], [7]
for example), on the other hand, there seems to be no result in the spatially
inhomogeneous case. As an attempt linking to the way to the complete research
in the smoothness of solutions to the Cauchy problem for Boltzmann equation,
we consider the following kinetic equations

(1.1) Pu = ∂tu+ x · ∇yu+ σ(−�̃x)αu = f,

where (x, y) ∈ R
2n and 0 < σ0 ≤ σ, σ ∈ C∞

b Here (−�̃x)α = |D̃x|2α is
a Fourier multiplier with a smooth symbol |ξ̃|2α, which is equal to |ξ|2α if
|ξ| ≥ 2 and to |ξ|2 if |ξ| ≤ 1. If α = 1, this is a linear Vlasov-Fokker-Planck
equation(see [8], [9], cf.[2], [11]), and F. Bouchut [4] has proved the maximal
hypoellipticity of operators P with a gain of 2/3 (see Theorem 1.5 of [4]).
When 0 < α < 1, as stated above, the equation (1.1) is a linearlized model of
Boltzmann equation without angular cutoff. Some regularity results ( which
are restrictive comparing to the case α = 1) are also given in [4], for the weak
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solution of equation (1.1) with a supplemental partial regularity with respect
to x variable (see Proposition 1.1 and Corollary 1.2 of [4]).

In the present paper, we study the equation (1.1) from the pure analysis
point of view, noting that the equation (1.1) is not a classical (pseudo-) partial
differential equation because the coefficient x is unbounded and (−�̃x) is not
pseudodifferential operator with respect to variables t, y. We first state the
existence of the weak solution to the Cauchy problem for equation (1.1) with
initial data u|t=0 = u0, before considering the hypoellipticity which means the
smoothness of a weak solution.

Theorem 1.1. Assume that f ∈ L1(]0, T [;Hs(R2n)) for some 0 < T <
∞, s ≥ 0 and u0 ∈ Hs(R2n). If 0 < α < 1, then the Cauchy problem of equation
(1.1) with initial data u|t=0 = u0 admits a unique weak solution

u ∈ L∞(]0, T [;Hs(R2n)), (−�̃x)α/2u ∈ L2(]0, T [;Hs(R2n)).

For the regularity of weak solution, we have a gain of order 1
4 (α− 1

3 ) with
a weight 〈x〉 = (1 + |x|2)1/2 as follows:

Theorem 1.2. Let 1/3 < α < 1 and f ∈ Hs(]a, b[×R
2n)) for s ≥ 0. If

u ∈ L2(]a, b[×R
2n) is a weak solution of equation Pu = f on ]a, b[×R

2n, then
there exists k0 ∈ N such that

〈x〉−k0−1u ∈ Hs+ α
4 − 1

12 (]a′, b′[×R
2n),

for any a < a′ < b′ < b. In particular, if f ∈ H∞(]a, b[×R
2n)), then u ∈

C∞(]a, b[×R
2n)).

We remark that k0 is in order of [4s(α− 1
3 )−1] + 1.

Using this linear theorem, we can get the following results for semi-linear
Cauchy problems

(1.2)

{
Pu = F (u)
u|t=0 = u0

with F ∈ C∞(R) and F (0) = 0.

Theorem 1.3. If s > n, 1/3 < α < 1 and u0 ∈ Hs(R2n), then there
exists a T > 0 such that the Cauchy problem (1.2) has a solution.

u ∈ C0([0, T [;Hs(R2n)), (−�̃x)α/2u ∈ L2(]0, T [;Hs(R2n)),

and

u ∈ H+∞
loc (]0, T [×R

2n) ⊂ C∞(]0, T [×R
2n).

More precisely, for the regularity we see that for any m ∈ N there exists an
m0 ∈ N such that

〈x〉−m0u ∈ Hm(]a, b[×R
2n),

for any 0 < a < b < T .
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This paper is organized as follows: In Section 2, we prove the existence
of weak solutions for linear and non linear Cauchy problems. In Section 3, we
study the subellipticity of operators P , and get the sub-elliptic regularity for
weak solution in Section 4. Finally in Section 5, we prove the smoothness of
weak solutions for linear and non linear Cauchy problems.

2. Existence for Cauchy problems

2.1. Linear Cauchy problems
We consider now the linear Cauchy problem (1.1). For the existence of

weak solution for linear equation, we follow the idea of proof of Theorem 23.1.2
in [10].

We give now the precise definition of the operator (−�̃x)α = |D̃x|2α for
α ∈ R, where |D̃x|α is a Fourier multiplier of symbol |ξ|αχ(ξ) + |ξ|(1 − χ(ξ)),
with χ ∈ C∞(Rn), 0 ≤ χ ≤ 1, χ(ξ) = 1 if |ξ| ≥ 2 and χ(ξ) = 0 if |ξ| ≤ 1.
We first study the commutators of this operator with functions in C∞

b and
unbounded function (the coefficients of our operators P ) xk, k = 1, · · · , n. We
give the following technical lemma.

Lemma 2.1. Let Ω be an open (unbounded) domain of ]T1, T2[×R
2n,

a ∈ C∞
b (Ω), β ∈ R. Then there exists C > 0 depending only on the boundedness

of a and their derivation such that

(2.1) ‖[a, |D̃x|β ]v‖L2(Ω) ≤ C{‖|D̃x|(β−1)v‖L2(Ω) + ‖v‖L2(Ω)},

for any v ∈ C∞
0 (Ω).

Moreover, we have that [xk, |D̃x|β ] is a Fourier multiplier and

(2.2) ‖[xk, |D̃x|β]v‖L2(Ω) ≤ |β|‖|D̃x|(β−1)v‖L2(Ω) + C‖v‖L2 ,

for any v ∈ C∞
0 (Ω), k = 1, · · · , n.

Proof. Now |Dx|βχ(Dx) ∈ Op(Sβ
1,0(R

n
x)), then [a, |Dx|βχ(Dx)] is a

pseudo-differential operators of order (β − 1), its principal symbol is

n∑
k=1

(∂xk
a) (β|ξ|β−2 (iξk)χ(ξ) + |ξ|βi∂ξk

χ(ξ)),

which deduces that

‖[a, |Dx|βχ(Dx)]v‖L2 ≤ C‖|D̃x|(β−1)v‖L2 + ‖|Dx|(1 − χ(Dx))(v)‖L2 .

For the terms |Dx|β(1−χ(Dx)), we just use the boundedness of a and |ξ|β(1−
χ(ξ)) to get the L2 boundedness. This is the reason why we give (2.2) for
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unbounded function xk. Direct calculation gives

xk(|D̃x|βv)(x) = F−1
(
Dξk

((|ξ|βχ(ξ) + |ξ|(1 − χ(ξ))
)
v̂(ξ)

))
= F−1

((
Dξk

(|ξ|αχ(ξ) + |ξ|(1 − χ(ξ))
))
v̂(ξ)

+
(|ξ|αχ(ξ) + |ξ|(1 − χ(ξ))

)
Dξk

v̂(ξ)
)

= F−1
((
Dξk

(|ξ|αχ(ξ) + |ξ|(1 − χ(ξ))
))
v̂(ξ)

)
+

(
|D̃x|β(xk v)

)
(x).

But, for |ξ| ≥ 1,

|Dξk
|ξ|β| ≤ |β||ξ|β−1,

and for |ξ| ≤ 2, |Dξk
|ξ|| ≤ C. We get that

‖[xk, |D̃x|β ]v‖L2 ≤ |β|‖|D̃x|(β−1)v‖L2 + C‖v‖L2 .

We have proved Lemma 2.1.

Proposition 2.1. Assume that s ≥ 0, f ∈ L1(]0, T [;Hs(R2n)) for some
0 < T <∞ and u0 ∈ Hs(R2n). Suppose that u is a regular solution of Cauchy
problem of equation (1.1) with initial data u|t=0 = u0. Then there exists a
C > 0 such that

‖Λs
x,yu‖2

L∞(]0,T [;L2(R2n)) + σ0‖Λα
xΛs

x,yu‖2
L2(]0,T [;L2(R2n))

≤ C
{
‖Λs

x,yf‖2
L1(]0,T [;L2(R2n)) + ‖Λs

x,yu0‖2
L2(R2n)

}
,

(2.3)

where

Λx = (1 + |Dx|2)1/2, Λy = (1 + |Dy|2)1/2, Λx.y = (1 + |Dx|2 + |Dy|2)1/2.

Now as in the proof of Theorem 23.1.2 in [10], The “energy estimate”
(2.3) and Hahn-Banach theorem give the existence of solution for the Cauchy
problem (1.1):

u ∈ L∞(]0, T [;Hs(R2n)), Λα
xu ∈ L2(]0, T [;Hs(R2n)),

we have proved Theorem 1.1.

Proof of Proposition 2.1. If u is a regular solution of Cauchy problem, we
have

(2.4) (∂tu,Λ2s
x,yu) + (x · ∇yu,Λ2s

x,yu) + (σ(−∆̃x)αu,Λ2s
x,yu) = (f,Λ2s

x,yu),

where (·, ·) = (·, ·)L2(Rn
x×Rn

y ). Noting that

Re(x · ∇yΛs
x,yu,Λ

s
x,yu)L2(R2n) = 0
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and
σ0

2
‖|D̃x|αΛs

x,yu(t)‖2
L2(R2n) ≤ (σ(−∆̃x)αΛs

x,yu,Λ
s
x,yu) + C‖Λs

x,yu(t)‖2
L2(R2n),

we study the commutator terms

|([Λs
x,y, x · ∇y]u,Λs

x,yu)L2(R2n)| ≤ C‖Λs
x,yu(t)‖2

L2(R2n),

since

[Λs
x,y, x · ∇y] = sΛs−2

x,y ∇x · ∇y ∈ Op(Ss(R2n)).

Then, the integration by parts in (2.4) and Cauchy-Schwarz inequality deduce
that

1
2
d

dt
‖Λs

x,yu(t)‖2
L2(R2n) + σ0‖|D̃x|αΛs

x,yu(t)‖2
L2(R2n)

≤ ‖Λs
x,yf(t)‖L2(R2n)‖Λs

x,yu(t)‖L2(R2n) + C‖Λs
x,yu(t)‖2

L2(R2n).

We have also

‖|D̃x|αΛs
x,yu(t)‖2

L2(R2n) ≤ ‖Λα
xΛs

x,yu(t)‖2
L2(R2n)

≤ 22α
{
‖|D̃x|αΛs

x,yu(t)‖2
L2(R2n) + ‖Λs

x,yu(t)‖2
L2(R2n)

}
.

(2.5)

Integrating on [0, t] for any t ∈]0, T ], we have that,

‖Λs
x,yu(t)‖2

L2(R2n) + σ0‖Λα
xΛs

x,yu‖2
L2(]0,t[;L2(R2n))

≤ 2e4CT ‖Λs
x,yf‖2

L1(]0,T [;L2(R2n))

+
1
2
‖Λs

x,yu‖2
L∞(]0,T [;L2(R2n)) + e2CT ‖Λs

x,yu0‖2
L2(R2n).

We have proved Proposition 2.1.

We can also prove the following results.

Proposition 2.2. Assume that s ≥ 0, 〈x〉f ∈ L1(]0, T [;Hs(R2n)) for
some 0 < T < ∞ and 〈x〉u0 ∈ Hs(R2n). Suppose that u is a regular solution
of Cauchy problem (1.1). Then there exist C > 0 such that for k = 1, · · · , n:

‖Λs
x,y(xku)‖2

L∞(]0,T [;L2(R2n)) + σ0‖Λα
xΛs

x,y(xku)‖2
L2(]0,T [;L2(R2n))

≤ C
{
‖Λs

x,y(xkf)‖2
L1(]0,T [;L2(R2n)) + ‖Λs

x,yu‖2
L∞(]0,T [; L2(R2n))

+ ‖Λs
x,y(xku0)‖2

L2(R2n)

}
.

(2.6)

In fact, the combination of (2.3) and (2.6) give

‖Λs
x,y(〈x〉u)‖2

L∞(]0,T [;L2(R2n)) + σ0‖Λα
xΛs

x,y(〈x〉u)‖2
L2(]0,T [;L2(R2n))

≤ C
{
‖Λs

x,y(〈x〉f)‖2
L1(]0,T [;L2(R2n)) + ‖Λs

x,yu‖2
L∞(]0,T [; L2(R2n))

+ ‖Λs
x,y(〈x〉u0)‖2

L2(R2n)

}
.

(2.7)
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We will use this estimate in the proof of regularity. The proof of this
proposition is similar to that of Proposition 2.1. We can use (2.2) to get

|([xk, |D̃x|2α]u,Λ2s
x,y(xku))|

≤ C‖Λs
x,yu(t)‖L2(R2n)(‖Λα

xΛs
x,y(xku)(t)‖L2(R2n) + ‖Λs

x,yu(t)‖L2(R2n)).

2.2. Semi-linear Cauchy problems
We suppose now s > n and u0 ∈ Hs(R2n). We consider the following

linearization problems of Cauchy problems (1.2) for k = 1, 2, · · · and u1 =
S1(u0).

(2.8)

{
∂tuk+1 + x · ∇yuk+1 + σ(−�̃x)αuk+1 = F (uk)
uk+1|t=0 = Sk+1(u0),

where Sk(u0) = ψ(2−kDx,y)(u0) with ψ ∈ C∞
0 (B(0, 2)), ψ = 1 on B(0, 1). This

is regularization of initial data, and we point out the following properties (for
example, see [14] for more detail of this regularizations)

Sk(u0) ∈ H+∞; ‖Sk(u0)‖Hs ≤ ‖u0‖Hs ; Sk(u0) −→ u0 in Hs(R2n),

and

‖Sk+1(u0) − Sk(u0)‖L2(R2n) ≤ ck2−ks, with ‖{ck}‖�2 ≤ ‖u0‖Hs .

By nonlinear microlocal analysis, we have the following nonlinear compo-
sition results (see for example [14]).

Lemma 2.2. Let F ∈ C∞(R), F (0) = 0, s ≥ 0, if u ∈ Hs(RN ) ∩
L∞(RN ), then F (u) ∈ Hs(RN ) with

‖F (u)‖Hs ≤ CM‖u‖Hs

where the constant CM depends only on ‖F (j)‖L∞([−M,M ]),M
j , 0 ≤ j ≤ [s] + 1

with ‖u‖L∞ ≤ M . The same result is true for u ∈ L∞(]0, T [;Hs(RN )) ∩
L∞(]0, T [×R

N ) .

Theorem 1.1 gives the existence of this sequence {uk} ⊂ L∞ (]0, T [; Hm

(R2n)) for any T > 0 and m > n, since Sk(u0)∈H+∞(R2n).

We prove now the convergence of this sequence by the following two propo-
sitions.

Proposition 2.3. For s > n, there exist T1 > 0 and M1 > 0 such that
for any k ≥ 1 ,

(2.9) ‖uk‖2
L∞(]0,T1[;Hs(R2n)) + ‖Λα

xuk‖2
L2(]0,T1[;Hs(R2n)) ≤M2

1 .
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Proof. We denote by Cs the Sobolev embedding constant:

‖u‖L∞ ≤ Cs‖u‖Hs(R2n),

since s > n. Denote by M0 = ‖u0‖Hs ,Ms = CsM0. We prove now (2.9) by
induction.

For k = 2, we first use Lemma 2.2,

‖F (u1)‖L1(]0,T [;Hs(R2n)) ≤ CMs
M0.

Then Proposition 2.1 gives

‖Λs
x,yu2‖2

L∞(]0,T [;L2(R2n)) + σ0‖Λα
xΛs

x,yu2‖2
L2(]0,T [;L2(R2n)) ≤ C{T 2C2

Ms
+ 1}M2

0 .

It is enough to take M1, T1 such that C{T 2
1C

2
Ms

+ 1}M2
0 ≤M2

1 .
Suppose now (2.9) is true for 2 ≤ j ≤ k. We shall prove (2.9) for k + 1.

Since uk+1 is a regular solution of equation (2.8), (2.3) gives

‖Λs
x,yuk+1‖2

L∞(]0,T [;L2(R2n)) + σ0‖Λα
xΛs

x,yuk+1‖2
L2(]0,T [;L2(R2n))

≤ C
{
‖Λs

x,yF (uk)‖2
L1(]0,T [;L2(R2n)) + ‖Λs

x,ySk+1(u0)‖2
L2(R2n)

}
.

From the induction hypothesis,

‖uk‖L∞(]0,T [×R2n) ≤ Cs‖Λs
x,yuk‖L∞(]0,T [;L2(R2n)) ≤ CsM1 = M̃s

with M̃s ≥ Ms independent of k which implies CfMs
≥ CMs

. We get that,
thanks to Lemma 2.2,

‖Λs
x,yF (uk)‖L1(]0,T [;L2(R2n)) ≤ CfMs

‖Λs
x,y(uk)‖L1(]0,T [;L2(R2n))

≤ CfMs
T‖Λs

x,y(uk)‖L∞(]0,T [;L2(R2n)) ≤ CfMs
TM1.

We get finally

‖Λs
x,yuk+1‖2

L∞(]0,T [;L2(R2n)) + σ0‖Λα
xΛs

x,yuk+1‖2
L2(]0,T [;L2(R2n))

≤ C
{(
CfMs

TM1

)2 +M2
0

}
,

so that it is enough to take

M2
1 = 2CM2

0 , 0 < T ≤ T1 =
1
2
C−1

fMs
C−1/2.

We have proved Proposition 2.3.

Proposition 2.4. There exists a 0 < T2 ≤ T1 such that {uk} is con-
vergent in L∞(]0, T2[;L2(R2n)), {Λα

x (uk)} is convergent in L2(]0, T2[;L2(R2n)),
and the limit u ∈ L∞(]0, T2[;Hs(R2n)) is a solution of Cauchy problem (1.2)
with

Λα
x (u) ∈ L2(]0, T2[;Hs(R2n)).
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Proof. We prove that there exists 0 < T2 ≤ T1 and M2 > 0 such that for
any k ≥ 1

‖uk+1 − uk‖2
L∞(]0,T2[;L2(R2n)) + ‖Λα

x (uk+1 − uk)‖2
L2(]0,T2[;L2(R2n))

≤M2
2 2−2ks.

(2.10)

We have in fact, from equation (2.8),
∂t(uk+1 − uk) + x · ∇y(uk+1 − uk) + σ(−�̃x)α(uk+1 − uk)

= F (uk) − F (uk−1)
(uk+1 − uk)|t=0 = ∆k+1(u0),

where ∆k+1(u0) = Sk+1(u0)−Sk(u0). From Proposition 2.3, we have that, for
any k ≥ 1,

‖uk‖L∞(]0,T1[×R2n) ≤ CsM1 = M̃s.

We have that for any 0 < T ≤ T1,

‖F (uk) − F (uk−1)‖L1(]0,T [;L2(R2n)) ≤ C0T‖(uk − uk−1)‖L∞(]0,T [;L2(R2n))

with C0 = ‖F ′‖
L∞(]−fMs,fMs[)

. Using again (2.3), we get, for any 0 < T ≤ T1,
and k ≥ 2

‖(uk+1 − uk)‖2
L∞(]0,T [;L2(Rn)) + σ0‖Λα

x (uk+1 − uk)‖2
L2(]0,T [;L2(Rn))

≤ C
{(
C0T‖(uk − uk−1)‖L∞(]0,T [;L2(R2n))

)2 + ‖∆k+1(u0)‖2
L2(R2n))

}
.

On the other hand, by induction hypothesis,

‖(uk − uk−1)‖L∞(]0,T2[;L2(R2n)) ≤M22−(k−1)s,

and hypothesis on u0,

‖∆k+1(u0)‖L2(R2n)) ≤ ‖u0‖Hs2−ks.

Since it suffices to take

M2 = M1, 0 < T2 = 2−s−1C−1
0 C−1/2 ≤ T1,

we have proved Proposition 2.4.

We have showed that there exists 0 < T2 ≤ T1 such that {uk} is bounded
in L∞(]0, T2[, Hs(R2n)) and {Λα

x (uk)} is also bounded in L2(]0, T2[, Hs(R2n)).
Hence {uk} is convergent in L∞(]0, T2[, L2(R2n)) and {Λα

x (uk)} is convergent
in L2(]0, T2[, L2(R2n)) with the limit

u = u1 +
∞∑

k=1

(uk+1 − uk) ∈ L∞(]0, T2[, L2(R2n)).
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By interpolation, the convergence is also in L∞(]0, T2[, Hs′
(R2n)) and L2(]0, T2[,

Hs′
(R2n)) for any 0 ≤ s′ < s, and moreover

u ∈ L∞(]0, T2[, Hs(R2n)), Λα
xu ∈ L2(]0, T2[, Hs(R2n)).

We have proved the existence of solution for Theorem 1.3.

3. Sub-elliptic estimates

We study now the sub-elliptic estimates. Without loss of generality, we
suppose in the following that σ = σ0 > 0 is constant, and consider the operators

P = ∂t + x · ∇y + σ0(−�̃x)α

on an open domain Ω ⊂ Rt × R
n
x × R

n
y . In the application, we will take

Ω =]a, b[×R
n
x × R

n
y , so that P are not pseudo-differential operators in Ω. We

suppose now 1/3 < α < 1.
We put

Λ =
(
1 + |Dt|2 + |Dx|2 + |Dy|2

)1/2
,

and

X0 = Λ−1/3(∂t + x · ∇y), Xj = Λα−1∂xj
, j = 1, · · · , n.

Then Xj ∈ Op(Sα
1,0(Rt × R

n
x × R

n
y )), j = 1, · · · , n is a family of pseudo-

differential operators. But X0 is not a pseudo-differential operator (of order
2/3) on ]a, b[×R

2n, since the coefficient x is not bounded on ]a, b[×R
2n. We

will pay more attention to treat this term (see [12], [13], [15]).

Proposition 3.1. If Ω is an open domain of Rt×R
n
x×R

n
y , 1/3 < α < 1,

then there exists C > 0 such that

(3.1)
n∑

j=1

‖Xjv‖2
L2 ≤ C

{
Re(Pv, v) + ‖v‖2

L2

}
,

for any v ∈ C∞
0 (Ω). For the X0, we have

(3.2) ‖X0v‖2
L2 ≤ C

{
3∑

k=1

Re(Pv,Akv) + ‖v‖2
L2

}
,

for any v ∈ C∞
0 (Ω), where

A1 ∈ Op(S0
1,0(R

2n+1)), A2 = (Λ−1/3 + Λ−1)X0, A3 = −(∂t + x · ∇y)Λ−1X0.

Proof. For any v ∈ C∞
0 (Ω), the integration by parts deduces immediately

(3.3) Re(Pv, v) = Re(σ0|D̃x|αv, |D̃x|αv) = σ0‖|D̃x|αv‖2
L2 .
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Then a direct calculation gives

‖Xjv‖L2 = ‖Λα−1Dxj
v‖L2 ≤ ‖|D̃x|αv‖L2 + C‖v‖L2 .

We have proved (3.1). In the future proof, we need also the estimate (3.3).
Putting now w = A2v = Λ−1/3X0v, we have

‖X0v‖2
L2 = Re(Pv,w) −Re(σ0|D̃x|2αv, w).

Since |D̃x|ασ0|D̃x|α is a positive operator on L2, it follows that∣∣∣Re(σ0|D̃x|2αv, w)
∣∣∣ ≤ Re(σ0|D̃x|αv, |D̃x|αv) +Re(σ0|D̃x|αw, |D̃x|αw)

We get

(3.4) ‖X0v‖2
L2 ≤ |Re(Pv,w)| + |Re(σ0|D̃x|αw, |D̃x|αw)| + C‖|D̃x|αv‖2

L2 .

We study now the term

Re(σ0|D̃x|αw, |D̃x|αw) = Re(σ0|D̃x|2αw,w) = Re(Pw,w)

= Re(Pv,A3v) +Re([Λ−2/3, x] · ∂y(∂t + x · ∂y)v, w)

+Re(σ0[|D̃x|2α, Λ−1/3X0]v, w).

But we have

[Λ−2/3, x] = −2
3
Λ−2/3−2∂x,

and

[|D̃x|2α, Λ−1/3X0] = Λ−2/3[|D̃x|2α, x] ·Dy.

We use now (2.2), to deduce that∣∣∣Re(σ0[|D̃x|2α,Λ−1/3X0]v, w)
∣∣∣ ≤ C(‖|D̃x|αv‖L2 + ‖v‖L2)‖X0v‖L2 .

It is easier for

|Re([Λ−2/3, x] · ∂y(∂t + x · ∂y)v, w)| ≤ C‖w‖2
L2

and

‖w‖2
L2 = ((∂t + x · ∇y)(v),Λ−1X0(v))

≤ |Re(Pv,Λ−1X0(v))| + |(σ0|D̃x|2αv,Λ−1X0(v))|
≤ |Re(Pv,Λ−1X0(v))| + C||D̃x|αv‖2

L2 +
1
16

‖X0(v)‖2
L2 .

We get finally the desired estimate (3.2).



Hypoellipticity for kinetic equations 139

We study now the microlocal regularity,

[Xj , X0] = Λα−1/3−1∂yj
+ (α− 1)Λα−1/3−3∂x · ∂y∂xj

= Λα−1/3
(
Λ−1∂yj

)
+ (α− 1)Λ−1/3Λ̃0Xj ,

where Λ̃0 = Λ−2∂x · ∂y is a pseudo-differential operator of order 0. So that

Λα/2−1/6
(
Λ−1∂yj

)
= Λ−α/2+1/6[Xj , X0] − (α− 1)Λ−α/2−1/6Λ̃0Xj ,

(3.5)

and

Λα/2−1/6
(
Λ−1∂t

)
= Λα/2−1/6Λ−1

(
∂t + x · ∇y

)
− Λα/2−1/6Λ−1

(
x · ∇y

)
= Λα/2−1/6−2/3X0

−
n∑

j=1

(
Λ−α/2+1/6[Xj , X0]xj − (α− 1)Λ−α/2−1/6Λ̃0Xjxj

)
.

(3.6)

We recall

(3.7) Λα
(
Λ−1∂xj

)
= Xj .

Now, if Ω is bounded, the family of pseudo-differential operators X0, X1,
· · · , Xn satisfy the Hörmander-Kohn condition in the sense of [3]. When
α = 2/3, all Xj have the same order 2/3, and the theorem of [3] shows the
subelliptic regularity of order 2/3− 1/2 = 1/6, which coincides with α/2− 1/6
here. But the operators P and equation (1.1) is not (properly supported)
pseudo-differential in the domain Ω =]a, b[×R

2n. We have proved the following
subelliptic estimates.

Proposition 3.2. With same notations of Proposition 3.1, there exists
C > 0 such that

(3.8)
n∑

j=1

∥∥∥Λ
α
2 − 1

6−1∂yj
v
∥∥∥2

L2
≤ C

{
3∑

k=1

Re(Pv,Akv) + ‖v‖2
L2

}
.

For the differentiation with respect to variable t, we have

(3.9)
∥∥∥Λ

α
4 − 1

12−1∂tv
∥∥∥2

L2
≤ C

{
3∑

k=1

Re(Pv,Akv) + ‖〈x〉v‖2
L2

}
,

and

(3.10)
∥∥∥Λ

α
4 − 1

12 v
∥∥∥2

L2
≤ C

{
3∑

k=1

Re(Pv,Akv) + ‖〈x〉v‖2
L2

}
.

for any v ∈ C∞
0 (Ω), where 〈x〉 = (1 + |x|2)1/2.
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Remark. By density, the estimates of above proposition are also true
for any v ∈ H2

0 (Ω).

Proof. Since ‖(A+ iB)v‖2
L2 ≥ 0, it follows that

(v, i[A,B]v) ≤ 3
2

(
‖Av‖2

L2 + ‖Bv‖2
L2

)
+

1
2

(
‖(A−A∗)v‖2

L2 + ‖(B −B∗)v‖2
L2

)
for any operators A,B.

Putting A = −i[Xj , X0]∗Λ−α+1/3Xj and B = X0, we have [Xj , X0]∗ =
−[Xj , X0] and

i[A,B] = −[ [Xj , X0]Λ−α+1/3Xj , X0]

= [Xj , X0]∗Λ−α+1/3[Xj , X0] − [ [Xj , X0]Λ−α+1/3, X0]Xj

= [Xj , X0]∗Λ−α+1/3[Xj , X0] + Λ̃−1/3Xj ,

where Λ̃−1/3 is a pseudo-differential operator of order −1/3.
We obtain, from (3.5),∥∥∥Λ

α
2 − 1

6−1(∂yj
v)

∥∥∥2

L2
≤

∥∥∥Λ−α
2 + 1

6 [Xj , X0]v
∥∥∥2

L2
+ C‖Xjv‖2

L2

≤ C
(
‖Xjv‖2

L2 + ‖X0v‖2
L2 + ‖v‖2

L2

)
.

Those estimates for j = 1, · · · , n together with (3.1) and (3.2) show (3.8).

To prove (3.9), we take w = Λ
α
2 − 1

6−2(∂tv). Then we have that

‖Λα
4 − 1

12−1(∂tv)‖2
L2

= Re(Pv, Λ̃0(v)) −Re(σ0|D̃x|2αv, Λ̃0(v)) − Re(x · ∇yv, Λ
α
2 − 1

6−2(∂tv)),

where Λ̃0 = Λ
α
2 − 1

6−2∂t ∈ Op(S0
1,0(R2n+1)). Then

|Re(σ0|D̃x|2αv, Λ̃0(v))| ≤ C{‖D̃x|αv‖2
L2 + ‖v‖2

L2}.

For the last term, we have

|Re(x · ∇yv, Λ
α
2 − 1

6−2(∂tv))| =

∣∣∣∣∣
n∑

k=1

Re(Λ−1∂t(xkv), Λ
α
2 − 1

6−1(∂yk
v))

∣∣∣∣∣
≤ C

n∑
k=1

‖xkv‖L2‖Λα
2 − 1

6−1(∂yk
v)‖L2 ,

so that we get the desired estimate (3.9) by using (3.8) and (3.3).
Finally, combination of (3.1), (3.8) and (3.9) give (3.10). We have proved

Proposition 3.2.
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We can use directly (3.6) to get

‖Λα
2 − 1

6−1(∂tv)‖2
L2 ≤ ‖Λα

2 − 1
6−2/3X0v‖2

L2 +
n∑

j=1

‖Λα
2 − 1

6−1(∂yj
(xjv))‖2

L2 ,

then (3.8) with test function (xkv) and (3.2) deduce the following estimate

∥∥∥Λ
α
2 − 1

6−1∂tv
∥∥∥2

L2
≤ C

{
3∑

k=1

Re(Pv,Akv)

+
n∑

j=1

3∑
k=1

Re(P (xjv), Ak(xjv)) + ‖〈x〉v‖2
L2

 ,

(3.11)

which gives also the following hypoelliptic estimate with weight

∥∥∥Λ
α
2 − 1

6 v
∥∥∥2

L2
≤ C

{
3∑

k=1

Re(Pv,Akv)

+
n∑

j=1

3∑
k=1

Re(P (xjv), Ak(xjv)) + ‖〈x〉v‖2
L2

 ,

(3.12)

The difference between (3.12) and (3.10) is that, the gain of regularity of
(3.10) is one half of (3.12), but we suppress the weight xj in Pv. For high order
regularity, we will study this scale between the gain of regularity and the power
of weight 〈x〉.

4. Regularity of weak solutions

We prove now the regularity of weak solutions of Theorem 1.1. By com-
bination the estimate(3.1), (3.2) and (3.10), we have obtained the following
sub-elliptic estimate :

(4.1)
∥∥∥Λ

α
4 − 1

12 v
∥∥∥2

L2(R2n+1)
≤ C

{
‖〈x〉Pv‖2

L2(R2n+1) + ‖〈x〉v‖2
L2(R2n+1)

}
,

for any v ∈ H2
0 (]0, T [×R

2n). Here we used the fact

‖A1v‖L2 ≤ C‖v‖L2 , ‖(A2 + 〈x〉−1A3)v‖L2 ≤ C‖X0v‖L2 .

For δ > 0, we set

Λδ =
(
1 + δ(|Dt|2 + |Dx|2 + |Dy|2)

)1/2
.

We will use the following notations : for ϕ, ψ ∈ C∞
0 , we say ϕ ⊂⊂ ψ if ψ = 1

in a neighborhood of supp ϕ.
We prove the following results
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Proposition 4.1. Let 1/3 < α < 1 and s ≥ 0. Assume that f, 〈x〉
f ∈ Hs(]a, b[×R

2n). Let u ∈ Hs(]a, b[×R
2n) be a weak solution of equation

Pu = f on ]a, b[×R
2n such that 〈x〉u ∈ Hs(]a, b[×R

2n). Then for any ϕ, ψ ∈
C∞

0 (]a, b[), ϕ ⊂⊂ ψ and 0 < δ < 1, there exists a constant C > 0 independent
of δ such that∥∥∥Λ

α
4 − 1

12ψ(Λδ)−2Λs(ϕu)
∥∥∥2

L2(R2n+1)
≤ C

{
‖ψ̃Λs(〈x〉f)‖2

L2(R2n+1)

+ ‖ψ̃Λs(〈x〉u)‖2
L2(R2n+1) + ‖ψ̃Λsf‖2

L2(R2n+1) + ‖ψ̃Λsu‖2
L2(R2n+1)

}
,

(4.2)

with some ψ̃ ∈ C∞
0 (]a, b[), ψ ⊂⊂ ψ̃. Here the cut-off function are only for t

variable.

Take the limit δ → 0 in (4.2). Then it deduces

ψΛs(ϕu) ∈ H
α
4 − 1

12 (R2n+1),

because the commutator [ψ, Λs] is a pseudo-differential operator of order s−1.
We have obtained a gain of regularity of order 1

4 (α− 1
3 ) for (weak) solution with

a supplement condition 〈x〉f ∈ Hs(]a, b[×R
2n) and 〈x〉u ∈ Hs(]a, b[×R

2n).

Proof of Proposition 4.1. We will choose v = ψΛ−2
δ Λs(ϕu) as test function

in (3.2) and (3.10), (if we consider the partial Sobolev space, we take v =
ψΛ−2

δ Λs
x,y(ϕu) as test function)∥∥∥Λ

α
4 − 1

12ψ(Λδ)−2Λs(ϕu)
∥∥∥2

L2
+

∥∥X0ψ(Λδ)−2Λs(ϕu)
∥∥2

L2

≤ C

{
3∑

k=1

Re(Pψ(Λδ)−2Λs(ϕu), Akψ(Λδ)−2Λs(ϕu))

+ ‖〈x〉ψ(Λδ)−2Λs(ϕu)‖2
L2

}
.

We calculate the commutator terms

[P, ψΛ−2
δ Λsϕ]u = ∂t(ψΛ−2

δ Λsϕ)ψu+ ψ[x, Λ−2
δ Λs] · ∇y(ϕu)

which is a pseudo-differential operator of order s for (x, y) variables. And
moreover

〈x〉[P, ψΛ−2
δ Λsϕ]〈x〉−1

= [P, ψΛ−2
δ Λsϕ] + 〈x〉[[P, ψΛ−2

δ Λsϕ], 〈x〉−1],

where the second term is also a pseudo-differential operator of order s. There
exists C > 0 independent of δ such that

‖〈x〉[P, ψΛ−2
δ Λsϕ]u‖L2 ≤ C‖ψ̃Λs〈x〉ψu‖L2 ,
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and

‖〈x〉ψΛ−2
δ ΛsϕPu‖L2 ≤ ‖ψ̃Λs〈x〉ψPu‖L2 .

We get the estimate (4.2) directly from (4.1).

We study now the regularity of 〈x〉−1u.

Theorem 4.1. Let 1/3 < α < 1 and s ≥ 0. We suppose that f ∈
Hs(]a, b[×R

2n)) and u ∈ Hs(]a, b[×R
2n) is a weak solution of equation Pu = f

on ]a, b[×R
2n. Then we have

〈x〉−1u ∈ Hs+ α
4 − 1

12 (]a′, b′[×R
2n),

for any a < a′ < b′ < b.

The proof of this theorem uses the following hypoelliptic estimate with
weight 〈x〉−1.

Proposition 4.2. Suppose that 1/3 < α < 1. Then there exists C > 0
such that ∥∥∥Λ

α
4 − 1

12 (〈x〉−1v)
∥∥∥2

L2
+

∥∥X0(〈x〉−1v)
∥∥2

L2

≤ C

{
4∑

k=1

Re(〈x〉−1Pv,Ak(〈x〉−1v) + ‖v‖2
L2

}(4.3)

for any v ∈ C∞
0 (]a, b[×R

2n), where A1, A2, A3 are the same operators as in
Proposition 3.1 and A4 = 〈x〉2.

Proof. Putting the test function 〈x〉−1v in (3.2) and (3.10), we have that

∥∥∥Λ
α
4 − 1

12 (〈x〉−1v)
∥∥∥2

L2
+

∥∥X0(〈x〉−1v)
∥∥2

L2

≤ C

{
3∑

k=1

Re(P (〈x〉−1v), Ak(〈x〉−1v) + ‖v‖2
L2

}
.

We need to estimate the commutator term

3∑
k=1

|([P, 〈x〉−1]v, Ak(〈x〉−1v))|

by th right hand side of (4.3). Since 〈x〉−1 ∈ C∞
b (Rn), Lemma 2.1 implies

‖[P, 〈x〉−1]v‖2
L2 = ‖σ0[|Dx|2α, 〈x〉−1]v‖2

L2 ≤ C
(
‖|D̃x|αv‖2

L2 + ‖v‖2
L2

)
.
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By using Cauchy-Schwarz inequality,

2∑
k=1

|([P, 〈x〉−1]v, Ak(〈x〉−1v))|

≤ C
(
‖|D̃x|αv‖2

L2 + ‖v‖2
L2

)
+

1
1000

‖X0(〈x〉−1v)‖2
L2

≤ C
(
Re(Pv, v) + ‖v‖2

L2

)
+

1
1000

‖X0(〈x〉−1v)‖2
L2 .

(4.4)

For the last term, we have

([P, 〈x〉−1]v, A3(〈x〉−1v))

= −σ0([|D̃x|2α, 〈x〉−1]v, ∂tΛ−1X0(〈x〉−1v))

−
n∑

j=1

σ0(xj [|D̃x|2α, 〈x〉−1]v, ∂yj
Λ−1X0(〈x〉−1v)).

The estimation of σ0([|D̃x|2α, 〈x〉−1]v, ∂tΛ−1X0(〈x〉−1v)) is the same as (4.4).
On the other hand, for j = 1, · · · , n,

xj [|D̃x|2α, 〈x〉−1] = xj |D̃x|2α〈x〉−1 − xj〈x〉−1|D̃x|2α

= [xj , |D̃x|2α]〈x〉−1 + [|D̃x|2α, xj〈x〉−1]

= 〈x〉−1[xj , |D̃x|2α] + [[xj , |D̃x|2α], 〈x〉−1] + [|D̃x|2α, xj〈x〉−1].

Since [xj , |D̃x|2α] is a Fourier multiplier, we use Lemma 2.1 with the functions
〈x〉−1, xj〈x〉−1 ∈ C∞

b (Rn),

|(xj [|D̃x|2α, 〈x〉−1]v, ∂yj
Λ−1X0(〈x〉−1v))|

≤ C
(
‖|D̃x|αv‖2

L2 + ‖v‖2
L2

)
+

1
1000

‖X0(〈x〉−1v)‖2
L2

≤ C
(
Re(Pv, v) + ‖v‖2

L2

)
+

1
1000

‖X0(〈x〉−1v)‖2
L2 .

We proved finally (4.3).

Similarly to Proposition 4.1, we have the following :

Proposition 4.3. Let 1/3 < α < 1 and s ≥ 0. Assume that f ∈
Hs(]a, b[×R

2n). If u ∈ Hs(]a, b[×R
2n) is a (weak) solution of equation Pu = f

in ]a, b[×R
2n, then for any ϕ, ψ ∈ C∞

0 (]a, b[), ϕ ⊂⊂ ψ and 0 < δ < 1, there
exists a C > 0 independent of δ such that∥∥∥Λ

α
4 − 1

12 〈x〉−1ψ(Λδ)−2Λs(ϕu)
∥∥∥2

L2(R2n+1)

≤ C
{
‖Λsψ̃f‖2

L2(R2n+1) + ‖Λsψ̃u‖2
L2(R2n+1)

}
,

(4.5)

with some ψ̃ ∈ C∞
0 (]a, T [), ψ ⊂⊂ ψ̃.



Hypoellipticity for kinetic equations 145

We just choose v = ψΛ−2
δ Λs(ϕu) as test function in (4.3). The estimation

of commutator term

[P, ψΛ−2
δ Λsϕ]u = ∂t(ψΛ−2

δ Λsϕ)ψu+ ψ[x,Λ−2
δ Λs] · ∇y(ϕu)

is the same as in the proof of Proposition 4.1. We get also∥∥∥|D̃x|α〈x〉−1ψ(Λδ)−2Λs(ϕu)
∥∥∥2

L2

≤ C
{
‖〈x〉−1Λs(ψf)‖2

L2 + ‖Λsψu‖2
L2

}
,

(4.6)

and

(4.7)
∥∥X0〈x〉−1ψ(Λδ)−2Λs(ϕu)

∥∥2

L2 ≤ C
{
‖Λsψf‖2

L2 + ‖Λsψu‖2
L2

}
.

Proof of Theorem 4.1. Take the limit δ → 0 in (4.5). Then it deduces

〈x〉−1ψΛs(ϕu) ∈ H
α
4 − 1

12 (R2n+1),

because the commutator [ψ, Λs] is a pseudo-differential operator of order s−1.
We obtain a gain of regularity for 〈x〉−1u.

We have also proved that

u ∈ H
s+ α

4 − 1
12

loc (]a, b[×R
2n)

since for any ϕ ∈ C∞
0 (]a, b[), ψ ∈ C∞

0 (Rn
x), we have

‖Λs+ α
4 − 1

12 (ϕ(t)ψ(x)u)‖L2

≤ ‖ψ(x)Λs+ α
4 − 1

12 (ϕ(t)u)‖L2 + C‖Λs(ϕ(t)u)‖L2

≤ C
{
‖〈x〉−1Λs+ α

4 − 1
12 (ϕ(t)u)‖L2 + ‖Λs(ϕu)‖L2

}
≤ C

{
‖Λs+ α

4 − 1
12 (〈x〉−1ϕ(t)u)‖L2 + ‖Λs(ϕu)‖L2

}
.

5. Linear and nonlinear hypoellipticity

We can not use Proposition 4.1 to gain the high order regularity by induc-
tion, i.e. the hypoellipticity of the usual sense. Since we get only the regularity
of ϕu, but in the right hand side of (4.2) , we need some regularity of 〈x〉ϕu.
We consider now the function space with the weight 〈x〉−k.

We have to study the commutator of 〈x〉−k with |D̃x|2α and Λs. We give
firstly the following lemma.

Lemma 5.1. Let B ∈ Op(Sm
1,0(R

2n+1)), then, for any k ∈ N,

(5.1) [〈x〉−k, B] = 〈x〉−k−1B1 + 〈x〉−k−2B2,
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where B1 ∈ Op(Sm−1
1,0 (R2n+1)) with symbol

〈x〉−1x · ∂ξB(x, ξ), and B2 ∈ Op(Sm−2
1,0 (R2n+1)).

For the commutator with Fourier multiplier |D̃x|2α, we have that, for k =
2�, � ∈ N,

(5.2) [〈x〉−k, |D̃x|2α] = 〈x〉−1F1〈x〉−k + 〈x〉−2F2〈x〉−k,

where F1 is an operators of form

F1 =
n∑

j=1

ajAj(Dx), with aj ∈ C∞
b (Rn), Aj(ξ) = Dξj

(|ξ|2αχ2(ξ)
)
,

and F2 ∈ L(L2, L2) is a finite sum of form ã(x)b̃(Dx) with ã, b̃ ∈ C∞
b (Rn).

Remark. In the application, if we take B = Λ−m
δ , 0 ≤ m, 0 < δ < 1

an uniformly bounded family in Op(S0
1,0(R

2n+1)), then B1 ∈ Op(S−1
1,0(R2n+1)),

B2 ∈ Op(S−2
1,0(R2n+1)) is also uniformly bounded. We remark also

‖F1w‖L2 ≤ C‖|D̃x|αw‖L2 ≤ C{‖Λα
xw‖L2 + ‖w‖L2}.

Proof. (5.1) is just precise pseudo-differential calculus. For (5.2), we can
also use the classical pseudo-differential calculus, we have

[〈x〉−k, |D̃x|2α] = 〈x〉−k[|D̃x|2α, 〈x〉k]〈x〉−k,

and

〈x〉2� =
∑
|λ|≤�

Cλx
2λ

where λ = (λ1, · · · , λn), x2λ = x2λ1
1 · · ·x2λn

n . For 0 < |λ| ≤ �, we have that

x2λ|D̃x|2αv = F−1
(
D2λ

ξ

(|ξ|2αχ2(ξ)v̂
))

=
∑

0≤λ′<2λ

C2λ
λ′ F−1

(
D2λ−λ′

ξ

(|ξ|2αχ2(ξ)
)
Dλ′

ξ v̂
)

+ |D̃x|2α
(
x2λv

)
,

and

F−1
(
D2λ−λ′

ξ

(|ξ|2αχ2(ξ)
)
Dλ′

ξ v̂
)

=
∑

0≤µ≤λ′
Cλ′

µ x
µF−1

(
D2λ−µ

ξ

(|ξ|2αχ2(ξ)
)
v̂
)
.

Now if |2λ − µ| = 1 we obtain a term in F1, and if |2λ − µ| ≥ 2 we obtain a
term in F2. We have proved Lemma 5.1.
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Proposition 5.1. Suppose that 1/3 < α < 1 and k ∈ N, there exists
C > 0 such that∥∥∥Λ

α
4 − 1

12 (〈x〉−k−1v)
∥∥∥2

L2
+

∥∥X0(〈x〉−k−1v)
∥∥2

L2

≤ C

{
4∑

k=1

Re(〈x〉−k−1Pv,Ak(〈x〉−k−1v) + ‖〈x〉−kv‖2
L2

}(5.3)

for any v ∈ C∞
0 (]a, b[×R

2n), where A1, · · · , A4 are the same as in Proposition
4.2 .

Remark. By density, (5.3) is true for any v ∈ H2
0 (]a, b[×R

2n).

Proof. If k = 2� + 1 is odd, we choose the test function 〈x〉−k−1v =
〈x〉−2�−2v in (3.2) and (3.10), we have that∥∥∥Λ

α
4 − 1

12 (〈x〉−k−1v)
∥∥∥2

L2
+

∥∥X0(〈x〉−k−1v)
∥∥2

L2

≤ C

{
3∑

k=1

Re(P (〈x〉−2(�+1)v), Ak(〈x〉−k−1v) + ‖〈x〉−kv‖2
L2

}
.

By using the Lemma 5.1, we have that

([P, 〈x〉−2�−2]v = σ0[|D̃x|2α, 〈x〉−2�−2]v

= 〈x〉−1F1〈x〉−2�−2v + 〈x〉−2F2〈x〉−2�−2v,

then for k + 1 = 2�+ 2, by using Cauchy-Schwarz inequality,

3∑
k=1

|Re([P, 〈x〉−k−1]v, Ak(〈x〉−k−1v)|

≤ C
{
‖D̃x|α〈x〉−2(�+1)v‖2

L2 + ‖〈x〉−k−1v‖2
L2

}
+

1
1000

‖X0〈x〉−k−1v‖2
L2 .

Here we have used the fact ‖〈x〉−1A3w‖L2 ≤ C‖X0w‖L2 .
If k = 2� is even, we choose the test function 〈x〉−kv = 〈x〉−2�v in (4.3),

we have that ∥∥∥Λ
α
4 − 1

12 (〈x〉−k−1v)
∥∥∥2

L2
+

∥∥X0(〈x〉−k−1v)
∥∥2

L2

≤ C

{
4∑

k=1

Re(〈x〉−1P (〈x〉−2�v), Ak(〈x〉−k−1v)

+ ‖〈x〉−kv‖2
L2

}
.
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Using again Lemma 5.1, we obtain

([P, 〈x〉−2�]v = σ0[|D̃x|2α, 〈x〉−2�]v = 〈x〉−1F1〈x〉−2�v + 〈x〉−2F2〈x〉−2�v,

which deduce that, with k = 2�,

4∑
k=1

|Re(〈x〉−1[P, 〈x〉−k]v,Ak(〈x〉−k−1v)|

≤ C
{
‖D̃x|α〈x〉−2�v‖2

L2 + ‖〈x〉−kv‖2
L2

}
+

1
1000

‖X0〈x〉−k−1v‖2
L2 .

Finally, the same calculus for the commutator term shows, for k = 2�,

‖|D̃x|α〈x〉−2�v‖2
L2 = Re(P 〈x〉−2�v, 〈x〉−2�v)

≤ C
{
Re(〈x〉−2�P̃ v, 〈x〉−2�v) + ‖〈x〉−2�v‖2

L2

}
≤ C

{
Re(〈x〉−k−1P̃ v, A4〈x〉−k−1v) + ‖〈x〉−2�v‖2

L2

}
.

It is easier for the case of k = 2�+ 1

‖D̃x|α〈x〉−2(�+1)v‖2
L2 ≤ C

{
Re(〈x〉−k−1Pv, 〈x〉−k−1v) + ‖〈x〉−2�−2v‖2

L2

}
.

We have proved Proposition 5.1.

Proof of Theorem 1.2. Recall that the hypothesis of Theorem 1.2 is that
: u ∈ L2(]a, b[×R

2n) and for some s ≥ 0, f ∈ Hs(]a, b[×R
2n). Using the

remark at the end of Section 3, we can obtain without modifying the results of
Proposition 4.3, the estimation (4.5) with s = 0. Take the limit δ → 0 in (4.5).
Then it deduces that the solution of Theorem 1.2 has the following regularity

〈x〉−1(ϕu) ∈ H
α
4 − 1

12 (R2n+1).

We have proved the Theorem 1.2 if s = 0.

We shall prove higher order regularity by induction.

Proposition 5.2. Let ε0 = α
4− 1

12 > 0 and u ∈ L2(]a, b[×R
2n). Suppose

that for some k0 ∈ N we have

Λkε0(〈x〉−kϕ(t)u) ∈ L2(R2n+1) and

Λkε0(〈x〉−kϕ(t)Pu) ∈ L2(R2n+1)
(5.4)

for any ϕ ∈ C∞
0 (]a, b[) and 0 ≤ k ≤ k0. Then we have that

(5.5) Λ(k0+1)ε0(〈x〉−k0−1ϕ(t)u) ∈ L2(R2n+1)

for any ϕ ∈ C∞
0 (]a, b[).
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Consider now s > 0 in Theorem 1.2 and take k0 ∈ N such that k0ε0 ≤ s.
Then we have by hypothesis of Theorem 1.2 that f ∈ Hk0ε0(]a, b[×R

2n) ⊂
Hs(]a, b[×R

2n). Since 〈x〉−k0 ∈ C∞
b (Rn

x) we have 〈x〉−k0f ∈ Hk0ε0 (]a, b[×R
2n).

We prove finally, by induction results of Proposition 5.2, that

〈x〉−k0−1ϕ(t)u ∈ Hs+ε0(R2n+1)

with k0 = [sε−1
0 ] + 1. We have proved Theorem 1.2.

Proof of Proposition 5.2. The proof is similar to that of Proposition 4.3.
We choose v = ψΛ−2−k0ε0

δ Λk0ε0(ϕu) ∈ H2
0 (]a, b[×R

2n) as test function in (5.3).
We have∥∥∥Λε0(〈x〉−k0−1ψΛ−2−k0ε0

δ Λk0ε0(ϕu))
∥∥∥2

L2
+

∥∥X0(〈x〉−k0−1v)
∥∥2

L2

≤ C


4∑

j=1

Re
(
〈x〉−k0−1PψΛ−2−k0ε0

δ Λk0ε0(ϕu), Aj(〈x〉−k0−1v)
)

+ ‖〈x〉−k0v‖2
L2

 .

For the commutator terms,

[P, ψΛ−2−k0ε0
δ Λk0ε0ϕ]u = ∂t(ψΛ−2

δ Λk0ε0ϕ)ψu+ψ[x, Λ−2−k0ε0
δ Λk0ε0 ] · ∇y(ϕu),

we have immediately

4∑
j=1

∣∣∣(〈x〉−k0−1[P, ψΛ−2−k0ε0
δ Λk0ε0ϕ]u, Aj(〈x〉−k0−1v)

)∣∣∣
≤ C

{
‖Λk0ε0〈x〉−k0(ψu)‖2

L2 + ‖ψu‖2
L2

}
+

1
1000

‖X0(〈x〉−k0−1v))‖2
L2 .

Finally we prove, ∥∥∥Λε0(〈x〉−k0−1ψΛ−2−k0ε0
δ Λk0ε0(ϕu))

∥∥∥2

L2

≤ C
{
‖Λk0ε0〈x〉−k0ϕPu‖2

L2(R2n+1)

+ ‖Λk0ε0(〈x〉−k0ϕu)‖2
L2 + ‖ϕu‖2

L2

}
.

Taking δ → 0, we have proved Proposition 5.2, since [〈x〉−k0−1ψ, Λk0ε0 ] is a
pseudo-differential operator of order k0ε0 − 1.

Proof of Theorem 1.3. We have proved, in Proposition 2.4, that the
Cauchy problem (1.2) admits a weak solution u ∈ L∞(]0, T [;Hs(R2n)) if u0 ∈
Hs(R2n)) and s > n. By using Sobolev embedding theorem, the condition
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s > n implies that u ∈ L∞(]0, T [;Hs(R2n)) ∩ L∞(]0, T [×R
2n). Now Lemma

2.2 ensures the stability in Sobolev space by nonlinear composition.
We prove the following proposition for nonlinear hypoellipticity. It deduces

immediately Theorem 1.3.

Proposition 5.3. Suppose that 1/3 < α < 1 and F ∈ C∞(R), F (0) =
0. Let u ∈ L2(]a, b[×R

2n) ∩ L∞(]a, b[×R
2n) be a weak solution of equation

Pu = F (u) in ]a, b[×R
2n. Then for any m ∈ N, there exists m0 ∈ N such that

〈x〉−m0u ∈ Hm(]a′, b′[×R
2n),

for any a < a′ < b′ < b. In particular, we have that u ∈ C∞(]a, b[×R
2n).

Proof. We prove also this proposition by induction. By hypothesis, we
have that u ∈ L2(]a, b[×R

2n)∩L∞(]a, b[×R
2n), then F̃ (t, x, y) = F (u(t, x, y)) ∈

L2(]a, b[×R
2n). Proposition 5.2 with k = 0 deduces that for any ϕ ∈ C∞

0 (]0, T [),
there exists a constant C > 0 and ψ ∈ C∞

0 (]0, T [) with ϕ ⊂⊂ ψ such that

(5.6)
∥∥〈x〉−1ϕu

∥∥2

Ha/4−1/12 ≤ C
{
‖ψF̃‖2

L2 + ‖ψu‖2
L2

}
.

We suppose now for some k ∈ N and any ϕ ∈ C∞
0 (]0, T [),

〈x〉−kϕu ∈ Hkε0(R2n+1),

here ε0 = 1
4

(
α− 1

3

)
> 0. We want to prove that

〈x〉−k−1ϕu ∈ H(k+1)ε0(R2n+1).

But from Proposition 5.2, we need only to prove that

‖Λkε0〈x〉−kϕF (u)‖2
L2(R2n+1) ≤ C

{
‖Λkε0〈x〉−kψu‖2

L2(R2n+1) + ‖ψu‖2
L2

}
,

with the constant C as in Lemma 2.2. The proof of this estimate is also the
same as that of Lemma 2.2. We just remark that, for the nonlinear function

F̃ (x, v) = 〈x〉−kF (〈x〉kv),
if v ∈ Hk0ε0 and 〈x〉kv ∈ L∞, then for any λ ∈ N

n,

|∂λ
x F̃ (x, v)| ≤ Cλ,

and F̃ ((x, 0) = 0. We omit the detail of this modification and sending to [14]
for example.
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École Polytech., 2004-2005.

[12] Y. Morimoto and T. Morioka, Hypoellipticity for elliptic operators with in-
finite degeneracy, “Partial Differential Equations and Their Applications”
(Chen Hua and L. Rodino, eds.), World Sci. Publishing, River Edge, NJ,
(1999), 240–259.

[13] Y. Morimoto and C.-J. Xu, Logarithmic Sobolev inequality and semi-linear
Dirichlet problems for infinitely degenerate elliptic operators, Astérisque
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