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Hypoellipticity for a class of kinetic equations

By

Yoshinori MORIMOTO and Chao-Jiang XU

Abstract
In this work, we study a class of operators coming from the lineariza-
tion of some kinetic equations such as Boltzmann equations and Vlasov-
Fokker-Planck equations. Since it is not a standard class of pseudo-
differential operators, we obtain hypoelliptic estimates in some weight
functions space and show the regularity of weak solutions for linear and
semilinear equations.

1. Introduction

Recently the mathematical study of Boltzmann equation without Grad’s
angular cut-off has been developed from a new point of view in [1], [5], [6], [7],
where it is stressed that the nonlinear collision term Q(f, f) behaves essentially
as a fractional power of the Laplacian (—A)2*f if the collision kernel has a
singularity '~V =2% at the angular § = 0, where 0 < o < 1 and N is the
number of space dimension ( physically equal to 3). The smoothness of the
solution for the spatially homogeneous case was fairly well discussed ([6], [7]
for example), on the other hand, there seems to be no result in the spatially
inhomogeneous case. As an attempt linking to the way to the complete research
in the smoothness of solutions to the Cauchy problem for Boltzmann equation,
we consider the following kinetic equations

(1.1) Puz@tu—i—x-vyu—&—a(—ﬁz)au = f,

where (z,y) € R?" and 0 < 09 < 0,0 € C{° Here (=Ap)* = |Dg|?™ is
a Fourier multiplier with a smooth symbol |E|2a, which is equal to |£[?* if
|€] > 2 and to [€]? if |¢] < 1. If @ = 1, this is a linear Vlasov-Fokker-Planck
equation(see [8], [9], cf.[2], [11]), and F. Bouchut [4] has proved the maximal
hypoellipticity of operators P with a gain of 2/3 (see Theorem 1.5 of [4]).
When 0 < o < 1, as stated above, the equation (1.1) is a linearlized model of
Boltzmann equation without angular cutoff. Some regularity results ( which

are restrictive comparing to the case a = 1) are also given in [4], for the weak
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solution of equation (1.1) with a supplemental partial regularity with respect
to z variable (see Proposition 1.1 and Corollary 1.2 of [4]).

In the present paper, we study the equation (1.1) from the pure analysis
point of view, noting that the equation (1.1) is not a classical (pseudo-) partial
differential equation because the coefficient = is unbounded and (—Az) is not
pseudodifferential operator with respect to variables t,y. We first state the
existence of the weak solution to the Cauchy problem for equation (1.1) with
initial data u|;=¢9 = uo, before considering the hypoellipticity which means the
smoothness of a weak solution.

Theorem 1.1.  Assume that f € L'(]0,T[; H*(R?")) for some 0 < T <
00,5 >0 anduy € H*(R?"). If0 < a < 1, then the Cauchy problem of equation
(1.1) with initial data u|i—g = up admits a unique weak solution

ue L0, T[; H*(R*)), (—=A,)*?u e L*(]0,T[; H*(R*Y)).
For the regularity of weak solution, we have a gain of order %(a — %) with

a weight (z) = (1 + |z|>)'/? as follows:

Theorem 1.2. Let 1/3 < a <1 and f € H*(Ja,b[xR?*™)) for s > 0. If
u € L?(Ja, b[xR3") is a weak solution of equation Pu = f on ]a,b[xR?", then
there exists kg € N such that
()™M~ € BT (Jo/ V[ xR,
for any a < o’ < b < b. In particular, if f € H*>(]a,b[xR?")), then u €
C>(]a, b[xR2")).

We remark that ko is in order of [4s(ar — §)7'] + 1.

Using this linear theorem, we can get the following results for semi-linear
Cauchy problems

(12) {Pu = F(u)

uli=0 = uo
with F' € C*°(R) and F(0) = 0.
Theorem 1.3. Ifs > n,1/3 < a < 1 and ug € H*(R?*"), then there
exists a T > 0 such that the Cauchy problem (1.2) has a solution.
ue CO[0, T HY (R™), (=A,)**u e L(0,T[; H*(R™)),
and

u € H'>°(]0, T[xR?™) € C*°(]0, T[xR?").

loc

More precisely, for the reqularity we see that for any m € N there exists an
mo € N such that

(Y™ € H™(]a, b[xRQ"),
forany0<a<b<T.
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This paper is organized as follows: In Section 2, we prove the existence
of weak solutions for linear and non linear Cauchy problems. In Section 3, we
study the subellipticity of operators P, and get the sub-elliptic regularity for
weak solution in Section 4. Finally in Section 5, we prove the smoothness of
weak solutions for linear and non linear Cauchy problems.

2. Existence for Cauchy problems

2.1. Linear Cauchy problems

We consider now the linear Cauchy problem (1.1). For the existence of
weak solution for linear equation, we follow the idea of proof of Theorem 23.1.2
in [10].

We give now the precise definition of the operator (—A,)® = [Dg|?* for
a € R, where |D,|* is a Fourier multiplier of symbol [¢]*x(€) + |€|(1 — x(£)),
with x € C®(R"),0 < x < 1,x(§) =11if |§] > 2 and x(§) = 0 if |¢] < 1.
We first study the commutators of this operator with functions in Cp;° and
unbounded function (the coefficients of our operators P) zp, k=1, -+ ,n. We
give the following technical lemma.

Lemma 2.1.  Let Q be an open (unbounded) domain of |Ty, To[xR?*",
a € C°(R),8 € R. Then there exists C > 0 depending only on the boundedness
of a and their derivation such that

(2.1) lla, D210l p2) < CLIIDL 0l L2y + 0]l 2oy},
for any v € C§°().

Moreover, we have that [zy, |D.|°] is a Fourier multiplier and
(2.2) [, 1Dzl o) < 181Dl Dol 2@y + Cllol 2,

foranyv e C§°(Q),k=1,--- ,n.

Proof. Now |D,|?x(D,) € Op(S{y(R})), then [a,[D,|’x(D,)] is a
pseudo-differential operators of order ( — 1), its principal symbol is

n

> (Ow,a) (BIEIP2 (&) X () + [€]%i0e, x(6)),
k=1
which deduces that
la, 1D X (D2l 2 < Cll|D2| ¥~ Dl| 22 + [ D2 |(1 = (D)) (0)]| 2.

For the terms |D,|?(1 — x(D,)), we just use the boundedness of a and |¢|#(1 —
x(€)) to get the L? boundedness. This is the reason why we give (2.2) for
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unbounded function z. Direct calculation gives

+ (1D2) (@x v) ) ().
But, for |¢] > 1,

| De [€17] < 1811€°7,
and for |£| < 2, |Dg, [§]] < C. We get that

ek, [Del®Jollz2 < 1BIII|Del P~ Vo] 2 + Clv]| 2.
We have proved Lemma 2.1. O

Proposition 2.1.  Assume that s >0, f € L'(]0, T[; H*(R?")) for some
0<T < oo andug € H*(R?*™). Suppose that u is a regular solution of Cauchy

problem of equation (1.1) with initial data uli—g = ug. Then there exists a
C > 0 such that

IAS yull? e go 7 (reny) + T0llASAS yul2a g0 rine (ren)
< C{IIAS  F I go.rpze ey + 1A yuolFaqeen) }
where
Ay = (L+Da[)V2, Ay = (L+Dy[)'2, Auy = (14 [Daf* + Dy )2,

Now as in the proof of Theorem 23.1.2 in [10], The “energy estimate”
(2.3) and Hahn-Banach theorem give the existence of solution for the Cauchy
problem (1.1):

u € L¥(0, T H*(R*")), Afu € L*(J0, T[; H*(R*")),
we have proved Theorem 1.1.
Proof of Proposition 2.1. If u is a regular solution of Cauchy problem, we
have
(24) (9w, AZu) + (- Vyu, A2 u) + (0(=A,) u, A2 u) = (f, A5, w),
where (+,+) = (-, ')L"‘(RngZ)- Noting that

Re(x - VyA; ju, Ay u)p2(geny =0
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and
90175 1aAs AN YaAs s s
?|||DZE| Am,yu(t)H%?(RQ”) S (0(7AI) Am,yu? Am,yu) + CHAx,yu(t)Hiz(Rzn)?

we study the commutator terms

(A3, @+ Vylu, A u) paen)| < CIAS u(t)]|32 g2,
since
[AS s @ V] = A2V, -V, € Op(S°(R*)).

Then, the integration by parts in (2.4) and Cauchy-Schwarz inequality deduce
that

1d s N |aAS
5 7 1850t OlI@en) + 00l Dal“AZ yu(®) |72 (ron)

< 1A () gy A2, () amy + CIAZu(8) oy
We have also
D 1A% ) B ony < IAZAS u®)|2a gony

< 2% || Dal A% u()l[F gen) + 143 u(®) 32 gony } -
Integrating on [0, ¢] for any ¢ €]0, 7], we have that,

||Ai,yu(t)||%2(ug2n) + (70||A§Ai,yu|‘%2(]0,t[;L2(R2"))

< 2e* TN AS  FI 71 qo,rpn2 (reny)
+ %||Afc,y“||%°°(]o,T[;LZUR%)) + X TNAZ yuollZa gon-
We have proved Proposition 2.1. O
We can also prove the following results.

Proposition 2.2.  Assume that s > 0, (z)f € L'(]0,T[; H*(R*")) for
some 0 < T < co and (x)ug € H*(R*). Suppose that u is a regular solution
of Cauchy problem (1.1). Then there exist C > 0 such that for k=1,--- n:

[AZ,, () ||%°°(]O’T[;L2(]R2n)) + ool AZA; , (zru) ||%2(]07T[;L2(R2"))
(2.6) < CLIAL @ go.rszagany + 1A% 4l go 7y Laemy
1AL (oxi0) e )
In fact, the combination of (2.3) and (2.6) give
1A%, (@) |2 o rp 22 @eny) + 00 IASAS , ((@)0) 122 g0 122 mom))
(2.7) < {1182, () DI gosriraqaenyy + 1AL ule o r 2gaeny

+ 142, (@) o) 32 ran) }-
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We will use this estimate in the proof of regularity. The proof of this
proposition is similar to that of Proposition 2.1. We can use (2.2) to get
[k D2 **Ju, AZS, (1))

< CIIAL () 2 am) (IATAL  (r) (8) | arzn) + 1AL u®) [ 2em))-

2.2. Semi-linear Cauchy problems
We suppose now s > n and ug € H*(R?*"). We consider the following

linearization problems of Cauchy problems (1.2) for &k = 1,2,--- and u; =
Sl (UO)
(2.8) Opug+1 + - Vyup41 + O’(*&m)aUk_A'_l = F(ug)

Uk+1|t=0 = Sk+1(u0),

where Sy (ug) = ¥(27%D,., ) (ug) with ¢ € C§°(B(0,2)),% = 1 on B(0,1). This
is regularization of initial data, and we point out the following properties (for
example, see [14] for more detail of this regularizations)

Sk(uo) € H*; |[Sk(uo) s < lluollzrs;  Sk(uo) — uo in H¥(R?™),
and

1Sk+1(u0) = Sk(uo) | 2qmeny < ex27", with [[{ex}llez < [luol| s+

By nonlinear microlocal analysis, we have the following nonlinear compo-
sition results (see for example [14]).

Lemma 2.2. Let F € C®(R),F(0) = 0,s > 0, if u € H*RY) N
L>®(RY), then F(u) € H*(RN) with

| F(u)llgs < Cunllullas

where the constant Cy; depends only on ||[F9)|| e (—ar,am), M7,0 < j < [s] + 1
with ||u|p~ < M. The same result is true for u € L>(]0,T[; H*(RY)) N
L>(0, T[xRN) .

Theorem 1.1 gives the existence of this sequence {ur} C L* (]0,T[; H™
(R?™)) for any T > 0 and m > n, since Sk (ug)€H > (R*™).

We prove now the convergence of this sequence by the following two propo-
sitions.

Proposition 2.3.  For s > n, there exist Ty > 0 and M; > 0 such that
forany k>1,

(2.9) k|00 o.73 1rs manyy + IS Uk T2 g0 7, 1o (2my) < M-
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Proof. We denote by C the Sobolev embedding constant:
||u||L°C < CSHU'”HS(]R%)7

since s > n. Denote by My = |lug||gs, Ms = CsMy. We prove now (2.9) by
induction.
For k = 2, we first use Lemma 2.2,

| F(u1)ll L2 oo e (R2my) < Car, Mo.
Then Proposition 2.1 gives
HAi,yuz||2Loo(]o,T[;L2(R2n)) + 00HAgAi,yHQ||2L2(]0,T[;L2(]R2")) < C{TQCJQ\/[S + 1}M02~
It is enough to take My, Ty such that C{T7C}, + 1} Mg < M3.

Suppose now (2.9) is true for 2 < j < k. We shall prove (2.9) for k¥ + 1.
Since ug41 is a regular solution of equation (2.8), (2.3) gives
”Ai’}yuk+1||%°°(]0,T[;L2(]R2n)) + UO||A§¥A§:,yUk+1||%2(]O,T[;L2(R2n))

<C {HA;,yF(uk)”%1(]0,T[;L2(R2“)) + ||Ai,y5k+1(u0>||%2(R2")} :
From the induction hypothesis,

||uk||Loo(]0’T[><]R2n) < CSHAi)yuk||Loo(]O’T[;L2(]R2n)) < CsM; = MS

with MS > M, independent of k£ which implies C3; > Chr,. We get that,
thanks to Lemma 2.2,

IAZ o F'(we) [l 1 go,rszeeny) < Cop 1AZ y (wn)ll L1 qo,rp2reny)
< Cip TIIAZ y (wi)l| o= qo, 72 (r2ny) < Oz, TM;.

We get finally

||Afc,yuk+1||2Loo(]o,T[;L2(R2n)) + 00||A§Afc,yuk+1||2Lz(]o,T[;L2(R2n))
<c{(CyTn)" + M},
so that it is enough to take

1
M}=20M2, 0<T<T) = 5c]\:;(j—l/?.

We have proved Proposition 2.3. (I

Proposition 2.4.  There exists a 0 < Ty < Ty such that {ug} is con-
vergent in L°(]0, To[; L2(R?™)), {A%(ug)} is convergent in L2(]0, To[; L2(R?")),
and the limit uw € L°°(]0, Tx[; H*(R*")) is a solution of Cauchy problem (1.2)
with

A3 (u) € L2()0, To[; H* (R*)).
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Proof. We prove that there exists 0 < Ty < T7 and M5 > 0 such that for
any k> 1

k1 = w7 oo qo mypr2(reny) + I1AG (Whs1 = wi) 1220 122 R2n))

2.10
(210 < MF22hs,

We have in fact, from equation (2.8),

Oy (U1 — uk) + @ - Vy(uger — ug) + 0(—5w)a(uk+1 — uy,)
= F(uk) — F(uk_l)
(Uk41 — uk)|e=0 = Agg1(uo),

where Agy1(ug) = Sk+1(uo) — Sk (up). From Proposition 2.3, we have that, for
any k> 1,

luk || Lo qo,1y [xr2n) < CsMy = M.
We have that for any 0 < T < T7,

| F(ug) — F(up—1)ll 21 qo,rpz2®eny) < CoT || (uk — ur—1)ll oo, 722 R27))

with Cy = HF’||LOO(]
and k£ > 2

YRV Using again (2.3), we get, for any 0 < T < T,
(w1 = w120 go,rpz2(rey) + 00l AG (Wt — w) 720, L2 ))

2
< C{(CoTll(ur = 1) o= go,rpzaceny)” + 1Ak (1) [Fagany) } -

On the other hand, by induction hypothesis,

1k = k1)l oo 0.7 sz rory) < Ma27 717,

and hypothesis on ug,
[ Ak+1(u0) || L2meny) < lluollms27".
Since it suffices to take
My=M;, 0<Ty=2"*"1C'C72 <1y,

we have proved Proposition 2.4. O

We have showed that there exists 0 < Ty < Ty such that {uy} is bounded
in L°°(]0, Tz[, H*(R?")) and {A%(u)} is also bounded in L?(]0, Tx[, H*(R?*")).
Hence {uy} is convergent in L>(]0, T3[, L2(R?")) and {A%(us)} is convergent
in L2(]0, T»[, L?(R?*")) with the limit

w=u+ Y (ur1 —ux) € L2(|0,To[, L*(R*")).
k=1
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By interpolation, the convergence is also in L (]0, To[, H* (R?")) and L2(]0, T3],
H*® (R*")) for any 0 < s’ < s, and moreover

u € L=(]0, Ty, H*(R?")), A%u € L2(]0, To[, H*(R®")).

We have proved the existence of solution for Theorem 1.3.

3. Sub-elliptic estimates

We study now the sub-elliptic estimates. Without loss of generality, we
suppose in the following that ¢ = o¢ > 0 is constant, and consider the operators

P=0+xz -V, + O’o(—&x)a

on an open domain 2 C R; x R} x RP. In the application, we will take

Q =la,b[xR} x Ry, so that P are not pseudo-differential operators in 2. We

suppose now 1/3 < a < 1.
We put
A= (14D + Dol + Dy [?)"?,
and
Xo = A_l/g(at +x- vy)7 Xj = Aa_lazﬁ j=1--,n

Then X; € Op(STo(Ry x Ry x RY)),j = 1,---,n is a family of pseudo-
differential operators. But X is not a pseudo-differential operator (of order
2/3) on Ja,b[xR?", since the coefficient x is not bounded on ]a, b[xR?*". We
will pay more attention to treat this term (see [12], [13], [15]).

Proposition 3.1.  If$Q is an open domain of R; xR} xRy, 1/3 < a <1,
then there exists C' > 0 such that

(3.1) Y IXulie < C{Re(Po, v) + |lv]17:}
j=1
for any v € C§°(Q). For the Xy, we have
3
(3.2) [ Xov|[3 < C {Z Re(Pv, Agv) + ||v||2L2} ,
k=1
for any v € C§°(2), where
Ay € Op(S7 o(R*1)), Ay = (A3 £ A Xy, Az = —(d; +a-V,)A " X,.

Proof. For any v € C§°(Q), the integration by parts deduces immediately

(3.3) Re(Pv,v) = Re(0o|Dy|*v, | Dg|*v) = 00l||Da| 0|22 .
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Then a direct calculation gives
1X;0llz2 = [IA*7 Daywll 22 < [[|Do|*0l| 2 + O] 2.

We have proved (3.1). In the future proof, we need also the estimate (3.3).
Putting now w = Asv = A~Y/3X,v, we have

| Xov[|22 = Re(Pv, w) — Re(oo| Dy |**v, w).
Since |l7x|°‘ao|b\;\°‘ is a positive operator on L?, it follows that
Re(00| Dy |?*v,w)| < Re(oo|Dy|®v, | Dy|*v) 4+ Re(oo|Dy|*w, | Dy |“w)
We get
(34) [ Xovll}2 < [Re(Pv,w)| + |Re(o0| Dy |*w, | Dy |*w)| + C|| D |*v[3 2.
We study now the term

Re(00| Dy |w, | Dy|*w) = Re(oo|Dy|**w, w) = Re(Pw,w)
= Re(Pv, A3v) + Re([A™/3, 2] - 8,(0; + - 9,)v, w)
+ Re(ao[|b\;|2°‘, A*1/3X0]v,w).

But we have
R A

and
(D2, A7V Xo] = A=*/2(|Daf**, a] - Dy,
We use now (2.2), to deduce that

Re(oo[|Da [, A2 XoJv,w)| < C(|[|Da|*vllz2 + [[v] 22) | Xov]l 2.
It is easier for
|Re([A_2/3,x] <0y (0 + - Oy)v,w)| < C’Hw||2Lz
and

[w]|Z2 = (0 + 2 - V) (v), A~ Xo(v))
< |Re(Pv, A" Xo(v))| + |(00| Dz [**v, A= Xo (v))]

_ — 1
< |Re(P, A7 Xo(0))] + Cl| Da|*0l[Z + 161 Xo(0)][7:-

We get finally the desired estimate (3.2). O
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We study now the microlocal regularity,
(X, Xo] = A*7V3719,  + (a — 1)A*" /3739, - 0,0,,
= Aail/d( 7183/]') + (05 - 1)A71/3A0Xj,

where /~\0 = A720, - 0, is a pseudo-differential operator of order 0. So that
Aa/2—1/6 (A—lay‘>

(3.5) ~
= ATPHUSX; X)) = (a — DA OA X,
and
Aa/2—1/6 (A—lat>
:Aa/Q—l/GA— (a tx- ) Aa/2 1/6A ( vy)
(3.6) — Ne/2-1/6-2/3 %
— Z ( —a/2+1/6 X Xo] (a — 1)A_a/2_1/6K0le'j> .
We recall
(3.7) A° (A—lazj) - X;.

Now, if € is bounded, the family of pseudo-differential operators Xg, X7,

, Xp, satisfy the Hormander-Kohn condition in the sense of [3]. When

a = 2/3, all X; have the same order 2/3, and the theorem of [3] shows the

subelliptic regularity of order 2/3 —1/2 = 1/6, which coincides with a/2 — 1/6

here. But the operators P and equation (1.1) is not (properly supported)

pseudo-differential in the domain Q =]a, b[xR?". We have proved the following
subelliptic estimates.

Proposition 3.2. With same notations of Proposition 3.1, there exists
C > 0 such that

(3.8) Z HA’" 19,0

) 3
’LQ <C {ZR@(P’U,AW) + |U||%2} :

For the diﬁerentiation with respect to variable t, we have

2 3
2 {Z PvAkv+||<>|I%z}7

(3.9) HA%—%—laﬂ;‘

and

(3.10) HA%—%U

3
y {Z e(Pv, Aw) + | >v||%2}.

k
for any v € C§°(Q), where (z) = (1 + |=|>)1/2.
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Remark. By density, the estimates of above proposition are also true
for any v € H3(Q).

Proof. Since |(A+ iB)v||2, > 0, it follows that
. 3 2 2 1 * 2 * 2
(v, Blo) < 5 (14012 + I1Boll3z ) + 5 (I(A = A7)0l + 1B - Bl )

for any operators A, B.
Putting A = —i[X;, Xo]*A=*+1/3X, and B = X,, we have [X;, Xo]* =
—LXﬁ<Xb]and
i[A, B] = =[[X;, Xo]A~*"12X;, Xo]
= [X;, Xo]" A~ T3(X;, Xo] — [[X;, Xo]A™T3, X)X
= [X;, Xo]*A™F3X;, Xo] + A7V3X;,

where A=1/3 is a pseudo-differential operator of order —1/3.
We obtain, from (3.5),

N 2 a1 2
et < b, ot

< (150l + 1Xovl3z + ol32 )

Those estimates for j = 1,--- ,n together with (3.1) and (3.2) show (3.8).
To prove (3.9), we take w = A% ~6~2(9v). Then we have that

IAS =321 (0,0) |72
= Re(Pv, Ao(v)) — Re(0o| Dy |**v, Ag(v)) — Re(z - Vv, A2 ~572(0,v)),

where Ag = AS~5729, € Op(S7 o(R*"*1)). Then

| Re(o0| Do [**v, Ao(v))] < C{[[Da |07z + [lv]72}-

For the last term, we have

|Re(z - Vyu, A5 75 2(0))| = |3 Re(A™10y(xxv), A5 ~571(9,,v))

k=1

n
a_1_
<O llzwv] e l|AF 7573y, 0)] 22,
k=1

so that we get the desired estimate (3.9) by using (3.8) and (3.3).
Finally, combination of (3.1), (3.8) and (3.9) give (3.10). We have proved
Proposition 3.2. O
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We can use directly (3.6) to get

1A% 747 @) 2 < AR 8 XoullEa + 30 IR0 @y, (a50)) e,
j=1
then (3.8) with test function (zxv) and (3.2) deduce the following estimate
1 2 3
HAE—E—latUHLQ <C {Z Re(Pv, Agv)

k=1
(3.11)

j=1k=1

which gives also the following hypoelliptic estimate with weight

1

2 3
)LQ <C {Z Re(Pv, Agv)
(3.12) : k=
+ 3D Re(Px;0), A(zv) + l(@)ole ¢

j=1k=1

The difference between (3.12) and (3.10) is that, the gain of regularity of
(3.10) is one half of (3.12), but we suppress the weight z; in Pv. For high order
regularity, we will study this scale between the gain of regularity and the power
of weight (x).

4. Regularity of weak solutions

We prove now the regularity of weak solutions of Theorem 1.1. By com-
bination the estimate(3.1), (3.2) and (3.10), we have obtained the following
sub-elliptic estimate :

o 2
(4.1) HAz*ﬁv

2 2
prcaneny S CUN@ Pl Eagansy + I @elaon) }.

for any v € HZ(]0, T[xR?*"). Here we used the fact
[Arvllze < Cllvllze, [I(Az2 + (@)~ As)v]lr2 < Cl| Xov]|e.

For 6 > 0, we set

As = (14 0(Dy)? + |Du|? + | Dy 12)) 2.

We will use the following notations : for ¢, € C§°, we say ¢ CC ¢ if v =1
in a neighborhood of supp .
We prove the following results
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Proposition 4.1. Let 1/3 < a < 1 and s > 0. Assume that f, (x)
f € H*(Ja,b[xR?*"). Let u € H*(Ja,b[xR?*") be a weak solution of equation
Pu = f on]a,b[xR?" such that (x)u € H*(Ja,b[xR?*™). Then for any p,v €
C§°(Ja, b)), CC 9 and 0 < § < 1, there exists a constant C' > 0 independent
of § such that

[t was)-2a (o) < I8 () )3 aqaans)

L2(R2n+1) —

+ |\ZZAS(<$>U)||%2(R2H+1) + ||1ZAsfH%2(R2n+1) + ||1ZASMH%2(R2"+1)}7

(4.2)

with some 1Z € C§(Ja, b)),y CC 12; Here the cut-off function are only for t
variable.

Take the limit 6 — 0 in (4.2). Then it deduces
YA (pu) € HETH= (R,

because the commutator [¢p, A®]is a pseudo-differential operator of order s—1.

We have obtained a gain of regularity of order %(a — 3) for (weak) solution with

a supplement condition (z)f € H*(Ja,b[xR?") and (x)u € H*(Ja, b[xR?").

Proof of Proposition 4.1. We will choose v = wA5_2AS(<pu) as test function
in (3.2) and (3.10), (if we consider the partial Sobolev space, we take v =
¢A52A;7y(¢u) as test function)

[t~ 2a o], + Xoutan) 20 (o

3
<C {Z Re(Pip(As) A% (pu), Atp(As) 2 A% (pu))

k=1
" ||<x>w<A5>-2As<¢u>||zz} |

We calculate the commutator terms
[P, YA 2N plu = 0y (YA A p)pu+ iz, AFZA%] -V, (pu)

which is a pseudo-differential operator of order s for (z,y) variables. And
moreover

(@) [P, YAG*A ()™

=[P, AN @] + (2)[[P, pA;2A ], (x) '],

where the second term is also a pseudo-differential operator of order s. There
exists C' > 0 independent of ¢ such that

@) [P, wA;2A%plull2 < ClPA® (@)yull 2,
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and

[{e)A; *A%Pul| 2 < [[9A® (2)y Pul| .
We get the estimate (4.2) directly from (4.1). O
We study now the regularity of () 1u.
Theorem 4.1. Let 1/3 < a < 1 and s > 0. We suppose that | €

H*(Ja,b[xR?™)) and u € H*(Ja, b[xR?") is a weak solution of equation Pu = f
on Ja,b[xR?"™. Then we have

() "tu € HOVET 5 (Ja, xR,
for any a <a' <b <b.

The proof of this theorem uses the following hypoelliptic estimate with
weight ()71

Proposition 4.2.  Suppose that 1/3 < o < 1. Then there exists C > 0
such that

HA%‘ﬁ(@‘lv)‘ i + || Xo((z) ") |2,

4
<c {Z Re({z)™" Po, Ax((2)~'0) + Ivlliz}
k=1

(4.3)

for any v € C°(Ja,b[xR?"™), where Ay, Aa, Az are the same operators as in
Proposition 3.1 and Ay = (z)?.

Proof. Putting the test function (z)~!v in (3.2) and (3.10), we have that

o)|[72
< C{ZRe v), Ar((z) 1) + |v||%2}.

We need to estimate the commutator term

[a%=# @), + 10t

doIP v, Ai((z)~"0))]

k=1

by th right hand side of (4.3). Since (z)~! € C;°(R"), Lemma 2.1 implies

1P, (2)~"ollZe = loollDe [, ()~ ollZe < C(I\\ilavlliz + Hvlliz)-
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By using Cauchy-Schwarz inequality,

SR, () o, Au(ie) ™)
k=1
< O (MBIl + 01132 + g5 1 Xo(() ) 3

L X ()10 2.

< O(Re(Pv,v) + [vl}2) + 1000

For the last term, we have

([P, (z)" v, A3({z)"'v))
= —0o([|Da**, (2)™ v, BA™ Xo((2) 1))

- Zao(xj[lbvxlm, (@)~ Mo, 0y, A7 Xo((z)~'v)).

The estimation of oo([|Dg|2*, (z) v, &A= Xo((z)~1v)) is the same as (4.4).
On the other hand, for j =1,--- n,

2[1Daf??, (@)1 = a5 [ Da (@) ™ — ay{w) ! Daf*

= [ag, DoY)~ + (D2 2 (a) 7]

= (@) Mg, [Dal] + g, [Dal™], (@) 7'+ (DL, 25¢2) )
Since [z, |bvm|2°‘] is a Fourier multiplier, we use Lemma 2.1 with the functions
(@)1 zi() 7t € CR(RM),

(5 (1D *, (x) ™", 8y, A" Xo((z)""v))]

— 1 _
< O(IDaloll32 + llol132 ) + o051 Ko (@) 017

1 -
< O(Re(Pv,v) +[lol32 ) + o051 Xo((@) T 0)l 7.

We proved finally (4.3). O
Similarly to Proposition 4.1, we have the following :

Proposition 4.3. Let 1/3 < a < 1 and s > 0. Assume that f €
H*(Ja,b[xR?™). If u € H*(|a,b[xR?") is a (weak) solution of equation Pu = f
in Ja,b[xR?", then for any ¢,v € C(Ja,b[),p CC ¥ and 0 < & < 1, there
exists a C' > 0 independent of § such that

HA%*%<x>*1¢(A5)*2AS(w)] 2

L2(R2n+1)

(4.5)
< C{IIA D 3 gensny + 1A Bullf e gans },

with some ¥ € C§°(Ja, T|), ¢ CC .
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We just choose v = A5 2A®(pu) as test function in (4.3). The estimation
of commutator term

(PN 2 A lu = 9y (VA2 A @) pu + Yl Ay A°] - Vy (ou)

is the same as in the proof of Proposition 4.1. We get also

1521ty 000287
(4.6) L
< C{l@) T A @I + 1Al |
and
A1) Kol w(As) 2N pu)[}a < CLIN I + Al }.

Proof of Theorem 4.1. Take the limit 6 — 0 in (4.5). Then it deduces
(1) oA (pu) € HET= (R,

because the commutator [, A®] is a pseudo-differential operator of order s—1.

We obtain a gain of regularity for (z)~lu. O

We have also proved that

we HX 871 (g, bxR2)

loc

since for any ¢ € C§°(Ja,b[), ¥ € C§°(RY), we have

w2 + CIA*(p(H)u)| L2
()~ AT ST (o (1)) 2 + | A° (o) |2 }

C
< C{IAH 5 () (el + 1A% (pu)llse

5. Linear and nonlinear hypoellipticity

We can not use Proposition 4.1 to gain the high order regularity by induc-
tion, i.e. the hypoellipticity of the usual sense. Since we get only the regularity
of pu, but in the right hand side of (4.2) , we need some regularity of (x)pu.
We consider now the function space with the weight (z)~%.

We have to study the commutator of (x)~* with |l3;|2“ and A®. We give
firstly the following lemma.

Lemma 5.1.  Let B € Op(Sy(R*"*1)), then, for any k € N,

(5.1) [()7%, B] = (2) "' B1 + () "By,
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where By € Op(S75 ' (R#" 1)) with symbol
(x)"'z - 0¢B(x,€), and By € Op(S{’fO_Q(RQ"H)).

For the commutator with Fourier multiplier |B;|2°‘, we have that, for k =
20, £ €N,

(5.2) [(2) 7%, D2 ] = (@) Fufa) ™ + (2) () ",

where Fy is an operators of form
Fy =7 a;A;(Dy), with aj € C*(R"), 4;(€) = De, (IE**X*(©)).
j=1

and Fy € L(L?, L?) is a finite sum of form a(z)b(Dy) with @,b € Ce(R™).

Remark. In the application, if we take B = A;™,0 < m,0 < 4§ < 1
an uniformly bounded family in Op(S9 ,(R*"1)), then By € Op(S; (R 1)),
B; € Op(Sy§(R?"+1)) is also uniformly bounded. We remark also

IFw] e < CllIDa|*w]re < C{AGwl 12 + ]| 2}

Proof.  (5.1) is just precise pseudo-differential calculus. For (5.2), we can
also use the classical pseudo-differential calculus, we have

[(x) 7%, Dy 2] = (&) ~*[|1D, >, (2)¥](z) 7",

and
<x>2f — Z O)\ZC2)\
[A|<e
where A = (A1, -+, Ap), 22 = 222 ... 222 For 0 < || < £, we have that

2| D20 = £ (D (€Px*(€)) )

= Y RF D2V (EPA©)DY ) + 1D (),
0< N <2A

and

FHDPY (gPo©) Do) = Y. Y arF (D23 (9)0).

0<p<N

Now if |2\ — p| = 1 we obtain a term in Fj, and if |2A — u| > 2 we obtain a
term in F5. We have proved Lemma 5.1. [l
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Proposition 5.1.  Suppose that 1/3 < a < 1 and k € N, there exists
C > 0 such that

s+

(5.3) 4
<c {ZRe<<x>“Pv, A((@) ™) + |<x>kv||%z}

+[|Xo (@) 1) [}

for any v € C§°(Ja, b[xR*™), where Ay,--- , Ay are the same as in Proposition
4.2 .

Remark. By density, (5.3) is true for any v € Hg(Ja, b[xR?").

Proof. If k = 2¢ + 1 is odd, we choose the test function (z) %!y =
(x)~2~2y in (3.2) and (3.10), we have that

|25 (@) )| i + || Xo((a)

v HL2
<C {Z Re(P((x) 2" D), Ap((2)~F o) + ||<f6>_kv||%2}~

By using the Lemma 5.1, we have that

([P, (2)272]v = og[| D **, () "o
= (&) " Ry (2) 220 4 (2) T2 Ry (a) T2 2,

then for k 4+ 1 = 2¢ 4+ 2, by using Cauchy-Schwarz inequality,

3
S IRe(P, (@)™ o, (@)~
k=1
< {1l (@) o) + [ ()l |
1

X, —k—1,2 ]
o)

Here we have used the fact ||(z) "1 Asw]|z2 < O Xow| 2.
If k = 2¢ is even, we choose the test function (z)~*
we have that

v = (z)"%v in (4.3),

[0, + 1ot o

<C {Z Re((z) "' P({z)"*%), Ax((z) 7" 1)

+ ||<fE>_kv|2L2} :
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Using again Lemma 5.1, we obtain
([P, (2) v = 0o[| Dy, (&) v = ()~ Fi(z) v + (2) 2 Fa(w) >,

which deduce that, with k = 2/,

4

Y [Re((2)7HP, (2)~*Jv, Ak ((x) o)

k=1
< O{I1D, 1" (@) vl32 + @) ol |
1

+ m||Xo<$>_k_1U||2L2~

Finally, the same calculus for the commutator term shows, for k = 2/,
[1Da]* (@) "*vl[72 = Re(P{x)"*v, (x)~*v)
< O{ Re(() 7 Pu, (2)7v) + ||(x) 0]} }
< O{ Re(@) ™ Po, Axfa) ™ 10) + [ () 20][3: }.
It is easier for the case of k =20+ 1
1Dz (@) 2 Du)Fe < C{ Re((@) 52 Po, (@) 75 10) + (2) =2 20)3 |-
We have proved Proposition 5.1. [l

Proof of Theorem 1.2. Recall that the hypothesis of Theorem 1.2 is that
: u € L*(Ja,b[xR?") and for some s > 0, f € H*(Ja,b[xR?"). Using the
remark at the end of Section 3, we can obtain without modifying the results of
Proposition 4.3, the estimation (4.5) with s = 0. Take the limit § — 0 in (4.5).
Then it deduces that the solution of Theorem 1.2 has the following regularity

(2) " (pu) € HA 5= (REH),
We have proved the Theorem 1.2 if s = 0.
We shall prove higher order regularity by induction.

Proposition 5.2.  Leteg = 29—+ > 0 andu € L?(Ja, b[xR?*™). Suppose
that for some ko € N we have

(5.4) Ao ((2) P o(t)u) € LA (R*™ ) and
' AP0 ((2)"Fp(t) Pu) € L* (R
for any ¢ € C§°(Ja,b]) and 0 < k < kg. Then we have that
(5.5) Ao+ () ko=l (1)) € L2(REH)

for any ¢ € C§°(]a, b]).
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Consider now s > 0 in Theorem 1.2 and take ky € N such that kgpeg < s.
Then we have by hypothesis of Theorem 1.2 that f € H%®(Ja,b[xR?*") C
H?(Ja, b[xR?™). Since (z) k0 € C°(R?) we have (z)~*o f € Hko%o (Ja, b[xR?").
We prove finally, by induction results of Proposition 5.2, that

<x>_k°_lap(t)u c Hs+ao (R2n+1)
with ko = [se; '] + 1. We have proved Theorem 1.2.
Proof of Proposition 5.2. The proof is similar to that of Proposition 4.3.

We choose v = 1Ay 2~ F0%0 ARoco (o) € HZ (Ja, b[xR?") as test function in (5.3).
We have

|

2
ASO(<x>fkofl¢A6—2—koaoAkoso (wu))HLz 4 HAX'O(<‘1,>7Ic071,u)Hi2

4
< C Z Re(<m>—k0—1PwA6—2—ko€0Akoeo ((pu)7 Aj(<x>_k0_1v)>

j=1
+ @) *ovll

For the commutator terms,
[P, A2 Foco ARo=o ol = 9, (A5 2 AROZ0 p)hu 4 9pla, A2 Roo ARoS0]. T (pu),

we have immediately

()[R, g 2o Ao g, A ((2) ~H0 )|

j=1

1
< o{ koo ()~ (e + lpulls | + 1000 1 Xo((@) 5 0))]3s.

Finally we prove,

[ A% (G to =t g2 komo oo )|

L2
< c{jjak= () o Pul s ganen

+ AR ((2) "Fopu) |72 + ||<PUH2L2}~

Taking § — 0, we have proved Proposition 5.2, since [(z)"F0~1¢), AFo%o] is a
pseudo-differential operator of order kgeo — 1. O

Proof of Theorem 1.3. We have proved, in Proposition 2.4, that the
Cauchy problem (1.2) admits a weak solution u € L*°(]0, T[; H*(R?")) if ug €
H*(R?")) and s > n. By using Sobolev embedding theorem, the condition
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s > n implies that u € L*°(]0,T[; H*(R*")) N L*°(]0, T[xR?*"). Now Lemma
2.2 ensures the stability in Sobolev space by nonlinear composition.

We prove the following proposition for nonlinear hypoellipticity. It deduces
immediately Theorem 1.3.

Proposition 5.3.  Suppose that 1/3 < a < 1 and F € C*(R), F(0) =
0. Let u € L*(Ja,b[xR?") N L*(]a, b[xR?") be a weak solution of equation
Pu = F(u) in]a,b[xR*". Then for any m € N, there exists mg € N such that

(x)"mou € H™ (|, b [xR*™),
for any a < a’ < b <b. In particular, we have that u € C*(Ja, b[xR*").

Proof. We prove also this proposition by induction. By hypothesis, we
have that u € L?(Ja, b[xR?*)N L>®(Ja, b|xR?"), then F(t,z,y) = F(u(t,z,y)) €
L?(]a, b[xR*"). Proposition 5.2 with k = 0 deduces that for any ¢ € C§°(]0, T),
there exists a constant C' > 0 and ¢ € C§°(]0,T[) with ¢ CC 9 such that

_ 2 ~
(5.6) [42) " pull a1 < C {IWFIZ + lpul3s } -
We suppose now for some k € N and any ¢ € C§°(]0,T),
<x>_k<pu c Hleao (R2n+1)7
here €9 = (@ — 3) > 0. We want to prove that
<x>_k_1<pu c H(k+1)€°(R2n+l).

But from Proposition 5.2, we need only to prove that

AR (@) T () 32 ganssy < CIAR @)™ e ansy + lbule |

with the constant C as in Lemma 2.2. The proof of this estimate is also the
same as that of Lemma 2.2. We just remark that, for the nonlinear function

F(z,v) = (@) "F((x)*v),
if v € H*%0 and (z)*v € L>, then for any \ € N",
|02 F (2, v)| < O,

and F((z,0) = 0. We omit the detail of this modification and sending to [14]
for example. 1
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