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Characters of wreath products of compact
groups with the infinite symmetric group and
characters of their canonical subgroups
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Abstract
Characters of wreath products G = G (1) of any compact groups
T with the infinite symmetric group G are studied. It is proved that
the set E(G) of all normalized characters is equal to the set F(G) of
all normalized factorizable continuous positive definite class functions.
A general explicit formula of f4a € FE(G) is given corresponding to a
parameter A = ((acyg)(gﬁg)efx{o,l} ; u). Similar results are obtained

for certain canonical subgroups of G.

Introduction

Let Goo(T) = G ¥ Doo(T') be the wreath product of a compact group
T with the infinite symmetric group S, where Do (T) = H;eNTi is the
restricted direct product of T; = T'. In this paper we give explicitly characters
of all the factor representations of finite type of &.,(7T'), and give a general
character formula. Since a character determines a quasi-equivalence class of
factor representations of finite type, we have thus classified all such quasi-
equivalence classes. Let us explain in more detail.

1. For a Hausdorff topological group G, denote by K(G) the set of all
continuous positive definite class functions on G, and by K<1(G) and K1(G)
the sets of f € K(G) satisfying respectively f(e) < 1 and f(e) = 1 at the
identity element e € G. Let E(G) = Extr(K7(G)) be the set of extremal points
of the convex set K1 (G). Then a character of a factor representation of finite
type of G is canonically in 1-1 correspondence with an f € E(G) (Theorem 1.1
quoted from [HH5]), and we call elements in E(G) characters of G. This is our
background.

2. Let N be a subgroup of G with the relative topology, and denote by
K1(N,G) the set of functions in K(N) invariant under G and put E(N,G) =
Extr(K1(N,G)). Then the restriction of an f € E(G) is always in E(N,G)
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(Theorem 1.3(i)). A kind of converse assertion is also assured in a certain
restricted case containing the case of G = &4, (T') and its canonical subgroups
N (Theorem 1.3(ii)). A proof of the former assertion in the general setting is
given in Section 14 (Theorem 14.1), and another proof for the converse assertion
in the case of G = G, (T) is given in Section 15 (Theorem 15.1). These results
assure that E(N) is obtained from E(G) by restriction for G = & (T) and its
canonical subgroups .

3. From now on, let G = 6, (T). An element g € G is a pair (d,0)
of d = (ti)ien € Doo(T) with t; € T; = T and 0 € S. Then we put
supp(d) = {i € N;t; # er} and supp(g) = supp(d)Usupp(o), where er denotes
the identity element of T. An f € K(G) is called factorizable if f(g192) =
f(g1)f(g2) for any ¢1,92 € G with disjoint supports. Let F/(G) be the set of
all factorizable f € K;(G). Then we prove E(G) C F(G) (Lemma 4.1) and
E(G) D F(G) (Lemma 4.4), and so E(G) = F(G).

In the case of a finite group T, these inclusions were both proved by us-
ing the fact that the convex set K<i(G) is compact in the weak topology
o(L*°(G), L*(GQ)) (cf. [HH3]). But in the case of infinite compact group T, the
proofs for Lemmas 4.1 and 4.4 are both different from those in [HH3].

4. To obtain all characters f € E(G), we proceed as follows. First, take a
simple positive definite function F on G, and an increasing sequence Gy / G
of compact subgroups. Take a centralization FE~ of F with respect to G as

FO(g) = ; Fg'gq N ducy(g)  (9€G),

where pg, denotes the normalized Haar measure on G. Then consider the
pointwise limit f = limy_oo FEN. If it exists as a continuous function, it is
positive definite and invariant under G, and so f € K1(G).

As starting point of such process, we take a diagonal matrix element F' of
elementary induced representation p = Indgw of G of a unitary representation
m of a subgroup H, or a similar one. Well choosing {Gn}n>1 and (m, H), we
can actually get a big family of normalized factorizable positive definite class
functions f depending on a parameter A = ((O‘C,E)(c,a)efx{o,l} ; u), which is
determined from asymptotic data of {Gn}n>1 and data of (m, H). Let E'(G)
be the set of all such fa. Then clearly E'(G) C F(G). This process is carried
out in Sections 9-12, and is similar to that in the case of a finite group T in

5. In Section 13, we study how a factorizable f € F(G) can depend on a
set of parameters. Taking a partial ‘Fourier transform’ of f on G = D (T') x
S with respect to D,,(T), we get a series of positive definite class functions
Feen(f) on &,,n > 2. Then, appealing to Korollar 1 to Satz 2 in [Tho2|, we
can prove that F(G) C E'(G) and so F(G) = E'(G) (Theorem 13.1).

Thus we obtain E'(G) = F(G) = E(G) as sets, and also get the general
explicit character formula valid for any characters of G. Furthermore, by this
explicit parametrization of characters of G, we see that the set of characters
E(G) is compact in the topology 7, of compact uniform convergence (Theorem
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13.2).

6. In Sections 14—-16, we also study the cases of canonical subgroups of G =
Goo(T) such as G’ = A, (T) and, in case T is abelian, such as G° = &2 (T)
and G'S = A3 (T) for a closed subgroup S of T, which are defined in Section
2. To obtain all the characters of these subgroups from the result for G, we
prepare a general theorem for reduction of characters to normal subgroups.

Let G be a topological group and N its normal subgroup. Denote by
K1 (N, G) the set of continuous positive definite functions on N normalized as
f(e) =1 which are G-invariant, and by E(N, G) := Extr(K;(N,G)) the set of
extremal points of the convex set K1(N,G).

Theorem 14.1.  Let G be a Hausdorff topological group and N its nor-
mal subgroup with the relative topology.

(i) For an F € K1(G), let f = F|n be its restriction on N. It belongs to
Ki(N,G), and if f = a1f1 + asfy with a; > 0, f; € K1(N,G), then there exist
extensions F; € K1(QG) of f; fori=1,2, such that F = a1 F + asF>.

(ii) For any F € E(Q), its restriction f = F|n belongs to E(N,G).

For G = 6 (T), let N be one of the above canonical subgroups of G. Then
K{(N,G) = K1(N) and so E(N,G) = E(N). Hence Theorem 14.1 asserts that
the restriction E(G) 3 F — f = F|y maps E(G) into E(N).

7. The present paper is organized as follows. After several preparations in
Sections 2-3 for G = G, (T") and its canonical subgroups, the explicit formula
for the character f4 of G is given in Theorem 5.1. When the compact group T
is abelian, the formula takes a little simpler form as is given in Theorem 6.1.
The character formula for canonical subgroups G° of G is given in Theorem
7.1.

The method of proofs of these theorems is explained in Section 8.

Sections 9-13 are principally devoted to prove Theorems 5.1 and 6.1.

Sections 14-16 are devoted to the cases of canonical subgroups of G.

8. All the characters of the infinite symmetric group G, itself have been
given early in [Tho2], and this case is reexamined in [VeKe], [Oko], [KeOl],
[Bia] etc. and recently in [Hir3]-[Hir4]. The case with T" a finite abelian group,
studied in [HH1], contains the cases of infinite Weyl groups Wg_ and Wp__,
and the limits 6,,(Z,) = lim, . G(r,1,n) of complex reflexion groups. The
case of G, (T) with T any finite group or the discrete case is worked out in
[HH2]-[HH3].
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8. Method of proving Theorem 5.1

9. Subgroups H C G = G (T) and their representations m
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11. Partial centralization with respect to D, (T) C Gn

12. Limits of centralizations of positive definite functions
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14. A general theory for reduction of characters to normal subgroups

15.  Restriction of characters from G = &, (T') to its canonical subgroups
16.  Wreath product 2. (T') of T with the infinite alternating group s

1. Characters of factor representations of finite type

1.1. Characters and continuous positive definite class functions

We begin with a theorem in the general theory of representations of topo-
logical groups, which gives us an important background for our study.

Let G be a Hausdorff topological group, K (G) the set of continuous positive
definite class functions on G, and K;(G) the set of f € K(G) normalized as
f(e) =1 at the identity element e € G, and E(G) = Extr(K;(G)) the set of
extremal points in the convex set Ki(G).

On the other hand, let 7 be a continuous unitary representation (= UR) of
G, and 4 = 7(G)"” the von Neumann algebra generated by 7(G) = {r(g);¢g €
G}. Then 7 is called factorial if 4 is a factor. If the factor is of finite type,
there exists a unique faithful finite normal trace ¢ on the set U™ of non-negative
elements in 4, normalized as t(I) = 1 at the identity operator I. The unique
extention of ¢ to a linear form on i is denoted by ¢, and the function

(1.1) flg)=o(r(9)) (9€q)
is called a character of w. It naturally belongs to K;(G).

Theorem 1.1 ([HH5, Theorem 1.6.1]).  For a Hausdorff topological
group G, let URM(G) be the set of all quasi-equivalence classes [r] of continuous
unitary representations m of G, factorial of finite type. Then the map [1] — f
through (1.1) above gives a canonical bijective correspondence between URMH(QG)
and E(G).

The inverse map is gwen by E(G) > f — [nf] € URf(G), where 7y
denotes the Gelfand-Raikov representation in [GeRa| associated to f.

In this connection, every element f in F(G) is called a character of G of
finite type.

Remark 1.1. In [Dix, 17.3], the above canonical bijection is asserted
under the condition that G is locally compact and unimodular. This point is
not mentioned in [Voic].
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1.2. Topologies in the space of continuous positive definite class
functions

Let K<1(G) D K1(G) be the set of f € K(G) such that f(e) < 1. Then
the set of extremal points of K<1(G) is the union of E(G) and 0. In the case
where G is locally compact and unimodular, it is known that the convex set
K<1(G) is compact in the weak topology o(L>(G), L*(G)) (cf. [Dix, 17.3]). We
tried to extend this result to the case where G = lim,,_.o. G,, is the inductive
limit of a countable inductive system G; — Gy — --- — G, — --- of locally
compact groups, where each homomorphism from G,, into G,,+1 is assumed to
be homeomorphic. In [TSH], this kind of inductive system is called a countable
LCG inductive system and there were proved that G with the inductive limit
topology T;nq becomes a topological group and that G has sufficiently many
continuous positive definite functions and accordingly sufficiently many URs.

For this kind of groups G in general, we have not yet succeeded to prove
that K<1(G) is compact with respect to a certain natural topology. For our
group G = 6, (T), if this is true, we can prove that an f € K;(G) is extremal
if and only if it is factorizable, or E(G) = F(G), by applying the integral
expression theorem of Choquet-Bishop-K.deLeeuw [BiLe] to the convex set
K<1(G) and the set Extr(K<1(G)) = E(G) U {0} of its extremal points.

In the case where T is finite, this is the case because the inductive limit
topology Tinq is discrete, and the classical result in [Dix, 17.3] can be applied.
Thus we have succeeded to give all the characters in [HH2]-[HH3].

However, in the case where T is infinite, the inductive limit group G =
Soo(T) of Gy, = 6,(T) equipped with 74,4 is no more locally compact, and we
do not know if K<1(G) is compact. (For the compactness of E(G) in K<1(G),
see Theorem 13.2.)

Let P(G) be the set of continuous positive definite functions on G, and
P1(G) be the subset of ¢ € P(G) normalized as p(e) = 1. Then P1(G) D
K1(G), and we know that, for a locally compact group G, the weak topology
o(L>®(G), L}Y(@)) on P1(G) is equivalent to the topology 7, of uniform con-
vergence on every compact subsets (cf. [Dix, 13.5.2]). We call 7., the compact
uniform topology in short.

Theorem 1.2.  Let T be a compact group, and G = S (T), which
is considered as lim, oo Gn, G, = 6,(T), and equipped with Tinq. Then, on
P1(G) and K1(QG), the compact uniform topology Te, is metrizable and complete.

1.3. Restriction of characters to a normal subgroup

To study the characters of certain canonical normal subgroups of & (T),
we need in Section 14 the following result in a general theory. Let G be a
topological group and N its normal subgroup with the relative topology. De-
note by Ki(N,G) the set of all f € K;(N) which are G-invariant, that is,
flg€g™) = f(€) (¢ € N,g € G), and by E(N,G) the set of extremal points
Eth(Kl(N, G))

Theorem 1.3.  Let G be a Hausdorff topological group and N its normal
subgroup.
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(i) For any F € E(G), its restriction f = F|ny onto N belongs to E(N,G).

(ii) Assume that G is a union of countable compact subsets C,, /* G and
that the topology on G is the inductive limit of topologies 7€ on C,,. Assume
further N is open in G. Then, any f € E(N,G) is the restriction of an
F € E(G).

The assertion (i) is proved in Theorems 14.1, and (ii) is proved in Theorem
15.1 in the special case of G = S,,(T) with T a compact group. Here let
us prove (ii) under the above general situation. To do so, we prepare some
generality.

For a topological groups G, let §(G) be the space of functions ¥ on G
such that ¥(g) = 0 except finite number of g € G, with the convolution v *
¥2(9) = Ypeq ¥1(gh~")¢2(h) and the conjugation ¢*(g) := ¢(g~!). Put
fW) =32 ,cq f(9)¢(g) for f € K(G). For two elements f1, f» € K(G), we
introduce a partial order fi > fo by fi(v* x¢) > fo(v* x¢) (v € F(G)), and
we say that fo is majorized by f1 if Af1 > fo for some A > 0. We denote this
by fi = f2. Put

K(G; f)={f € K<:1(GQ); f' < [},
K(G; = f):={f € K<1(G); f' = f}.

Then, for an f € K;(G), they are convex subsets of K;(G), and

(1.3) K(G; 2N =, KGA.

(1.2)

Lemma 1.4.  For an element f € K1(G), take an f' < f,#0. Then f’
is extremal in K<1(G) or f' € E(G) if and only if f' is extremal in K(G;\f)
for every A > 1 or for X\ =1,2,3,..., that is, f' €\ en Extr(K(G; )\f))

Proof. Let f” € Ki(G) be f” < f. If f” is not extremal, there exist
fi € KSI(G) and \; > 0 such that f” = A1 f1 + Aofo, A1 + A2 = 1. Then,
fi < N 7Hf and fi € K(G;Af) with A = max(A\,', A\, 1), and so f' is not
extremal in K(G; Af). Conversely if f’ is not extremal in some K(G; \f), then
it is so in K1(G). O

Lemma 1.5. For an f € K(G), functions ' € K(G; f) are uniformly
equicontinous.

Proof. For any g,h € G, put ¢ = §; — d), with the delta-function J,
supported by a point g, then

F@* ) =2f(e) = flgh™") — f(hg™") = 2(f(e) = R(f(gh™")),
and so

1f'(g) = f'(M)* < 2f'(e)(f'(e) = R(F'(gh™")) < 2f(e)(f(e) = R(f(gh™).
O
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Lemma 1.6.  Assume that G is a union of countable compact subsets
C,, / G and that the topology on G is the inductive limit of topologies 7€ on
Cp. Then, for an f € K1(G), the convex subset K(G; f) of the space C(G) of
continuous functions on G is compact in the topology of uniform convergence
on every C,.

Proof. Put C = {Cp;n > 1} and denote by 7¢ the topology in C(G) of
uniform convergence on every C,, € C. Then 7¢ is metrizable and complete.
The subset K (G; f) is 7¢-closed and so complete. It is equicontinous by Lemma
1.5.

Take a sequence (Fj)r>1 of K(G; f). Since Fj’s are equicontinuous, on
every compact set C,,, we can choose successively a subsequence converging
uniformly on C,, for n > 1. Since G = |J,,~,;Cn, taking the diagonal subse-
quence, we have a subsequence converging uniformly on every C,. Then the
limit function Fy, is continuous on C,,, and by assumption, so is on G. Hence
F € K(G; f), and so K(G; f) is compact. |

Proof of Theorem 1.3 (ii). Take an arbitrary f € E(N,G). Extend it
onto G by putting zero outside N and denote it by f Then, since N is open,
f is continuous and f € K1(G).

Take a convex set K(G;Af) = {f' € Ki(G); f' < Af} for A = m € N.
Then f” € K1(G) is extremal or f” € E(G) if and only if f” is extremal in
every K(G; mf)7 m=1,2,.... Since K(G; mf) are increasing as m — oo, their
subsets of non-extremal points are increasing. Put E},, = Extr(K(G; mf)) \{0},
then M,,cn By, C E(G).

Now we can apply Choquet-Bishop-K. de Leeuw theorem (Theorem 5.6 in
[BiLe]) of integral expression for a compact convex set as f = J5 Fdpm(F),
where p,, is a measure on E/ . The integral converges in the topglogy Tc, and
80, by restricting on each C,, N N, we get on the whole N an expression of f
as = [z (FIn)dpm(F) with F|ly € K1(N,G) for p,-almost all F € E,.
Since f is extremal in K (N,G), we have F|y = f for y,-almost all F € E,.

This means that f is obtained by restricting an ' € [, ,cn £, C E(G).
O

Remark 1.2.  The situation in (ii) is realized for G = &,,(T') with a
compact abelian group T and G,, = 6,(T) as Cy,, and N one of G’ := A (T),
GS := &5 (T) and G'° := &’ N G5 with an open subgroup S of T' (see Section
2). In this case E(N,G) = E(N).

2. Wreath products of compact groups with the infinite symmetric
group

For a set I, we denote by & the group of all finite permutations on 1. A
permutation o on [ is called finite if its support supp(o) :={i€1; o(i) #i}
is finite. We call the infinite symmetric group the permutation group Gpn on
the set of natural numbers IN. The index N is frequently replaced by co. The
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symmetric group &,, is naturally imbedded in G, as the permutation group
of the set I, :=={1,2,...,n} C N.

Let T be a compact group. We consider a wreath product group &;(T) of
T with a permutation group & as follows:

21)  &(T)=Dy(T) =&, D(T)=[[Ti, =T (ieD),
el

where the symbol H/ means the restricted direct product, and o € G acts on
Dy (T) as

(22) D](T) >d= (ti)ie[ (AN O’(d) = (t;)iel € D](T), t; = to-—l(i) (’L c I)

Identifying groups D;(T) and &y with their images in the semidirect product
& (T), we have 0 do~! = o(d). The groups D;, (T) and &y, (T) are denoted
by D, (T) and &,(T) respectively, then G := &, (T) is an inductive limit of
G :=6,(T) =D,(T)x6,,. Since T is compact, G, is also compact, and the
inductive system (Gy),>1 is an example of countable LCG inductive systems
in [TSH]. We introduce in G its inductive limit topology T;nq. Then G with
Tind Decomes a topological groups (cf. 2.7 in [TSH]). By definition, a subset
B C G is Tjpg-open if and only if BN G, is open in G, for any n > 1. A
general theory of unitary representations of the inductive limit group G of a
countable LCG inductive system is carried out in [TSH, §5] using continuous
positive definite functions on the group.

Lemma 2.1. (i) In the topology Ting on Soo(T) = Doo(T) X S, the
subgroup Do (T) is open. Denote by 72, the inductive limit topology on Deo(T)
of the topologies on D,,(T), then Tina on Suoo(T) is the product of T2, and the
discrete topology Tﬁsc on G-

(ii) A function on Dy (T) or on S (T) is continuous with respect to its
inductive limit topology if and only if its restriction on each subgroup D, (T) is
continuous.

Put II;(T) = [],c; Ti be the direct product of T; = T over i € I, and let
Tprod denote the product topology on II;(T).

When T is a non-trivial finite group, the topology Tproq on In(T) is
not discrete but totally disconnected, whereas the topology 7, on De(T) is
discrete. Thus 7;,q in G = G (T) is discrete, and this case is worked out in
[HH2]-[HH3].

When T is infinite, 7,4 is not discrete, and a subset {(d,1) ; d € Do (T)}
>~ D (T) is an open neighbourhood of the identity element e of G, where
1 € &, denotes the trivial permutation on N.

Lemma 2.2.  Suppose T be compact and non-trivial.

(i) The subgroup Doo(T) of IIn(T') is not Tproa-closed and so not compact.

(ii) The relative topology Tﬁod on Doo(T') induced from TN (T) is not lo-
cally compact and strongly weaker than Tigd, and Tigd is locally compact if and
only if T is finite.
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A natural subgroup of G = &,,(T) is given as a wreath product of T' with
the alternating group 2, as G := Ao (T) = Doo(T) X Uso. Furthermore, in
the case where T is abelian, we put

(2.3) P](d) = Hti for d= (ti)iel S l)[(T)7
i€l

and, for a subgroup S of T, we define a subgroup of &;(7T) as
(24) &7(T)=D7(T)x &; with D7(T):={d=(t;)icr; Pr(d) € S}.

The subgroup G° := &% (T') is normal in G. If S is open in T, G* is open and
[G: G = [T : 5] < oo. A closed subgroup S is open in 7T if and only if the
index [T : 5] is finite.

This kind of groups &..(T) and &3, (T) with T abelian contain, as their
special cases, the infinite Weyl groups of classical types, Wa_ = &, W =
Soo(Z3) and Wp_, = GigT}(Zg), and moreover the inductive limits o (Z,) =
lim,, o G(r,1,n) of complex reflexion groups G(r,1,n) = &,(Z,) (cf. [ArKo],
[Kaw], [Sho]).

In general, by Theorem 1.1, for a topological group G, the set E(G) of
all extremal elements of K;(G) is equal to the set of all characters of factor
represetations of G of finite type, type I, (n < oo) or II;. When G is discrete,
K1 (G) itself is compact in the weak topology and E(G) is closed in it. This is
the case of G = G (T) with T finite.

When T is compact and infinite, G = G (T) is no longer locally compact,
but is a limit of a countable LCG inductive system G,, = &,,(T). The purpose
of the present paper is to give explicitly all the characters of finite type, or all
elements of E(G) for G = 6 (T) with T compact.

The case with a finite group T has been treated in [Hir3]-[Hir4] and [HH1]-
[HH3]. Many of discussions in our previous papers in the discrete case can be
transferred to the present case of a general compact group 7. So we can treat
both cases in a unified manner. For example, take a function F on T and
consider |T1|ZteT F(t) or [,F(t)dvp(t), depending on whether T is finite
or infinite, where |T'| denotes the number of elements in T, and v denotes the
nomalized Haar measure on the compact group 7. In both cases, we can use
the latter integration notation.

3. Structure of wreath product groups 6.,(T) = Do (T) X S

Fix a compact group 7T, and take the wreath product group &..(7") of
T with the symmetric group Go, as Goo(T) = Doo(T) % G, Doo(T) =
ngN T;, T; =T (i € N). We identify frequently d and o with their images
in 6 (T) respectively, then odo~! = o(d) and (d,0)(d’,0’) = (d- o(d'),00)
(d,d € Do(T),0,0" € S).

Notation. For d = (t;)ier € D;(T), I C N, put supp;(d) := {i €
I; t; # er} and we omit the suffix I if I = N or [ is specified from the
context.
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3.1. Standard decomposition of elements and conjugacy classes
An element g = (d,0) € G = 6(T) is called basic in the following two
cases:

CASE 1: o is cyclic and supp(d) C supp(o);
CASE 2: ¢ =1 and for d = (t;)ien, tq # er only for one ¢ € N.

The element (d,1) in Case 2 is denoted by &,, and put supp(¢,) := supp(d) =
{a}.

For a cyclic permutation o = (i1 42 -+ 4g) of £ integers, we define
its length as ¢(0) = ¢, and for the identity permutation 1, put ¢(1) = 1 for
convenience. In this connection, §, is also denoted by (t,4,(g)) with a trivial
cyclic permutation (¢q) of length 1. In Cases 1 and 2, put £(g) = ¢(o) for g =
(d,0), and £(¢,) = 1. It is very helpful for us to illustrate these basic elements
by permutation matrices with entries from 7" or more correctly from the group
algebra of T. For g = (d,0) with d = (t1,t2,...,t¢),c0=(1 2 3 --- {), and
&g = (tg, (), their expressions in matrix form are respectively

0o 0 - 0 0 t ep -+ 0 0 0
ta 0 -~ 0 0 O .
0 t3 - 0 0 0 0 er 0 0
’ 0 - 0 t, 0 - q-th.
0 0 0 er
0 -« 0 te—1 0 O
0o --- 0 0 t 0

An arbitrary element g = (d,o) € G, is expressed as a product of basic
elements as

(3.1) 9="E60:80 €0, 9192 Im

with ¢g; = (dj,0;) in Case 1, in such a way that the supports of these com-
ponents, ¢i,4¢s,..., ¢, and supp(g;) = supp(o;) (1 < j < m), are mutually
disjoint. This expression of g is unique up to the orders of £, ’s and g;’s, and
is called a standard decomposition of g. For &,,-components, 0 = g102 -0y,
gives a cycle decomposition of o.

To write down conjugacy class of g = (d, o), there appear products of
components t; of d = (t;), where the orders of taking products are crucial
when T is not abelian. We denote by [t] the conjugacy class of t € T, and by
T/~ the set of all conjugacy classes of T, and t ~ t' denotes that ¢t,¢' € T
are mutually conjugate in T. For a basic component g; = (d;,0;) of g, let
0 = (7;]'71 Z'j72 [N ij,fj) and put Kj = supp(oj) = {’L'j717 ’L'j72, vy ij7gj } with
gj = 8(0']') Z 2. For dj = (ti)iEKﬂ we put

(3.2) Poy(dy) := [t ty,_q---toth] € T/~ with ¢, =t;,, (1<k<4E).

The conjugacy class Py, (d;) is well-defined, because, for t1,t,...,t, € T, we
have t1t2 tee te ~ tktk+1 e t@tl e tk,1 for any k.
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Lemma 3.1. (i) Let 0 € 64 be a cycle, and put K = supp(c). Then,
an element g = (d,0) € S (T)(=: Gk (put)) is conjugate in it to ¢’ = (d',0) €
G with d' = (t})ier, t; = er (i # io), [ti,] = Py (d) for some iy € K.

(ii) Identify T € G with its image in G = G (T). Then we have, for
g=(d,0), Tgr t = (7(d), 7o) (=: (d',0’) (put)), and P, (d') = P,(d).

Applying this lemma to each basic components g; = (d;,0;) of g € G in
(3.1), we get the following result.

Theorem 3.2.  Let T be a compact group. Take an element g € G =
Soo(T) and let its standard decomposition into basic elements be

9= Elh&h T gqrgng Gm

in (3.1) , with &, = (tq.,(ax)), and g; = (dj,05), o; cyclic, supp(d;) C
supp(o;). Then the conjugacy class of g is determined by the set

{ ta) €T/~ (1<k<7);

(3.3) .
(Ps,(dj),0(0;)) € (T/~) x N>z (1 <j <m),

where N>o = {i € N;i > 2}.

3.2. The case where T is abelian

In the case where T is abelian, the set T'/~ of conjugacy classes is equal
to T itself. Take g € G, and take its standard decompositon in (3.1). For g; =
(dj,05), put g} := (d}, 0;), where d; = (t;)ien With t] = P(d;) = Hz‘eKj t; for
some iy € K := supp(c;), and t; = er elsewhere.

Lemma 3.3.  Let T be abelian. (i) For a g = (d,0) € So(T), let its
standard decomposition be g = £4,&4, -+ &g, 9192+ - - gm 0 (3.1). Define g; (1 <
Jj < m) as above and put ¢ = £4,€q4, 64,9195 Gh- Then, g and g’ are
mutually conjugate in G (T).

(ii) A complete set of parameters of the conjugacy classes of non-trivial
elements g is given by

(3.4) {t,t5, ..., tn} and {(uj,4;); 1 <j<m},
where t), = t,, € T* =T \{er}, u; = P(d;) € T, {; = 4(o;) > 2, and
r+m > 0.

3.3. Finite-dimensional irreducible representations
A finite dimensional continuous irreducible unitary representation (= IUR)
of G = G (T) is given as follows.

Lemma 3.4. A finite-dimensional IUR 7w of G(T) is a one-
dimensional character, and is given in the form m = m¢ . with

m¢e(9) = C(P(d)) (sgng)” (0) for g=(d,0) € Eso(T) = Doo(T) 1 G,

where ¢ is a one-dimensional character of T, P(d) is a product of components
t; of d = (t;), and sgng (o) denotes the usual sign of o and € =0, 1.
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Note that, since ((P(d)) = [[;cn ¢(ti), the order of taking product for
P(d) has no meaning even if T' is not abelian.

Proof. Let 7w be a finite-dimensional IUR of G. Assume that dim7 > 1.
According to I,, = {1,2,...,n} /" N, the subgroup G, := &1, (T) = 6,(T)
goes up to G. Hence, for n sufficiently large, the restriction 7|q, is already
irreducible. Take a subset J C N disjoint with I,,, then any ¢’ € G; := & ;(T)
commutes with g € G,,, whence 7 (¢’) should be a scalar operator. On the other
hand, if |J| = n, the group G is conjugate to Gy, in G, and so 7(g) is a scalar
operator for any g € G,,. This is a contradiction.

A one-dimensional IUR of G, equals to the trivial one 1g__ or the sign one
sgng, and its kernel contains 2.,. Moreover, the subgroup D{¢TH(T) = {d =
(ti)ien € D(T); P(d) = er} is contained in the commutator group [G,G],
because, for d' = (t,er,er,...) € D(T) and a permutation o = (1 2), we
have the commutator d'ocd ‘o=l = (t,t~ Y er,er,...). Actually [G,G] =
D{er}H(T) x ... Therefore 7 is essentially a character of G/[G,G] = T x Zs.
This proves our assertion. [l

In the case where T is abelian and S an open subgroup of T, we have an
open subgroup G° = &5 (T) of G = G(T). We can prove [G°,G?] =[G, G],
and G°/[G°, G = S x Z, and get similarly as Lemma 3.4 the following fact
for G*°.

Lemma 3.5.  Assume that T is abelian and S an open subgroup of T.
Then, a finite-dimensional IUR 7 of G° = &3 (T) is a one-dimensional char-
acter, and is given in the form

(9) = ¢s(P(d)) (sgng) (0) for g=(d,0) € &5(T) = DI,(T) % G,

where s is a one-dimensional character of S.

4. Factorizable positive definite class functions

4.1. Factorizability
Let T be a compact group, and f a continuous positive definite class func-
tion on G = 6,(T) or f € K(G).

Definition 4.1. An f € K(G) is called factorizable if it has the follow-
ing properties which are mutually equivelent:

(FTP) For any g = (d,0) € G, let g = 5,8, 9192 Im:&q =
(tg: (), g; = (dj,05), be its standard decomposition. Then,

(4.1) flor= ] f&) < ] fl-

1<k<r 1<j<m

(FTP’) For any two elements g,g" with disjoint supports in N,
(4.2) flag') = f(9)f(g)
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Let F(G) be the set of all factorizable f in K;(G). In the case where T
is finite, we prove E(G) = F(G) in [HH3, Theorem 12], thanks to the fact
that K<1(G) is weakly compact, by applying the integral expression theorem
of Choquet-Bishop-K. de Leeuw ([Cho], [BiLe]) for a compact convex set and
its subset of extremal points.

In the case where T is infinite, we do not know yet if K<;(G) is compact
with respect to a certain natural topology, and so we cannot apply the same
method as for the finite case. So we apply different methods using the detailed
explicit structure of the group G = G (T).

Lemma 4.1. Let G = 6 (T) with a compact group T. Then every
character of G is factorizable, or E(G) C F(G).

Proof. Take an f € E(G). Suppose a g € G is decomposed as g = ¢192
with disjoint supports supp(g;) C IN. To prove f(g) = f(g1)f(g2), we proceed
as follows. Put Ky = supp(¢1), K2 = N \ K3, and G; = Sk, (T), then g; € G;
and G is compact. Let us consider the restriction f' = f|g on G’ := G X Ga.

Let 7 be an IUR of G; identified with its equivalence class [r] € G1, and
let X be its normalized character. Put

fo(g2) = [ f(91.92) Xx (g2 ") dic, (g1)
(4.3) G

= [ flg192) Xx g Y) dric, (1),
G1
where pe, denotes the normalized Haar measure on G7. Then fr € K<1(G2)
and so fr(e) = [fx(g2)| (92 € G2), and the infinite series }_ = fr(e) is con-
vergent because it is the value at g7 = e of the uniformly convergent Fourier

expansion = fr(e) Xx(91) of f'(g1,¢€) = f(g1) in K1(G1) (cf. Lemma 13.2).
Therefore the infinite series expansion

(4.4) Flg192) = I'(91,92) = D Xrn(91) fx(92)  ((91,92) € G1 x Gb)

‘ﬂ'Eé\l

is uniformly convergent. In particular,

(4.5) Flg2) =Y fxlg2) (92 € Ga).

neé\l

On the other hand, note that Ga &2 G = 6,,(T) and that every conjugacy
class Cy of G5 is an intersection with G5 of a conjugacy class C of G: Cy =
C' N Gy. Then we see that fo := f|g, is in F(G2) since f € E(G). Therefore,
from the sum expression (4.5), we see that each summand f, € K<1(Gs) is a
constant multiple of fo, whence fr = fr(e) fo.

Thus we get from (4.4) the equality f(g192) = f(91)f(g2). O
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4.2. Parameters for a factorizable f and Property (FTP")

Let us rewrite the conditions (FTP) and (FTP’) in another form. As is
proved in Theorem 3.2, conjugacy classes of basic elements in G is given by the
set ) of the following objects w:

(4.6) w=([tl,6) € (T/~) x N,

and the conjugacy class of g € G, # e, with the above standard decomposition
is determined by the collection

@47 (gl t=1) (A<k<r) and (F(dy),€(o5)) (1<j<m),

and the conjugacy class of g = e by wo = ([er], £ = 1).
For g # e, denote by n,(g) the multiplicity of w € Q in this collection for
g. We put n,,,(e) =1 and n,(g9) =0 (g € G, # e) superfluously by definition.
Put Z>o := {n € Z;n > 0} and denote by (Z>()? the set of all n =
(Nw)wea, Nw € Z>g, with n, = 0 for almost all w, and n,, = 1 if n, =
0 (Vw # wp) and n,, = 0 otherwise. Then, n(g) := (ny,(9))wea is an element
of (Z>0)®Y, and the correspondence

(4.8) ©: [g] = n(g) € (Z20)

gives a bijective map from the set G/~ of all conjugacy classes of g € G onto
(Z50)*). We introduce in the latter the topology in G//~ through the map ®.

For w = ([t],¢) € Q, put w™! := ([t71],£). Then, if w is the conjugacy
class of & = (tg,(q)) or of g; = (dj,05), then w™' is that of £,~! or of g[l
respectively. Hence, n,(g~') = n,-1(g), and the transformation [g] +— [¢7}]
in the set G/~ of conjugacy classes of elements in G induces an involutive
transformation ¢ on (Z¢) given as

(4.9) ¢ : (Z50)Y 31 =(ny)weq —
n' = (n)ueq with n), =n,-1 (w € Q).

We put Qe i={w e Q; wl=w} Q ={weQ;w ! #w} then
Q = Qe UQ.. Furthermore put D, ;=D ={z€ C;|z| <1} C C for w € .,

and [, :=[-1,1] C R for w € Q,., and
(4.10) S:= [] D
weN

With the product topology Tpred, S is compact, and on it we have two com-
muting involutions as

{ 1(8) := (8,)wen with s/, :=s,-1;

(4.11) .
5 := (Su)weq (conjugate numbers),

for s = (sy,)wen- Then we put

(4.12) S :={seS8 =[] Du;is) =5},

weN
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then for s € S’, s,-1 =3, and so s, € I, for w € Q,..
For a continuous positive definite class function f on G, put

(4'13) S(f) = (Sw)weﬂ with s, = f(gw)7

where g,, denotes a basic element in the class w (put g, = € and s,,, = f(guw,) =
f(e)). Since f € K<1(G) has the symmetry

(SYML) fla™) = flg)  (9€0),

and since w™! is represented by g !, there holds a symmetry condition for
s = s(f)

(SYM2) 1(s) =3 (orseS")

Define a positive definite class function f by f(9) = f(9) (9 € G), then

s(f) = s(/f)-

On the product space S’ x (Z¢), we define a function

(4.14) P(n,s) = [] s, with s,° =1,
weN

forn = (nw)weﬂa s = (Sw)wEQ- Then, P(L<n)7 5) = P(an(s)) = P(nag)- Fixing
an s = (s,) € S, we get a function

U, (n):=P(n,s) on (Zs0)Y=G/~.

Similarly, fixing an n, we get a function on S’ by P,(s) := P(n,s) (s € §').
Converse to (4.13), for every s € S, we get a factorizable class function
on G as

(4.15)  foi=T,0@ or fig) = Ui(n(g) = P(n(g),s) = Pag) (),

where n(g) = ®([g]) for g € G. The function P, (s) satisfies a symmetry
condition

(SYM3) P,n)(s) = Pn(s) for m=mn(g)c (ZZO)(Q).

The condition (SYM3) is equivalent to (SYM1) for f = f;. Thus the
condition (FTP) above is rewritten as follows:

(FTP”) There exists an s = (8,)weq n S such that f = fs in (4.15).

4.3. Factorizablity and Extremality
We prove the converse inclusion F(G) C E(G) by Lemmas 4.3 and 4.4
below, and then they give together with Lemma 4.1 the following theorem.

Theorem 4.2. Let G = S, (T) with a compact group T. An f €
K1(G) is extremal if and only if it is factorizable, that is, E(G) = F(Q).
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Let us prove F(G) C E(G). Note that the subgroups G,, = &,(T) are
compact and that any compact subset of G in the inductive limit topology 74
for G = lim,,—,o, G, is contained in some G,,. For an f € K;(G), let

K(Gf)={l"e K@G): [ <[}, KG =)= KGN
A>1
be as in (1.2) in 1.3. By Lemma 1.6, K(G; f) is compact in K<1(G) C C(G)
in the compact uniform topology 7e,. Let E;, = Extr(K(G;mf)) \ {0} be the
set of non-zero extremal points of K(G;mf) for A = m. We know that f is
extremal in K<1(G) if and only if f is so in K(G; = f), and by Lemma 1.4,
that the intersection [, n E7, is equal to E(G) N K(G; f).

Lemma 4.3.  Let f' # 0 be an extremal element in K(G;mf) or f' €
E!.. Then [’ is factorizable. So E], C F(G).

Proof. 'We apply the proof of Lemma 4.1 to f’ € E!, instead of f € E(G)
there. We keep to the notations there. For every m € G1, put

(4.16) frlg2) = ; F(9192) X= (9. ") dpc, (91),

Then f. € K<1(G2) and the infinite series expansion

(4.17) (9192) = > Xalg1) filg2)  ((91,92) € G1 x Ga)
TFEGl

is uniformly convergent, and putting f5 = f’|q,, we have

(4.18) f3(92) = Y fulgs) (92€Ga),  fo> fr.

weé\l

Note that G2 = G and that every conjugacy class Cy of G is an inter-
section with G5 of a conjugacy class C' of G: Cy = C'N G2, and hence class
functions on G correspond bijectively to those on G5. Thus translating the
situation from G to Gz, we see that f; € Ej, , = Extr(K(G2;mf2)) \ {0},
since f’ € B}, = Extr(K(G;mf)) \ {0}, where f; = f|g,. Therefore, from the
sum expression (4.18), we see that each summand f. € K<1(Gs2) is a constant
multiple of f5, whence f. = f.(e) f5. O

Lemma 4.4. For G = 6,(T), every continuous factorizable positive
definite class function on G is a character, or F(G) C E(G).

Proof. Takean f € F'(G). Note that the convex set K (G;mf) is compact,
then we can apply Choquet-Bishop-K.deLeeuw Theorem ([Cho], [BiLe]) to
f € K(G;mf). Then f is expressed with a positive measure p], on E! =

Extr(K(G;mf)) \ {0}
f= 1 [du,(f),

E!

m
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where the integral converges in 7.,. Since f is factorizable, there exists an
" = (8%)weq € 9 in (FTP”) such that f = fo or s° = s(f), and since
E!, C F(G) by Lemma 4.3, for any f’ € E/,, there exists s = (sy)weq € S’
such that f' = fs or s = s(f’). (Later in Section 13, we see independently
that the image S” C S’ of F(G) under the continuous map f — s = s(f)
is compact. See, Theorem 13.2 or more originally (13.1)—(13.2) and Theorem
13.1.)

Note that, on the image S!/, = {s(f’); f' € E/,} of E! in S’ the topology
induced from E], is stronger than or equal to T,.04|s, and that for any g =
[1.co9. € G, the map

E;nef/:fs'—>fs(g): HSU:M:Pn(S)

weN

is continuous, where n = n(g) € (Z>0)¥. Thus we get

(4.19) Pa(s) = [ Pu(s)duli(s),
S
with the measure p, on S}/ transmitted from p, on E/, .

The set of continuous functions {P,;n € (ZZO)@} on S" O SI sep-
arates points of S’ and contains conjugate functions P, = P,,) as is seen
from (SYM3). Therefore, by Stone-Weierstrass approximation theorem, we
have the integral expression as in (4.19) for all continuous functions F on S’ as
F(s%) = [q, F(s)duy,(s). Hence the measure ], should be supported by a sin-
gle point set {s°}. This means that f = fo € E,. So f € ,.en Em C E(G).
This is to be proved. O

5. Characters of 6,,(7) with T any compact group

5.1. Character formula for factor representations of finite type of
6(T)

Let T be the dual of T consisting of all equivalence classes of continuous
irreducible unitary representations (= IURs). We identify every equivalence
class with one of its representative. Thus ¢ € T is an IUR and denote by x¢
its character: x¢(t) = tr(¢(t)) (t € T), then dim({ = x¢(er). Put G = & (T).
For a g € G, let its standard decomposition into basic components be

(51) g:§Q1EQ2“'£ngng'”gm7

where the supports of components, ¢i,¢s,...,¢gr, and supp(g;) := supp(c;)
(1 < j < m), are mutually disjoint. Furthermore, &,, = (¢4, (qx)):tq, # €T,
with (&) = 1 for 1 < k < r, and o5 is a cycle of length ¢(o;) > 2 and
supp(d;) C K, = supp(c;). For S-components, ¢ = o103 --- 0, gives a
cycle decomposition of o. For d; = (t;)ick, € Dk, (T) — Doo(T), put P,,(d;)
as in (3.2).
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For one-dimensional characters of G, we introduce simple notation as
(5.2) Xe(0) :==sgng(0)° (0 € 6x; e=0,1).

As a parameter for characters of G = G (T"), we prepare a set

(5.3) ace ((€T,ee{0,1}) and = (uc)ecr

of decreasing sequences of non-negative real numbers
ace = (Acei)ieN, Qe1lZ Qe > aces> -0 205

and a set of non-negative pec > 0 (( € f), which altogether satisfy the
condition

(5.4) >y

(Ef e€{0,1}

with [lacell = D acei, lull = ne.

iEN ceT

Note that, under the condition (5.4), there exists a countable subset fg cT
such that o =0 and p¢ =0 for ¢ & IA“O.

Recall that E(G) and F(G) denote respectively the set of all characters
and that of all factorisable elements in K;(G), and that E(G) = F(Q).

Theorem 5.1.  Let G = 6,(T) be a wreath product group of a compact
group T with So,. For a parameter A := ((O‘C)E)(g,a)efx{o,l} ;) in (5.3)-
(5.4), the following formula gives an element in F(G) = E(G): for a g € G,
let (5.1) be its standard decomposition, then put

65) fa= TL 32| 2 2 Gt + gne | xelta)

1<k<r | ce? \e€{0,1} ieN

e L(oj)
< II <X X Z(df—ma X=(05) | x¢ (P, (d))) ¢

1<j<m | ¢eT \e€{0,1} iEN

where x.(0;) = sgng(0;)° = (—1)s¢e) =1,
Conversely any element in F(G) = E(G) is given in the form of fa.

Note 5.1. Let g = &;,&,, - - - &, without the components g; = (d;,0;)
with £(o;) > 2, then the formula gives

fa@= 11 12| > ngnié dmi( Xe(tar)

1<k<r | ¢ceT \e€{0,1} ieN
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If t4, = er, the corresponding term is

X Tt g xelta) = X 2 e+l =

ceT \e€{0,1} ieN ¢ceT €€{0,1}

by the equality condition (5.4), and the formula is valid even for g = e with
fa(e) = 1. In the case where T is not discrete or equivalently not finite, the
continuity at g = e is thus guaranteed by (5.4).

5.2. Remarks on the case where T is a finite group
_ Assume T be finite. Let 17 be the trivial representation of T', and put
T*:=T\{1r}, T* =T\ {er}. Then, as functions on T, we have

(5.6) O:Z(dimg)xg, 1=x1,=- Z(dim()xc, on T*.

ceT ceT*

Therefore, in the parameter A = ((O‘Cva)(g,s)efx{o,l} ; ,u) of f4, putting “/C =
pe —v(dim¢)? (¢ € f) with a v € R, we get for t € T* or t # e,

Z dlm( Z dlmg

ceT ceT

By this reason, we can accept the parameter A for fs not necessarily under
the equality condition (5.4) but also under the weaker inequality condition

(5.7) Yoo D el + lull < 1

¢ceT €€{0,1}

loosing the validity of the formula of f4 for ¢, = er and accordingly for g = e.

Under the above condition (5.7), the uniqueness of the part 1 = (ui¢) 7
p¢e € R, is lost. To recover the uniqueness of the parameter A for fa, we can
put, in place of the original condition (5.4) which may be called as (MAX)
condition, one of the following conditions (cf. [HH1]-[HH3]):

~

(MIN) pe>0(CeT), and min{uc; (€T} =
(ZERO) B
s (dim ¢)?

5.3. Remarks and examples

5.3.1. In the case of finite groups T, we admit, under the contition (5.7),
“ace = (a¢ei)ien = 0 for all (C,e) € T'x{0,1} and p = (u¢)eer = 07.
Then we have fa = d, the delta function on G supported by { e}, which is
the character of the regular representation Ag of G. This also corresponds to
another parameter given as
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ace =0 forall (¢,¢) € T x {0,1},
= (p¢)ceq with pe = [T]7H(dim ¢)? ,
under the condition (5.4).
In general, in the case of non-discrete compact groups 7', there appear non-
continuous positive definite class functions as pointwise limits of centralizations

of matrix elements of unitary representations of GG. Simple examples are given
as sums of continuous ones and constant multiples of the delta function d..

5.3.2. The case of the infinite symmetric group & itself is considered
as an extreme case of the wreath product groups &, (7') with a trivial group
T ={er}. For G4, we have originally only the so-called Thoma parameters
a = (ap)penN, B = (Bp)pen in [Tho2] satisfying the inequality condition |la| +
18l < 1.

Then, for the parameter A = ((aC’E)((,e)eTX{O,l} ; ,u) of the character f4,
we put for the trivial representation 17 of T'= {er}

(5.8) Qo1 =@, arip =0,

and introduce a fake parameter u = (p1,) for the trivial representation 1p
of T = {er} by putting g1, := 1 — (|ao,1. || + lla1,1,1])- Then the equality
condition (5.4) is established.

5.3.3.  In the case where ¢ =1 for some ¢ € T and all other parameters in
A are zero,

69 A= T g xeltn) for 9=6ub

and fa(g) = 0 if g has components g; = (d;,0;) with ¢(;) > 2. This case
is related to a kind of ‘ (-twisted’ regular representation of the group G, =
G/D, D = D (T). Note that this case does not exist for the symmetric group
G itself.

Taking an IUR p¢ of D given by tensor product as in 5.3.4 below, we
obtain the induced representation R; := Indgpc. In the case where ( = 1p
the trivial representation of 7', R, is essentially the regular representation of
S & G/D. Take appropriately a positive definite matrix element F' of R,
and an increasing sequence Gy, we get fa as a limit of centralizations FEN of
F.

5.3.4. In the case where a¢ . = 1 for a fixed (¢,¢) € T x {0,1} and all
other parameters in A are zero, we have a¢ . = (1,0,0,...) and

1 1 (o)
1@ = T1 g vt I1 (gmg) (B (@nelon).

1<k<r 1<j<m

This corresponds to an IUR p¢ . of G constructed as follows. For Dy (T) =
H;GN T;, T; = T, consider an infinite tensor product of {; = ¢ € T with respect
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to a reference vector a = (a;);en, where a; € V;, ||la;|]| = 1. Its representation
space is the so-called incomplete tensor product ®{. 5 V; of V; in the sense of
von Neumann, which is defined as a completion of a linear span of vectors of
the form v QUa® - - Qv, ®- -+ with v; € V;, ||vs]| = 1, such that v; = a; (7 > 1).
For d = (t;)ien € Doo(T), and 0 € G, their operations are given respectively
as

pe(d)( ®ien vi) == Rien (Gi(ti)vi)
Pc(U)( QieN 'Ui) = RieN U§ with Ui = Us—1(4)-
Then, for g = (d,0), we put p¢(g) := sgng (o) pc(d)pc(o). Take a matrix

element F(g) = (p¢.(g)v,v) for a v = ®;env;. Then a limit of centralizations
FG&N as N — oo gives the character f4 in question, as will be seen later.

5.3.5.  More generally than the case 5.3.1, assume all the parameters o .
in A are zero, and ||ul| = 3_ .5 p¢ = 1. Then, the formula (5.5) gives

(5.10) I = 11 Z( . c) Xe(ta,)

1<k<r \ceT

This case relates to an induced representation p = Ind§r of G from a
subgroup H given below, in the sense that f4 is obtained from a matrix element
F of p by taking a limit of its centralizations F&~ with respect to Gy := & (T)
as N — oo (cf. §12).

To give such a subgroup H and its unitary representation 7, take first
a partition of N as N = Ll(efo I., where Ty := {{ € T'; ¢ # 0}, and each
subsets I¢ are all infinite. Corresponding to this partition, we define a subgroup

(5.11) H= ][ Hc with H; = Dy (T),

ceTy
and a representation 7 = ®Z€To m¢e of H, with a reference vector b = (bC)CeTo ,
such that
(512) Wc(d) = ®?é[<Ci(ti) for d = (ti)i€I< c HC = ng (T),
where ¢; = ¢ (i € I¢), and a¢c = (a;)icr, is a reference vector with a; €
V(G), [laill = 1.

6. Characters of wreath product group 6.,(7) with T abelian

When T is abelian, the general character formula (5.5) for 6. (T) =
Do (T) x 6, with a compact group T has a simplified form.

In this abelian case, T is nothing but the dual group consisting of all one-
dimensional characters of 7', and for each ¢ € T, its character x is identified
with ( itself.
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For a g € G = 6,(T), let its standard decomposition be g = &g, &g, - -

£, 9192 gm, as in (5.1) with &, = (tg,., (qk))stq, # er, for 1 < k < r, and
gj = (dj,o5) for 1 < j < m. Put K; = supp(c;), and for d; = (t;)ick, €
Dic, (T) &> Do (T), prt

(6.1) Py(dj) = [t ¢(dy) = ¢(Px, () = T <(ta)-
i€K; icK;

As a parameter for characters of G = G (T'), we prepare a set

(6.2) ace (CE€T,e€{0,1}) and = (uc)eer

of decreasing sequences of non-negative real numbers a¢ . = (¢ i)ien , and
a set of non-negative p >0 (¢ € T'), which satisfies the condition

(6.3) Yoo D> llacel + lull = 1.

¢ceT €€{0,1}

Theorem 6.1. Let G = & (T) with a compact abelian group T. For
a parameter A := ((agg)((,a)efx{o,l} ; ) in (6.2)~(6.3), the following formula
gives an element in F(G) = E(G): for a g € G, let its standard decomposition
be as above, then put

falg)= T 4221 D2 Do aces + me | Clta)

1<k<r \ ¢eT \e€{0,1} ieN

< TT 3221 X2 D (e xeloy) | ¢ldy) ¢

1<jsm \ ¢eT \e€{0,1} ieN

(6.4)

where x-(0;) = sgng(0;)° = (=1)2¢@)=V "and ¢(d;) as in (6.1).
Converdely any element in F(G) = E(QG) is given in the form of fa.

Example 6.1.  The case where o .1 =1 for a fixed ((,¢) € T % {0,1}
and all other parameters in A are zero, whence a¢ . = (1,0,0,...), corresponds
to one-dimensional character ¢ . of G in Lemma 3.4. In fact,

fa@) = T] <o) x TI xe(0)¢(d) = mee(9)-

1<k<r 1<j<m

Except these cases of one-dimensional representations of G, a character f4
given above corresponds to a factor representation of G of type I1;.

Example 6.2.  Consider the case where |la¢ ol + [|ac1|| + pec =1 for a

fixed ¢ € T and all other parameters in A are zero. Put o = a0, 8 = ¢ 1, and
let f. g be Thoma’s character for §.,. Denote by ¥ the natural homomorphism

from G onto G, = G/D with normal subgroup D = D (T), and put fjfﬁ =
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fa,30¥. Then the character fa(g) in this case is equal to m¢ o(g) - ffﬁ(g) with
a one-dimensional character m¢ g of G with € = 0. In fact,

falg) = T <tta)x I <= IT | D 3 (ace)™  xe(oy)

1<k<r 1<j<m 1<j<m \e€{0,1} ieN

In particular, the case where ys = 1 for a fixed ¢ € f, corresponds to
the induced representation Ind$(p, where (p(d) := ((P(d)),d € D, is a one-
dimensional character of D = D (T). The character fa is equal to (p on
D — G, and zero outside of D. In the case ( = 17, this induced representation
is nothing but the regular representation of G/D & S.

7. Characters of the subgroup G5 (T) C 6,,(T), S C T abelian

Let T be abelian and S its subgroup. Then, G° = &3 (T') = D5 (T) x G4
with

(7.1) DI(T)={d=(ti)ien; P(d) €S} with P(d):= []
€N

is a natural subgroup of G. We can deduce a general character formula for this
normal subgroup N = G*° from the one for G' = &, (T), especially when S is
open in T

Take an element g € N and let its standard decomposition in G O N
be g = £q,8q, &g, 9192+ gm With &g, = (Lg,, (qr)) and g; = (dj,05),d; =
(ti)iek,, K; = supp(o;). Note that each component &, does not necessarily
belong to N, and that the component g; = (d;, 0;) belongs to N if and only
if P(dj) = [Lie K, ti € S. However, after careful discussions in Section 14 on
the relation between N and G, we obtain the following result for the normal
subgroup N = G*° from the result for G.

Theorem 7.1.  Let T be abelian and S a subgroup of T

(i) Let N = G° = &5.(T) be the normal subgroup of G = &,,(T) given
in (7.1). Then, for any character f € E(G) of a factor representaion of G of
finite type, the restriction f° = f|y on N is again such a character of N or
f° € E(N).

(ii) For f4 € E(G) with a parameter A = ((O‘C’E)(c,e)efx{o,l} ;1) in (6.2)—
(6.3), the following formula for faln gives an element in E(N): for a g € N,
let its standard decomposition in G be as above, then put

fﬁ(g) = H Z Z Za€,a,i + e | Cltg,)

1<k<r | ¢ceT \e€{0,1} ieN

X H Z Z Z(ac,s,z‘)e(aj)'Xe(Jj) ¢(dy) ¢,

1<j<m ¢ce? \e€{0.1} iEN

(7.2)
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where x(0;) = sgng ()% = (=1)FD=D "and ((d;) as in (6.1).

(iii) Assume that S is open in T, or especially T is finite. Then any
character of N = G* is given in the form of f3, that is, E(G®) = {f%; Ain
(6.2)-(6.3)}.

The parameter A = ((agﬁg)(c SeTx {01} ,u) for f5 is not unique even
under the normalization condition (6.3). To describe the correspondence of
parameters, we introduce a translation R((p) on A by an element (y € T as
follows:

(7.3) R(¢o)A :== ((a2,€>(C75)6T><{071} ) R(CO)N)

with af . = aee 1, ((G8) €T x {0,13); R(Go)i = (1E) e 1o = Hee, -

Proposition 7.2.  Assume that two parameters of characters of G

A= ((ace)oerxqonys ) and  A"=((at) ¢ opetxioryi #)

both satisfy the normalization condition (6.3). Then, they determine the same
function on N = G®, that is, f3 = f5,, if and only if A’ = R((s)A for some
(s € T which is trivial on S. In this case, as elements in E(QG) for the bigger
group G, we have

far(g) =mes0(9) - falg) (9 €G).

8. Method of proving Theorem 5.1

Put G = 6 (T) with a compact group T. Let E(G) and F(G) be re-
spectively the sets of all characters and of all factorizable continuous positive
definite class functions on G, then E(G) = F(G) as is proved in Section 4.

The first part of our proof is to prepare seemingly sufficiently big family
E'(G) of factorizable continuous positive definite class functions f4’s on G:
E'(G) C F(G).

The second part is to prove that E'(G) covers F(G): E'(G) D F(G).

Then E’'(G) is actually equal to F(G), and we get E'(G) = F(G) = E(G).

8.1. The first part of the proof

The first part has two important ingredients. The one is a method of taking
limits of centralizations of positive definite functions. The other is inducing up
positive definite functions from subgroups.

8.1.1. Taking limits of centralizations of positive definite functions

For a continuous positive definite function F' on a topological group G and
a compact subgroup G’ C G, we define a centralization of F with respect to G’
as

(8.1) F%(g) :=/ F(q'99' ") dpcr (9),
g’ eG’
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where pgr denotes the normalized Haar measure on G'. Then F' ¢ is automat-
ically invariant under G’.

Assume that we have an increasing sequence of compact subgroups Gy
(. Then we can examine if the series of continuous positive definite functions
FG~ converges pointwise to a continuous function Fo = limy_ FG~_If it
does, then F. is necessarily a positive definite class function.

Choosing starting functions F' as simple as possible, we check what we
get as the limit functions F,, which also depend heavily on the choice of the
series Gy " (G. This is a kind of ‘trial and error’ method. In the case of
G = 6,(T), we can thus get as a result the total set F/(G) of factorizable
continuous positive functions on G.

However, for the group G = GL(o0, F) studied in [Sku], where F is a finite
field, we obtain none until now except the delta function . on G supported by
the identity element e € G.

8.1.2. Inducing up of positive definite functions

We choose appropriate subgroups H and their URs 7 and use their diagonal
matrix elements f, as positive definite functions on H to be induced up to G
as F' = Ind% f, (see Lemma 8.1 below). Then we centralize F along with
some increasing sequences Gy /' G as FEV and check their limits F,, =
limpy_ oo FCN.

We have constructed in [Hirl]-[Hir2] a huge family of IURs of a wreath
product group G = So(T) = Doo(T) x S5 with any finite group T, by
taking so-called wreath product type subgroups H in a ‘saturated fashion’,
and their IURs 7 of a certain form to get IURs of G as induced representations
p= Indgﬂ'.

For our present purpose of getting a seemingly big enough set E'(G) of
fa’s on G, actually it is sufficient to choose simpler subgroups of degenerate
wreath product type and their URs 7. Here induced representations p = Indgﬂ
are very far from to be irreducible, but sufficient for our purpose to get positive
definite class functions on G.

In a general setting, we have the following fact.

Lemma 8.1. Let G be a group and H its subgroup. Take a positive
definite function f on H, and extend it trivially onto G by putting zero outside
of H, which is denoted by F = Indflf. Then F is again positive definite on G.

As an example of positive definite functions f on H, we can take a matrix
element of a UR 7 of H on a Hilbert space V() as

fr(h) = (mw(h)v,v) (h€ H) with veV(n),|v|=1.

In the case where H is open in G, or in particular G is discrete, the trivial
inducing up F = Indg fr is a matrix element for the induced representation
p= Indgﬂ'.

Let G’ be a compact subgroup of G and take a centralization FY of
F =Tnd$ f. Since F is zero outside of H, the value of centralization FS (g)
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is # 0 only for elements g which are conjugate under G’ to some h € H, and
moreover, for h € H,

(82) FE() = | flg'hg' ™) dne (9,

where, f(g'hg’ _1) =0if ¢’hg’ ' € H, by definition, whence the integrand # 0
only if g’hg’f1 € H.

A pointwise limit of FE~ for an increasing sequence G /* G of compact
subgroups of G, which is certainly positive definite and invariant, may be con-
tinuous or may be not, with respect to the inductive limit topology 7;nq. We
study cases where H is open in G, f is continuous on H and the limit function
F, is continuous.

In calculation, the condition ¢'hg’~* € H for ¢’ € Gy, is translated into
certain combinatorial conditions, and to get the limit F of FE~ as N — 00, we
have to calculate asymtotic behavior of several ratios of combinatorial numbers.
In the discrete case or the case of a finite group 7', the above integral turns out
to be a sum which can be calculated by some combinatorics [HH3].

8.2. The second part of the proof

The second part is to guarantee that actually all factorizable continuous
positive definite class functions have been already obtained in the first part,
that is, E'(G) = F(G), or the completeness of E'(G).

As seen from the explicit form of fa’s, the inclusion E'(G) C F(G) is
trivially clear. To prove the converse inclusion E'(G) D F(G), we proceed in
Section 13 as follows. Take an f € F(G). Then, it is written as

flor= 11 & I f)

1<k<r 1<j<m

for g =¢&4 - &4. 91 gm € G, and we see that f is written in the form of f;
in (4.15) with s € S’ in (4.12).

We can take a kind of partial Fourier transformof f = fs on G = Do (T) %
S with respect to subgroups D,,(T) C Do (T), and get a series of positive
definite class functions F¢ . ,,(f) on &,,n > 1, where ¢ € f, e=0,1.

For every fixed ({,¢), we appeal to Korollar 1 to Satz 2 in [Tho2] for the
series of F¢ ¢, (f) on &,,,n > 1. Then we can specify the range of the parameter
s = (Sw)weq, and find that f; is expressed in the form of f4 in Theorem 5.1
with a parameter A = ((ac)g)(<75)efx{07l}, ) in the range of A given by
(5.3)—(5.4).

9. Subgroups H C G = 6(7T) and their representations 7

In place of the purpose in [Hirl]-[Hir2] of getting IURs, our present purpose
is to get all the characters of G = G4 (T). In the papers [Hir3]-[Hir4] and
[HH1]-[HH3], we apply the method of taking limits of centralizations of matrix
elements F = Indg frof p= Indgw, where f; is a diagonal (hence positive
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definite) matrix element of a UR 7 of H. Now in the case of continuous (or
non-discrete) compact groups T', we apply the similar method using the trivial
inducing up F = Indg fr of fr, irrespective of that F' is a matrix element of
p = Indgﬁ or not. To our present purpose, we look for the best choice of
pairs of H and 7, following principally the previous papers [HH1]-[HH3], but
simplifying the situation without paying attention on the irreducibility of the
induced representations p.
To give such subgroups H, we take first a partition of IN as

(9.1) N = | ] IRARINIRERE

(C.e)eTox{0,1} \PEPc.e CEThH

where T is a countable subset of T, and each P . is a countably infinite index
set, and the subsets I,, I are all infinite. Corresponding to this partition, we
define a subgroup

(9.2) H= I1 IEARERRIRE

(Ce)€Tox{0,1} \PEFc.e ¢eTy
with H,=6,(T), H¢= D (T)C & (T).
As a unitary representation m of H, we take

_ b¢,e b
(9.3) = (®((7a)6ﬁ)><{0,1} (®p<eP<,E7Tp) ) ® (®<efo 77() :

Here b¢ . = (bp)pep,.. is a reference vector with b, € V(m,), b, =1 (p € Pec),
and m, for H, = &y, (T) is given as

(94) my((d,0)) = (©52,6i(t)) 1(0)sgne(0)° for d = (t)ier,, o € &1,

where a, = (a;)ic1, is a reference vector with a; € V((;), |lai|| = 1, and ¢; = ¢
as a representation of T; =T (i € I,), and I(0) is defined as

I(0) : v=®er,vi — Qier, Vi, Vi =Vs-105 (vi € V((pa),i € Ip).

Moreover b = (b¢)
as

cet, 1s a reference vector, and for ¢ € T, m¢ of He is given

(95) WC(d) = ®?éI<Ci(ti) for d = (ti)iEIg S HC = DIC (T),
where a¢ = (a;)icr, with a; € V(G), [las|| = 1, and ¢; = ¢ for T; =T (i € I¢).

10. Increasing sequences of subgroups Gy /G = G (T)

Depending on the choice of increasing sequence Gy /" G of subgroups,
we get various positive definite class functions of G as limits of centralizations
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FGN for F = Ind%f7T , which turn out to be characters. We choose a series G
as Gy = 6,,(T),Jy /' N, and demand an asymptotic condition as

‘Ip N JN| N
| I |

where P = U ) 7,1011/%. is the union of index sets, with P = 0 for
¢ € T\ Tp. Then,

(10.2) S+ > ope <1

peP ceT

[1c N JIn| =

(10.1) G e (e )

Ap (pep)7

For each (C,£) € T x {0,1}, reorder the numbers {Ap; p € P} in the
decreasing order and put it as a¢ . 1= (a¢e,i)ien, and also put p = (MC)CET'
Then,

(10.3) > lacel + llull < 1,
(¢,e)eTx{0,1}

which is nothing but the condition (5.7) in the case of a finite group 7. In
the case of infinite T, if the inequality < 1 holds, the continuity at ¢ = e of
Foo(g) = limy_.o, FE¥(g) is lost since F.(e) = 1, and so we only pick up the
cases for which the equality holds here or (5.4) holds. As a pointwise limit F,
of the series of centralizations F&~ | we obtain the factorizable positive definite
class function fa with A = ((afﬁ)(c,e)efx{o,l} ; 1) in Theorem 5.1.

11. Partial centralization with respect to D, (T) C Gy

As an increasing sequence G /' G = & (T') of subgroups, we have cho-
sen Gy = GJN(T) = DJN<T) X Sy, with Jy /" N. Put Dy = DJN(T> and
Sy = 6, for simplicity, then Gy = Dy x Sy, and we identify d’ € Dy
and ¢/ € Sy with their images in Gy respectively. Our task is to calculate
centralizations FEN of a positive definite function F = Indf[fw , and to deter-
mine their limits. From the formula (8.2) for F¢~ and the explicit form of the
subgroup H in (9.1)—(9.2), we see that for h € H

FON(h) = [ fa(g'hg' ") ducy(g)
(11.1) o

o EED DI ACI Pt

o'€Sn:0'ha’"tcH

where }; is a partial centralization of f, with respect to Dy =2 T7N defined as

(11.2) F=(h') = ; Fx(dBd ™Y dppy(d) (W € H),

with the normalized Haar measure pp, on Dy.
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Note that for a finite number of A’ € H, the partial centralization }:(h’)
is stable as N is sufficiently large. To calculate it, we apply the explicit form
of representation 7 of H given in (9.3)—(9.5). Then the calculations go on just
as in the case of a finite T in [HH3], and we get the following result.

Proposition 11.1.  Take a g = (d,0) from H and let
g:é-thgtp'”gqhgng”'gma fq: (tq7(q))» g] :(dj7aj)7

be its standard decomposition. Then, the partial centralization /f;(g) of matrix
element fr is given as follows. Let K(C) be the set of k(1 < k < r) such
that &, € Hy with p € [.cqo1y Pee o7 &g € He, and J(C,¢€) be the set of
J (1 <5 <m) such that g; = (d;,05) € Hy withp € Pr .. Then,

}‘;(g) _ H X¢ (t%)

L dim ¢
ceT keK(Q)

(11.3)
X de(d')
o T D) ),
L A g
(¢,e)eTx{0,1} JEJI(Ce)
where, for o; = (i1 iz ... ig;) with £; = £(0;) and dj = (t;)icx,; with K; :=
supp(a;),

Py (dj) := [ty th,—1 - toty] € T/~ with t, = t;,.

12. Limits of centralizations of positive definite functions

We are now on the way of calculating centralizations of FE~ of a positive
definite function F = Ind$ f, with respect to Gy = Dy, (T) x S, and to
determine their limits. Recall the formula (11.1) as

(12.1) FGN<g>=ﬁ S Frgrh)  (gen),
N TESN :TgT1€EH

where Sy = &, and the partial centralization 3”\; is calculated as in (11.3).

12.1. Limit of centralizations for a ‘ monomials’ term

For any element in G, there exists an element in H conjugate to it. There-
fore it is enough for us to determine the value F~ on H. Take g = (d, o) € H
and let g = &4,&q, - €0.9192 Im» &g = (tq (@), g; = (dj,0;), be its stan-
dard decomposition. Put P = U(c,s)eﬁ)x{o,l}PC)E with a countable subset

fo - f, then,

H= T8 | x| [] .

peP ¢eTo
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and the condition g € H means that each &, belongs to one of H, and He,
and that each g; belongs to one of H,. Furthermore, the latter condition can
be expressed by means of supports as

{ supp(§g,) ={qr } CIp or C I,

(12.2)
K; = supp(g;) = supp(o;) C Ip.

For ¢ € T and p € P; . C P, we put

128) X6y = 260 e = K10 ) = 2]

where gq = (tqa (q)> with tq €T and g; = (dj70‘j>. Then the formula (113) for
f=(g) is rewritten as

12.4) f=0) =TI TI Xc@) | =xTI{ TI %ot T Xole) ]

CET\ k:qr€le pEP \k:qr€l, j:K;CI,

where 1 < k <r,1 <j <m. The term corresponding to ¢ in the first product
comes from &, € H¢, and the term corresponding to p € P in the second
product comes from &, and g; in H,.

Let Q(g, I¢) be the union of supports g, = supp(&q,.) € I¢, and QK (g, I,)
be the union of supports g = supp(&,,) € I, and K; = supp(g;) C Ip. Since
g € H, they give a partition of supp(g). Let their orders be n(¢) and n(p)
respectively, then

< |_| Q(Q7IC)> |_| ( |_| QK(97IZJ)> = Supp(g),

ol P
(12.5) et re

Y Q) + Y nlp) = |supp(g)l.

ceT peP

Now, for 7 € G, put 'g = 7977 1,7¢, = 7¢,771, and "g; = 7g;7~'. Then,
the standard decomposition of g into mutually disjoint basic elements is given
as

"9="€4."€qo " q, 91 G2 G, &g = (tq7 (T(Q)))a "g; = (7(d;), TUjT_1>'
For &,, we have X,(%¢,) = X,(&,) if %, is still in H,, or equivalently if
7(q) € I,. For d;j = (;)ick,, recall that
7(dj) = (tr—1())irer(x,) and Pro -1(7(dj)) = Ps,(d;)

and so X, (7g;) = Xp(g,) if 7g; is still in H,, or equivalently if 7(K;) C I,,.
Let us now consider a partial sum of (12.1), where 7 € Sy = &, runs
over all such elements that it preserves Q¢ := Q(g,I¢) and QK, := QK (g, I,,)
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inside of I and I, respectively. Suppose that N is sufficiently large so that g
is contained in H N Gy, then this condition on 7 € Sy is written as

(126) T(QC) CICHJN, T(QKP) C IpﬁJN.

Put Q:={Q¢ (¢ e T), QK, (p € P)}, and denote by T(Q, N) the set of
7 € Sy = 6, satisfying the condition (12.6). Then, for 7 € T(Q, N), we see
from the above consideration that f,T( g) = f,T( ) for 'g = 7g7~ 1. Therefore
the partial sum over 7 € T(Q, N) is calculated as

= T(Q,N)| +

(12.7) SL > (g = T @)

Under the asymptotic condition (10.1) or

|Ip N JN|
[T |

let us calculate the limit as N — co. Similarly as in [Hird] and [HH2]-[HH3],
we can calculate the order |7(Q, N)| and obtain by (12.5)

(12.9) TN — I #9 < [T A0

]
[T ]! (e oeP

[ ¢ N Jn| S

(12.8) N —uc (CeT),

_))‘p (pep)v

Applying the formulas (12.7) and (12.4), we obtain

1 = |7(Q,N)|
lim Yo fe(g)= lim fale)
N—o00 ‘SN| reT(Q,N) |JN|
= H H “CXC(qu) H H Ap X qu H )‘Z(UJ)X (97) )
ceT \k:ar€lc peEP \k:qr€lp j:K;CI,

where the product over ¢ € fo and that over p € P are actually finite, and for
pe PC,E7 (C?e) S TO X {Oa 1}5

A A (o5)
Xp(qu) = r&)@(t%)v )‘paaj)XP(gj) = (dlIﬁC) X¢ (Poj (dj))Sgn(aj)E'

The above calculation for a partial sum over 7 € T(Q,N) C &, can be
applied to other partial sums. These partial sums come from possible cases
of g such that supp(",,) = 7(qx) belongs to which of I or I,, and that
supp(7g;) = 7(K;) is contained in which of I,. All these cases give us simi-
larly as above limits of centralizations, and they corresponds altogether exactly
all the ‘monomial’ terms of the expansion of the right hand side of (5.5) in
Theorem 5.1 into ‘ monomials’ as explained below.
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12.2. Summing up all ‘ monomial’ terms to the whole formula

For ¢ € Ty and p € P, we see from (12.3) that

1
(12.10) I Xc(€)l <1, [Xp(€)l <1, [Xp(gi)] < W <1

By the equality in (10.3) or by (5.4) we have
(12.11) e+ M =1,
Cefo peP

and, letting {a¢ . 4;% € N} be a reordering of {\,;p € P}, we have from the
formula (5.5) of fa(g),

falg) = H Z ApXp(€qi) + Z pe Xc(€qi) | %

1<k<r \peP ceTy

x H Z)‘pe(aj)xp(gj)

1<j<m \peP

(12.12)

Note that by (12.10) each multiplicative factor in (12.12) is evaluated in its
absolute value as < 1.

Let P, be the set of all partitions 6 = {J, (p € P)} indexed by P of the
set of indices j € I,,, = {1,2,...,m} of g;’s, and Q, be the set of all partitions
vy={K¢ (¢ € fg),Kp (p € P)} indexed by Ty U P of the set of indices k € I,
of §,’s. Put v-d:={ K, (( € To), K,, J, (p € P)}, and let KJ be the set
of all these v -J. Then the expansion of f4(g) of the right hand side of (12.12)
into monomial terms are parametrized by the set v- 6 € KJ as

(12.13) fal@) = > Zy.4(9),

v 0eEKT

with ‘monomial terms’ =..5(g) given as

IT I Xt TT{ TT Xota) TT Xotos) | % T w9 T A0

ceT, keKe peP \keK, jed, keK, peP
Here the product over ¢ € fo and that over p € P are actually finite, and
n(¢) = K|, n(p) =|Kp| + Zjejp Uoj) = |Kp| + Z]EJP lsupp(g;)|-

Now we come back to the centralization F&~ in (12.1). Take v -4 :=
{K; (¢ €Ty), Kp, J, (p€ P)}, and put

S (g with

1
S| rET (v-6)

T(v-0) =17 € Sn; &g € He (k€ K¢), "6, € Hy (k€ Kp),7g; € Hy (j € Jp)}-

Y5(9) =
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Then, by a similar calculation as in 12.1, we have

(12.14) FON(g)= Y Y
v 0EKT
Y’y%(g) = H H Xe(&ar) H H Xp(&q) HXp(gj) Xﬁv
cet, kERC peP \keK, jET, N

where C’é\_’& := |7 (y-6)|. Note that T(-0) is defined by the following condition
onT € Sy:

Tq € IcNJn (k‘ S Kc),qu e l,NnJn (k‘ S Kp), T(supp(gj)) cI,NnJy (€ Jp)

Then, similarly as in 12.1, the order CJ's = |T (v - )| is given as [T(Q, N)|,
and as in (12.9)

(12.15) 2

il VRS VR

ceT peEP

We note that, for @ = {Q (¢ € f), QK, (p € P)} in 12.1, there corre-
sponds a v-0 = { K¢ (¢ € Ty), Kp, Jp (p € P) } given by

Ke={kel,; &, € H}, Kp={k€l;&, € Hy}, Jp={j €In;ygj € Hy}.
Now we can prove the following theorem, a half of Theorem 5.1.

Theorem 12.1.  Let T be a compact group. Let f4 be the class function
on G = 6 (T) given by the formula (5.5) in Theorem 5.1, with parameter

A= ((aQE)((,e)EYA“X{O,l} ; /‘)

n (5.3). If the parameter A satisfies the equality condition (5.4), then fA 18
obtamed as a limit of centralizations of a positive definite function F = Ind% afr
with (H, ) given above. The limit is taken according to an increasing sequence
of subgroups Gy = &5, (T) with Jy / N obeying the asymptotic condition
(12.8).

Let E'(G) be the set of all fa’s under the condition (5.4), then E'(G) C
F(G).

Proof. Note that the condition (5.4) is nothing but (12.11). Under this
condition we evaluate |f4(g) — FEV(g)| as follows. Let &, \, 0 (n — o0) be
a decreasing sequence of positive numbers. Let T - To and P, C P be finite
subsets such that

(12.16) S e+ > A > 1—ep

Cefn pPEP,
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I-nJ ,NnJ
(1) Put )‘(,N = M, )\p,N = | P N|, then
| IN] | IN]
S men+ Y Ay =1
Cefo peP

Since pe,. N — Ay Ap,N — Ap (N — 00) by assumption, we can take N, suffi-
ciently large so that for any N > N,

(12.17) D e —nenl+ D Po—dpn| < n
CeTn PEP,

Then we have

(12.18) Z e + Z Ap < En, Z pe,N + Z Ap,N < 2e,.

cgTn pEPn ¢ p€ Py

(2) Let KT, bethesetof v-d ={ K¢ (( € fg), K,, J, (p € P)} such
that K, = 0 for ¢ ¢ T,, and K,=J,=0forp ¢ P,. Then KJ, is finite. In
the formula (12.13) of f4(g), we divide the sum over v-0 € KJ of Z,.5(g) into
two cases depending on v - § € KJ,, or not as

(12.19) falg) = f3(9) + 5 (9).
with i) = > Zysle), 9= > Zysl9).
~-0EKT 1 v 6¢KT n

Similarly, in the formula (12.14) of FE~ (g), we divide the sum over v-4 €
KJ of YVN(; (g9) into two cases according as v -6 € KJ, or not as above, and
express FON as

(12.20) FON(g) = FO¥™(g) + FON(g),
Then we have

[falg) = FON(g)| < |f4(g) — FON"™(g)| + |f{(9)| + |FO¥"(g)].

(3) We denote by Ry n,Ron and Rs n the first, the second and the
third term in the right hand side respectively. Then R; y is a finite sum of the
terms Z,.5(g) — Y,YJ,\Z; (g9) each of which tends to 0 as N — oo. So we can choose
N} > N,, such that, for any N > N/, we have Ry y < €.

For the second term Ry y, using the evaluation (12.10) and the note just
after (12.12), we get

Ron < Z Z Ap + Z we | + Z Z )\pl(”j) < (r+m)e,.

1<k<r \p¢Pn c¢T, 1<j<m \p¢Pn
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For the third term Rj3 y, first evaluate each |YV]_V5(g)| as

YN(9) < ENs/lunlt < T A - TT A,

CETO pepP

where C is a constant, for example, we can take C' = 2I5®PP9)l if N > 2|supp(g)|.
Then, a similar evaluation as that for Ry (using A¢ n, Ap,nv instead of A¢, A
respectively) gives us Rz ny < C (r+m) - 2e,.

Thus altogether we get for any N > N/,

|[falg) = F(9)] < {1+ (r+m)+2C(r +m)}en.
This completes the proof of Theorem 12.1. O

13. Determination of the region of parameters for f € F(G)

For each f € F(G), there corresponds an element s € S’ such that f =
fs =¥s0® or s =s(f) as in 4.2. As the final step of the proof of Theorem
5.1, we specify the range of the parameter s = (sy,)weq.

13.1. Values of s(f) = (sw)wen and the compactness of F(G) = E(Q)
The functions f4 in Theorem 5.1 with parameter

A= ((O‘Cﬁ)(g,s)efx{o,l} ; l‘)

n (5.3)—(5.4), are given as limits of centralizations of positive definite function
F = Ind% f, with a matrix element f, of a UR of a subgroup H of G = S (T).
They prepare a big family E’(G) of continuous factorizable positive definite
class functions on G, or E'(G) C F(G), by the results in Sections 9-12.

We see that, for f = fa, the parameter s(f) = s = (8u)weq in (4.13) is
given by absolutely convergent sums as follows: for w = ([t],¢) € (T/~) x N,

(13.1) for £=1, s,= Z Z Z afnié dmi( xc(t),

ceT \e€{0,1} ieN

(13.2) for £>2, s, = Z Z Z <§éfn‘ié> (=)= | e (b).

¢ceT \e€{0,1} ieN

We put s, = 1 in accordance with (5.4).
Compairing the images of F'(G) and F(G) under the map f — s(f), we
obtain the following result.

Theorem 13.1. A factorizable positive definite class function f € F(G)
on G = 6(T), normalized as f(e) = 1, is given in the form of fa in the
formula (5.5) in Theorem 5.1, with parameter A = ((O‘Cve)(g,s)efx{og} ;)
n (5.3) satisfying the condition (5.4), or E'(G) D F(G). Actually we have
E'(G) = F(G).
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As a consequence of the formula (13.1)—(13.2) and the fact that E'(G) =
F(G) in the above proposition, and also the fact E(G) = F(G) in Section 4,
we obtain the following important theorem on the topology of the space of
characters G (cf. [Far]). Let S" = {s € § = [[,cqDw;i(s) = 5} be as in
(4.12) in 4.2.

Theorem 13.2.  Let G = 6, (T) with T a comapct group.

(i) Let 8" C S’ be the image of the set of normalized continuous factorizable
positive definite class functions F(G) under the map f — s(f) = (Sw)wea- It
is given by (13.1)—(13.2) from the parameter A = ((aC75)(C,e)€fx{0,1} i ) in
(5.3)-(5.4) of fa € F'(G) = F(G). The topology Te., of compact uniform
convergence on F(G) is transformed to the direct product topology Tproqa on S”,
and F(G) and S” are compact.

(ii) The space of normalized characters E(G) is equal to F(G), and the
same statements as in (i) for F(G) hold for E(G). In particular, E(G) is
compact in K<1(G).

13.2. First step of the proof of Theorem 13.1

The proof of Theorem 13.1 will continue until the end of this section.

We examine a positive definite class function f = f; = U530 ® € F(G),
and study the range of s(f),f € F(G), in S’. Define a class function on the
compact group T' by putting

(13.3) X(t) = S([t],1) for teT,

where 5([,1) = 5., for w = ([t],1) € Q. Then, X is a continuous positive definite
class function on 7.

Lemma 13.3. A continuous positive definite class function X on T,
normalized as X (er) = 1, is expressed as an absolutely and uniformly conver-
gent linear combination of x¢,¢ €T, as

(134 X(O= Y acxclt) (e T), ac= [ X)xc@dur(t) = 0
ceT T

(13.5) > acdim¢ = 1.

ceT

Proof. Note that in the sum in (13.4), there appear at most countably
infinite ¢ € T. The sum is convergent in L?(T), and so convergent weakly.
If the set of finite partial sums evaluated at er, Xr(er) = > .cpacxc(er) =
EceF acdim¢, F C T finite, is bounded, then the sum in (13.4) is absolutely
and uniformly convergent (and the limit function should coincide with the weak
limit X (¢)).

In fact, ac > 0 and the boundedness means the convergence of of the
sum of non-negative numbers c7 ac¢ dim ¢, and so the absolute and uniform

convergence of > p a¢ x¢(t) since [x¢(¢)] < x¢(er) = dim .
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Let us prove that the set of finite partial sums Xp, F' C T finite, is
bounded. We see that X > Xp or X majorizes X as positive definite func-
tions. In fact, since X and Xp are both class functions, it is enough to check
that, with f = X —Xp, f(¢*x¢) > 0 for any invariant continuous function ¥ on
T. On the other hand, any invariant ¢ € C(T') can be approximated uniformly
by a finite linear combination ¢ = > .cp ccxe, F' C T finite, of irreducible
characters x’s. By calculation, we get f(¢* * @) = ZCEF’\F aclee|? > 0.

Since X = Xp, we have X(er) > Xp(er) = ZCEF ac dim ¢, the bound-
edness of Xp(er), as desired. O

For ¢ > 2, we define also a continuous class function Y;(¢) on T by putting
(13.6) Ye(t) = s (eT),

where 51,0 = s, for w = ([t],£) € Q. Then, similarly as for X, it is expressed
as

(137) Vi) =3 beexclt) (tET), beo= /T Ya(t) xe (@) dvr ().
ceT

The uniform convergence of the above some will be guranteed on the way of
discussion (see e.g., (13.11) in 13.5). For g = &;, &4, - - &4, 9192 - - - Gm, We have
from (4.1) and (4.15)

(138)  flo)= TI (Do acxctta) |- T | D2 beiio,) xc(Poy(d))

i<k<r CET\ 1<j<m CET\

13.3. Elementary positive definite class functions F; . € F(G)

For a fixed ¢ € f, we extract from f its part relating to (. To do so, we
utilize an elementary element F¢ . € F(G) which is given as follows.

We take an IUR p,, of a degenerate form of G,, = &6,,(T) = Dy, (T) X &,
as follows, where I,, = {1,2,...,n}. Define tensor product representation of
D1, (T) as ®er, ¢ with ; = (forT; = T (i € I,), for which the repre-
sentation space is V,, = ®ier, V(¢). For 0 € 6y, put I1(0)( ®er, vi) =
®ier, Vo—1(;) With v; € V({;). Then, for (¢,¢) € T x {0,1}, we put for g =
(d, 0') S Gn, d= (ti)iEInv

(13.9) pn(9) = pn((d,0)) == (®ier, Gi(t:))I(0)sgn(o)".

Take a g € G. Then, starting from a certain n, g belongs to G,,, and so we
can consider the limit of normalized trace characters as lim,_.o; X,, (g) with

Xon (9) = tr(pnlg))/ dim p,.

Lemma 13.4.  Let p, be an IUR of G, = &,(T') constructed from (¢, )
€ T'x{0,1} as above. Then, there exists a pointwise limit F¢ . on G = G (T)
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of Xp. given as follows. For g = (d,0) € G, let g = &g, &g - €q,.9192 " * I
& = (tq, (q))7 g; = (dj,0;), be a standard decomposition. Then,

t n
Feelg) := Tim %ﬂpig))
_ XC(t k) Xﬁ(PUj(dj))
N ame < 1 G

(13.10)
sgn(o;)©.

1<k<r 1<5<m

The proof is quite similar as in the case of a finite group 7 in [HH3,
Theorem 9].

The positive definite class function F; . € F(G) is a special case of f4 in
Theorem 5.1, for which a¢ . = (1,0,0,...) and other parameters a¢ .- and g
are all zero.

13.4. A general lemma and a partial Fourier transform

We prepare here a lemma which has some generlity. Then we apply it to
define a kind of partial Fourier transform of such an f on G = &,,(T) with
respect to simple functions F; . € F(G).

Lemma 13.5. Let D be a compact normal subgroup of a topological
group G. For a continuous positive definite function f on G, put

fo(g) = /D F(gd) dpp(d),

where pp denotes the normalized Haar measure on D. Suppose that for each
g € G, the automorphism D > d — gdg~' € D is measure-preserving. Then,
1° gives a continuous positive definite function on the quotient group G/D, and
it is also expressed as f°(g) :== [, f(d'g) dup(d’).

On the other hand, we also note that the product (f1 f2)(g) := f1(g9)f2(g9) (g
€ @) of two positive definite functions f; and fy on a group G is again positive
definite.

Now come back to G = G (T). Fix a (Co,¢) € Tx{0,1}, and take Feoe €
F(G) in Lemma 13.4. Then the product f'(g) :== (f Feo.c)(9) = f(9) Feo.(9)
is positive definite. A partial Fourier transform F¢, . (f) of f with respect to
F, .= is by definition the integral of f’ with respect to D,,:

Ferem(F)(g) = /D f(d'g) Fara(d'g) dup, (d).

By Lemma 13.5, F¢, en(f) gives a positive definite function on G, =
S,(T), and accordingly on G,,/D,, = &,,. Let us calculate F¢, 0., (f)(g). Tak-
ing multiplicative factors of F¢, o, we put

Xo0) = R v = ety e,
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Then, by (13.4)—(13.7), we need the following formulas. Firstly,

. () agy

X(t) X¢ (t) dvp(t) = .

| xOFG@dvrte) = g

Secondly, for a basic element (d’,0’) with d' = (¢1,ta,...,t7), 0’ =(1 2 -+ {),
we have P,/(d') = [tete—1 - - - tat1], and therefore

/Te (1/4 YvACo) (t[t[,1 s tgtl) dl/T(tl)dUT(tg) e dVT(tz) = (dibrfl%o)[ .

Lemma 13.6. Let f = fs be a factorizable positive definite class func-
tion in (4.15) given as f(g9) = [[,cq s." @ Let the notations be as in (13.3)-
(13.8), then the partial Fourier transform F¢, 0. (f) of f with respect to F, o
is given as follows: for o € 6,, 2 G,,/Dy, let 0 = 0109+ oy, be its decompo-
sition into mutually disjoint cycles, then

ag, ") by (o)
T ., — [ 2 _ 60.H95) .
Co.0:n(f)(0) (dim Co) x 1<131m (dim ¢o )45

13.5. Completion of the proof of Theorem 13.1

For o € G, let ng(o) be the multiplicity of cycles of length ¢ in the stan-
dard decomposition of ¢ into disjoint cycles. For a series of complex numbers
s = (s1,82,...), consider a class function a? on each subgroup &,, given by
a"(0) = Sln—|SUPP(0)|82n2(U) .. SZW(U) (0 €6,)

S

where 2ny(0) + 3n3(o) + -+ + €ng(o) = |supp(o)| < n. Then, Korollar 1 of
Satz 2 in [Tho2] says that

(x) The class function o is positive definite on &,, for allm > 1 if and only
if there exist series of non-negative real numbers o = (;)ien, B = (Bi)ien
with  |afl < o0, ||8]] < 400, such that

lodl + 18I <51, se=D_af + (=)' Y_ 8 (£=2).

ieN i€EN

In our case, by (x), we have o = (;)ien, 8= (8i)ien such that

Ay
Joll + 191 < o
b
aié + f 1 ﬁ@ _ Co.l /> 9).
) T

Rearrange «;’s and f3;’s in decreasing order and put

aco0q = (dim¢p)?a; >0, g = (dim¢y)? 6 > 0,
Q.0 = (Q¢y,0,i)ieN, a1 = (Qg1.)ien,
pio = (dimg, ) ag, — lle.oll = [lagy 1ll > 0.
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Then we have

locoll |, llogall | re  _
dimco dimgo dimgo

N\?¢ BNA
(13.11) > (%) +(-Dy (31%(0) = beye (£>2).

1€EN 1€EN

Now put A = ((aC’E)(C,e)efx{O,l} ;) with g = (1¢)¢eq - Then we have

from (13.5)
Do lecel + llull = 1,

ceT €€{0,1}

which is nothing but the condition (5.4) guaranteeing the continuity of f4 at
g=ce.

Finally we get the following expression by absolutely convergent sums. For
w = ([t],1) with ¢ € T*, the value s, = f(&,) for {; = (¢, (¢)) is given by

o (o B B

ceT

= ([t],€),£ > 2, the value s, = f((d,o)) for a basic (d,o), with
= /{, is given by

{Z (iﬁ—r&)z + (—1)“;\] ((?ii’ri’éy}xc(t).

€N

»

€

|
~
—~
—
&

)
~—

|

ceT
This completes the proof of Theorem 13.1.

Thus we have here E'(G) D F(G), and so E'(G) = F(G). Together with
the equality F(G) = E(G) in Theorem 4.2, the proof of Theorem 5.1 is now
complete.

14. A general theory for reduction of characters to normal sub-
groups

14.1. General theory

Let G be a topological group and N its normal subgroup. Denote by K7 (G)
(resp. K;(N,Q)) the set of invariant continuous positive definite functions
on G normalized as f(e) = 1 (resp. the set of such functions on N which
are also G-invariant). Further let E(G) := Extr(K:(G)) (resp. E(N,G) :=
Extr(K1(N,G))) be the set of extremal points of the convex set K1(G) (resp.
K1(N,G)).

Theorem 14.1.  Let G be a Hausdorff topological group and N its nor-
mal subgroup with the relative topology.



Characters of wreath products of compact groups with the infinite symmetric group 309

(i) For an F € K1(G), let f = F|n be its restriction on N. It belongs to
Ki(N,G), and if f = a1f1 + asfa with a; > 0, f; € K1(N,G), then there exist
extensions F; € K1(G) of f; fori=1,2, such that F = a1 Fy + a2 F>.

(ii) For any F € E(G), its restriction f = F|n belongs to E(N,G).

Proof. The assertion (ii) follows from the assertion (i).

To prove (i), we borrow certain ideas from [Thol]. First we prepare some
generalities about Gelfand-Raikov representation [GeRal]. As a general setting,
for a Hausdorff topological group N, let F(N) be the C*-algebra of functions
on N which are zero outside finite number of points, with operations

(e*9)(€) =Y wEn ™), @ (&) =91 (£€N, p,veFN)).

nenN

Let P;1(N) be the set of continuous positive definite functions k£ on N normalized
as k(e) = 1 at the identity element e € N. Introduce in §(N) an inner product
as

(o) = > k(&) w(&) v(n),

&nEN

and let Ji be the kernel of this inner product. Then, we get on F(N)/Jx a
positive definite inner product (%, k). = (p,9), where ¢* == p + Jp €
F(N)/J. By completion we get a Hilbert space $5(N). Since (¢, ¢) is invariant
under the left translation on N, it gives a UR of N on $;(N), which we call the
Gelfand-Raikov representaion associated to k and denote by 7. Put v = §F
the image of the delta-function . supported by {e}, then it is a unit cyclic
vector and k(h) = (m(h)v°, v°0)x (cf. [GeRa]).

In the case where k is invariant or k € K;(N), the inner product (¢,)) is
also invariant under the right translation on N and so it induces another UR py
of N. Denote by U, (resp. Uj,) the von-Neumann algebra generated by 7 (N)
(resp. pr(IN)), then they are mutually commutant algebras of the other.

Now let N and G be as in the theorem. Take an F' € K;(G) and put
f=F|n. Then f € K;1(N, G), and we have two Gelfand-Raikov representations
mr of G on Hp(G) and 7y of N on H¢(N). For z € G, put
(o)=Y Fly 'z @) d(n)  (p,9 €F(N)).

&neEN

Then, we have |W,(p,%)| < [l || [f]. In fact, define @, € F(G) by putting

{g(&) =0() (E€N), P(a71E) =€) (E€N),
¢lg) == 0 (9¢N), Y(xlg) = 0 (g&N).

Then, by calculation we obtain

To(p,0) = > Flg ™ '9)3(g) (g) = (@4 )p,

9,9'€G
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whence |¥,(p, )| < (37, 97)p| < 37| |$7 ] with g7, 9" € Hp(G). On the
other hand, we see that |57 = [lp/ |, ]| = [[/]. In fact, for |57 = [l¢/||,

18717 = Y Fly 'a)@" (@) 3" (y) = Y. F(n (&) pln)

z,yeG eneEN
= 3" 79w o) = llefII*.
&neEN

Therefore we get from ¥, on F(N) an inner product U, on Fr(N) as

U, (ol ) = To(p,9) (o0 € F(N)).

Since U, (¢!, )| < |l || 17|, we have a bounded linear transformation

Ay on §7(N) such that ||A I <1 and To(p,9) = o(pl 7)) = (Ao 7).
Then, F(z) = (A,0.7,6.);, and we have
(14.1) Ae =ms(€) (£ €N), Ao =U AU, (2,2 €G),

where U, ¢! := (U,¢)/ with (U,p)(&) = ¢(271€2) (€ € N, € F(N)). In fact,

(Aep? )= >~ Py em)e(m)v(ns)

n1,m2 €N

= > fn P(E 7 m)v(n2) = (mp(&)¢” wl)

n1,M2EN

&meEN

= > F(z'n arz'E2)e(&)dmn)

&meEN

= Y P a)p(ag")dGna )

&neEN
= (AU U, ap)y = (U AU, 107 97) 4.

Furthermore we have A;pf(§) = pf(§)As (£ € N). In fact,

(Awps ()¢’ ps = > Fny tam)e(mé)v(nef)
n1,M2EN
= > F(&ny lem&)e(m)(n)
n1,m2 €N
= > Fy tam)em)dn) = (Aup?,v7);.
n1,m2 €N

Hence A, belongs to the commutant 4y = U, of V.

Now suppose that f € Ki(N,G) is expressed as f = a1 f1 + asfe with
a; > 0,f; € K1(N,G). Then a; + as = 1 and f; is majorized by f or more
exactly Ai f(o % 0*) > filp * ¢%) (v € F(N)) with A; = ¢, ",
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Let 3 f+ be the set of positive elements in the commmon center 3y =
iy N Yy, Then, corresponding to f; < A f (i = 1,2) above, we have positive
operators B; € 3 f+ such that

0<B; <NI,  fi(&) =(Bis/,0]); (€eN),

where I denotes the identity operator on $;(N). In fact, consider the inner
product in F(NV) corresponding to f; as

(0, 0) = > filn () (n),

&neEN

and put as before (pfi,f5), = ®i(p,¢) and [|pf*|| := ®i(p, )"/ Then,
lofe ]l < A2 [lof || and so

1i(, ) < D™ L™ 1 < il I

Therefore ®; gives a continuous hermitian form on F(N)/Jf C H¢(N), and it
is expressed by a non-negative definite operator B; as ®;(p, ) = (B;p/,¢/) ;.
Furthermore we have 0 < B; < NI, fi(n™1¢) = (Biégf,énf 7, and so B;
commutes with 7¢(§) and also with p;(n) (cf. also Lemma 1.4.1 in [HH5]).
We have U,B; = B;U, (2 € G). In fact, since 7(§)B; = B;ms(§) (£ € N),

<UZBiUz*165f76nf>f = <BiUz*16§f7 Uz’ldnf>f = <Biéz];z—la62'f7z—1>f

= filen 22627 Y) = fi(n'€) = (Biod ,6.) 5
Put A} := A,B; = B;A, (i =1,2) (recall A, € {y) and
Fi(z):= (A5, 65y = (A.Bis S, 6)); = (BiA S, 00); (2 €@).

Then a1 Fy + axF> = F, because a1 By + a2B2 = I and F(z) = (A,6./,6)) ;.
We shall prove that F; is a continuous invariant positive definite function on G
or F; € K1(G), which extends f;.

(i) F; is an extension of f;. In fact, for £ € N,

Fi(&) = (Als],00)r = (Bimp()6],67) 5 = (Bid ,67) ¢ = fi(©).
(ii) F; is an invariant function. In fact, for z, z € G,

Fi(zxz ™) = (BiA.y, 10,6 = (BU. AU, 16 ,67) ¢

e rre

= <UZBZA$(5J‘ (5f>f = <BiAx65faUz*166f>f

e rve

= <BiA9656f75ef>f = Fl(gj)

(iii) F; is continuous. In fact, for any fixed p, ¢ € F(N), the map G > z —
U, (p, 1) = (Azpf,97) ¢ € C is continuous. Moreover, since {p/; ¢ € F(N)} is
dense in H¢(N) and ||A;|| < 1, the map G 3 x — A, is weakly continuous, and
so is the map G 3 z +— B;A,. Hence Fj(z) = (B; A6/, f>f is continuous.

e r’e
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(iv) F; is positive definite. In fact, for ¢ € §F(G),

0< > Fly 'o)é(x)o(y)

z,yeG

SN POty ee)é(ee)olyn)

z,yeG/N §neEN

Z <Ayflr¢xf?¢yf>f7

z,ye€G/N

(14.2)

where ¢, (€) := ¢(z€) (£ € N) and ¢, € F(N). On the other hand,

Y Ey'oe@ely) = D D Filn Tty wt)e(x)e(yn)

z,y€G z,y€G/N §neN

= Y N BiA 6L 8] o) d(yn)

z,y€G/N §neN

z,yeG/N
1/2 1/2
= Y (4Bl B0 ]
z,yeG/N

Here z € G/N means that x runs over a fixed complete set R of representatives
of G/N, and Bi1/2¢xf is zero except a finite subset X of R (since ¢ € F(Q)),
and is in §7(N), the completion of {p/ = Docen gp(g)égf; ¢ € §(N)}. Therefore
we can find a series of functions Y;, € §(G) such that Y, , = 0 except when
zeX,and Y,/ = D oceN Yn(xf)égf converges to Bi1/2¢mf for x € X. Then we
get finally from (14.2)

ST (4B 20l B Pt =

(14.3) eI
=lim Y (A4, Y ) > 0.
" ooa;,yEG/N
The proof of Theorem 14.1 is now complete. 1

14.2. Case of a compact group G and its normal subgroup N

To clarify the situation of rather unexpected result Theorem 14.1, we ex-
plain a little more in detail by taking the case of a compact group G.

Let N be a closed (but not necessarily open) normal subgroup of G. For
an irreducible unitary representation (= IUR) p of N, a £ € G acts on it as

(5p)(h) == p(¢~*h&) (h € H), and the subgroup Z(p) := {£ € G; % = p} is of
finite index in G. Put
Rp)= B %

£€G/Z(p)
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where the summation runs over a complete system of representatives of G/Z(p),
then its chartacter xpg(,) = deG/Z(p)Xgp is determined independent of the
choice of the system of representatives. Take the normalized character

~ XR(p) 1 ~ ~ Xép
XR(p) *= T = Xeps  Xgp = o ——.
v dimR(p) |G/Z<p>|£ec%p) o dimg

Proposition 14.2.  The set E(N,G) of extremal points of Ki(N,QG)
consists of Xr(,), where p runs over a complete system of representatives of the
dual N of N. Moreover, for two IURs p and p’, we have Xpg(p) = Xr(p) if and
only if p' = & for some & € G.

Proposition 14.3. (i) The set E(GQ) of extremal points of K1(G) con-
sists of mormalized characters xn of IURs I, where 11 runs over a complete
system of representatives of G.

(i) The restriction Xu|y onto N, as functions, is equal to Xg(,) for an
irreducible component p of the restriction Il|n. The represention Il|y is a
multiple of R(p) with multiplicity

dim IT

mi = == -
T G- G/Z00))

Proposition 14.4.  Fiz an IUR p of N. Then, for an IUR 11 of G, the
restriction Xu|n of its normalized character equals Xg(y) if and only if II is an

irreducible component of the induced representation m = Ind%p, and also if and
only if II|§ contains R(p).

To prove these Propositions, we utilize the following.
For the induced representation m = Indgp, put

X (h) = /G xp(€ e d.

Then, for a continuous function ¢ on G such that the operator
m(p) = [o ¢(g9)m(g) dg is of finite rank, we have

tr(n(e)) = [ () xa(h) dh.

N

Here d¢ and dh denote the normalized Haar measures on G and N respectively.

Note 14.1.  The complex measure x,(h)dh on G supported by N may
be called the character of x.
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15. Restriction of characters from G = 6,(T') to its canonical sub-
groups

15.1. Reduction from G = G (T) to its canonical subgroups

Let T be abelian, and assume that S is an open sub§roup of T. Let N be
one of the subgroups G’ := A, (T), G° = &3,(T) and G’° = G'NG®. Then N
is an open normal subgroup of G, and in this special case we have the following
result.

Theorem 15.1.  Let G = &4 (T) with T abelian, and N be one of G',

G* and G'S, where S is an open subgroup of T for G° and G'®. Then every
character f € E(N,QG) is a restriction of a character F € E(QG).

Proof. 'We can apply Theorem 1.3 (ii) as is noted in Remark 1.2. But we
give here a proof for this special case different from that for Theorem 1.3 (ii).

Take an f € E(N,G). Let 7 be a factor representation of N associated
to f on a Hilbert space V(7) in such a way that 7w has a unit cyclic vector vg
such that f(h) = (w(h)vo,vo) (h € N). Then V() is spanned by the union of
strongly compact sets W,, = #(N N G,)vg,n > 1, where G, = &,(T). Since
each W,, C V(r) is strongly compact, it has a countable dense subset, and so
V() is separable.

On the other hand, since IV is open in G, we have a counting measure
as an invariant measure on a finite set G/N, and an induced representation
p = Ind§7 is constructed on the V (7)-valued (2-space V(p) on G/N, which
turns out to be separable. More explicitly, take a V(r)-valued 1) such that
(hg) = T(h)i(g) (h € N,g € G), then (p(g0))(g) = 1(gg0). We can take
another realization, fixing a complete sets of representatives {s;;1 < i < M}
of G/N with s; = e the identity elemet. Then % (g) above is represented
by a system w = (v;)1<;<m of vectors v; = 4(s;) € V(m) with [|w]? =
(1/M) >, ciens llvill?, and p(go) is given by w — w’ := (v})1<i<m with v} =
P(s:90) = m(h})vy, where s;go = hisy (1 <i < M). Take a unit vector as

(151) wo = ('Ui)lgigM with vy =vVMuwvg, v, =0 (VZ 75 1)

Then, putting F(g) = (p(g)wp,wo), we have F(h) = f(h) (h € N) and
F(g) = 0 outside H. In fact, for g ¢ N, we have s19 = g ¢ N and so the first
component of p(g)wy is 0 and {p(g)we, we) = 0. Since f is G-invariant and N
is open in G, F(goggy ') = F(g) and F € K;(G).

Denote by B(p) the von Neumann algebra generated by p, and by ® the
normal trace corresponding to F' defined by ®(C) = (Cwg, wp) (C € B(p)).

Let 3 denotes the center of B(p). Then, the factorial decomposition of p
is given as follows. We know that a finite normal trace on B(p) is determined
by its restriction on 3 (cf. for instance, Theorem V.2.6 in [Tak, V.2]). Let 3
be the set of one-dimensional representations of 3. Then, there exists a field
of factor representations (p(x), H(p(x)), x € 3, and a positive measure z on 3
such that

D D
p= L p()du(x), V(o) = L H(p(x)) dpu(x).
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In this decomposition, we have, for wo € V(p) and B € B(p),

(&) &)
wo — /3 woy du(x), B = /3 B(x) dul),

and so (Bwo, wo) = f§<B(X)wO,xv'w0,x> dp(x).
Define a linear form @, (D) = (Dwq y, wo,y) on B(p(x)), then

(15.2) o(B) = /3 S(BO))du(x) (B € B(p)),

and ®, is a normal trace for almost all x with central character x € 3, and
is equal to the normalized characer of p(x). For B = p(g) (9 € G), put
p(x)(g) := B(x), then p(x) is a factor representation of G for almost all x,
and @, corresponds to Fy(g) = (p(x)(g)wo,, wo,y) (g € G), which is in E(G)
(cf. Theorem 1.1).

Since F|y = f and f is extremal or f € E(N), we see from f =
f§ (Fy|n) du(x) that Fy [N = f for almost all x. This means that F\ € E(G)
is an extension of f. O

Lemma 15.2.  Let G = 6 (T) with T abelian and N be as in Theorem
15.1. Then the set of normalized invariant positive definite functions K1(N) is
equal to K1(N,G), and accordingly E(N) = E(N, G).

Proof. For any h € N, g € G, there exists an hg € N such that ghg™! =
hohho_l. This gives the assertion in the lemma. |

15.2. Proof of Theorem 7.1

Let T be abelian and S a subgroup of 7. Put G = &(T) and N = G* =
&3.(T) be the normal subgroup of G in the theorem. Let b(t) = (t,er,...) €
Do (T), and B = {b(t);t € T}. Then G = BN = NB and b(t)N = b(t')N if
and only if tS =¢'S, and G/N = T/S.

Proof for Theorem 7.1. (i) For G = G4 (T) and its normal subgroup
N = G, we apply Theorem 14.1. Then we see that for any f € E(G) its
restriction f¥ = f|y belongs to E(N,G) = E(N).

(iii) The converse is true if S is open in T', since Theorem 15.1 or Theorem
1.3 (ii) is applicable. O

Remark 15.1.  As a general setting, let G be a countable discrete group
and N its normal subgroup. Then, Lemma 14 in [Thol] asserts that, for an

F € E(G), its restriction f = F|nx on N belongs to E(N, Q).

15.3. Proof of Proposition 7.2
For g € G, let

9=6080 64,9192 Gm, &g = (tgrr (qr))s g; = (dJ'?Uj)a
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be its standard decomposition. For A = ((O‘C’E)(C eTx {01} ,u) in (5.3), we
assume the condition

(MAX) Yo > el

Cef 66{ 0,1 }

+ flull = 1.

The formula of f4 in Theorem 7.1(ii) is rewritten as

(153) fA(g) = H Yl(t%) X H }/ej (PK]‘ (dj))ﬂ
1<k<r 1<j<m
where €j = 8(0']‘), PKj (dj) = H

i€k, ti for dj = (ti)iEKja and

i => 1 Y D acei + ne| @),

ceT \e€{0,1} ieN

) =S| 3 Y () (~1)F V) (e=2).

¢ceT \e€{0,1} ieN

Since (MAX) is assumed, the formula (15.3) is valid even in the case of ¢, =
er. For another A’ = ((alg,s)(c,a)efx{o,l} ; //) satisfying (MAX), fa/ is given

similarly as

(15.4) fag)= I Yita) x [ Y/ (P, (d)),

1<k<Zr 1<j<m

where Y/(t) ({ > 1,t € T') are given corresponding to the parameter A’ simi-
larly.

Now assume that fa|lgs = farlgs. Put n = r + m the number of basic
elements in the standard decomposition of g. Let N7 be the set of pairs
(6,t) € N x T given as (1,t5,), 1 <k <r ((=1), and ({;,t}), 1 < j < m,
with ¢; > 2,1} = Pk, (d;) € T, and we number n elements of NT as (Uy,t,)
with 1 < s < n. Then the equality fa(g) = fa/(g) for g € G% is equivalent to
[licocn Yo (ts) = Tlicocn Y7, (ts) under the condition [],. ., ts € S. Here
the set N'T of pairs (£,,t,) € N xT (1 < s < n) are arbitrary except satisfying
this last condition.

Consider this equality under more restrictive condition that [], ., ts =
er. Then, in this case, just as is worked out in [HH3, §17] we have a one-
dimensional character {y of T' such that fa(g) = (o(P(d)) - fa(g) for g =
(d,o) € G. Since m¢,,0(9) = Co(P(d)), this is written as far = m¢,0 - fa. Now
consider this equality under the condition [], .., ts € S, then we conclude
that (y is trivial on S. O
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16. Wreath product 2. (7T) of T' with the infinite alternating group
Ao

16.1. The case of the group G’ = A (T)

Let us consider a normal subgroup G’ = Ao (T) = Doo(T) x A of G =
Soo(T'). The special case where T'= { er } or the case of Ao, C S is treated
in [Tho2]. Here we prove the following result.

Theorem 16.1. (i) Every character of the group G = G (T) gives a
character of G' = oo (T) by restriction. Conversely any character of G' is a
restriction of someone of G.

(ii) For two continuous factorizable positive definite functions fa and far
on G, with parameters

A= ((ac,s)(g,e)efx{o,l} sp), A= ((alé,s)(c,e)efx{&l} 1)

as in (5.3) respectively, their restrictions on G' coincide with each other if and
only if far = (sgng)*fa (a =0 or 1), or, under the condition (MAX) for both
of A and A', if and only if A’ = A or A’ =A, where 'A is defined as

th . .
(161) A= ((Oég)g)(<7€)efx{071} ) /’('//)7
with of g = ac1, afy = aco (C€ T), and p’ =p.

The proof for (ii) is quite similar as for the case of T finite in [HH3,
Theorem 14].

16.2. The case of the group G'° = A5 (T)
Assume T be compact abelian and S C T a subgroup of 7. Then we have
another normal subgroup

(162) G =G NG5 =A5,(T)

= {9=(d,0) € 6c(T) ; sgng(0) =1, P(d) € S}
of G = G (T). For this group, we can also prove the analogous result as for
G® =63 (T) and G' = A (T).

Theorem 16.2. (i) For the normal subgroup G'® of G, every character
of G gives a character of G"° by restriction. Conversely if S is open in T, any
characer of G'° s given by restriction of someone of G.

(ii) Two functions fa and far in E(G) with parameters A and A’ as in

Theorem 16.1 have the same restriction on G'° if and only if far = T¢gafa
with a one-dimensional character

Tes,al9) = CS(P(d)) (sgng)?(o) for g=(d,0) € Deo(T) X G,

in Lemma 3.4, where a = 0,1, and (g € T which is trivial on S. This corre-
sponds to the following relation between A and A’ both satisfying (MAX):
A"=R((s)A in (7.3) in case a =0,
A= R(¢s)(PA) in case a=1.
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