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Asymptotic stability of small solitons for 2D
nonlinear Schrödinger equations with potential

By

Tetsu Mizumachi

Abstract

We consider asymptotic stability of a small solitary wave to super-
critical 2-dimensional nonlinear Schrödinger equations

iut + ∆u = V u ± |u|p−1u for (x, t) ∈ R
2 × R,

in the energy class. This problem was studied by Gustafson-Nakanishi-
Tsai [14] in the n-dimensional case (n ≥ 3) by using the endpoint
Strichartz estimate. Since the endpoint Strichartz estimate fails in 2-
dimensional case, we use a time-global local smoothing estimate of Kato
type to prove the asymptotic stability of a solitary wave.

1. Introduction

In this paper, we consider asymptotic stability of solitary wave solutions
to

(1.1)

{
iut + ∆u = V u + f(u) for (x, t) ∈ R

2 × R,

u(x, 0) = u0(x) for x ∈ R
2,

where V (x) is a real potential, f(u) = α|u|p−1u with α = ±1.
Let

H(u) =
∫

R2

(
|∇u|2 + V (x)|u|2 +

2α

p + 1
|u|p+1

)
dx,

N(u) =
∫

R2
|u|2dx.

Then a solution to (1.1) satisfies

(1.2) H(u(t)) = E(u0), N(u(t)) = N(u0)

during the time interval of existence. Stability of solitary waves was first studied
by Cazenave and Lions [8], Grillakis-Shatah-Strauss [13] and Weinstein [53]
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(see also Rose-Weinstein [37], Oh [29] and Shatah-Strauss [41]). In the case of
integrable equations such as cubic NLS and KdV, the inverse scattering theory
tells us that if the initial data decays rapidly as x → ±∞, a solution decomposes
into a sum of solitary waves and a radiation part as t → ∞ (see [40]). Soffer
and Weinstein [44], [45] considered

(1.3) iut + ∆u = V u ± |u|p−1u for x ∈ R
n and t > 0,

where n ≥ 2 and 1 < p < (n+2)/(n−2). They proved that if −∆+V has exactly
one eigenvalue with negative value E∗ and initial data is well localized and close
to a nonlinear bound state, a solution tends to a sum of a nonlinear bound state
nearby and a radiation part which disperses to 0 as t → ∞ (see also [21] for 2-
dimensional case). This result was extended by Yau and Tsai [51], [55]–[57] and
Soffer-Weinstein [46] to the case where −∆+V have two bound states (see also
[12], [52]). In the 1-dimensional case, Buslaev and Perelman [5], [6] and Buslaev
and Sulem [7] studied the asymptotic stability of (1.1) with V ≡ 0. Using the
Jost functions, they built a local energy decay estimate of solutions to the
linearized equation and prove asymptotic stability of solitary waves for super
critical nonlinearities. Their results are extended to the higher dimensional
case by Cuccagna [11]. See also Perelman [32] and Rodnianski-Schlag-Soffer
[35] which study asymptotic stability of multi-solitons, and Krieger and Schlag
[22] which study large time behavior of solutions around unstable solitons.

However, all these results assume that initial data is well localized so that
a solution decays like t−3/2. Martel and Merle [23], [24] proved the asymptotic
stability of solitary waves to generalized KdV equations using the monotonicity
of L2-mass, which is a variant of the local smoothing effect proved by Kato [16].
They elegantly use the fact that the dispersive remainder part of a solution
v(t, x) satisfies

(1.4)
∫ ∞

0

‖v(t, ·)‖2
H1

loc
dt < ∞

to prove the asymptotic stability of solitary waves in H1 (see also Pego and
Weinstein [31] for KdV with exponentially localized initial data and Mizumachi
[25] for polynomially localized initial data). Gustafson-Nakanishi-Tsai [14] has
proved asymptotic stability of a small solitary wave of (1.3) in the energy class
with n ≥ 3. Their idea is to use the endpoint Strichartz estimate instead of
(1.4), which tells us that ‖v‖L2

t W 1,6
x

remains small globally in time for super
critical nonlinearities. However, dispersive wave decays more slowly in the
lower dimensional case and the endpoint Strichartz estimate does not hold in
the 2-dimensional case. Recently, Mizumachi [26] has proved the asymptotic
stability of small solitons in 1D case by using dispersive estimates such as

(1.5) ‖∂xeit(−∂2
x+V )Pcf‖L∞

x L2
t
≤ C‖f‖H1/2 .
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In the present paper, we apply local smoothing estimates

‖〈x〉−1−0eit(−∆+V )Pcf‖L2
t (0,∞;L2

x(R2)) ≤ C‖f‖L2(R2),(1.6)

‖〈x〉−1−0

∫ t

0

ei(t−s)(−∆+V )Pcg(s)ds‖L2
t (0,∞;L2

x(R2))

≤ C‖〈x〉1+0g‖L2
t (0,∞;L2

x(R2))

(1.7)

to obtain the asymptotic stability of small solitons in the 2-dimensional case.
Local smoothing estimates such as (1.6) have been studied by many au-

thors. See, for example, Ben-Artzi and Klainerman [3], Constantin and Saut
[10], Kato and Yajima [17] and Kenig-Ponce-Vega [19, 20], Sjolin [42], Ruiz-
Vega [38], Sugimoto [48] and Watanabe [58]. Especially, Ben-Artzi and Klainer-
man [3] and Barceló-Ruiz-Vega [2] prove time-global local smoothing estimates
in n-dimensional case with n ≥ 3. In the 2-dimensional case, it is well-known
that

(1.8) ‖eit∆f‖L∞
x (R2;L2

t (R)) � ‖f‖L2(R2),

follows from a special case of Thomas-Stein theorem ([47]) (see, e.g., Planchon
[33]). However, to the best of our knowledge, there seems to be a lack of
literature in the 2-dimensional case with V �≡ 0. Another purpose of the present
paper is to fill the gap.

Our strategy to prove (1.6) is to apply Plancherel’s theorem to the inversion
of the Laplace transform formula. The key is to prove

(1.9) ‖〈x〉−1−0R(λ ± i0)f‖L2
λ(0,∞;L2

x) ≤ C‖f‖L2 for every f ∈ L2(R2).

Roughly speaking, Eq. (1.9) can be translated into (1.6) by using the Fourier
transform with respect to λ.

To obtain (1.9), we utilize that the free resolvent operator R0(λ) = (−∆−
λ)−1 satisfies

(1.10) sup
x

‖R0(λ ± i0)f‖L2
λ(0,∞) ≤ C‖f‖L2 for every f ∈ L2(R2),

and apply a resolvent expansion obtained by Jensen and Nenciu [15] as well as
Schlag [39].

Our plan of the present paper is as follows. In Section 2, we state our main
result and linear dispersive estimates that will be used later. In Section 3, we
prove our main result assuming the linear estimates introduced in Section 2. In
Section 4, we prove (1.9) and obtain (1.6). To prove (1.9), we use an argument
of the resolvent expansion as well as (1.10) which follows from L2(0,∞;

√
xdx)-

boundedness of the Hankel transform and the Y0-transform (see Rooney [36]).
Finally, we introduce several notations. Let

‖f‖Lq
t Lp

x
=
(∫

R

(∫
R2

|f(t, x)|pdx

)q/p

dt

)1/q

,

‖f‖Ls
xLr

t
=
(∫

R2

(∫
R

|f(t, x)|rdt

)s/r

dx

)1/s

.
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We denote by L2,s and Hm,s Hilbert spaces whose norms are defined by

‖u‖L2,s = ‖〈x〉su‖L2(R2) and ‖u‖Hm,s = ‖〈x〉su‖Hm(R2),

where m ∈ N, s ∈ R and 〈x〉 = (1 + |x|2)1/2. Let

〈f1, f2〉x =
∫

R2
f1(x)f2(x)dx, 〈g1, g2〉t,x =

∫ ∞

−∞

∫
R2

g1(t, x)g2(t, x)dxdt.

We set L2
rad = L2(0,∞; rdr) whose norm is defined by

‖f‖L2
rad

=
(∫ ∞

0

|f(r)|2rdr

)1/2

.

For any Banach spaces X, Y , we denote by B(X, Y ) the space of bounded
linear operators from X to Y . We abbreviate B(X, X) as B(X).

We define the Fourier transform of f(x) as

Fxf(ξ) = (2π)−n/2

∫
Rn

f(x)e−ixξdx,

and the inverse Fourier transform of g(ξ) as

F−1
ξ g(x) = (2π)−n/2

∫
Rn

g(ξ)eixξdξ.

We denote by St(R)⊗ Sx(R2) a set of functions f(t, x) =
∑N

i=1 fi(t)gi(x) with
fi ∈ S(R), gi ∈ S(R2) (1 ≤ i ≤ N).

2. The main result and preliminaries

In the present paper, we assume that the linear potential V (x) is a C1-
function on R

2 satisfying the following.
(H1) There exists a σ > 3 such that supx∈R2 (〈x〉σ|V (x)| + |∇V (x)|) < ∞.
(H2) L = −∆ + V has exactly one negative eigenvalue E∗.
(H3) 0 is neither a resonance nor an eigenvalue of L (see Definition 4.1 in

Section 4).
From (H1)–(H3), it follows that the spectrum of L consists of the continuous
spectrum σc(L) = [0,∞) and a simple eigenvalue E∗ (see [34]). Let φ∗ be a
normalized eigenfunction of L (satisfying ‖φ∗‖L2 = 1) belonging to E∗, and let
Pd and Pc be spectral projections of L defined by

Pdu = 〈u, φ∗〉φ∗, Pcu = (I − Pd)u.

Suppose E ∈ R and that e−iEtφE(x) is a solitary wave solution of (1.1).
Then φE(x) is a solution to

(2.1)

{
∆φE + EφE = V φE + α|φE |p−1φE for x ∈ R

2,

lim
|x|→∞

φE(x) = 0.

Using the bifurcation theory, we have the following.
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Proposition 2.1. Assume (H1)–(H3). Let δ be a small positive num-
ber. Suppose that E ∈ (E∗, E∗ + δ) and α = 1 or E ∈ (E∗− δ, E∗) and α = −1.
Then, there exists a positive solution φE to (2.1) such that for every k ∈ N,

1. φE ∈ H1,k,
2. The function E �→ φE is C1 in H1,k for every k ∈ N, and as E → E∗,

φE = |E − E∗|1/(p−1)
(
‖φ∗‖−(p+1)/(p−1)

Lp+1 φ∗ + O(E − E∗)
)

in H1,k.

Proposition 2.1 follows from a rather standard argument. See for example
[28] and [44, pp.123–124].

Remark 1. Let φ1,E = ‖φE‖−1
L2 φE and φ2,E = ‖∂EφE‖−1

L2 ∂EφE . By
Proposition 2.1,

‖φ1,E − φ∗‖H1,k(R2) + ‖φ2,E − φ∗‖H1,k(R2) � |E − E∗|.
Now, we introduce our main result.

Theorem 2.1. Assume (H1)–(H3). Let p ≥ 3 and let ε0 be a suffi-
ciently small positive number. Suppose ‖u0‖H1 < ε0. Then there exist an
E+ < 0, a C1 real-valued function θ(t) and v+ ∈ PcH

1(R2) such that

lim
t→∞ θ̇(t) = E+,(2.2)

lim
t→∞ ‖u(t) − eiθ(t)φE+ − e−itLv+‖H1(R2) = 0.(2.3)

Remark 2. Let us decompose a solution to (1.1) into a solitary wave
part and a radiation part:

(2.4) u(t, x) = e−iθ(t)(φE(t)(x) + v(t, x)).

If we take initial data in the energy class, the dispersive part of the solutions
decays more slowly than they do for well localized initial data. Thus

∫∞
t

Ė(s)ds
cannot be expected to be integrable as it is for localized initial data (see e.g.
Soffer-Weinstein [44], [45] and Buslaev-Perelman [5]). In general, we need dis-
persive estimates for a time-dependent linearized equations to prove asymptotic
stability of solitary waves in H1. To avoid this difficulty, we assume the small-
ness of solitary waves so that a generalized kernel of the linearized operator is
well approximated by a 1-dimensional subspace {βφ∗ |β ∈ C}.

Substituting (2.4) into (1.1), we obtain

(2.5) ivt = Lv + g1 + g2 + g3 + g4,

where

g1(t) = −θ̇(t)v(t), g2(t) = (E(t) − θ̇(t))φE(t) − iĖ(t)∂EφE(t),

g3(t) = f(φE(t) + v(t)) − f(φE(t)) − ∂εf(φE(t) + εv(t))|ε=0,

g4(t) = ∂εf(φE(t) + εv(t))|ε=0 = αφp−1
E(t)

(
p + 1

2
v(t) +

p − 1
2

v(t)
)

.
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To fix the decomposition (2.4), we assume

(2.6)
〈�v(t), φE(t)

〉
=
〈�v(t), ∂EφE(t)

〉
= 0.

By Proposition 2.1, we have

(2.7) |E(0) − E∗|1/(p−1) + ‖v(0)‖H1 � ‖u0‖H1 .

Since u ∈ C(R; H1(R2)), it follows from the implicit function theorem that
there exist a T > 0 and E, θ ∈ C1([−T, T ]) such that (2.6) holds for t ∈ [−T, T ].
See, for example, [14] for the proof.

Differentiating (2.6) with respect to t and substituting (2.5) into the re-
sulting equation, we obtain

(2.8) A(t)
(

Ė(t)
θ̇(t) − E(t)

)
=
( 〈�g3(t), φE(t)〉
〈�g3(t), ∂EφE(t)〉

)
,

where

A(t) =(〈∂EφE(t), φE(t)〉 − 〈�v(t), ∂EφE(t)〉 〈�v(t), φE(t)〉
〈�v(t), ∂2

EφE(t)〉 〈∂EφE(t), φE(t)〉 + 〈�v(t), ∂EφE(t)〉
)

.

To prove our main result, we will use the Strichartz estimate and the
local smoothing effect of Kato type that is global in time. The Strichartz
estimate follows from L∞-L1 estimate for 2-dimensional Schrödinger equations
with linear potential obtained by Schlag [39]. See, for example, [18]. We
say that (q, r) is admissible if q and r satisfy 2 < q ≤ ∞, 2 ≤ r < ∞ and
1/q + 1/r = 1/2. For any p ∈ [1,∞], we denote by p′ a Hölder conjugate
exponent of p.

Lemma 2.1 (Strichartz estimate). Assume (H1)–(H3).
(a) Suppose that (q, r) is admissible. Then there exists a positive number

C such that for every f ∈ L2(R),

‖e−itLPcf‖Lq
t Lr

x
≤ C‖f‖L2 .

Furthermore, it holds that∥∥∥∥∫
R

eisLPcg(s, ·)ds

∥∥∥∥
L2

x

≤ C‖g‖
Lq′

t Lr′
x

.

(b) Suppose that (q1, r1) and (q2, r2) are admissible. Then there exists a
positive number C such that for every g(t, x) ∈ S(R × R

2),∥∥∥∥∫ t

0

e−i(t−s)LPcg(s, ·)ds

∥∥∥∥
L

q1
t L

r1
x

≤ C‖g‖
L

q′2
t L

r′
2

x

.
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Since Lemma 2.1 (a) does not hold with q = 2, we use the following local
smoothing estimates to show that dE/dt is integrable with respect to t.

Lemma 2.2. Assume (H1)–(H3). Let s > 1. Then there exists a posi-
tive constant C such that

(2.9) ‖e−itLPcf‖L2
t L2,−s

x
≤ C‖f‖L2 ,

for every f ∈ S(R2) and that

(2.10)
∥∥∥∥∫

R

eisLPcg(s, ·)ds

∥∥∥∥
L2

x

≤ C‖g‖L2
t L2,s

x
,

for every g(t, x) ∈ S(R × R2).

Lemma 2.3. Let s > 1. Then there exists a positive constant C such
that

(2.11)
∥∥∥∥∫ t

0

e−i(t−s)LPcg(s, ·)ds

∥∥∥∥
L2

t L2,−s
x

≤ C‖g‖L2
t L2,s

x
.

for every g(t, x) ∈ S(R × R
2) and t ∈ R.

Since the linear term g4 in (2.5) may not belong to Lq′
t Lr′

x for admissible
(q, r) (because (q2, r2) = (2,∞) is not admissible), we cannot apply Lemma 2.1
(b) to g4. Instead, we will use the following to deal with g4.

Corollary 2.1. Let (q, r) be admissible and let s > 1. Then there exists
a positive number C such that

(2.12)
∥∥∥∥∫

R

e−i(t−s)LPcg(s, ·)ds

∥∥∥∥
Lq

t Lr
x

≤ C‖g‖L2
t L2,s

x

for every g(t, x) ∈ S(R × R2) and t ∈ R.

Using a lemma by Christ and Kiselev [9], we see that Corollary 2.1 imme-
diately follows from Lemmas 2.1 and 2.2 (see [43]).

The proof of Lemmas 2.2, 2.3 and Corollary 2.1 will be given in Section 4.

3. Proof of Theorem 2.1

In this section, we will prove Theorem 2.1. To eliminate g1 in (2.5), we
put

(3.1) w(t) = e−iθ(t)v(t).

Then (2.5) is translated into the integral equation

(3.2) w(t) = e−itLw(0) − i
∑

2≤j≤4

∫ t

0

e−i(t−s)Le−iθ(s)gj(s)ds.
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All nonlinear terms in (3.2) can be estimated in terms of the following.

M1(T ) = sup
0≤t≤T

|E(t) − E∗|, M2(T ) = ‖〈x〉−sPcw‖L2
t (0,T ;H1

x),

M3(T ) = ‖〈x〉−sPdw‖L2
t (0,T ;H1

x),

M4(T ) = sup
0≤t≤T

‖Pcw(t)‖H1 + ‖Pcw‖Lq
t (0,T ;W 1,2p

x ),

M5(T ) = sup
0≤t≤T

‖Pdw(t)‖H1 + ‖Pdw‖Lq
t (0,T ;W 1,2p

x ).

where 2/q = 1 − 1/p.

Proof of Theorem 2.1. By Proposition 2.1, Remark 1 and (2.6),

〈∂EφE , φE〉 = O(|E − E∗|2/(p−1)−1), |〈v, ∂i
EφE〉| � |E − E∗|p/(p−1)−i‖v‖L2 .

Thus by (2.8), we have

|θ̇(t) − E(t)| � ‖φ2,E(t)v
2‖L1 + ‖φ2,E(t)f(v)‖L1 ,(3.3)

|Ė(t)| � ‖φ1,E(t)v
2‖L1 + ‖φ1,E(t)f(v)‖L1 .(3.4)

Suppose that the decomposition (2.4) with (2.6) persists for 0 ≤ t ≤ T and
that Mi(T ) (1 ≤ i ≤ 5) are bounded. Eqs. (3.3)–(3.4) imply that

‖θ̇ − E‖L1(0,T ) + ‖Ė‖L1(0,T )

≤ C(M)(‖φ1,E(t)v
2‖L1(0,T ;L1

x) + ‖φ2,E(t)v
2‖L1(0,T ;L1

x))

+ C(M)(‖φ1,E(t)f(v)‖L1(0,T ;L1
x) + ‖φ2,E(t)f(v)‖L1(0,T ;L1

x))

≤ C(M)

∑
i=1,2

∥∥〈x〉2sφi,E(t)

∥∥
L∞(0,T ;L∞

x )

 ‖v‖2
L2

t (0,T ;H1,−s
x )

≤ C(M)(M2(T ) + M3(T ))2,

(3.5)

and

‖θ̇ − E‖L∞(0,T ) + ‖Ė‖L∞(0,T ) � sup
0≤t≤T

(‖v‖2
H1 + ‖v‖p

H1)

≤ C(M)(M4(T ) + M5(T ))2.
(3.6)

Hereafter we denote by C(M) various functions of M1, . . . , M5 that are bounded
in a finite neighborhood of 0. By (2.7) and (3.5),

(3.7) M1(T ) � ‖u0‖H1 + C(M)(M2 + M3)2.

From Remark 1 and (2.6), it follows that

|〈w(t), φ∗〉| ≤ ‖v‖L2,−s
x

∑
i=1,2

‖〈x〉s(φi,E − φ∗)‖L2

� |E(t) − E∗|‖w‖L2,−s
x

,
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and that

(3.8) M3(T ) ≤ C(M)M1(T )(M2(T ) + M3(T )).

Similarly, we have

(3.9) M5(T ) ≤ C(M)M1(T )(M4(T ) + M5(T )).

Next, we will estimate M2(T ). By (3.2),

M2(T ) ≤ I1 + I2 + I3 + I4,

where

I1 = ‖e−itLPcw(0)‖L2
t (0,T ;H1,−s

x ),

I2 =
∥∥∥∥∫ t

0

e−i(t−s)LPcg2(s)ds

∥∥∥∥
L2

t (0,T ;H1,−s
x )

,

I3 =
∥∥∥∥∫ t

0

e−i(t−s)LPcf(v(s))ds

∥∥∥∥
L2

t (0,T ;H1,−s
x )

,

I4 =
∥∥∥∥∫ t

0

e−i(t−s)LPcg̃(s)ds

∥∥∥∥
L2

t (0,T ;H1,−s
x )

,

and g̃(s) = g3(s) + g4(s) − f(v(s)). Lemma 2.2 yields

I1 � ‖w(0)‖H1 .

By Lemma 2.3, (3.5) and (3.6),

I2 � ‖Pcg2‖L2
t (0,T ;H1,s

x )

≤ ∥∥PcφE(t)

∥∥
L∞(0,T ;H1,s

x )
‖θ̇ − E‖L2(0,T ) +

∥∥Pc∂EφE(t)

∥∥
L∞(0,T ;H1,s

x )
‖Ė‖L2(0,T )

≤ C(M)M1(T )1/(p−1)(M2(T ) + M3(T ) + M4(T ) + M5(T ))2.

Note that ‖Pc∂EφE‖H1 � |E − E∗|1/(p−1) follows from Proposition 2.1. By
Minkowski’s inequality and Lemma 2.2,

I3 �
∫ T

0

‖e−i(t−τ)LPcf(v(τ ))‖L2
t (0,T ;H1,−s

x )dτ

�
∫ T

0

‖f(v(s))‖H1
x
ds

� ‖v‖q

Lq(0,T ;W 1,2p
x )

‖v‖p−q
L∞

t (0,T ;H1
x),

where 2/q + 1/p = 1. Note that p ≥ q > 2 if p ≥ 3. Thus we have

I3 ≤ C(M)(M4(T ) + M5(T ))p.
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Since g̃ = O(φp−1
E |v| + φE |v|p−1), Lemma 2.3 yields that

I4 � ‖g̃‖L2
t (0,T ;H1,s

x )

� ‖〈x〉2sφp−1
E(t)‖L∞

t (0,T ;W 1,∞
x )‖v‖L2

t (0,T ;H1,−s
x )

+ ‖〈x〉sφE(t)‖L∞
t (0,T ;W 1,∞

x )‖|v|p−1‖L2
t (0,T ;H1

x).

(3.10)

Since

‖|v|p−1‖H1 ≤ ‖v‖W 1,2(p−1)/(p−2)‖|v|p−2‖L2(p−1) � ‖v‖p−1
W 1,2(p−1)/(p−2) ,

it follows from (3.10), Proposition 2.1 and the interpolation theorem that

I4 ≤ C(M)
(
‖v‖L2

t (0,T ;H1,−s
x ) + ‖v‖p−1

L
2(p−1)
t

“
0,T ;W

1,2(p−1)/(p−2)
x

”
)

≤ C(M){M1(T )(M2(T ) + M3(T )) + (M4(T ) + M5(T ))p−1}.
Combining the above, we see that

(3.11) M2(T ) ≤ C(M)
∑

1≤i≤5

Mi(T )2.

Finally, we will estimate M4(T ). In view of (3.2),

M4(T ) ≤ J1 + J2 + J3,

where

J1 =
∥∥e−itLPcw(0)

∥∥
L∞(0,T ;H1

x)∩Lq(0,T ;W 1,2p
x )

J2 =
∥∥∥∥∫ t

0

e−i(t−s)LPcg2(s)ds

∥∥∥∥
L∞(0,T ;H1

x)∩Lq(0,T ;W 1,2p
x )

,

J2 =
∥∥∥∥∫ t

0

e−i(t−s)LPc(g3(s) + g4(s))ds

∥∥∥∥
L∞(0,T ;H1

x)∩Lq(0,T ;W 1,2p
x )

.

Using the Strichartz estimate (Lemma 2.1), we have

J1 � ‖w(0)‖H1 ,

J2 � ‖Pcg2(s)‖L1
t (0,T ;H1

x)ds

� ‖θ̇ − E‖L1(0,T ) sup
t∈[0,T ]

‖PcφE(t)‖H1
x

+ ‖Ė‖L1(0,T ) sup
t∈[0,T ]

‖Pc∂EφE(t)‖H1
x
.

Hence by (3.5),

J2 ≤ C(M)(M2(T )2 + M3(T )2).

Using the Strichartz estimate and Corollary 2.1, we have

J3 � ‖g3 + g4‖L1
t (0,T ;H1

x)+L2
t (0,T ;H1,s

x ).
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Since g3(t) + g4(t) = O(φp−1
E(t)|v| + |v|p),

‖g3 + g4‖L1
t (0,T ;H1

x)+L2
t (0,T ;H1,s

x )

� ‖φp−1
E(t)v‖L2

t (0,T ;H1,s
x ) + ‖f(v)‖L1

t (0,T ;H1
x)

� ‖〈x〉2sφp−1
E(t)‖L∞

t (0,T ;W 1,∞
x )‖v‖L2

t (0,T ;H1,−s
x ) + ‖v‖q

Lq
t (0,T ;W 1,2p

x )
‖v‖p−q

L∞
t (0,T ;H1

x).

Thus we have

J3 ≤ C(M){M1(T )(M4(T ) + M5(T )) + (M4(T ) + M5(T ))p}.

Combining the above, we have

(3.12) M4(T ) ≤ C(M)
∑

1≤i≤5

Mi(T )2.

It follows from (3.7)–(3.9), (3.11) and (3.12) that if ε0 is sufficiently small,

(3.13)
∑

1≤i≤5

Mi(T ) � ‖u0‖H1 .

Thus by continuation argument, we may let T → ∞. By (3.5), there exists
an E+ < 0 satisfying limt→∞ E(t) = E+ and |E+ − E∗| � ‖u0‖H1 . In view of
(3.13), we see that

w1 := −i lim
t→∞

∑
2≤j≤4

∫ t

0

eisLPce
−iθ(s)gj(s)ds

exists in H1 and that

‖w1‖H1 � ‖g2(s)‖L1
t H1

x
+ ‖g3 + g4‖L2

t H1,s
x +L1

t H1
x

� ‖u0‖H1 ,

lim
t→∞ ‖Pcw(t) − e−itL(Pcw(0) + w1)‖H1 = 0.

By [39], we have ‖e−itLPcf‖L4 � t−1/2‖f‖L4/3 . Since L4/3(R2) ∩ H1(R2) is
dense in H1(R2), it follows that ‖e−itL(Pcw(0) + w1)‖L4 → 0 as t → ∞, and
that

‖Pcw(t)‖L4

≤ ‖Pcw(t) − e−itL(Pcw(0) + w1)‖H1 + ‖Pce
−itL(Pcw(0) + w1)‖L4

→ 0 as t → ∞.

(3.14)

Analogously to (3.8), we have

(3.15) ‖Pdw(t)‖H1 � ‖Pdw(t)‖L4 � |E(t) − E∗|‖Pcw(t)‖L4 .
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Combining (3.14) and (3.15), we have limt→∞ ‖Pdw(t)‖H1 = 0. Thus by (2.4)
and (3.1),

lim
t→∞

∥∥∥u(t) − e−iθ(t)φE(t) − e−itLPc(w(0) + w1)
∥∥∥

H1
= 0.

Thus we complete the proof of Theorem 2.1.

4. Dispersive estimates

Let R(λ) = (L− λ)−1 and dEac(λ) be the absolute continuous part of the
spectrum measure. By the spectral decomposition theorem, we have

Pce
−itLf =

∫ ∞

−∞
e−itλdEac(λ)f

=
1

2πi

∫ ∞

−∞
e−itλPc(R(λ + i0) − R(λ − i0))fdλ.

(4.1)

We will prove Lemma 2.2 by using Plancherel’s theorem and the following
estimate on the resolvent R(λ).

Lemma 4.1. Let s > 1. Then there exists a positive constant C such
that

‖R(λ ± i0)Pcf‖L2
λ(0,∞;L2,−s

x ) ≤ C‖f‖L2

for every f ∈ L2(R2).

First, we prove Lemma 2.2 assuming Lemma 4.1.

Proof of Lemma 2.2. By the inversion of the Laplace formula (see [30]),
we have

e−itLPcf =
1

2πi

∫ ∞

−∞
dλe−itλ(R(λ + i0) − R(λ − i0))Pcf

=
(it)−j

2πi

∫ ∞

−∞
dλe−itλ∂j

λ(R(λ + i0) − R(λ − i0))Pcf in S ′
x(R2)

for any t �= 0 and f ∈ Sx(R2). Since

‖∂j
λR(λ ± i0)Pc‖B(L2,j+1/2+0,L2,−(j+1/2)−0) � 〈λ〉−(j+1)/2,

the above integral absolutely converges in L
2,−(j+1/2)−0
x for j ≥ 2.

Suppose g(t, x) = g1(t)g2(x), g1 ∈ C∞
0 (R \ {0}) and g2 ∈ S(R2). Making

use of Fubini’s theorem and integration by parts, we have for j ≥ 2,

〈e−itLPcf, g〉t,x
=

1
2πi

∫ ∞

−∞
dt(it)−jg1(t)

∫ ∞

−∞
dλe−itλ∂j

λ 〈(R(λ + i0) − R(λ − i0))Pcf, g2〉x

=
1

2πi

∫ ∞

−∞
dλ∂j

λ 〈(R(λ + i0) − R(λ − i0))Pcf, g2〉x
∫ ∞

−∞
dt(it)−jg1(t)e−itλ

=
1√
2πi

∫ ∞

−∞
dλ(Ftg1)(λ) 〈(R(λ + i0) − R(λ − i0))Pcf, g2〉x .
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Hence it follows from the above that〈
e−itLPcf, g

〉
=

1√
2πi

∫ ∞

−∞
dλ 〈(R(λ + i0) − R(λ − i0))Pcf,Ftg(λ, ·)〉x

for every g ∈ C∞
0 (Rt \ {0}) ⊗ S(R2

x). Using Plancherel’s theorem, we have∣∣〈e−itLPcf, g〉t,x
∣∣

≤ 1√
2π

∫ ∞

−∞
dλ‖(R(λ + i0) − R(λ − i0))Pcf‖L2,−s

x
‖Ftg(λ, ·)‖L2,s

x

≤ (2π)−1/2‖(R(λ + i0) − R(λ − i0))Pcf‖L2
λ(0,∞;L2,−s

x )‖g‖L2
t L2,s

x
.

(4.2)

Since C∞
0 (Rt \{0})⊗S(R2

x) is dense in L2
t L

2,s
x , Lemma 2.2 immediately follows

from (4.2).

Now, we turn to prove Lemma 4.1. First, we will investigate the free
resolvent operator R0(λ) in R2.

Lemma 4.2. There exists a positive constant C such that

sup
x

‖R0(λ ± i0)f‖L2
λ(0,∞) ≤ C‖f‖L2

for every f ∈ L2(R2).

Remark 3. Obviously, the estimate ‖R0(λ±i0)‖B(L2,s,,L2,−s) � 〈λ〉−1/2

does not suffice to prove Lemma 4.2. We will use the boundedness of the Hankel
transform in L2

rad.

Proof of Lemma 4.2. For any k ≥ 0, we have

R0(k2 ± i0)f(x) =
±i

4

∫
R2

H0(k|x − y|)f(y)dy,

where H±
0 are the Hankel functions of order 0 and

H±
0 (z) = J0(z) ± Y0(z).

Let (τxf)(y) := f(x−y) and decompose τxf ∈ L2(R2) into a Fourier series
as

τxf =
∑
m∈Z

fx,m(r)eimθ ∈
⊕
m∈Z

eimθL2
rad.

Then

R0(k2 ± i0)f(x) =
±i

4

∫
R2

H±
0 (k|y|)τxf(y)dy

=
±πi

2

∫ ∞

0

H±
0 (kr)fx,0(r)rdr.
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Titchmarsh [49] and Rooney [36] tell us that the operators T1 and T2 defined
by

T1f(x) =
∫ ∞

0

J0(xy)f(y)dy, T2f(x) =
∫ ∞

0

Y0(xy)f(y)dy,

are bounded on L2
rad. Thus we have

sup
x

(∫ ∞

0

|R0(k2 ± i0)f |2kdk

)1/2

� ‖fx,0‖L2
rad

.

Since

‖f‖L2 = ‖τxf‖L2 =

(
2π
∑
m∈Z

∫ ∞

0

|fx,m(r)|2rdr

)1/2

,

it follows that

sup
x

‖R0(λ ± i0)f‖L2
λ(0,∞) � ‖f‖L2 .

Thus we complete the proof of Lemma 4.2.

We will prove Lemma 4.1 by using Lemma 4.2 and the resolvent expansion
obtained by Schlag [39] based on Jensen and Nenciu [15].

Before we prove Lemma 4.1, let us introduce a definition of the non-
resonance condition given by Jensen and Nenciu [15].

Definition 4.1. Let v(x) = |V (x)|1/2 and let P and Q be orthogonal
projections defined by

Pf =
〈f, v〉v
‖V ‖L1

, Q = I − P.

We say that 0 is not a resonance of L if D0 := Q(U + vG0v)Q is invertible on
QL2(R2).

Proof of Lemma 4.1. For every f ∈ S(R2), we have

(4.3) R(λ ± i0)f = R0(λ ± i0)f − R0(λ ± i0)V R(λ ± i0)f.

By Lemma 4.2, there exists a C > 0 such that for every f ∈ L2(R2),

‖R0(λ ± i0)f‖L2,−s
x L2

λ(0,∞) ≤ ‖〈x〉−s‖L2‖R0(λ ± i0)f‖L∞
x L2

λ(0,∞)

≤ C‖f‖L2 .
(4.4)

Next, we deal with the low energy part of the second term of (4.3). As [15,
39], we put U(x) = 1 for x ∈ V −1([0,∞)), U(x) = −1 for x ∈ V −1((−∞, 0)),
and M±(λ) := U + vR0(λ ± i0)v. Then

R0(λ ± i0)V R(λ ± i0)f = R0(λ ± i0)vM±(λ)−1vR0(λ ± i0)f.



Asymptotic stability of small solitons for 2D NLS 613

Schlag [39, Lemma 9] tells us that

(4.5) M±(λ)−1 = h±(λ)−1S + QD0Q + E±(λ) in B(L2(R2)),

where S is a finite rank operator, ‖E±(λ)‖B(L2) = O(λ1/4) as λ → 0, and

(4.6) h+(λ) = a log λ + z, h−(λ) = h+(λ),

and a ∈ R and z ∈ C are constants with a �= 0 and �z �= 0.
Let λ1 be a sufficiently small positive number. From [39, Lemma 5], it

follows that for 0 < λ ≤ λ1,

(4.7) R0(λ ± i0) = c±(λ)P0 + G0 + E±
0 (λ) in B(L2,s, L2,−s),

and

(4.8) ‖E±
0 (λ)‖B(L2,s,L2,−s) = O(λ1/4),

where P0f = 〈f, 1〉x, G0 = (−∆)−1, γ is the Euler number and

(4.9) c±(λ) = ± i

4
− γ

2π
− 1

4π
log
(

λ

4

)
.

Thus R̃±
0 (λ) = R0(λ ± i0) − c±(λ)P0 satisfies

(4.10) sup
0<λ<λ1

‖R̃±
0 (λ)‖B(L2,s,L2,−s) < ∞.

Let χ(λ) be a characteristic function on [0, λ1]. Using Lemma 4.2, (4.5),
(4.10) and the fact that v(x) � 〈x〉−σ/2 with σ > 3, we have

‖χ(λ)R̃±
0 (λ)vM±(λ)−1vR0(λ ± i0)f‖L2

λ(0,∞;L2,−s
x )

≤ sup
0<λ<λ1

‖R̃±
0 (λ)‖B(L2,s,L2,−s)

∥∥∥‖χ(λ)vM±(λ)−1vR0(λ ± i0)f‖L2,s
x

∥∥∥
L2

λ(0,∞)

� ‖χ(λ)vR0(λ ± i0)f‖L2
x,λ

� ‖v‖L2
x

sup
x

‖R0(λ ± i0)f‖L2
λ(0,∞) � ‖f‖L2

for any s ∈ (1, 3/2). Since P0vQ = 0, it follows from (4.5) that

c±(λ)P0vM±(λ)−1vR0(λ ± i0) = I1 + I2,

where

I1 = c±(λ)h±(λ)−1P0vSvR0(λ ± i0),

I2 = c±(λ)P0vE±(λ)vR0(λ ± i0).
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By (4.6), (4.9), sup0<λ≤λ1
|c±(λ)/h±(λ)| < ∞. Hence from Lemma 4.1,

‖I1f‖L2
λ(0,∞;L2,−s

x ) ≤ ‖〈x〉−s‖L2‖vSvR0(λ ± i0)f‖L2
λ(0,∞;L1

x)

� ‖v‖L2‖vR0(λ ± i0)f‖L2
λ(0,∞;L2

x)

� ‖v‖2
L2 sup

x
‖R0(λ ± i0)f‖L2

λ(0,∞)

� ‖f‖L2 .

Using Schwarz’s inequality and (4.8), we have

‖P0vE±(λ)vR0(λ ± i0)f‖L2,−s
x

� ‖v‖L2‖E±(λ)vR0(λ ± i0)f‖L2

� |λ|1/4‖vR0(λ ± i0)f‖L2 .

Hence it follows that

‖χ(λ)I2‖L2(0,∞;L2,−s
x ) � sup

λ>0

(
χ(λ)|λ|1/4|c±(λ)|

)
‖vR0(λ ± i0)f‖L2

x,λ

� sup
x

‖R0(λ ± i0)f‖L2
λ

� ‖f‖L2 .

Combining the above, we obtain

(4.11) ‖χ(λ)R0(λ ± i0)V R(λ ± i0)f‖L2
λ(0,∞;L2,−s

x ) � ‖f‖L2 .

Next, we consider the high energy part. The assumptions (H2) and (H3)
imply that

(4.12) sup
λ≥λ1

‖R(λ ± i0)Pc‖B(L2,s,L2,−s) � 〈λ1〉−1/2,

See [1, Appendix A] and [27] for the proof. Let χ̃(λ) = 1−χ(λ). By (4.12) and
Fubini’s theorem,

‖χ̃(λ)PcR(λ ± i0)V R0(λ ± i0)f‖L2
λ(0,∞;L2,−s

x )

�
∥∥‖V R0(λ ± i0)f‖L2,s

x

∥∥
L2

λ(0,∞)

≤ ‖V ‖L2,s sup
x

‖R0(λ ± i0)f‖L2
λ(0,∞) � ‖f‖L2 .

(4.13)

Combining (4.3), (4.4), (4.11) and (4.13), we obtain

‖R(λ ± i0)Pcf‖L2
λ(0,∞;L2,−s

x ) ≤ C‖f‖L2 .

Thus we complete the proof of Lemma 4.1.

Next, we will prove Lemma 2.3. For the purpose, we need the following.
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Lemma 4.3. Assume (H1)–(H3). Let g(t, x) ∈ St(R) ⊗ Sx(R2) and

U(t, x) =
1√
2πi

∫ ∞

−∞
dλe−itλ{R(λ − i0) + R(λ + i0)}Pc(F−1

t g)(λ, ·).

Then,

U(t, x) = 2
∫ t

0

dse−i(t−s)LPcg(s, ·) +
∫ 0

−∞
dse−i(t−s)LPcg(s, ·)

−
∫ ∞

0

dse−i(t−s)LPcg(s, ·).

Proof. Since Lemma 4.3 can be proved in the same as that of Lemma 11
in [26], we omit the proof.

Proof of Lemma 2.3. Suppose that g(t, x) and h(t, x) belong to St(R) ⊗
Sx(R2). It follows from Fubini’s theorem that

〈U, h〉t,x
=

1√
2πi

∫ ∞

−∞
dλ

∫ ∞

−∞
dte−itλ

〈
(R(λ + i0) + R(λ − i0))PcF−1

t g(λ, ·), h(t, ·)〉
x

= i−1

∫ ∞

−∞
dλ
〈
(R(λ + i0) + R(λ − i0))PcF−1

t g(λ, ·),Fth(λ, ·)〉
x

.

Using Plancherel’s theorem and (4.12), we obtain

|〈U, h〉t,x|
≤ ∥∥(R(λ + i0) + R(λ − i0))PcF−1

t g(λ, ·)∥∥
L2

λL2,−s
x

‖Fth(λ, ·)‖L2
λL2,s

x

≤ sup
λ∈R

‖(R(λ + i0) + R(λ − i0))Pc‖B(L2,s,L2,−s) ‖g‖L2
t L2,−s

x
‖h‖L2

t L2,s
x

Since St(R) ⊗ Sx(R2) is dense in L2
t L

2,s
x and L2

t L
2,−s
x , we see that

(4.14) ‖U‖L2
t L2,−s

x
� ‖g‖L2

t L2,s
x

holds for every g ∈ L2
t L

2,s
x .

On the other hand, Lemma 2.2 implies∥∥∥∥∫
I

e−i(t−s)LQg(s)ds

∥∥∥∥
L2

t L2,−s
x

�
∥∥∥∥∫

I

eisLg(s)ds

∥∥∥∥
L2

� ‖g‖L2
t L2,s

x

for every g ∈ L2
t L

2,s
x and I ⊂ R. Combining the above with (4.14) and Lemma

4.3, we obtain Lemma 2.3. Thus we complete the proof.

Finally, we prove Corollary 2.1.

Proof of Corollary 2.1. Let (q, r) be admissible and let T be an operator
defined by

Tg(t) =
∫

R

dse−i(t−s)LPcg(s).
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Lemmas 2.1 and 2.2 yield f :=
∫

R
eisLPcg(s)ds ∈ L2(R) and that there exists

a C > 0 such that

(4.15) ‖Tg(t)‖Lq
t Lr

x
≤ C‖g‖L2

t L2,s
x

for every g ∈ L2
t L

2,s
x . Since q > 2, it follows from Lemma 3.1 in [43] and (4.15)

that

(4.16)
∥∥∥∥∫

s<t

dse−i(t−s)LPcg(s)
∥∥∥∥

Lq
t Lr

x

� ‖g‖L2
t L2,s

x
.

Thus we prove Corollary 2.1.
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