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Asymptotic stability of small solitons for 2D
nonlinear Schrodinger equations with potential

By

Tetsu MI1ZUMACHI

Abstract
We consider asymptotic stability of a small solitary wave to super-
critical 2-dimensional nonlinear Schrodinger equations

iur+Au=Vut|uf'u for (z,t) € R x R,

in the energy class. This problem was studied by Gustafson-Nakanishi-
Tsai [14] in the n-dimensional case (n > 3) by using the endpoint
Strichartz estimate. Since the endpoint Strichartz estimate fails in 2-
dimensional case, we use a time-global local smoothing estimate of Kato
type to prove the asymptotic stability of a solitary wave.

1. Introduction

In this paper, we consider asymptotic stability of solitary wave solutions
to

(1) {iutJrAu—Vquf(u) for (z,t) € R? x R,

u(z,0) = ug(x) for x € R?,

where V(z) is a real potential, f(u) = a|u/P~lu with a = +1.
Let

2a
H(u) = Vul> +V 2 |ulPtt ) de,
= [, (19 + Vel + 2+ ) do
N(u):/ lu|?dz.
R2
Then a solution to (1.1) satisfies

(1.2) H(u(t)) = E(uo), N(u(t)) = N(uo)

during the time interval of existence. Stability of solitary waves was first studied
by Cazenave and Lions [8], Grillakis-Shatah-Strauss [13] and Weinstein [53]

Received September 11, 2006




600 Tetsu Mizumachi

(see also Rose-Weinstein [37], Oh [29] and Shatah-Strauss [41]). In the case of
integrable equations such as cubic NLS and KdV, the inverse scattering theory
tells us that if the initial data decays rapidly as z — +00, a solution decomposes
into a sum of solitary waves and a radiation part as ¢ — oo (see [40]). Soffer
and Weinstein [44], [45] considered

(1.3) iug + Au=Vu+|uftu forz € R™ and t > 0,

wheren > 2and 1 < p < (n+2)/(n—2). They proved that if —A+V has exactly
one eigenvalue with negative value F, and initial data is well localized and close
to a nonlinear bound state, a solution tends to a sum of a nonlinear bound state
nearby and a radiation part which disperses to 0 as t — oo (see also [21] for 2-
dimensional case). This result was extended by Yau and Tsai [51], [55]-[57] and
Soffer-Weinstein [46] to the case where —A +V have two bound states (see also
[12], [52]). In the 1-dimensional case, Buslaev and Perelman [5], [6] and Buslaev
and Sulem [7] studied the asymptotic stability of (1.1) with V' = 0. Using the
Jost functions, they built a local energy decay estimate of solutions to the
linearized equation and prove asymptotic stability of solitary waves for super
critical nonlinearities. Their results are extended to the higher dimensional
case by Cuccagna [11]. See also Perelman [32] and Rodnianski-Schlag-Soffer
[35] which study asymptotic stability of multi-solitons, and Krieger and Schlag
[22] which study large time behavior of solutions around unstable solitons.

However, all these results assume that initial data is well localized so that
a solution decays like ~3/2. Martel and Merle [23], [24] proved the asymptotic
stability of solitary waves to generalized KdV equations using the monotonicity
of L?-mass, which is a variant of the local smoothing effect proved by Kato [16].
They elegantly use the fact that the dispersive remainder part of a solution
v(t, z) satisfies

o
(1.4 [ Ity at < oc
0 oc

to prove the asymptotic stability of solitary waves in H' (see also Pego and
Weinstein [31] for KAV with exponentially localized initial data and Mizumachi
[25] for polynomially localized initial data). Gustafson-Nakanishi-Tsai [14] has
proved asymptotic stability of a small solitary wave of (1.3) in the energy class
with n > 3. Their idea is to use the endpoint Strichartz estimate instead of
(1.4), which tells us that [|v|| r2wpe remains small globally in time for super
critical nonlinearities. However, dispersive wave decays more slowly in the
lower dimensional case and the endpoint Strichartz estimate does not hold in
the 2-dimensional case. Recently, Mizumachi [26] has proved the asymptotic
stability of small solitons in 1D case by using dispersive estimates such as

o2
(1.5) 100 O P oo 2 < Clfll o
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In the present paper, we apply local smoothing estimates

(1.6) H<x>71706it(7A+V)Pcf”Lf(O,oo;Li(R?)) < O fllL2 w2y,
t
()10 / BTV g 88| 1 0 oerrz 2

< CH<$>1+09||L§(0,00;L§(R2))

(1.7)

to obtain the asymptotic stability of small solitons in the 2-dimensional case.

Local smoothing estimates such as (1.6) have been studied by many au-
thors. See, for example, Ben-Artzi and Klainerman [3], Constantin and Saut
[10], Kato and Yajima [17] and Kenig-Ponce-Vega [19, 20], Sjolin [42], Ruiz-
Vega [38], Sugimoto [48] and Watanabe [58]. Especially, Ben-Artzi and Klainer-
man [3] and Barcelé-Ruiz-Vega [2] prove time-global local smoothing estimates
in n-dimensional case with n > 3. In the 2-dimensional case, it is well-known
that

(1.8) HeitAfHL;o(RZ;Lf(]R)) S ||f||L2(R2)a

follows from a special case of Thomas-Stein theorem ([47]) (see, e.g., Planchon
[33]). However, to the best of our knowledge, there seems to be a lack of
literature in the 2-dimensional case with V' # 0. Another purpose of the present
paper is to fill the gap.

Our strategy to prove (1.6) is to apply Plancherel’s theorem to the inversion
of the Laplace transform formula. The key is to prove

(1L9) ) O ROE 0l 0 oeizey < Clflle for every f € T2(R).

Roughly speaking, Eq. (1.9) can be translated into (1.6) by using the Fourier
transform with respect to A.

To obtain (1.9), we utilize that the free resolvent operator Ro(\) = (—A —
M)~ satisfies

(1.10) sup [[Ro(A £40) fl| 22 (0,00) < Cl|fllz2  for every f € L*(R?),

and apply a resolvent expansion obtained by Jensen and Nenciu [15] as well as
Schlag [39].

Our plan of the present paper is as follows. In Section 2, we state our main
result and linear dispersive estimates that will be used later. In Section 3, we
prove our main result assuming the linear estimates introduced in Section 2. In
Section 4, we prove (1.9) and obtain (1.6). To prove (1.9), we use an argument
of the resolvent expansion as well as (1.10) which follows from L?(0, oo; /zdz)-
boundedness of the Hankel transform and the Yy-transform (see Rooney [36]).

Finally, we introduce several notations. Let

q/p 1/q
lizae = ([ ([ 1ropac) " ae)
s/r 1/s
|f||L;L;:</Rz</R|f<t,x>|Tdt> dm) |
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We denote by L?* and H™* Hilbert spaces whose norms are defined by
ullp2s = () ullL2@2y  and  |lull e = [(2) ull g (w2,

where m € N, s € R and (z) = (1 + |z|>)'/2. Let
(f1, f2)a / fi(z) fa(x)dz,  {91,92): / /291 (t,2)g2(t, z)dzdt.
R

We set L2, , = L?(0, 00; rdr) whose norm is defined by

o 1/2
il = ( / |f<r>|2rdr) .

For any Banach spaces X, Y, we denote by B(X,Y) the space of bounded
linear operators from X to Y. We abbreviate B(X, X) as B(X).
We define the Fourier transform of f(x) as

rad —

Fof (€)= (@)™ | J(w)e 4,

and the inverse Fourier transform of g(§) as

Flg(o) = 2m) 2 [ e,

We denote by S;(R) ® S, (R?) a set of functions f(t,z) = Zf\il fi(t)gi(x) with
fi € S(R), g; € S(R?) (1 <i<N).

2. The main result and preliminaries

In the present paper, we assume that the linear potential V(z) is a C1-

function on R? satisfying the following.

(H1) There exists a o > 3 such that sup,cg> ((2)7|V (z)| + |VV (2)]) < .

(H2) L = —A 4V has exactly one negative eigenvalue F,.

(H3) 0 is neither a resonance nor an eigenvalue of L (see Definition 4.1 in
Section 4).
From (H1)-(H3), it follows that the spectrum of L consists of the continuous
spectrum o.(L) = [0,00) and a simple eigenvalue E, (see [34]). Let ¢, be a
normalized eigenfunction of L (satisfying ||¢.| L2 = 1) belonging to E,, and let
P; and P, be spectral projections of L defined by

Pou = (u,¢s) ¢y, Pou= (I — Py)u.

Suppose E € R and that e *F¢p(z) is a solitary wave solution of (1.1).
Then ¢g(z) is a solution to

App + Epp =Vop +alppProp  for z € R?,
(2.1) { Jimon(z) = 0.

Using the bifurcation theory, we have the following.
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Proposition 2.1.  Assume (H1)-(H3). Let 6 be a small positive num-
ber. Suppose that E € (Ey, E.+0) anda=1 or E € (Ex—§,E,) and a = —1.
Then, there exists a positive solution ¢ to (2.1) such that for every k € N,
1. ¢p € Hl’k,
2. The function E — ¢ is C' in HYF for every k € N, and as E — E,,

68 = |E = EJY0D (o, |21 Vg, + OB~ E)) in HY

Proposition 2.1 follows from a rather standard argument. See for example
[28] and [44, pp.123-124].

Remark 1. Let (bl,E = ||¢E||Z21¢E and ¢2,E = ||8E¢EHZ218E¢E By
Proposition 2.1,

61,5 — Gull i@z + [|62,8 — Gullarr@e) S |E — Exl.
Now, we introduce our main result.

Theorem 2.1.  Assume (H1)—(H3). Let p > 3 and let gy be a suffi-
ciently small positive number. Suppose ||uo|lgr < €9. Then there exist an
E. <0, a C! real-valued function 0(t) and v, € P.H*(R?) such that

(2.2) lim 6(t) = E,
t—o0
(2.3) Jim [Ju(t) — ¢ Wop, —e "o | gz = 0.

Remark 2. Let us decompose a solution to (1.1) into a solitary wave
part and a radiation part:

(2.4) u(t,z) = e_w(t)(@g(t) () +v(t,x)).

If we take initial data in the energy class, the dispersive part of the solutions
decays more slowly than they do for well localized initial data. Thus ftoo E(s)ds
cannot be expected to be integrable as it is for localized initial data (see e.g.
Soffer-Weinstein [44], [45] and Buslaev-Perelman [5]). In general, we need dis-
persive estimates for a time-dependent linearized equations to prove asymptotic
stability of solitary waves in H'. To avoid this difficulty, we assume the small-
ness of solitary waves so that a generalized kernel of the linearized operator is
well approximated by a 1-dimensional subspace {3¢. | 3 € C}.

Substituting (2.4) into (1.1), we obtain
(2.5) iy =Lv+ g1+ g2+ 93+ ga,
where

g1(t) = —=0(t)(t), g2(t) = (E(t) — 0(t)bp) — iE()0pdrw),
93(t) = f(op@) +v(t) — f(PE®) — 0-f(PEWM) +€v(t))|=0,

01(8) = 0.1 G0+ olewa = ol (Lot + 2500

2
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To fix the decomposition (2.4), we assume
(2.6) (Ro(t), $Er)) = (Sv(t), OpdE@) = 0.
By Proposition 2.1, we have
(2.7) |E(0) = BP0+ 0(0) |1 S lluollarr-

Since u € C(R; H'(R?)), it follows from the implicit function theorem that
there exist a T > 0 and E, § € C*([-T,T]) such that (2.6) holds for t € [T, T].
See, for example, [14] for the proof.

Differentiating (2.6) with respect to ¢ and substituting (2.5) into the re-
sulting equation, we obtain

E(t) _( (Sgs(t), 9rw)
(28) A0 (g~ ) = (honty ety
where
A(t) =
<<8E¢E(t)7¢E(t)> — (Ro(t), 089 E()) (Sv(t), b)) >
(Su(t), 0%9Ex)) (OrPEM), PEMW) + (RU(1),0RdEW)) )

To prove our main result, we will use the Strichartz estimate and the
local smoothing effect of Kato type that is global in time. The Strichartz
estimate follows from L>°-L! estimate for 2-dimensional Schrédinger equations
with linear potential obtained by Schlag [39]. See, for example, [18]. We
say that (g,r) is admissible if ¢ and r satisfy 2 < ¢ < o0, 2 < r < oo and
1/¢+ 1/r = 1/2. For any p € [1,00], we denote by p’ a Holder conjugate
exponent of p.

Lemma 2.1 (Strichartz estimate).  Assume (H1)—(H3).
(a) Suppose that (q,r) is admissible. Then there exists a positive number
C such that for every f € L*(R),

le™  Pefllary < Cllflze-

Furthermore, it holds that

/ eiSLch(Sa )ds
R

L2 S O”g”Lf/L;' .

(b) Suppose that (q1,7m1) and (q2,7r2) are admissible. Then there exists a
positive number C such that for every g(t,z) € S(R x R?),

t
/ e I Pg(s, )ds
0

<C o
pn IIQIILZng'2
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Since Lemma 2.1 (a) does not hold with ¢ = 2, we use the following local
smoothing estimates to show that dE/dt is integrable with respect to t.

Lemma 2.2.  Assume (H1)—(H3). Let s > 1. Then there exists a posi-
tive constant C' such that

(2.9) le™* Pufll a2 < ClIfll e,

for every f € S(R?) and that

(2.10)

/ e P.g(s,-)ds
R

S C”QHL%L%“‘H
L2

for every g(t,z) € S(R x R?).

Lemma 2.3. Let s > 1. Then there exists a positive constant C' such
that

< Cligllpzp2e

(2.11) ‘
L2L2*°

t
/ e =L P g(s, )ds
0

for every g(t,z) € S(R x R?) and t € R.

Since the linear term g4 in (2.5) may not belong to Lg/L;, for admissible
(g,7) (because (ga2,72) = (2,00) is not admissible), we cannot apply Lemma 2.1
(b) to g4. Instead, we will use the following to deal with g4.

Corollary 2.1.  Let (q,7) be admissible and let s > 1. Then there exists
a positive number C' such that

< CHQHL’;‘L?;‘S

(2.12) ‘
LiLy

/ et =9L P g(s, - )ds
R

for every g(t,z) € S(R x R?) and t € R.

Using a lemma by Christ and Kiselev [9], we see that Corollary 2.1 imme-
diately follows from Lemmas 2.1 and 2.2 (see [43]).
The proof of Lemmas 2.2, 2.3 and Corollary 2.1 will be given in Section 4.

3. Proof of Theorem 2.1

In this section, we will prove Theorem 2.1. To eliminate g; in (2.5), we
put

(3.1) w(t) = e 0 Oy(t).

Then (2.5) is translated into the integral equation

t
(3.2) w(t) = e aw(0) —i Z / et Le=008) g (5)ds.
2<5<4 0
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All nonlinear terms in (3.2) can be estimated in terms of the following.

My(T) = sup |E(t) = B.|, Ma(T) = (&) Pawll 20 111,
0<t<T

M3(T) = [(z) " *Pawl| 20,711,
My(T) = sup ||Pew(®)llmr + [[Pewll pg o 7w 20y
0<t<T

Ms(T) = sup |[Paw(t)llm + [ Paw] oo pawi2m).
0<t<T

where 2/g=1—1/p.

Proof of Theorem 2.1. By Proposition 2.1, Remark 1 and (2.6),

(Op¢p,¢8) = O(IE = EJ¥P~D7N, |(0,05¢5)| S |E — B/ "~D7|u]| 2.

Thus by (2.8), we have
(3.3) 0t) = E@®)] S 162.800° |11 + 162,80 f ()| 21,
(3.4) IEM)| S o120l + 61,800 F ()] 1

Suppose that the decomposition (2.4) with (2.6) persists for 0 < ¢ < T and
that M;(T') (1 < i < 5) are bounded. Egs. (3.3)—(3.4) imply that

16 = Ell o) + 1Bl 0,)
< C(M)(H¢1,E(t)v2”Ll(O,T;L}:) + ||¢2,E(t)U2||L1(O,T;L}C))
+ CM) (11,20 f ()l 21 0.1521) + 12,200 F ()21 (0,7:L1))

(3.5)
2s 2
<CcM) Z ||<x> i, B (1) HLoc(o,T;Lgo) ”U”Lf(O,T;Hi'_S)
i=1,2

< C(M)(M(T) + M (T))?,

and
||9 — Ellpo,m) + ||E||L°°(0,T) < sup (|[ollf + [0l
0<t<T
< C(M)(M4(T) + Ms(T))*.

Hereafter we denote by C(M) various functions of My, ..., M5 that are bounded

in a finite neighborhood of 0. By (2.7) and (3.5),
(3.7) My (T) < [|uoll g + C (M) (M + Ms)?.

From Remark 1 and (2.6), it follows that
(w(t), )] < ol gz D 1(2)*(di.p = 822
i=1,2

~

SIE#) = Edlllwl 2.,
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and that
(3.8) My (T) < C(M)M (T) (M(T) + My (T)).
Similarly, we have
(3.9) M5 (T) < C(MML (T) (My(T) + M5 (T)).
Next, we will estimate My (T'). By (3.2),
Mo(T) < I + I2 + I3 + Iy,
where

I = ||le" " Paw(0) ||L§(O7T;H;,_S),

)

¢
I = /e_i(t_s)Lchg(s)ds
0 L2(0,T;Hy ~%)

I3

)

L3(0,T;Hy ~*)

/t eI P f(u(s))ds
0

t
I, = /e_i(t_s)Lch(s)ds
0

L2(0,T3Hy %)
and g(s) = g3(s) + ga(s) — f(v(s)). Lemma 2.2 yields
I S [[w(0)]| -

By Lemma 2.3, (3.5) and (3.6),

I 3 ||ch2||L§(0,T;H§.*S)

< 1Pbe) | oo o iy 16 = Ellzo,m) + 1 PeO8Sm0) | oo 0. st oy 1Bl 22 0,7)

< C(M)M(T) =D (Mo (T) + Ms(T) + M4 (T) + M5(T))>.

Note that ||P.0g¢e|m < |E — E.|Y®=Y follows from Proposition 2.1. By
Minkowski’s inequality and Lemma 2.2,

T
B 5 [ 1 R oy

T
S [ 1) s
0
N 1 e
where 2/g + 1/p = 1. Note that p > ¢ > 2 if p > 3. Thus we have

I3 < C(M)(My(T) + M5(T))P.



608 Tetsu Mizumachi

Since § = O(¢% o] + ¢pp|v[P~1), Lemma 2.3 yields that
Iy § ||§||L§(O,T;H;’S)
(3.10) S ||<x>25¢%7(t1)||L?°(0,T:W§’°°)HU”L?(O,T;Hi’_S)
+ [{z)*bp @) HL;’O(O,T;W;"X’) [oP~! 220,11
Since
-1

P~z < Tollwree-vse-2 102 2e-n S IR0 /0-2

it follows from (3.10), Proposition 2.1 and the interpolation theorem that

-1
I, < C(M) <||U|Lf(O,T;H;}S) + |U”if“’”(O,T;W;‘z“’”/(”z)))
< C(M){M (T)(My(T) + M3(T)) + (My(T) + M5(T))P~*}.
Combining the above, we see that

(3.11) My(T) < C(M) 37 My(T)?

1<i<5
Finally, we will estimate My(T). In view of (3.2),

My(T) < Jy + Jo + Js,

where
_ || —itL

S =]e PCw(O)|’L°°(O,T;H;)HLQ(O,T;Wi'Z’J)
t

Jo = ‘/ e =IL P go(s)ds ,
0 Lo (0,T; HL)NLa(0,T;Wa2P)
t

JQ = ‘ / e—i(t—S)LPC(gg(s) + g4(s))ds '
0 Lo (0,T;HL)NL(0,T; W, ?P)

Using the Strichartz estimate (Lemma 2.1), we have
J1 S lw()a,
J2 S ||Pc92(3)||L,%(0,T;H;)d5

S0 = Ellpior) sup [Pedpmla + 1B ior) sup ||[Pededp |-
t€[0,T] te[0,T]

Hence by (3.5),
Jo < C(M)(Ma(T)? + M3(T)?).

Using the Strichartz estimate and Corollary 2.1, we have

I3 S Nlgs + 9all g 0,72+ 20,7520
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. —1
Since g3(t) + g4(t) = O(¢%(t)|v| + |v]P),

g3 + gall L1 0,711y L2 00,1312 )

S 15wl 2o mmiey + 1F @)Ltz

f5”<“”28¢%§$”L?XOwaé’w)”””L%ULTmH;‘S)4’”””zzaxTnv;2P>””HQ%QOJHH;r
Thus we have

J3 < C(M){My(T)(M4(T) + M5(T)) + (My(T) + M5(T))P}.
Combining the above, we have
(3.12) My(T) < C(M) Z M;(T)?.
1<i<5
Tt follows from (3.7)—(3.9), (3.11) and (3.12) that if ¢ is sufficiently small,

(3.13) > M(T) S [fuollan-

1<i<5

Thus by continuation argument, we may let T — oo. By (3.5), there exists
an By < 0 satisfying lim;_,o, E(t) = F; and |E; — E,| < |lug| g:- In view of
(3.13), we see that

¢
wy = —i lim Z / el P.e ) g (s)ds
0

t—o0
2<j<4
exists in H! and that

il S Mo lnsms + 95 + gallszros oy
S lluollar
tlim | Paw(t) — e~ (Paw(0) + wy)| g2 = 0.
— 00

By [39], we have ||e= L P,f||pa < t='/2||f||1ass. Since LY3(R?) N HY(R?) is
dense in H'(R?), it follows that ||e”**(P.w(0) + wy)|[z+ — 0 as t — oo, and
that

| Pew(t)|| L
(3.14) < || Paw(t) — e (Paw(0) + wy) || g + || Pee™E (Paw(0) + wy)|| 14

—0 ast— oo.
Analogously to (3.8), we have

(3.15) [Paw®)| g S [[Paw(®)lls S |E() — Euf[| Pew(t)] 14
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Combining (3.14) and (3.15), we have lim;_, o ||Pgw(t)|| g1 = 0. Thus by (2.4)
and (3.1),

. o) L _
Jim Hu(t) =0 g — e Py(w(0) + wl)HHl — 0.
Thus we complete the proof of Theorem 2.1. O

4. Dispersive estimates

Let R(\) = (L — \)~! and dE,.()\) be the absolute continuous part of the
spectrum measure. By the spectral decomposition theorem, we have

Pee™ " f = / N e " dEqc(A) f
(4.1) I°° o
= 5= e MAP(R(A 4 i0) — R(X —i0)) fd.

We will prove Lemma 2.2 by using Plancherel’s theorem and the following
estimate on the resolvent R(\).

Lemma 4.1. Let s > 1. Then there exists a positive constant C' such
that

1R £ 0)Pefll 12 0,00:22 %) < Cllf 2
for every f € L*(R?).
First, we prove Lemma 2.2 assuming Lemma 4.1.

Proof of Lemma 2.2. By the inversion of the Laplace formula (see [30]),
we have

1

—th
P.f=
of = 27

/ dre "M (R(X +i0) — R(\ —i0))P.f
(st) ) .
= 227/ dAe "3 (R(A +1i0) — R(A —i0))P.f in S,(R?)
—o0
for any t # 0 and f € S,(R?). Since
Ho”!f\R(/\ + ’iO)PC||B(Lz.j+1/2+0’Lz.—(j+1/2)70) 5 </\>_(j+l)/2,
the above integral absolutely converges in Li’_(j F2=0 g j>2.

Suppose g(t,z) = g1(t)g2(x), g1 € C5°(R\ {0}) and g» € S(R?). Making
use of Fubini’s theorem and integration by parts, we have for j > 2,

(e P f, g)

:m/dm mﬂ<wmywwm%mwmmmm

= % d)\aj ((R(A+10) — R(A —10))P.f, g2), /_00 dt(’it)_jgl(t)e_iM
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Hence it follows from the above that

(7™ P.f.g) =

/ T AN (RO 10) — RO— 0))Pof, Frg(h ),

211 J — o
for every g € C§°(R; \ {0}) ® S(R2). Using Plancherel’s theorem, we have
|<6_itLPcfa g>t,m|
1 oo
< — dA||(R(A +10) — R(A —40)) P, —s
12) <= [ DRG0 - RO- )P,

< 2m) (RN +00) — RO\ = i0) Pefll 2 (g, 00,22 )

Frg(A,-) ||Li

g“LfLi‘S'

Since C§°(R; \ {0}) @ S(R2) is dense in L?L?*, Lemma 2.2 immediately follows
from (4.2). O

Now, we turn to prove Lemma 4.1. First, we will investigate the free
resolvent operator Ro(\) in R2.

Lemma 4.2.  There exists a positive constant C' such that

sup [[Ro(A £40) f[ 12 (0,00) < CIIfI 2

for every f € L?(R?).

Remark 3.  Obviously, the estimate || Ro(A£i0)|| p(p2.e. p2.-s) S (A) /2
does not suffice to prove Lemma 4.2. We will use the boundedness of the Hankel
transform in Lfad.

Proof of Lemma 4.2. For any k > 0, we have
9, . +i
Ro(k™ £10)f(2) = — . Ho(klz —y|)f(y)dy,

where Hgt are the Hankel functions of order 0 and
Hi(2) = Jo(2) £ Yo(2).

Let (1 f)(y) := f(z—y) and decompose 7, f € L*(R?) into a Fourier series
as

Tof = Z fz,m(r)eime e @ eimaLfad.

meZ mEZ

Then

Ro(k? £10)f(0) = 5 [ HE ko) f )iy

==y

5 /000 Hoi(kr)fmyo(r)rdr.
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Titchmarsh [49] and Rooney [36] tell us that the operators Ty and Tb defined
by

1) = [ " holay) ()dy, Taf(x) = / " Yo(ay) f()dy.

are bounded on L%ad. Thus we have

x

oo 1/2
sup ([ o0 £ i0) 20k S ol
0

Since

o 1/2
£z = |72 fllz2 = (27r Z/O |fx7m(r)|2rdr> ,

MEZL
it follows that

sup || Ro(A & io)f”Li(O,oo) S fllze-
x
Thus we complete the proof of Lemma 4.2. O

We will prove Lemma 4.1 by using Lemma 4.2 and the resolvent expansion
obtained by Schlag [39] based on Jensen and Nenciu [15].

Before we prove Lemma 4.1, let us introduce a definition of the non-
resonance condition given by Jensen and Nenciu [15].

Definition 4.1.  Let v(z) = |V (z)|*/? and let P and @ be orthogonal
projections defined by
{f,v)v

P frd 5 :pr.
= Wie @

We say that 0 is not a resonance of L if Dy := Q(U + vGyv)Q is invertible on
QL2(R?),

Proof of Lemma 4.1. For every f € S(R?), we have
(4.3) RO\ £ i0)f = Ro(A £ i0)f — Ro(\ £ i0)VR(A % i0) .
By Lemma 4.2, there exists a C' > 0 such that for every f € L%(R?),

[Ro(A £40) fll 122 12 (0,00) < 1) Il 2 [ Bo(A £ 00) fll Lo 23 (0,00)

4.4
o < Cllfla-

Next, we deal with the low energy part of the second term of (4.3). As [15,
39], we put U(z) = 1 for x € V=1([0,0)), U(z) = —1 for z € V71((—0,0)),
and M*(\) := U + vRy(A £i0)v. Then

Ro(A £i0)VR(A £ i0)f = Ro(X £ i0)v M~ (X\) " twRo(\ % i0) f.
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Schlag [39, Lemma 9] tells us that
(4.5) MEN) " =he(V\)7IS +QDoQ + EX(N)  in B(L*(R?)),

where S is a finite rank operator, ||[E£(\)||p(z2) = O(A/4) as A — 0, and

(4.6) hi(A) =alogh+z, h_(A) =h(\),

and a € R and z € C are constants with a # 0 and 3z # 0.
Let A1 be a sufficiently small positive number. From [39, Lemma 5|, it
follows that for 0 < A < Aq,

(4.7) Ro(A£1i0) = c£(\) Py + Go + EF (\) in B(L**, L>7*),
and
(4.8) IES (M B(r2s,p2-+) = O/,

where Pof = (f, 1)z, Go = (—A)™!, 7 is the Euler number and

Y 1 A
4. =4- - ] 2.
(49) s =2 - o - o (7)

Thus RE(A\) = Ro(\ +i0) — cx (\) Py satisfies

(4.10) sup ||I§§(/\)HB(L2,S,L2,75) < 00.
0<A< A

Let x(A) be a characteristic function on [0, A1]. Using Lemma 4.2, (4.5),
(4.10) and the fact that v(z) < (z)~7/2 with ¢ > 3, we have

IO RS (Ao (3) " 0Ro(A % 80) £ 12 0 serzz )

< sup ”R(T(/\)”B(LZS,LZ*S)
0<A< A

< IX(AwRo(A £ i0)f]l 2 |
< llollzz sup | Ro(A £ i0) 13 0.0y < 112

[IX()odE () oRe(A % i0) ] 2

L3(0,00)

for any s € (1,3/2). Since Pyv@ = 0, it follows from (4.5) that
ENPowMEN)"WwRy(A£i0) = 1) + I,
where

I = ¢F(MNhe(N) L PywSvRy(\ £ i0),
I, = ¢F(A\)PowEE (A\)vRo (X £ i0).
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By (4.6), (4.9), supg<a<y, lcx(A)/h+ ()| < oo. Hence from Lemma 4.1,

11112 0 serzz oy < 1) ~*llz2 [0S0 Ro(A £ i0) ]2 0.00112)
S llvllpz lvRo(A £ io)fHLi(o,oo;Lg)
< [lvlIZ2 sup [ Ro(A 0) £l 2 (0,00)

S Ifllez-

Using Schwarz’s inequality and (4.8), we have

|PovE* (\vRo(A £0) f 2.+ S ollzz| E* (\)vRo(A £ 0) f| 2
S I [oRo(A £ 00) £ 2.

Hence it follows that
XVl 2012y % 590 (XOOA e W) ) loRo(r % 0) 12
S sup [[Ro(A % i0) fll 3
S llze-
Combining the above, we obtain

(4.11) IX(A) Bo(A £ i0)VRA +0)fll 12 (0 005225y S [1f |22

Next, we consider the high energy part. The assumptions (H2) and (H3)
imply that

(4.12) sup [[R(A £40)Pe gz p2—s) S (M) Y2,
A>A\q

See [1, Appendix A] and [27] for the proof. Let x(A\) = 1—x(A). By (4.12) and
Fubini’s theorem,

I X PR\ == 10)V Ro(A == 10) [ 2 (0 12

)
(4.13) S [IVRo(A £i0) f]| 2. L2 (0,00)
< [V llz2oe sup [|[Ro(A £i0) fll 23 (0,00) S 1]l z2-

Combining (4.3), (4.4), (4.11) and (4.13), we obtain
||R()\:l:Z’O)PcfHLi(O,OO;L%*S) S C||f||L2
Thus we complete the proof of Lemma 4.1. O

Next, we will prove Lemma 2.3. For the purpose, we need the following.
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Lemma 4.3.  Assume (H1)—(H3). Let g(t,x) € Si(R) ® S.(R?) and

Ut,z) = \/;_m /_Oo dhe "M RN —i0) + RO+ i0)} Po(F g (N, -).

Then,

t 0
Ult,z) = 2/ dse =L p g(s,) + / dse =L P g(s, )
0

— 0o
— / dse” =P g(s, ).
0

Proof. Since Lemma 4.3 can be proved in the same as that of Lemma 11
in [26], we omit the proof. O

Proof of Lemma 2.3. Suppose that g(t,z) and h(t,z) belong to S¢(R) ®
S.(R?). Tt follows from Fubini’s theorem that

<U7 h>t,;v
- ;m /_‘: dA /_Z dte™" ((R(A +10) + R(A — i0)) P.F; 'g(X, ), h(t, ),
=i /°° AN {(R(A+i0) + R(X — i0)) P.Fy P g(A, ), Feh(N, ), -

Using Plancherel’s theorem and (4.12), we obtain
(U Bt e
< (RO +10) + RO = i0) PoF 9N )| 2 o 1FeR (N ) 3 12
S ?\ug ||(R(/\ + ZO) + R()\ — iO))PcHB(LQ,s)LQ,—S)
€

|g||LgL§v*5 h”L’;’Lfbg
Since S;(R) ® S, (R?) is dense in L?L%* and L?L2%~%, we see that
(4.14) ”U”L%’Li’_s < ||9||L§Li’s

holds for every g € LZL2%.
On the other hand, Lemma 2.2 implies

] [ty <[ feratoas
L2LY " I

I
for every g € L?L2* and I C R. Combining the above with (4.14) and Lemma
4.3, we obtain Lemma 2.3. Thus we complete the proof. 1

S ||9||L3Li'5
L2

Finally, we prove Corollary 2.1.

Proof of Corollary 2.1. Let (g,r) be admissible and let T' be an operator
defined by

Ty(t) :/dse_i(t_S)Lch(s).
R
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Lemmas 2.1 and 2.2 yield f := [ e"**P.g(s)ds € L*>(R) and that there exists
a C' > 0 such that

(4.15) ITg() ey < Cligllpz 2

for every g € L?L2%. Since ¢ > 2, it follows from Lemma 3.1 in [43] and (4.15)
that

S ||g||L3L%5'

(4.16) ‘
LiLy

/ dse™ =L P g(s)
s<t

Thus we prove Corollary 2.1. |
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