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The Chow ring of the moduli space
of bundles on P

2 with charge 1

By

Yasuhiko Kamiyama and Michishige Tezuka

Abstract

For an algebraically closed field K with ch(K) �= 2, let
OM(1, SO(n, K)) denote the moduli space of holomorphic bundles on
P

2 with the structure group SO(n, K) and half the first Pontryagin index
being equal to 1, each of which is trivial on a fixed line l∞ and has a
fixed holomorphic trivialization there. In this paper we determine the
Chow ring of OM(1, SO(n, K)).

1. Introduction

Let G be a compact connected simple Lie group. The fact π3(G) ∼= Z leads
to the classification of principal G-bundles Pk over S4 by the integer k in Z.
Denote by M(k, G) the moduli space based equivalence classes of G-instantons
on Pk. Let ik : M(k, G) → Ω3

kG be the inclusion. In [3] Boyer, Mann and
Waggoner posed an idea of constructing homology classes in H∗(M(k, G); Z/p)
from those in H∗(M(1, G); Z/p), where p is a prime. The crucial part of their
idea is as follows: (i) First they gave a description of M(1, G) in terms of a
homogeneous space. They also showed that the map i1 is a generalization of the
well-known J-homomorphism; (ii) Next they observed that a homology class
in H∗(M(k, G); Z/p), which is constructed from a class α ∈ H∗(M(1, G); Z/p),
can be shown to be non-trivial if one can show that i1∗(α) �= 0.

For G = SU(n) or Sp(n), an explicit topological type of M(1, G) is ob-
tained from the above description. Hence we can determine H∗(M(1, G); Z/p).
Then in [3] they considered the case G = SU(n) and proved that i1∗(α) �= 0,
where α ∈ H∗(M(1, SU(n)); Z/2) is an even dimensional generator.

For G = SU(n), the structure H∗(M(1, SO(n)); Z/p) was studied in detail
in [11]. At present, we know the following result ([10]): For G = SU(n), Sp(n)
or SO(n), the homomorphism i1∗: H∗(M(1, G); Z/2) → H∗(Ω3

1G; Z/2) is in-
jective. (In [10], the group Spin(n) is used for SO(n). But by the definition of
instanton moduli spaces, we have M(k, Spin(n)) = M(k, SO(n))).

Thus it is important to study the topology of M(1, G) to understand
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M(k, G). The purpose of this paper is to study an algebraic version of the
results in [11]. The motivation for the study is as follows:

Once defined algebraically, algebraic cycles can be considered. The dis-
tinction between topological and algebraic cycles is an eminent object to be
attacked. Hence our main concern of this note is to calculate the Chow ring
of M(1, G) explicitly (Theorem 4.1). The Chow ring of a classifying space is
studied by B. Totaro [21] and has valuable applications. Our approach will be
a first step to obtain a Chow ring of a threefold loop space Ω3

kG and a moduli
space M(k, G).

This paper is organized as follows. In Section 2 we define an algebraic
version of M(k, SO(n)). (See Definition 2.1.) For the case k = 1, we prove a
similar assertion to [3] which describes the space in terms of a homogeneous
space. (See Proposition 2.2.) In Section 3 we collect some facts on the Chow
ring of the related space Yn and prove the combinatorial results to describe
it explicitly. In Section 4 we determine the Chow ring of M(1, G). It turns
out that the additive structure has a four period. When we consider the ring
structure, it has an eight period. The relation to the Bott periodicity theorem
is recently given by Kishimoto [13].

We thank N. Yagita for turning our interest to the Chow ring and explain-
ing the paper [19].

2. An algebraic version of M(1, SO(n))

We fix a line l∞ ⊂ CP
2. Let SO(n, C) → E → CP

2 be a holomorphic
principal bundle such that 1

2 〈c2(E), [CP
2]〉 = k, E | l∞ is trivial and its holo-

morphic trivialization is fixed. Let OM(k, SO(n, C)) be the moduli space of
such bundles. Then according to Donaldson ([7]), there is a diffeomorphism

(2.1) M(k, SO(n)) � OM(k, SO(n, C)), n ≥ 5 and k ≥ 1.

In order to explain why E must be trivial on l∞, we construct a map
M(k, SO(n)) → OM(k, SO(n, C)). We define a map f : CP

2 → HP
1 by

f([z0, z1, z2]) = [z0 + z1j, z2] and set l∞ := {[z0, z1, z2] ∈ CP
2 : z2 = 0}. Then

f(l∞) = [1, 0].
As in Section 1, let SO(n) → Pk → S4 be a principal bundle. We identify

S4 with HP
1. By complexification the structure group, the bundle f∗(Pk)

induces a (topological) principal bundle SO(n, C) → Qk → CP
2. Since f(l∞) =

[1, 0], Qk | l∞ is trivial.
A connection A on Pk naturally defines a connection on Qk, which we

denote by f∗(A). It is known that if A is an instanton, then there is an
unique complex structure on the bundle Qk → CP

2 such that the connection
compatible with the complex structure is f∗(A). We denote by E → CP

2 the
bundle Qk → CP

2 with this complex structure. Since we can show that a frame
for A induces a holomorphic frame for E|l∞, we have the desired map.

We use the right-hand side of (2.1) to define an algebraic version of
M(k, SO(n)). Hereafter we denote by K an algebraically closed field with
ch(K) �= 2.
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Definition 2.1. Let n ≥ 5. We fix a line l∞ ⊂ P
2. Let OM(k, SO(n,

K)) be the moduli space of holomorphic principal bundles SO(n, K) → E → P
2

such that 1
2 〈c2(E), [P2]〉 = k, E|l∞ is trivial and its holomorphic trivialization

is fixed.

Recall that for a parabolic subgroup P of an algebraic group G, P is a
semidirect product of a reductive group called a Levi factor and its unipotent
radical Pu.

The main interest in this paper is the case k = 1. In this case, we have
the following:

Proposition 2.2. We set

Xn = SO(n, K)/(SO(n− 4, K) × SL(2, K)) · Pu,

where Pu denotes the unipotent radical of a parabolic subgroup P with a Levi
factor SO(n − 4, k) × GL(2, k). Then there is a biregular map

OM(1, SO(n, K)) � A
2 × Xn.

Remark 2.3. Consider the proposition for K = C. We set Wn =
SO(n)/(SO(n−4)×SU(2)). Note that there is a diffeomorphism Xn � R×Wn.
The proposition and (2.1) tell us that M(1, SO(n)) � R

5 × Wn. This is in
agreement with [11, Proposition 1], since by the definition of instanton moduli
spaces, we have M(k, Spin(n)) = M(k, SO(n)).

For the rest of this section, we prove Proposition 2.2. For that purpose,
we need the following:

Lemma 2.4. Let Cn be the space of n × 2 matrices c with coefficients
in K satisfying:

(i) cT c = O,
(ii) rank c = 2.

The group SL(2, K) acts on Cn from the right by the multiplication of matrices.
Then there is a biregular map

OM(1, SO(n, K)) � A
2 × (Cn/SL(2, K)).

Proof. For K = C, an algebraic description of OM(k, SO(n, C)) was
proved in [20, Proposition 1.8] and restated in [15, Proposition 1]. About these
propositions, we use the following three remarks.

First, in the former proposition, the rank condition as in the latter propo-
sition item d) is forgotten. Hence we need to add the condition.

Second, in these propositions, the results are stated as an algebraic de-
scription of M(k, SO(n)). But strictly speaking, they are a description of
OM(k, SO(n, C)), and using (2.1), the description is interpreted as that of
M(k, SO(n)).
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Third, the proof of the propositions is given in [20, pp. 180–183]. The
crucial step is to use an SO(n, C) monad over CP

2 as in [16]. It is easy to
see that the monad remains valid even if we generalize C to K. Hence, if
we generalize C to K in these propositions, then we have a description of
OM(k, SO(n, K)).

Under this modification, we consider [15, Proposition 1] for k = 1. Then
the items a) and b) in Proposition 1 in [15] tell us that γ1 = uI2 and γ2 =(

0 v
−v 0

)
, where u, v ∈ K. Moreover, the item c) tells us that c is an n ×

2 matrix with coefficients in K such that cT c = 0. Finally the item d) is
equivalent to the assertion that rank c = 2.

Note that Sp(1, K) = SL(2, K) and take an element g from this. Then
about [15, Proposition 1], we have gγ1g

−1 = γ1 and (g−1)T γ2g
−1 = γ2. Hence

Lemma 2.4 is clear from the proposition.

From Lemma 2.4, it suffices to prove Xn � Cn/SL(2, K). We prove this
for the case n = 2m. (The case n = 2m + 1 can be proved similarly.) Recall
that in [2], SO(n, K) is defined as follows: Let q(x) be a quadratic form on
A

n defined by q(x) =
∑m

i=1 xixm+i, and let B(x, y) be the associated bilinear
form. Then SO(n, K) is defined by

SO(n, K) = {σ ∈ Aut(An) : B(σ(x), σ(y)) = B(x, y) for x, y ∈ A
n}.

We write c =




z1 w1

...
...

zn wn


 ∈ Cn and set

xj = zj +
√−1zj , xm+j = zj −

√−1zj , yj = wj +
√−1wj

and ym+j = wj −
√−1wj ,

where 1 ≤ j ≤ m. Then Lemma 2.4 (i) is transformed into

q(x) = q(y) = 0 and B(x, y) = 0.

Clearly SO(n, K) acts on Cn. It is easy to prove the following lemma. (See [2,
V23.4].)

Lemma 2.5.

SO(n, K)/SO(n− 4, K) · Pu � Cn,

where Pu is the unipotent radical of a parabolic subgroup with a Levi factor
SO(n − 4, K) × GL(2, K).

Now Proposition 2.2 follows from the above lemma.
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3. The ring of CH ·(Yn)

First we recall basic facts on the Chow ring. We suppose that an algebraic
variety V is defined over K. Let CH ·(V ) denote the Chow ring and CHi(V )
the subgroup of CH ·(V ) generated by the cycles of codimension i.

Theorem 3.1 ([4]). (i) Let V be a nonsingular variety, X a nonsin-
gular closed subvariety of V , and U = X − V . Then there exists an exact
sequence

CH ·(X) i∗→ CH ·(V )
j∗
→ CH ·(U) → 0,

where i : X → V (resp. j : U → V ) is a closed immersion (resp. an open
immersion).

(ii) Let π : E → V be a fiber bundle with an affine space A
n as a fiber.

Then the induced map π∗ : CH ·(V ) → CH ·(E) is an isomorphism.
For the definitions of i∗ and j∗, see also [9].

The Chow ring of the following projective variety is well-known.

Theorem 3.2 ([1], [6]). Let G be a reductive algebraic group and P a
maximal parabolic subgroup. Then

(i) a quotient G/P is a nonsingular projective variety.
(ii) CH ·(G/P ) is generated by the Schubert varieties.
(iii) CH ·(G/P ) is independent of the field K. Moreover, CH ·(G/P ) �

H ·(G/P, Z) for K = C.

Before describing the results, we need some notations and results. We set

Yn = SO(n, K)/(SO(n− 4, K) × GL(2, K)) · Pu.

Then we have a principal bundle

(3.1) Gm → Xn
π→ Yn.

In this section we determine the ring structure of CH ·(Yn). The cohomologies
H ·(Yn)⊗Z/p is given in [11]. By Theorem 3.2 (ii), (iii), we obtain the following
theorem:

Theorem 3.3 ([11]). We have an isomorphism as modules:
(1) For n = 2m,

CH ·(Yn) ⊗ Z/2 � Z/2[c1, c2]/(bm−1, c2bm−2) ⊗ ∆(v2m−4, v2m−2)

where |c1| = 1, |c2| = 2, |bi| = i, |vi| = i
2 and ∆(x1, x2) is a graded algebra over

Z/2 with a Z/2-basis {x1, x2, x1x2}.
(2) For n = 2m + 1,

CH ·(Yn) ⊗ Z/2 � Z/2[c1, c2]/(bm−1, c2bm−2) ⊗ ∆(v2m−2, v2m),
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Theorem 3.4 ([11]). Let p be an odd prime. Then we have a ring iso-
morphism:

(1) For n = 2m,

CH ·(Yn) ⊗ Z/p � Z/p[c1, c2, χ2m−4]/(c2χ2m−4, χ
2
2m−4 − dm−2, dm−1),

where χ2m−4 ∈ CHm−2(BSO2m−4) is the Euler class, and |di| = 2i.
(2) For n = 2m + 1,

CH ·(Yn) ⊗ Z/p � Z/p[c1, c2]/(dm−1, c
2
2dm−2).

Here bi, di and vi are defined by the following. In a polynomial ring Z[α, β],
we set c1 = α + β and c2 = αβ. Then bk and dk are defined by

bk = (−1)k
k∑

i=0

αiβk−i

and

dk = (−1)k
k∑

i=0

α2iβ2k−2i.

The element v2r ∈ CHr(Yn) is defined by
(1) For n = 2m,

(3.2)

{
2v2m−4 = χ2m−4 − bm−2

2v2m−2 = bm−1.

(2) For n = 2m + 1,

(3.3)

{
2v2m−2 = bm−1

2v2m = c2bm−2.

Lemma 3.5. We have

bk = (−1)k

[ k
2 ]∑

µ=0

(−1)µ

(
k − µ

µ

)
ck−2µ
1 cµ

2

and

dk = (−1)k
k∑

µ=0

(−1)µ

(
2k − µ + 1

µ

)
c2k−2µ
1 cµ

2 .

Proof. From (3.2), we have a relation

bk+1 = −c1bk − c2bk−1.
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By induction,

bk+1 = (−1)k+1

[ k
2 ]∑

µ=0

(−1)µ

(
k − µ

µ

)
ck+1−2µ
1 cµ

2

− (−1)k−1

[ k−1
2 ]∑

ν=0

(−1)ν

(
k − 1 − ν

ν

)
ck−1−2ν
1 cν+1

2

= (−1)k+1

[ k−1
2 ]+1∑
µ=0

(−1)µ

((
k − µ

µ

)
+
(

k − µ

µ − 1

))
ck+1−2µ
1 cµ

2

= (−1)k+1

[ k−1
2 ]∑

µ=0

(−1)µ

(
k + 1 − µ

µ

)
ck+1−2µ
1 cµ

2 .

For dn, a relation dn+1 = (−c2
1 +2c2)dn − c2

2dn−1 holds. The formula is proved
in a similar way.

Lemma 3.6.
h∑

µ=0

(−1)µch−µ
2 b2µ = dh.

Proof. In Z[α, β], we see that

2k∑
i=0

αiβ2k−i −
2k∑

j=0

α2jβ2k−2j = αβ

(
k−1∑
i=0

α2jβ2k−2−2i

)
.

Hence, we have

dk = (−1)kb2k + c2dk−1.

Then the assertion follows by induction.

Lemma 3.7. We set fn(x) = (1 + x)n − (1 + xn) and write fn(x) as

fn(x) =
[n
2 ]∑

µ=1

an,µxµ(1 + x)n−2µ.

Then we have

an,µ = (−1)µ+1 n

µ

(
n − 1 − µ

µ − 1

)
.

Especially, the term an,µxµ(1 + x)n−2µ in fn(x) for µ = [n
2 ] is given by{

(−1)s+12xs for n = 2s

(−1)s+1(2s + 1)xs(1 + x) for n = 2s + 1.
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Proof. We have

fn(x) = (1 + x)fn−1(x) + x(1 + x)n−2 − xfn−2(x).

Comparing the coefficients of the both sides, we get

an,1 = an−1,1 + 1, n ≥ 3

an,µ = an−1,µ − an−2,µ−1, µ = 2, 3, · · · ,

[
n − 1

2

]
.

By induction, we see that

an,µ = (−1)µ+1 n − 1
µ

(
n − 2 − µ

µ − 1

)
− (−1)µ n − 2

µ − 1

(
n − 2 − µ

µ − 2

)

= (−1)µ+1 n

µ

n − µ − 1
µ − 1

(
n − 2 − µ

µ − 2

)
= (−1)µ+1 n

µ

(
n − 1 − µ

µ − 1

)
.

The following lemma is proved in the same way as in [11, Lemma 3.8].

Lemma 3.8. For a prime p, we abbreviate CH ·(Yn) ⊗ Z(p) as
CH ·(Yn)(p). If p is odd, we have the following isomorphism of modules:

(i) For n = 2m,

CH ·(Yn)(p) � Z(p)[c1]/(c2(m−1)
1 ){1, χ2m−4} ⊕

m−2⊕
i=1

Z(p)[c1]

/(c2(m−1−i)
1 ){c2i−1

2 , c2i
2 }.

(ii) For n = 2m + 1,

CH ·(Yn)(p) �
m−2⊕
i=0

Z(p)[c1]/(c2(m−1−i)
1 ){c2i

2 , c2i+1
2 }.

By using above lemmas and the integral basis, we can determine the ring
structure of CH ·(Yn) . However it is too complicated to describe all the results
here. The explicit results are written down in [12]. The above lemmas are also
used in the proof of Theorem 4.1 in the next section.

4. The Chow ring of Xn

Let X̃n = Xn ×Gm
A1 be the associated bundle of (3.1) and s : Yn → X̃n

the 0-section. Since s∗ : CH ·(X̃n) ∼→ CH ·(Yn) by Theorem 3.1 (ii), the first
assertion of the same theorem for V = X̃n and X = s(Yn) gives an exact
sequence

(4.1) CH ·(Yn) ·c1→ CH ·(Yn) π∗
→ CH ·(Xn) → 0.
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Theorem 4.1. Let T (Xn) and F (Xn) be the torsion part and the free
part of CH ·(Xn), respectively. Then we have a ring isomorphism:

(i) For n = 4t,

F (Xn) � Z[c2]/(ct
2){1, v4t−4}

T (Xn) � Z/2[c2]/(ct
2){v4t−2, v4t−4v4t−2},

ct
2 = (−1)t2c2v4t−4, v2

4t−4 = (−1)ttct−1
2 v4t−4.

(ii) For n = 4t + 1,

F (Xn) � Z[c2]/(ct
2) ⊕ Z[c2]/(ct−1

2 ){v4t}
T (Xn) � Z/2[c2]/(ct

2){v4t−2, v4t−2v4t} ⊕ Z/(2t){ct−1
2 v4t},

ct
2 = (−1)t2v4t, v2

4t−2 = (−1)t+1tct−1
2 v4t.

(iii) For n = 4t + 2,

F (Xn) � Z[c2]/(ct
2){1, v4t} ⊕ Z{v4t−2}

T (Xn) � Z/2[c2]/(ct−1
2 ){c2v4t−2, c2v4t−2v4t} ⊕ Z/4{v4t−2v4t},

ct
2 = (−1)t2v4t, ct

2v4t−2 = 2v4t−2v4t, v2
4t−2 = (−1)ttct−1

2 v4t.

(iv) For n = 4t + 3,

F (Xn) � Z[c2]/(ct
2){1, v4t}

T (Xn) � Z/2[c2]/(ct
2){v4t+2, v4tv4t+2} ⊕ Z/(2t + 1){ct

2v4t},
ct
2 = (−1)t2v4t, v2

4t = (−1)t+1tct
2v4t.

The other relations (e.g., v2
4t−2 = 0 in (i)) are read from the additive

presentations.

Before we begin a proof, we need some preparations. Hereafter, we focus
on the case n = 4t + 1 mainly.

Lemma 4.2. We have a ring isomorphism for an odd prime p:
(1) For n = 2m,

CH ·(Xn)(p) � Z(p){χ2m−4} ⊕ Z(p){ci
2 | 0 ≤ i ≤ m − 2}.

(2) For n = 2m + 1,

CH ·(Xn)(p) � Z(p){ci
2 | 0 ≤ i ≤ m − 2} ⊕ Z(p)/mZ(p){cm−1

2 }.
Proof. We localize the exact sequence (4.1) at an odd prime p, and con-

sider the case n = 2m + 1. From Lemma 3.8(ii), a c1-torsion element with the
minimal degree is c2m−3

1 . Using dm−1 = 0 in CH ·(Yn)(p) by Theorem 3.4(2)
and Lemma 3.5, we have

(4.2) c1c
2m−3
1 = c2m−2

1 ≡ (−1)mmcm−1
2 mod Im(c1).
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Hence mcm−1
2 ∈ Im(c1).

The next c1-torsion element with respect to the degree is c2m−3
1 c2. Since

c2
2dm−2 = 0 in CH ·(Yn)(p) by Theorem 3.4(2), we see that (m − 1)cm

2 ∈
Im(c1) similarly. From (4.2), we note mcm

2 ∈ Im(c1). It implies that cm
2 ∈

Im(c1). Using a relation dm−1+(c2
1−2c2)dm−2 = −c2

2dm−3 repeatedly, we have
c2i
2 dm−1−i = 0. Repeating the above argument, we see that cm+i

2 ∈ Im(c1).
We have proved the assertion from the short exact sequence (4.1).

Lemma 4.3. For n = 4t + 1, there are relations in CH ·(Yn):
(1)

c2t−2
1 c2 =

t−1∑
µ=1

(−1)1+µ

(
2t − 2 − µ

µ

)
c
2(t−1−µ)
1 cµ+1

2 + 2v4t.

(2)

c2t−2
1 c2v4t−2 =

{
t−1∑
µ=1

(−1)1+µ

(
2t − 2 − µ

µ

)
c
2(t−1−µ)
1 c1+µ

2

}
v4t−2 + 2v4t−2v4t.

(3)

v2
4t−2 = (−1)t+1dt−1v4t.

Proof. (1). By (3.4) and Lemma 3.5, we have

2v4t = c2b2t−2 =
t−1∑
µ=0

(−1)µ

(
2t − 2 − µ

µ

)
c
2(t−1)−2µ
1 cµ

2 .

Hence we get the relation.
(2). The formula (2) follows from (1) immediately.
(3). We note that a homogeneous polynomial algebra Z[α, β] is identified

with an inhomogeneous ring Z[x] by x = β
α . The we have from (3.2)

{
c1 = 1 + x

c2 = x

and

{
bk = (−1)k 1−x2k+1

1−x

dk = (−1)k 1−x2k+2

1−x2
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Under the identification, we see that

(2v4t−2)2 + d2t−1 = (b2t−1)2 + d2t−1

=
(1 + x)
(1 + x)

· (1 − x2t)2

(1 − x)2
− (1 − x)

(1 − x)
· (1 − x4t)

(1 − x2)

= 2
(1 − x2t)
1 − x2

· x(1 − x2t−1)
1 − x

= 2(−1)t+1dt−1 · (c2b2t−2)

= 4(−1)t+1dt−1 · v4t.

Since d2t−1 = 0 in CH ·(Y4t+1) by Theorem 3.4 (2), we obtain the relation

v2
4t−2 = (−1)t+1dt−1v4t.

Proof of Theorem 4.1. For CH ·(Yn)(2), we can calculate the c1-image in a
similar but more complicated way as in Lemma 4.1 by using the table [12, 5.4].
While we do not repeat this argument, we obtain the additive presentation of
CH ·(Xn). Then a ring structure is given as follows: We consider the case (ii).
From Lemma 3.8(ii) and Lemma 4.3(1), we have

c2t−2
1 c2 ≡ (−1)tct

2 + 2v4t mod Imc1.

Hence we obtain ct
2 = (−1)t2v4t. The relation v2

4t−2 = (−1)t+1tct−1
2 v4t fol-

lows from Lemmas 3.5, 3.8(ii) and 4.3(3). Using the presentation of Theorem
(4.1)(ii) and Lemma 4.3(2), we have

c2t−2
1 c2v4t−2 ≡ (−1)tct

2v4t−2 + 2v4t−2v4t mod Imc1

and ct
2v4t−2 = 0.

Similarly we see that

ct
2v4t−2v4t = v2

4t = 0.

Next we consider the cycle map. The cohomology groups mean an étale
cohomology [8], [14]. All varieties are defined over K ′, which is a subfield of an
algebraically closed field K. Let l be a prime with (l, ch(K)) = 1. We denote
a locally constant sheaf µ⊗i

l by Z/l(i).

Corollary 4.4. The homomorphism cl : CHi(Xn) → H2i(Xn, Z/l(i))
is injective.
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Proof. Since (X̃n, Yn) is a smooth pair, we have the Gysin sequence as
in [5, Appendice 1.3.3] and [14, VI Remark 5.4]. Since the cycle map and
the Gysin map are commutative, we have the following commutative diagram,
where each row is exact:

CHi(Yn)
·c1−−−−−−→ CHi+1(Yn)

π∗
−−−−−−→ CHi+1(Xn) −−−−−−→ 0

?
?
ycl

?
?
ycl

?
?
ycl

H2i(Yn, Z/l(i))
·c1−−−−−−→ H2(i+1)(Yn, Z/l(i + 1))

π∗
−−−−−−→ H2(i+1)(Xn, Z/l(i + 1))

This corollary follows from this diagram.
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