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Locally Stein domains over holomorphically
convex manifolds
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Abstract

Let π : Y −→ X be a domain over a complex space X. Assume
that π is locally Stein. Then we show that Y is Stein provided that X is
Stein and either there is an open set W containing Xsing with π−1(W )
Stein or π is locally hyperconvex over any point in Xsing. In the same
vein we show that, if X is q-complete and X has isolated singularities,
then Y results q-complete.

1. Introduction

A well-known theorem due to Oka [Oka] states that, if D is a locally Stein
domain over Cn, then D is Stein. This remains true for domains over Stein
manifolds as well as over Cn ([DG]). Recently this has been extended to locally
Stein domains over Stein spaces with isolated singularities [CD]; namely the
following result is proved: (For definitions see Section 2.)

Theorem 0. Let π : Y −→ X be a locally Stein domain over a Stein
space X with isolated singularities. Then Y is Stein.

Alternatively, we can view this as an extension of Corollary 1 from [AN]
which is recovered when (Y, π) is schlicht over X. However, there Andreotti
and Narasimhan have proven a more general result, namely,

Theorem. Let X be a Stein space and D an open set in X which is
locally Stein. If there is a neighborhood W of Xsing such that D ∩W is Stein,
then D is Stein.

See [AN], Theorem 4. Note that, as is shown in loc. cit. Corollary 2,
the existence of W is superfluous if D is strongly pseudoconvex at any of its
boundary points lying in Xsing.
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134 Viorel Vâjâitu

The goal of this paper is to prove analogous results in the setting of lo-
cally Stein domains over singular Stein spaces, cf. Theorems 1.1 and 1.2 and
Corollary 1.1 from below.

Theorem 1.1. Let π : Y −→ X be a locally Stein domain over a Stein
space X. If there is an open neighborhood W of Xsing in X such that π−1(W )
is Stein, then Y is Stein.

Corollary 1.1. Let π : Y −→ X be a locally Stein domain over a Stein
space X. If π is locally hyperconvex over points in Xsing, then Y is Stein.

The existence of W , which is given in the subsequent Corollary 2.2, is re-
lated to a generalization of Stehlé’s criterion of Steinness [S] on Serre’s problem;
see Proposition 2.1 from below.

In particular, because the notion of a Stein space is invariant under nor-
malization, we get:

Corollary 1.2. Any locally Stein domain over a two dimensional Stein
space is itself Stein.

In the same circle of ideas we give another interesting generalization of
Theorem 0 which is recovered for q = 1.

Theorem 1.2. Let π : Y −→ X be a locally Stein domain over a q-
complete space X with isolated singularities. Then Y is q-complete.

Theorem 1.1 is a consequence, via the existence of resolution of singulari-
ties, of the subsequent “smooth” version.

Theorem 1.3. Let π : D −→ Ω be a locally Stein domain over a holo-
morphically convex manifold Ω. Let A be the analytic subset of Ω given as the
union of all positive dimensional compact analytic subsets of Ω.

Then D is holomorphically convex if, and only if, there is an open neigh-
borhood W of A in Ω such that π−1(W ) is holomorphically convex.

We remark that the existence of W is crucial as there are examples of even
non-holomorphically convex surfaces which cover compact surfaces; see e.g.,
[Na, pp. 451–452].

2. Preliminaries

Throughout this paper complex spaces are assumed to be reduced and
with countable topology. As usual, we abbreviate “plurisubharmonic” and
write “psh”.

Definition 2.1. Let X be a complex space. Following Stehlé [S] we say
that X is hyperconvex if X is Stein and there exist a continuous psh proper
function ϕ : X −→ [−1, 0).
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Locally Stein domains over holomorphically convex manifolds 135

The space X is said to be C0-pseudoconvex if there exists a continuous
psh exhaustion function ϕ : X −→ R. We may define similarly spaces that are
Ck-pseudoconvex, where k = 1, 2, . . . or C∞-pseudoconvex. For the latter, the
standard terminology in the literature is weakly 1-complete.

As examples we note that any holomorphically convex space is weakly 1-
complete. The converse is also true for complex spaces of dimension one. For
dimension ≥ 2 there are counterexamples, e.g. the total space of a topologically
trivial holomorphic line bundle F over a compact Riemann surface of genus one
such that there is no integer k �= 0 with F k analytically trivial.

Definition 2.2. Let π : Y −→ X be a holomorphic map between com-
plex spaces. We say that π is locally Stein (resp., locally hyperconvex) over
a set S ⊂ X if, for every point x ∈ S there exists an open neighborhood
V = Vx of x in X such that π−1(V ) is Stein (resp., hyperconvex). The set Y ,
or more precisely the couple (Y, π), is said to be a domain over X if π is locally
biholomorphic.

Lemma 2.1. Let Y be a C0-pseudoconvex space and π : Y −→ X a
holomorphic map into a Stein space X. If π has fibres Stein, then Y is Stein.

Proof. Let ϕ be the function displaying the C0-pseudoconvexity of Y and
ψ a smooth strictly psh function on X. Granting Runge approximation and
Grauert’s theorem characterizing Stein spaces, the lemma reduces to show that,
for any λ ∈ R, on the set Y (λ) := {y ∈ Y ; ϕ(y) < λ} there are continuous
strictly psh functions.

This is an obvious consequence of the following claim.

Claim. On each relatively compact open subset V of Y there are such
functions.

In order to do this, using Siu’s theorem [Siu] the following condition is
satisfied. Let L := V . Then there are Stein open sets Vj in Y and Dj in X,
j = 1, . . . ,m, such that:

1) For each index j one has π−1(Dj) ∩ L ⊂ Vj ;

2) {π−1(Dj)}j is a covering of L.

Select smooth functions ρj on X with compact support Sj contained in
Dj , 0 ≤ ρj ≤ 1, and such that {π−1(Sj)}j is still a covering of L. Let ψj be a
smooth strictly psh function on Vj , j = 1, . . . ,m.

Now, for every smooth strictly psh function ψ on X and for every constant
M > 0 we define a smooth function Φ on V by setting:

Φ(y) =
∑

ψj(y)ρj(π(y)) +Mψ(π(y)), y ∈ V.

Straightforward computations show that for M sufficiently large, this Φ be-
comes strictly psh on V , whence the proof of the lemma.
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Corollary 2.1. Let X be a holomorphically convex space and D an open
set of X such that D is C0-pseudoconvex. Then D is Stein if, and only if, the
trace of D on any compact irreducible analytic subset of X is Stein.

Proof. This follows easily from the above lemma using Remmert’s reduc-
tion for X.

Proposition 2.1. Let π : Y −→ X be a holomorphic map of complex
spaces such that X is Stein. If π is locally hyperconvex over X, then Y is Stein.

Corollary 2.2. Let π : Y −→ X be a holomorphic map of complex
spaces and A a Stein analytic subset of X. If π is locally hyperconvex over A,
then there is an open set W in X containing A such that π−1(W ) is Stein.

Proof of Corollary 2.2. Using Siu’s theorem, we may assume that X is
Stein. Now we let V := ∪x∈AVx, where Vx is an open neighborhood of x such
that π−1(Vx) is hyperconvex. By [Na3] there is a continuous psh function ψ on
X which is negative when restricted to A and if W := {ψ < 0}, then W ⊂ V .
Noticing that π|π−1(W ) : π−1(W ) −→ W is locally hyperconvex (over W ) and
W is Stein, the proof results by Proposition 2.1.

Proof of Proposition 2.1, begining. In order to proceed, we need the sub-
sequent Lemma 2.2 (due essentially to Kerzman and Rosay [KR] for two func-
tions). Before stating it, for practical purposes, we introduce the set H consist-
ing of all functions f : [−1, 0) −→ (−∞, 0) satisfying the following properties:

• limt→0 f(t) = 0;

• For any compact interval K in [−1, 0) one has supK f < 0.

Obviously the set H contains all functions h : [−1, 0) −→ (−∞, 0) such
that limt→0 h(t) = 0 and are either continuous or non-decreasing. It is worth
to observe that to any f ∈ H we may associate in a natural way two non-
decreasing functions f+, f− ∈ H by setting for t < 0:

f+(t) = sup{f(s) ; −1 ≤ s ≤ t}

and

f−(t) = inf{f(s) ; t ≤ s < 0}.
Notice also that f− ≤ f ≤ f+.

Lemma 2.2. Let {fν}ν be a sequence of functions in H. Then there is
a non-decreasing convex function χ ∈ H such that, for any ν, µ ∈ N,

(�) lim
t→0

χ(fν(t))
χ(fµ(t))

= 1.
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Proof of Lemma 2.2. We follow the idea due to Kerzman and Rosay [KR]
with some modifications due to the presence of infinitely many functions.

For a sequence of points −1 = r0 < r1 < · · · < rn < · · · < 0 we define
a function χ ∈ H as follows: χ = −1 on [−1, r1], χ(rn) = −1/n for n > 1
and affine between rn and rn+1. This gives that χ is non-decreasing. To get
convexity it suffices to impose 4|rn| < |rn−1| for n > 1.

Now we precise the choice of rn in order that (�) is fulfilled. By hypothesis
there is a sequence {εn}n of negative numbers, strictly increasing to 0, such
that ε1 = −1 and for all n it holds:

max{f+
1 (εn), . . . , f+

n (εn)} < 4 min{f−1 (εn+1), . . . , f−n+1(εn+1)}.
Then put

rn :=
{

max{f+
1 (εn), . . . , f+

n (εn)}, if n is even;
min{f−1 (εn), . . . , f−n (εn)}, if n is odd.

Now we verify that the function χ has the desired properties. Granting the
above discussion, one has to check only the assertion (�).

Fix ν and µ. Let n large; e.g. n ≥ max(ν/2, µ/2)+1. For ε2n−1 ≤ t < ε2n

it follows that r2n−1 ≤ fν(t) ≤ r2n and similarly for fµ(t). Thus

2n− 1
2n

≤ χ(fν(t))
χ(fµ(t))

≤ 2n
2n− 1

.

In the same way, if ε2n ≤ t < ε2n+1 then

2n− 1
2n+ 2

≤ χ(fν(t))
χ(fµ(t))

≤ 2n+ 2
2n− 1

.

Then (�) follows immediately, whence the lemma.

Proof of Proposition 2.1, ending. A first idea is to carefully examine the
technique developped by Stehlé [S] where the case of locally analytically trivial
holomorphic fiber bundle with hyperconvex fiber is treated.

However, we give a proof which avoids Stehlé’s m-plurisubharmonicity and
use instead the approaches in [KR] and [P1].

We start by choosing open coverings {V ′
i }i, {Vi}i and {V ′′

i }i of X such
that V ′

i ⊂⊂Vi ⊂⊂V ′′
i and, for all indices i (running through an at most countable

set I): U ′′
i := π−1(V ′′

i ) are hyperconvex. Put U ′
i = π−1(V ′

i ) and Ui = π−1(Vi).
Let θi : U ′′

i −→ [−1, 0) be the function displaying the hyperconvexity of
U ′′

i . Let Λ be the set of all pairs of indices (i, j) with Vi ∩ Vj �= ∅. For any
(i, j) ∈ Λ define the function fij : (−∞, 0) −→ (−∞, 0) by setting for t < 0:

fij(t) = inf{θj(x) ; x ∈ Ui ∩ Uj such that t ≤ θi(x)}.
It is readily seen that each fij is non-decreasing and limt→0 fij(t) = 0. Add
to the set {fij ; (i, j) ∈ Λ} the identity function of [−1, 0) and apply Lemma
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2.2. We get the corresponding function χ. Then set σ : [−1, 0) −→ (0,∞)
by σ = log(−1/χ). Obviously σ is increasing, convex and limt→0 σ(t) = ∞.
Besides, it is easily seen that, for any (i, j) ∈ Λ the function σ(θi) − σ(θj) is a
bounded function over π−1(Vi ∩ Vj). Therefore, putting ϕi := σ(θi), i ∈ I, we
get psh exhaustion functions ϕi : U ′′

i −→ (0,∞) such that ϕi − ϕj is bounded
on Ui ∩ Uj for (i, j) ∈ Λ.

Now the patching procedure goes as follows: Select smooth functions with
compact support ρi on X, 0 ≤ ρi ≤ 1, ρi ≡ 1 on V ′

i and supp ρi ⊂ Vi. It is
easily seen that there are positive constants Ci such that:

ϕi + Ciρi ◦ π > ϕj + Cjρj ◦ π, over V ′
i ∩ ∂Vj .

Then we let ψ be a strictly psh exhaustive function on X such that ψ+Ciρi

is psh for all i.
Finally, we define Φ : Y −→ R by setting for y ∈ Y :

Φ(y) = max{ϕi(y) + Ciρi(π(y)) + ψ(π(y)) ; i such that π(y) ∈ Vi}.
It is straightforward to see that Φ is continuous, psh and exhausts Y . Thus Y
is C0-pseudoconvex so that Y results Stein by Lemma 2.1.

3. Domains over complex manifolds

Let (D,π) be a connected domain over a complex manifold X; endow D
with a riemannian metric g coming from a complete riemannian metric on X.
For x ∈ X and r > 0 denote B(x; r) := {y ∈ X ; dist(y, x) < r}. (This “ball”
is a relatively compact open subset of X.)

Definition 3.1. Let ζ ∈ D and put x := π(ζ). Define the boundary
distance from ζ by setting δ(ζ) := the supremum of all r > 0 for which there is
an open subset U(ζ; r) in D which contains ζ and is biholomorphic to B(x; r)
via π.

Observe that if D is not schlicht, then δ < ∞. Note also that if U(ζ; r)
exists for some r > 0, then U(ζ; s) is relatively compact in D for every s with
0 < s < r.

For ε > 0 set Dε := {ζ ∈ D ; δ(ζ) > ε}.
Lemma 3.1. Assume that π(D) is relatively compact in X. Then, for

each ε > 0 there exists a C∞-smooth function h : Dε −→ [0,∞) such that:

a) For every c ∈ R the set {ζ ∈ Dε ; h(ζ) < c} is relatively compact in D.
b) There is C > 0 such that: ∀ ζ ∈ Dε, ‖∂h(ζ)‖ ≤ C and ‖L(h, ζ)‖ ≤ C.

Remark 1. For X a Kähler manifold this lemma is stated by Takeuchi
[T]; he approximates the function ϕ(ζ) given on D as the distance from ζ
to some fixed point ζ0 ∈ D by averaging the integral over the “ball” of (fixed
small) radius r of center ζ through its volume. However, the volume in question
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is only Lipschitz and, in general not differentiable as is the case when X =
Cn. Therefore, a priori the first approximate Ar(ϕ) does not follow of class
C1. Then he itterates this process once more in order to get the desired “C2-
smooth approximation”. When M. Colţoiu sent me a preliminary version of
[CD] where he used Takeuchi’s lemma, I pointed to him my concern from above.
Then he reproved it using an approximation device as in Hörmander’s book
[Ho] and with a weaker conclusion, namely statement b) from above asserts
only the boundedness from below of the corresponding Leviform. Afterwards I
discovered that Takeuchi’s proof is eventually correct as can be seen using the
notion of “injectivity radius” (well-known to geometers).

Below we give another proof of Takeuchi’s approximation lemma, more
elementary one, based on ideas from [LeB] and [V2].

Proof of Lemma 3.1. Let r and s be positive constants such that r+2s <
ε. It is easily seen that for ζ ∈ Dε and x ∈ X with dist(π(ζ), x) < s there exists
ξ ∈ π−1(x) such that U(ξ; r) ⊂ Ds and U(ξ; r) � ζ. (In fact, if σ is a section of
π over B(π(ζ); ε) with σ(π(ζ)) = ζ, we set ξ = σ(x).)

In particular, if {xi}i∈I is a set of points in π(Dε) such that {B(xi; s)}i

cover π(Dε), then {U(ζij ; r)}ij cover Dε, where {ζij}j∈Λi
:= π−1(xi) ∩ Dε.

Moreover, if j, l ∈ Λi with j �= l, then U(ζij ; r) ∩ U(ζil; r) = ∅. Note that as
π(D) is relatively compact we may choose I be a finite set of indices.

Now fix r = s = ε/4. Let {xi}i∈I and {ζij}j∈Λi
be as above. Put Bi :=

B(xi; r), Uij := U(ζij ; r), Ui = ∪j∈Λi
Uij (⊂ π−1(Bi)) and B := ∪i∈IBi. Let

{θi}i be a partition of unity subordinate to the covering {Bi}i of B. Notice
that B is an open neighborhood of π(Dε).

For simplicity assume first that Dε is connected. Fix a pair (i0, j0) with
j ∈ Λi0 . For each pair of indices (i, j) define νij as the length of the shortest
chain Ui0j0 , Ui1j1 , . . . , Uimjm

with Uikjk
∩ Uik+1jk+1 �= ∅ and (im, jm) = (i, j).

Observe that if (i, j) and (k, p) are such that Uij ∩ Ukp �= ∅, then νij − νkp ∈
{−1, 0, 1}.

Consider the locally constant function hi : Ui −→ [0,∞) which equals νij

on Uij . Let U be the union of all Uij . Then define h : U −→ [0,∞) by setting:

(�) h(ζ) =
∑

i

θi(π(ζ))hi, if ζ ∈ U.

Here we check the statements of the lemma.

Ad a). Set for m ∈ N, Tm := {(i, j) ; i ∈ I, j ∈ Λi, νij ≤ m}. One shows
that Tm is finite for all m by induction since T1 is a finite set and, if Tm is
finite, then Tm+1 is finite, too.

Now, because every “ball” Uij is relatively compact in D, the assertion
follows easily.

Ad b). Let Ω be a small open neighborhood of a given point ζ0 ∈ Dε

such that π|Ω is biholomorphic onto its image π(Ω) and, moreover, if π(Ω) ∩
supp(θi) �= ∅, then π(Ω) ⊂ Bi. Let (i1, j1), . . . , (ir, jr) be all pairs (it, jt) such
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that Uitjt
⊃ Ω. Thus (�) becomes:

(�) h(ζ) = νi1j1 +
r∑

t=1

θit
(π(ζ))(νitjt

− νi1j1), ζ ∈ Ω.

Granting (�) and since νitjt
−νi1j1 ∈ {−1, 0, 1} (notice also that if K is compact

in B, e.g K = π(Dε), then K ∩ supp(θi) is compact in Bi) it follows easily that
the first and second order derivatives of ρ are bounded.

Finally, if D is not connected, we let D1
ε , D

2
ε , . . . , D

k
ε , . . . , be the connected

components of Dε. For each k we have a function h(k) defined as above on Dk
ε .

Taking h : Dε −→ [0,∞), h|Dk
ε

:= k+h(k), the properties a) and b) from above
follows.

From [M] we quote:

Lemma 3.2. Let (D,π) be a domain over a complex manifold X. Let
U1 and U2 be open subsets of X endowed with riemannian metrics g1 and g2,
respectively. On each domain π−1(Ui) over Ui, i = 1, 2, one has the corre-
sponding boundary distance function δi > 0. Let Ki be a compact subset in Ui,
i = 1, 2, such that π−1(K1 ∩K2) �= ∅. Then there is a positive constant C such
that on π−1(K1 ∩K2) one has C > δ1/δ2 > 1/C.

Let B(a; r) denotes the open ball in Cn centered at the point a ∈ Cn and
of radius r > 0.

Lemma 3.3. Let τ : Bn(0; 2) −→ Cn be a holomorphic map and f a
holomorphic function on Bn(0; 2), f �≡ 0, such that dτ is of rank n on Bn(0; 2)\
{f = 0}.

Let (Ω, π) be a domain over Bn(0; 2). Let δ′ and δ denote boundary dis-
tances measured in the domains (Ω \ {f ◦ π = 0}, τ ◦ π) and (Ω, π) over Cn

respectively.
Then, there exists positive constants k0 and C0 depending only on f and

τ , but not on (Ω, π), such that for any k ≥ k0 it holds:

(3) − log δ′ + k log |f ◦ π| ≤ − log δ + kC0

on Ω ∩ π−1
(
Bn(0; 1) \ {f = 0}

)
.

Proof. We drop the index n in the notation for a ball. From Lemma 6.5.1
in [FN] we retain the following fact. Consider points z ∈ B(0, 3/2). Let d(z)
be the distance to {f = 0}. Then there is an integer N and a neighborhood V
of {f = 0} in B(0, 2) such that for z ∈ V and 0 < ρ < d(z)/4 we have

(�) τ (B(z, ρ)) ⊃ B(τ (z), ρd(z)N).

Moreover, if ρ > 0 is small enough, then τ is biholomorphic over B(τ (z),
ρd(z)N ); for instance we may take ρ ≤ d(z)N+1 with d(z) small.
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Let M be a constant such that |f(w)| ≤ d(z) · exp(M). It suffices to prove
the estimate in the lemma for ξ ∈ Ω with z = π(ξ) ∈ B(0, 1) ∩ V \ {f = 0} for
a small enough V as above.

We check two alternate cases:

(i) Assume that δ(ξ) ≥ d(z)N+1. Therefore there is an open neighborhood
W of ξ in Ω that is mapped biholomorphically onto the ball B(z, d(z)N+1).

Then from (�) and the “moreover” we get that τ is biholomorphic over
B(τ (z), d(z)2N+1). Thus there is an open neighborhood W ′ of ξ in W that is
mapped biholomorphically via τ ◦π onto B(τ (z), d(z)2N+1) which gives readily
that δ′(ξ) ≥ d(z)2N+1, hence

− log δ′(ξ) + k log |f(z)| ≤ (2N + 1 − k) log(1/d(z)) + kM.

Now as log(1/d(z)) > 0 and − log δ(ξ) > 0, the right hand side of the above
inequality is at most − log δ(ξ) + kM for k ≥ 2N + 1.

(ii) Suppose that δ(ξ) < d(z)N+1. Then similarly as above we obtain the
inequality δ′(ξ) ≥ δ(ξ)d(z)N which in turn gives

− log δ′(ξ) + k log |f(z)| ≤ − log δ(ξ) + (N − k) log(1/d(z)) + kM.

Since log(1/d(z)) > 0, by taking k ≥ N , the right hand side the above inequality
is at most − log δ(ξ) + kM .

Consequently, the desired inequality in the lemma follows for those points
ξ that projects in the set V ∩B(0, 1) \ {f = 0}, with k0 = 2N +1 and C0 = M .
Then we conclude applying Lemma 3.2 for points ξ that maps via π on the
compact set B(0, 1) \ V .

4. Proof of Theorem 1.3

Recall that π : D −→ Ω is a domain over the holomorphically convex
manifold Ω and π is locally Stein. Also for the analytic subset A of Ω given as
the union of all compact analytic subsets of positive dimension of Ω, there is an
open neighborhood W of A in Ω such that π−1(W ) is holomorphically convex.

Let ρ : Ω −→ X be the Remmert reduction so that X is a normal Stein
space and ρ is a proper holomorphic map with connected fibres. Therefore ρ
induces a biholomorphic map from Ω \A onto X \ ρ(A).

Let also µ′ : π−1(W ) −→ Y ′ be the Remmert reduction of π−1(W ); thus
Y ′ is a normal Stein space and µ′ is a proper holomorphic map with connected
fibers which induces a biholomorphic map from π−1(W ) \ π−1(A) onto Y ′ \
µ′(π−1(A)).

The standard surgery procedure, via the above biholomorphism, obtained
by glueing D \ π−1(A) and Y ′, furnishes us a normal complex space Y with
a proper holomorphic map µ : D −→ Y extending µ′. Moreover there is a
canonical holomorphic map π0 : Y −→ X which is locally Stein over X, a
fortiori it has fibres Stein. Pictorially we have a natural commutative diagram
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of holomorphic maps

D
π ��

µ

��

Ω

ρ

��
Y

π0 �� X.

Notice that, by Runge approximation, there is no loss in generality to
suppose that π(D) is relatively compact in Ω. On the one hand the statement
of the theorem is equivalent to saying that Y is Stein and on the other hand,
granting Lemma 2.1 it suffices to prove that Y is C0-pseudoconvex.

Now, because ρ(A) is an analytic subset of X, which contains the set of
singular points of X, by [AN] there are finitely many holomorphic mappings
τk : X −→ C

n with discrete fibres and holomorphic functions gk on X, k =
1, . . . ,m, such that:

• ρ(A) = ∩m
k=1{gk = 0} and

• the induced maps τk : X \ {gk = 0} −→ Cn are locally biholomorphic.

Set θ� := log(|g1|2 + · · ·+ |gm|2). Then θ� is a psh function on X such that
{θ� = −∞} = ρ(A). Put θ = θ� ◦ ρ and fk = gk ◦ ρ, k = 1, . . . ,m.

Select on X a positive, smooth strictly psh exhaustion function σ� such
that σ� + θ� > 0 on X \ ρ(W ). Put σ = σ� ◦ ρ. Then define V := {σ + θ < 0}
and U := {2σ + θ < 0}. Obviously U and V are open neighborhoods of A,
U ⊂ V and V ⊂ W . Then select χ : R −→ R be a smooth convex function
with {χ = 0} = (−∞, 0] and χ′ > 0 on (0,∞). Put ψ1 := χ(σ + θ) and
ψ2 := χ(2σ+ θ). Then ψ1 and ψ2 are smooth psh non-negative functions on D
such that {ψ1 = 0} = V and {ψ2 = 0} = U . Moreover ψ1 and ψ2 are strictly
psh at points where they are positive.

Now we produce a psh continuous function Φ : D −→ [0,∞) such that, for
any λ ≥ 0, the set D(λ) := {ζ ∈ D ; Φ(ζ) < λ} is C0-pseudoconvex.

In order to do this, for each l = 1, . . . ,m, let δl be the boundary distance
function in the domain Y \ {gl ◦ π0 = 0} over Cn. It is perhaps important to
notice that Ω \ {fl = 0} is biholomorphic to X \ {gl = 0} and D \ {fl ◦ π} is
biholomorphic to Y \ {gl ◦ π0} (via the naturally induced mappings).

Consider the function Φ(k)
l : Y −→ [0,∞) given by

Φ(k)
l :=

{
max(− log δl + k log |gl ◦ π0|, 0) on Y \ {gl ◦ π0 = 0},
0 on {gl ◦ π0 = 0}.

By lemmata 3.2 and 3.3 and since π0(Y ) is relatively compact in X, it follows
that there is a positive integer k0 such that, for any k > k0, the function Φ(k)

l

becomes continuous on Y . Fix such k. Thus the function Φ′ : Y −→ [0,∞)
defined by

Φ′ := max(Φ(k)
1 , · · · ,Φ(k)

l )
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is continuous and psh on Y ; it vanishes along the possibly non compact analytic
set π−1

0 (ρ(A)).

The desired function is Φ := Φ′ ◦ µ.

In order to check the properties stated above for Φ, let us endow D with
a riemannian metric g that comes from a complete riemannian metric on Ω;
define the boundary distance δ(ζ) for ζ ∈ D as in Section 3. For ε > 0 set
Dε := {ζ ∈ D ; δ(ζ) > ε}.

An important feature of Φ is that, granting lemmata 4 and 5, for each
λ ∈ R, there is ε = ε(λ) > 0 such that

(�) D(λ) \ π−1(U) ⊂ Dε.

Let h : Dε −→ [0,∞) be as in Lemma 3.1. Put ψ̃1 := ψ1 ◦ π and ψ̃2 :=
ψ2 ◦ π. By (�), the product function hψ̃1 makes sense as a function on D(λ)
(one extends it by the value 0 over D(λ)∩ π−1(V )). Now for M > 0 define the
function Ψλ : D(λ) −→ [0,∞) by setting:

Ψλ := hψ̃1 +Mψ̃2.

Observe that Ψλ is continuous, it vanishes on π−1(U) ∩ D(λ) and, for every
c ∈ R the set {Ψλ < c} \ π−1(U) is relatively compact in D. Moreover Ψ is
psh if M is sufficiently large. Clearly it suffices to test the plurisubharmonicity
of Ψλ only on D(λ) \ π−1(V ). Straightforward computations using Lemma 3.1
show that the Levi form of hψ̃1 is bounded from below over the compact set
K := π(Dε) \ V . Then as ψ2 is strictly psh outside U , a fortiori near K, there
is M > 0 such that Ψλ is (even strictly) psh on D(λ) \ π−1(V ).

We are now in a position to show that Φ has C0-pseudoconvex sublevel
sets. Indeed, the continuous psh function α : D(λ) −→ R defined by setting:

α := max
(
− log(λ− Φ),Ψλ

)
exhaustsD(λ)\π−1(V ). Let β be a smooth psh exhaustion function on π−1(W );
then select a smooth rapidly increasing convex function χ such that χ(α) > β
on D(λ) ∩ ∂π−1(V ). Therefore θ : D(λ) −→ R defined by setting:

θ :=
{

max(χ(α), β) on D(λ) ∩ π−1(V ),
χ(α) on D(λ) \ π−1(V ),

is a well-defined continuous psh exhaustion function on D(λ) so that every
D(λ) is C0-pseudoconvex. This Φ descends to a continuous psh function Φ′

on Y whose sublevel sets are all C0-pseudoconvex, thus Stein granting Lemma
2.1. Therefore Y is Stein by Runge approximation, whence the theorem.

Remark 2. From the given proof we retain the following fact that will
be used in the next section, namely, setting

Y (λ) := {y ∈ Y ; Φ′(y) < λ},
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the function Ψ = Ψλ, defined a priori on D(λ), descends to a continuous psh
function Ψ′

λ defined on Y (λ).

5. Proof of Theorem 1.2

First let us recall a few facts on q-convexity [AG] and on convexity with
respect to linear sets [P2].

Definition 5.1. Let Û be an open set in Cn. A function ϕ̂ ∈ C∞(Û ,R)
is said to be q-convex if its Leviform L(ϕ, z) has at most q − 1 eigenvalues
which are non-positive, for any z ∈ Û ; equivalently this means that there is a
family {Mz}z∈bU of complex vector spaces, Mz ⊂ Cn = TzCn, each Mz with
codimension ≤ q− 1, and such that the quadratic form L(ϕ, z)|Mz

is positively
definite, for any z ∈ D.

Now, let us consider X be a complex space. A (local) chart of X at a
point x ∈ X is a holomorphic embedding ι : U −→ Û , where U is an open
neighborhood of x in X and Û an open subset of some euclidean space Cn,
n = n(x). Holomorphic embedding means that ι(U) is an analytic subset of Û
and the induced map ι : U −→ ι(U) is biholomorphic.

Definition 5.2. A function ϕ ∈ C2(X,R) is said to be q-convex if, for
any point ofX there is a local chart ι : U −→ Û , U � x, and a q-convex function
ϕ̂ ∈ C2(Û ,R) with ϕ̂◦ ι = ϕ|U . X is called q-complete if there exists a q-convex
exhaustion function ϕ on X. (The normalization is such that “1-complete ≡
Stein”.)

Observe that there are simple examples of q-convex functions (for q > 1)
whose sum fails to be q-convex. In order to remedy this unpleasant feature, M.
Peternell [P2] has given the following definition.

Let TxX denotes the Zariski tangent space of X at x ∈ X.
Put TX = ∪x∈XTxX. (Notice that for a local chart ι : U −→ Û at x, the

differential map ι�,x : TxX −→ C
n is an injective homomorphism of complex

vector spaces.)

Definition 5.3. A subset M of TX is said to be a linear set over X if,
for every point x of X, Mx := M∩TxX is a complex vector subspace of TxX.
If M is a linear set over X, we define

codimXM := sup
x∈X

codimTxXMx.

If Ω is an open subset of X we have an obvious definition for M|Ω as a
linear set over Ω. Moreover, if π : Y −→ X is a holomorphic map of complex
spaces, we define π�M as follows. For every y ∈ Y we have an induced C-linear
map π�,y : TyY −→ Tπ(y)X. We set

π�M := ∪y∈Y (π�,y)−1(Mπ(y)).



�

�

�

�

�

�

�

�

Locally Stein domains over holomorphically convex manifolds 145

Obviously π�M is a linear set over Y and codimY π
�M ≤ codimXM.

Below we introduce convexity with respect to linear sets following [P2].

Definition 5.4. Let ϕ ∈ C2(X,R) and M a linear set over X.

• Let x ∈ X. We say that ϕ is weakly Mx-convex if there are: a lo-
cal chart ι : U −→ Û of x and ϕ̂ ∈ C2(Û ,R) with ϕ̂ ◦ ι = ϕ|U such that
L(ϕ̂, ι(x))ι�,x(ξ) ≥ 0, for every ξ ∈ Mx.

• The function ϕ is called weakly M-convex if ϕ is weakly Mx-convex,
for any x ∈ X. Then ϕ is said to be M-convex if X can be covered by open
sets U such that ϕ|U = θ + ψ, where θ is smooth and strictly psh on U and ψ
is weakly M|U -covex.

• The space X is called M-complete if there is an exhaustion function
ϕ : X −→ R which is M-convex.

Lemma 5.1 ([P2]). Let X be a complex space and ϕ a q-convex func-
tion on X. Then there is a linear set M over X of codimension ≤ q − 1 such
that ϕ is M-convex.

In practice we usually deal with functions which are not M-convex, but
they might be written locally on open sets as maximum of finitely many M-
convex functions. In order to state a useful approximation result (viz. Lemma
5.2 from below), let us introduce the family C(X;M) of continuous functions
ϕ : X −→ R such that X is covered by open sets U (depending on ϕ) for which
there are finitely many continuous psh functions αj on U and M|U -convex
functions ψj , 1 ≤ j ≤ k, such that

ϕ|U = max(α1 + ψ1, . . . , αk + ψk).

Notice that C(X;M) is closed under standard operations as is the case with the
set of (strictly) psh functions on X; e.g. if ϕ1, ϕ2 ∈ C(X;M) and χ ∈ C2(R,R)
is strictly increasing and convex, then max(ϕ1, ϕ2), ϕ1 +ϕ2, χ(ϕ1) ∈ C(X;M).

The following result is to be deduced from [V1] by a simple perturbation
argument.

Lemma 5.2. Let M be a linear set over a complex space X and ϕ ∈
C(X;M). Then, for every η ∈ C0(X,R), η > 0, there is ϕ̃ ∈ C∞(X,R) which
is M-convex and such that |ϕ̃− ϕ| < η.

The counterpart of classical Runge approximation which we need here and
is stated below follows immediately from ([V2, Lemma 4, p. 514]).

Proposition 5.1. Let M be a linear set over a complex space X and
ϕ ∈ C(X;M). Suppose that there is a sequence {cν} of real numbers tending
to infinity such that each set Xν := {x ∈ X ; ϕ(x) < cν} is M|Xν

-complete.
Then X is M-complete. In particular, if codimXM ≤ q − 1, then X results
q-complete.
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Proof of Theorem 1.2. (Sketch!) Recall that π : Y −→ X is a locally Stein
domain over a q-complete space X with isolated singularities. Let ρ : X̂ −→ X
be a resolution of singularities and consider µ : Ŷ −→ Y obtained from the
fibered product of (Y, π) with (X̂, ρ) over X. Then (Ŷ , π̂) becomes a domain
over X̂ and one has a canonical commutative diagram:

Ŷ
bπ ��

µ

��

X̂

ρ

��
Y

π �� X.

We want to prove that Y is q-complete. The idea is to examine carefully the
proof of our Theorem 1.3 using weak convexity with certain linear set instead
of plurisubharmonicity.

In order to do this, let ϕ : X −→ R be q-convex and exhaustive. By
Lemma 5.1 there is linear set M over X of codimension ≤ q− 1 such that ϕ is
M-convex.

Granting Proposition 5.1, we may assume that π(Y ) is relatively compact
in X, and thus that Xsing is a finite set (although this assertion is not essential
for the proof).

In contrast to the Stein case, here X being only q-complete (with q > 1)
its singular set Xsing cannot be defined as common zero set of globally defined
holomorphic functions. Nevertheless, we do this locally and then patch using
cut-off functions; the corresponding function θ� will have compact support in
X, and θ� = log(|g1|2 + · · ·+ |gm|2) on a Stein neighborhood W of Xsing, where
g1, . . . , gm define Xsing. Then we construct functions Φ(k)

l on π−1(W ). They
can be patched as in ([V2, pp. 519–520]; or as in the proof of Proposition 2.1
from above) and yield Φ. We show easily that Φ̃ := Φ + ϕ ◦ π ∈ C(Y ;π�M).

Also the function Ψλ, which is a priori defined on Ŷ (λ) (see remark 2 in
Section 4), descends to a (smooth) weakly π�(M)-convex function on Y (λ).
(The role of taking the resolution of singularities is to use Takeuchi’s approx-
imation lemma!). Then one shows that each set Y (λ) := {y ∈ Y ; Φ̃(y) < λ}
with λ ∈ R, is π�M-complete. By Proposition 5.1, Y results π�M-complete;
hence Y is q-complete because codimY π

�M ≤ q − 1.
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