Subsheaves of a hermitian torsion free coherent sheaf on an arithmetic variety

By

Atsushi Moriwaki

Introduction

Let K be a number field and O_K the ring of integers of K. Let (E, h) be a hermitian finitely generated flat O_K -module. For an O_K -submodule F of E, let us denote by $h_{F \to E}$ the submetric of F induced by h. It is well known that the set of all saturated O_K -submodules F with $\widehat{\deg}(F, h_{F \to E}) \ge c$ is finite for any real numbers c (for details, see [4, the proof of Proposition 3.5]).

In this note, we would like to give its generalization on a projective arithmetic variety. Let X be a normal and projective arithmetic variety. Here we assume that X is an arithmetic surface to avoid several complicated technical definitions on a higher dimensional arithmetic variety. Let us fix a nef and big C^{∞} -hermitian invertible sheaf \overline{H} on X as a polarization of X. Then we have the following finiteness of saturated subsheaves with bounded arithmetic degree, which is also a generalization of a partial result [5, Corollary 2.2].

Theorem A (cf. Theorem 3.1). Let E be a torsion free coherent sheaf on X and h a C^{∞} -hermitian metric of E on $X(\mathbb{C})$. For any real number c, the set of all saturated \mathcal{O}_X -subsheaves F of E with $\widehat{\deg}(\widehat{c}_1(\overline{H}) \cdot \widehat{c}_1(F, h_{F \hookrightarrow E})) \ge c$ is finite.

For a non-zero C^{∞} -hermitian torsion free coherent sheaf \overline{G} on X, the arithmetic slope $\hat{\mu}_{\overline{H}}(\overline{G})$ of \overline{G} with respect to \overline{H} is defined by

$$\hat{\mu}_{\overline{H}}(\overline{G}) = \frac{\widehat{\operatorname{deg}}(\widehat{c}_1(\overline{H}) \cdot \widehat{c}_1(\overline{G}))}{\operatorname{rk} G}.$$

As defined in the paper [5], (E, h) is said to be *arithmetically* μ -semistable with respect to \overline{H} if, for any non-zero saturated \mathcal{O}_X -subsheaf F of E,

$$\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E}) \le \hat{\mu}_{\overline{H}}(E, h).$$

The above semistability yields an arithmetic analogue of the Harder-Narasimham filtration of a torsion free sheaf on an algebraic variety as follows: A filtration

$$0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_l = E$$

Received December 11, 2006

of E is called an *arithmetic Harder-Narasimham filtration of* (E, h) *with respect to* \overline{H} if the following properties are satisfied:

(1) E_i/E_{i-1} is torsion free for every $1 \le i \le l$.

(2) Let $h_{E_i/E_{i-1}}$ be a C^{∞} -hermitian metric of E_i/E_{i-1} induced by h, that is,

$$h_{E_i/E_{i-1}} = (h_{E_i \hookrightarrow E})_{E_i \twoheadrightarrow E_i/E_{i-1}} = (h_{E \twoheadrightarrow E/E_{i-1}})_{E_i/E_{i-1} \hookrightarrow E/E_{i-1}}$$

(for details, see Proposition 1.1.1). Then $(E_i/E_{i-1}, h_{E_i/E_{i-1}})$ is arithmetically μ -semistable with respect to \overline{H} .

mistable with respect to H. (3) $\hat{\mu}_{\overline{H}}(E_1/E_0, h_{E_1/E_0}) > \hat{\mu}_{\overline{H}}(E_2/E_1, h_{E_2/E_1}) > \cdots > \hat{\mu}_{\overline{H}}(E_l/E_{l-1}, h_{E_l/E_{l-1}}).$

As a consequence of the above theorem, we can show the unique existence of an arithmetic Harder-Narasimham filtration:

Theorem B (cf. Theorem 5.1). There is a unique arithmetic Harder-Narasimham filtration of (E, h).

1. Preliminaries

1.1. Hermitian vector space

In this subsection, let us recall several basic facts of hermitian complex vector spaces.

Let (V, h) be a finite dimensional hermitian complex vector space, i.e., V is a finite dimensional vector space over \mathbb{C} and h is a hermitian metric of V. Let $\phi: V' \to V$ be an injective homomorphism of complex vector spaces. If we set $h'(x, y) = h(\phi(x), \phi(y))$, then h' is a hermitian metric of V'. This metric h' is called the *submetric of* V' *induced by* h and $V' \to V$, and it is denoted by $h_{V' \hookrightarrow V}$.

Let $\psi: V \to V''$ be a surjective homomorphism of complex vector spaces. Let W be the orthogonal complement of $\operatorname{Ker}(\psi)$ with respect to h. Let $h_{W \to V}$ be the submetric of W induced by h and $W \to V$. Then there is a unique hermitian metric h'' of V'' such that the isomorphism $\psi|_W: W \to V''$ gives rise to an isometry $(W, h_{W \to V}) \xrightarrow{\sim} (V'', h'')$. The metric h'' is called the quotient metric of V'' induced by h and $V \to V''$, and it is denoted by $h_{V \to V''}$.

For simplicity, the submetric $h_{V' \hookrightarrow V}$ and the quotient metric $h_{V \twoheadrightarrow V''}$ are often denoted by $h_{V'}$ and $h_{V''}$ respectively. It is easy to see the following proposition:

Proposition 1.1.1. Let V, V', V'' be finite dimensional complex vector spaces with $V'' \subseteq V' \subseteq V$. Let h be a hermitian metric of V. Then

$$(h_{V' \hookrightarrow V})_{V' \twoheadrightarrow V'/V''} = (h_{V \twoheadrightarrow V/V''})_{V'/V'' \hookrightarrow V/V''}$$

as hermitian metrics of V'/V''.

More generally, we have the following lemma:

Let (V,h) be a finite dimensional hermitian complex Lemma 1.1.2. vector space. Let W and U be subspaces of V. Let us consider a natural homomorphism

$$\phi: W \hookrightarrow V \to V/U$$

of complex vector spaces. Let Q be the image of ϕ . Let us consider two natural hermitian metrics h_1 and h_2 of Q given by

$$h_1 = (h_{W \hookrightarrow V})_{W \twoheadrightarrow Q}$$
 and $h_2 = (h_{V \twoheadrightarrow V/U})_{Q \hookrightarrow V/U}$.

Then $h_1(x,x) \ge h_2(x,x)$ for all $x \in Q$. In particular, if $\{x_1,\ldots,x_s\}$ is a basis of Q, then $\det(h_1(x_i, x_i)) \ge \det(h_2(x_i, x_i))$.

Proof. Let T be the orthogonal complement of $\operatorname{Ker}(\phi : W \to Q)$ with respect to $h_{W \hookrightarrow V}$. Then $h(v, v) = h_1(\phi(v), \phi(v))$ for all $v \in T$. Let U^{\perp} be the orthogonal complement of U with respect to h. Then, for $v \in T$, we can set v = u + u' with $u \in U$ and $u' \in U^{\perp}$. Then $h_2(\phi(v), \phi(v)) = h(u', u')$. Thus

$$h_2(\phi(v), \phi(v)) = h(u', u') \le h(v, v) = h_1(\phi(v), \phi(v)).$$

For the last assertion, see [4, Lemma 3.4].

Let e_1, \ldots, e_n be an orthonormal basis of V with respect to h. Let V^{\vee} be the dual space of V and $e_1^{\vee}, \ldots, e_n^{\vee}$ the dual basis of e_1, \ldots, e_n . For $\phi, \psi \in V^{\vee}$, we set

$$h^{\vee}(\phi,\psi) = \sum_{i=1}^n a_i \bar{b}_i,$$

where $\phi = a_1 e_1^{\vee} + \dots + a_n e_n^{\vee}$ and $\psi = b_1 e_1^{\vee} + \dots + b_n e_n^{\vee}$. It is easy to see that h^{\vee} does not depend on the choice of the orthonormal basis of V, so that the hermitian metric h^{\vee} of V^{\vee} is called the *dual hermitian metric of h*. Moreover we can easily check the following facts:

Proposition 1.1.3.

(1) $h^{\vee}(\phi, \phi) = \sup_{x \in V \setminus \{0\}} \frac{|\phi(x)|^2}{h(x, x)}.$

(2) Let x_1, \ldots, x_n be a basis of V and $x_1^{\vee}, \ldots, x_n^{\vee}$ be the dual basis of V^{\vee} . If we set $H = (h(x_i, x_j))$ and $H^{\vee} = (h^{\vee}(x_i^{\vee}, x_j^{\vee}))$, then $H^{\vee} = \overline{H}^{-1}$.

(3) Let $0 \to V_1 \to V_2 \to V_3 \to 0$ be an exact sequence of finite dimensional complex vector spaces and h_1, h_2, h_3 hermitian metrics of V_1, V_2, V_3 respectively. We assume that $h_1 = (h_2)_{V_1 \to V_2}$ and $h_3 = (h_2)_{V_2 \to V_3}$. Let us consider the dual exact sequence $0 \to V_3^{\vee} \to V_2^{\vee} \to V_1^{\vee} \to 0$ of $0 \to V_1 \to V_2 \to V_3 \to 0$ and the dual hermitian metrics $h_1^{\vee}, h_2^{\vee}, h_3^{\vee}$ of h_1, h_2, h_3 respectively. Then $h_3^{\vee} = h_3^{\vee} = h_3^{\vee}$ $(h_2^{\vee})_{V_2^{\vee} \hookrightarrow V_2^{\vee}}$ and $h_1^{\vee} = (h_2^{\vee})_{V_2^{\vee} \twoheadrightarrow V_1^{\vee}}$.

Let (U, h_U) and (W, h_W) be finite dimensional hermitian vector spaces over \mathbb{C} . Then $U \otimes_{\mathbb{C}} W$ has the standard hermitian metric $h_U \otimes h_W$ defined by

$$(h_U \otimes h_W)(u \otimes w, u' \otimes w') = h_U(u, u')h_W(w, w').$$

Atsushi Moriwaki

Thus the standard hermitian metric of $\bigotimes^r V$ is given by

$$\left(\bigotimes^{r} h\right)(v_1\otimes\cdots v_r,v_1'\otimes\cdots\otimes v_r')=h(v_1,v_1')\cdots h(v_r,v_r')$$

Let $\pi : \bigotimes^r V \to \bigwedge^r V$ be the natural surjective homomorphism and $\bigwedge^r h$ a hermitian metric of $\bigwedge^r V$ given by

$$\bigwedge^{r} h = r! \left(\bigotimes^{r} h\right)_{\bigotimes^{r} V \twoheadrightarrow \bigwedge^{r} V}$$

Then we have the following:

Proposition 1.1.4.
$$(\bigwedge^r h)(x_1 \wedge \cdots \wedge x_r, x_1 \wedge \cdots \wedge x_r) = \det(h(x_i, x_j))$$

Proof. For $a_1, \ldots, a_r \in V$, we set

$$\phi(a_1,\ldots,a_r) = \frac{1}{r!} \sum_{\sigma \in S_r} \operatorname{sgn}(\sigma) a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(r)}.$$

Then, by an easy calculation, for $\sigma \in S_r$ and $a_1, \ldots, a_r, b_1, \ldots, b_r \in V$, we can see

(1.1.4.1)
$$\left(\bigotimes^{r} h\right) \left(a_{\sigma(1)} \otimes \cdots \otimes a_{\sigma(r)}, \phi(b_{1}, \dots, b_{r})\right) =$$

 $\operatorname{sgn}(\sigma) \left(\bigotimes^{r} h\right) \left(a_{1} \otimes \cdots \otimes a_{r}, \phi(b_{1}, \dots, b_{r})\right)$

Note that $\operatorname{Ker}(\pi)$ is generated by elements of type

$$a_1 \otimes \cdots \otimes a_r$$

where $a_i = a_j$ for some $i \neq j$. Therefore, by (1.1.4.1), $\phi(x_1, \ldots, x_r) \in \text{Ker}(\pi)^{\perp}$ for all $x_1, \ldots, x_r \in V$. Thus, since

$$\pi(\phi(x_1,\ldots,x_r))=x_1\wedge\cdots\wedge x_r,$$

we have

$$\left(\bigotimes^{r} h\right)_{\bigotimes^{r} V \to \bigwedge^{r} V} (x_{1} \wedge \dots \wedge x_{r}, x_{1} \wedge \dots \wedge x_{r})$$
$$= \left(\bigotimes^{r} h\right) (\phi(x_{1}, \dots, x_{r}), \phi(x_{1}, \dots, x_{r})).$$

On the other hand, by using (1.1.4.1) again, we can check

Subsheaves of a hermitian torsion free coherent sheaf

$$\left(\bigotimes^r h\right)(\phi(x_1,\ldots,x_r),\phi(x_1,\ldots,x_r)) = \frac{1}{r!}\det(h(x_i,x_j)).$$

Therefore we get our assertion.

1.2. Finitely generated modules over a 1-dimensional noetherian integral domain

Let R be a noetherian integral domain with dim R = 1, and K the quotient field of R. For $a \in R \setminus \{0\}$, we set $\operatorname{ord}_R(a) = \operatorname{length}_R(R/aR)$, which yields a homomorphism $\operatorname{ord}_R : R \setminus \{0\} \to \mathbb{Z}$, that is, $\operatorname{ord}_R(ab) = \operatorname{ord}_R(a) + \operatorname{ord}_R(b)$ for $a, b \in R \setminus \{0\}$. Thus it extends to a homomorphism on K^{\times} given by $\operatorname{ord}_R(a/b) = \operatorname{ord}_R(a) - \operatorname{ord}_R(b)$.

Proposition 1.2.1. Let *E* be a finitely generated *R*-module. Let s_1, \ldots, s_r and s'_1, \ldots, s'_r be sequences of elements of *E* such that s_1, \ldots, s_r and s'_1, \ldots, s'_r form bases of $E \otimes_R K$ respectively. Let $A = (a_{ij})$ be an $r \times r$ -matrix such that $a_{ij} \in K$ for all i, j and $s'_i = \sum_{j=1}^r a_{ij} s_j$ in $E \otimes_R K$ for all i. Then

 $\operatorname{length}_{R}(E/Rs'_{1} + \dots + Rs'_{r}) = \operatorname{length}_{R}(E/Rs_{1} + \dots + Rs_{r}) + \operatorname{ord}_{R}(\det(A)).$

Proof. We set $M = Rs_1 + \cdots + Rs_r$ and $M' = Rs'_1 + \cdots + Rs'_r$. First we assume that $M' \subseteq M$. Then $a_{ij} \in R$. An exact sequence

$$0 \to M/M' \to E/M' \to E/M \to 0.$$

yields

$$\operatorname{length}_{R}(E/M') = \operatorname{length}_{R}(E/M) + \operatorname{length}_{R}(M/M').$$

Note that M is a free R-module. Let $\phi : M \to M$ be an endomorphism given by $\phi(s_i) = s'_i$. Then, by [EGA IV, Lemme 21.10.17.3], $\operatorname{length}_R(M/\phi(M)) = \operatorname{length}_R(R/\det(\phi)R)$. Thus we get

$$\operatorname{length}_{R}(E/M') = \operatorname{length}_{R}(E/M) + \operatorname{length}_{R}(R/\det(A)R).$$

Next we consider a general case. Since E/M is a torsion module, there is $b \in R \setminus \{0\}$ with $bM' \subseteq M$. Thus, by the previous observation,

$$\operatorname{length}_{R}(E/bM') = \operatorname{length}_{R}(E/M) + \operatorname{length}_{R}(R/\det(bA)R)$$

because $bs_i = \sum_{j=1}^r ba_{ij}s_j$ in $E \otimes_R K$ for all *i*. Moreover

$$\operatorname{length}_R(E/bM') = \operatorname{length}_R(E/M') + \operatorname{length}_R(R/b^r R).$$

Hence the proposition follows.

Corollary 1.2.2.

(1) Let $\{x_1, \ldots, x_r\}$ be a basis of $E \otimes_R K$. Let $s_1, \ldots, s_r \in E$ and $a \in R \setminus \{0\}$ such that $ax_i = s_i$ in $E \otimes_R K$ for all *i*. Then the number

 $\operatorname{length}_{R}(E/Rs_{1} + \dots + Rs_{r}) - r \operatorname{ord}_{R}(a)$

does not depend on the choice of s_1, \ldots, s_r and a, so that it is denoted by $\ell_R(E; x_1, \ldots, x_r)$.

11

Atsushi Moriwaki

(2) Let $\{x_1, \ldots, x_r\}$ and $\{x'_1, \ldots, x'_r\}$ be bases of $E \otimes_R K$. Let $B = (b_{ij})$ be an $r \times r$ matrix such that $x'_i = \sum_{j=1}^r b_{ij} x_j$ for all *i*. Then

$$\ell_R(E; x'_1, \dots, x'_r) = \ell_R(E; x_1, \dots, x_r) + \operatorname{ord}_R(\det(B)).$$

Proof. (1) Let $s'_1, \ldots, s'_r \in E$ and $a' \in R \setminus \{0\}$ be another choice with $a'x_i = s'_i$ in $E \otimes_R K$ for all *i*. Then $s'_i = (a'/a)s_i$ in $E \otimes_R K$. Thus, by the previous proposition,

$$\operatorname{length}_{R}(E/Rs'_{1} + \dots + Rs'_{r}) = \operatorname{length}_{R}(E/Rs_{1} + \dots + Rs_{r}) + \operatorname{ord}_{R}((a'/a)^{r}),$$

which yields the assertion.

(2) Let us choose $a, b \in R \setminus \{0\}$ and $s_1, \ldots, s_r \in E$ such that $ax_i = s_i$ in $E \otimes_R K$ for all *i* and $bb_{ij} \in R$ for all *i*, *j*. If we set $s'_i = \sum_j (bb_{ij})s_i$, then $abx'_i = s'_i$ in $E \otimes_R K$ for all *i*. Thus

$$\ell_R(E; x_1, \dots, x_r) = \operatorname{length}_R(E/Rs_1 + \dots + Rs_r) - r \operatorname{ord}_R(a)$$

$$\ell_R(E; x'_1, \dots, x'_r) = \operatorname{length}_R(E/Rs'_1 + \dots + Rs'_r) - r \operatorname{ord}_R(ab).$$

On the other hand, by the previous proposition,

$$\operatorname{length}_{R}(E/Rs'_{1} + \dots + Rs'_{r}) = \operatorname{length}_{R}(E/Rs_{1} + \dots + Rs_{r}) + \operatorname{ord}_{R}(\operatorname{det}(bB)).$$

Hence we obtain (2).

1.3. Subsheaves of a torsion free coherent sheaf

In this subsection, we consider how we can get a saturated subsheaf.

Proposition 1.3.1. Let X be an irreducible noetherian integral scheme, η the generic point of X, and $K = \mathcal{O}_{X,\eta}$ the function field of X. Let E be a torsion free coherent sheaf on X. Let $\Sigma(X, E)$ be the set of all saturated \mathcal{O}_X subsheaves of E and $\Sigma(K, E_\eta)$ the set of all vector subspaces of E_η over K. Then the map $\gamma : \Sigma(X, E) \to \Sigma(K, E_\eta)$ given by $\gamma(F) = F_\eta$ is bijective. For a vector subspace W of E_η over K, the subsheaf given by $\gamma^{-1}(W)$ is called the saturated \mathcal{O}_X -subsheaf of E induced by W and is denoted by $\mathcal{O}_X(W; E)$.

Proof. Let us begin with the following lemma:

Lemma 1.3.2. Let F, G be \mathcal{O}_X -subsheaves of E such that F is saturated in E and $F_\eta = G_\eta$. Then $F \supseteq G$.

Proof. Let us consider a homomorphism $\phi : G \to E \to E/F$. Then $\phi_{\eta} = 0$. Since E/F is torsion free, we have $\phi = 0$, which means that $G \subseteq F$. \Box

The injectivity of γ is a consequence of the above lemma. Let W be a vector subspace of E_{η} over K. We set $F(U) = W \cap E(U)$ for any Zariski open set U of X. Then $F_{\eta} = W$. We need to see that F is saturated in E. Since F is the kernel of the natural homomorphism $E \to E_{\eta} \to E_{\eta}/W$, we have an injection $E/F \hookrightarrow E_{\eta}/W$, so that E/F is torsion free.

Proposition 1.3.3. Let X be a noetherian scheme and E a locally free coherent sheaf on X. Let $\pi : P = \operatorname{Proj}(\bigoplus_{d \ge 0} \operatorname{Sym}^d(E^{\vee})) \to X$ be the projective bundle and $\mathcal{O}_P(1)$ the tautological line bundle of $P \to X$. Let $\Gamma(X, P)$ be the set of all sections of $\pi : P \to X$. Moreover let $\Sigma'_1(X, E)$ be the set of all \mathcal{O}_X -subsheaves L such that L is invertible and E/L is locally free. For $s \in \Gamma(X, P)$, let

$$\phi_s: s^*(\mathcal{O}_P(-1)) \to s^*\pi^*(E) = E$$

be a homomorphism obtained from the dual homomorphism $\mathcal{O}_P(-1) \to \pi^*(E)$ of the natural homomorphism $\pi^*(E^{\vee}) \to \mathcal{O}_P(1)$ by applying s^* . We denote the image of $\phi_s : s^*(\mathcal{O}_P(-1)) \to E$ by L(s). Then $L(s) \in \Sigma'_1(X, E)$ for all $s \in \Gamma(X, P)$ and a map

$$\Gamma(X, P) \to \Sigma'_1(X, E)$$

given by $s \mapsto L(s)$ is bijective.

Proof. See [1, Theorem 7.1 and Proposition 7.12].

1.4. Hermitian locally free coherent sheaf on a smooth variety

Let X be a smooth variety over \mathbb{C} , η be the generic point of X, and $K = \mathcal{O}_{X,\eta}$ the function field of X.

Proposition 1.4.1. Let (E,h) and (E',h') be C^{∞} -hermitian locally free coherent sheaves on X. If there is a dense Zariski open set U of X such that $(E,h)|_U$ is isometric to $(E',h')|_U$, then this isometry extends to an isometry over X.

Proof. Since $V = E_{\eta}$ is isomorphic to E'_{η} , we may assume that E' is a subsheaf of V. Then $(E, h)|_U$ coincides with $(E', h')|_U$.

First let us see that E = E'. For this purpose, it is sufficient to see that $E_{\gamma} = E'_{\gamma}$ for all codimension one points γ . Let $\{\omega_1, \ldots, \omega_r\}$ and $\{\omega'_1, \ldots, \omega'_r\}$ be local bases of E_{γ} and E'_{γ} respectively. Then there are $r \times r$ -matrices (a_{ij}) and (b_{ij}) such that $a_{ij}, b_{ij} \in K$ for all i, j and

$$\omega_i' = \sum_{j=1}^r a_{ij}\omega_j, \quad \omega_i = \sum_{j=1}^r b_{ij}\omega_j'$$

for all *i*. Clearly $(a_{ij})(b_{ij}) = (b_{ij})(a_{ij}) = (\delta_{ij})$.

Claim 1.4.1.1. $a_{ij}, b_{ij} \in \mathcal{O}_{X,\gamma}$ for all i, j.

For each *i*, we set $e_i = \min_{1 \le j \le r} \{ \operatorname{ord}_{\gamma}(a_{ij}) \}$. We assume that $e_i < 0$. Let *t* be a local parameter of $\mathcal{O}_{X,\gamma}$. Then $t^{-e_i}a_{ij} \in \mathcal{O}_{X,\gamma}$ for all *j*. Thus $t^{-e_i}\omega'_i \in E_{\gamma}$ and $t^{-e_i}\omega'_i \ne 0$ in $E_{\gamma} \otimes \kappa(\gamma)$. Let Γ be the Zariski closure of $\{\gamma\}$. If we choose a general closed point x_0 of Γ , then $\omega'_i \ne 0$ in $E'_{x_0} \otimes \kappa(x_0)$ and $t^{-e_i}\omega'_i \ne 0$ in $E_{x_0} \otimes \kappa(x_0)$. On the other hand, there is an open neighborhood U_{x_0} of x_0 such that

$$h(t^{-e_i}\omega'_i, t^{-e_i}\omega'_i)(x) = h'(t^{-e_i}\omega'_i, t^{-e_i}\omega'_i)(x)$$

for $x \in U_{x_0} \cap U$. Thus if we set

$$f(x)=h(t^{-e_i}\omega_i',t^{-e_i}\omega_i')(x)=|t|^{-2e_i}h'(\omega_i',\omega_i')(x)$$

on $U_{x_0} \cap U$, then $\lim_{x \to x_0} f(x) = h(t^{-e_i}\omega'_i, t^{-e_i}\omega'_i)(x_0) = 0$ because t = 0 at x_0 . This is a contradiction because $t^{-e_i}\omega'_i \neq 0$ in $E_{x_0} \otimes \kappa(y)$. Therefore we can see that $a_{ij} \in \mathcal{O}_{X,\gamma}$ for all i, j. In the same way, $b_{ij} \in \mathcal{O}_{X,\gamma}$ for all i, j.

By the above claim, $\{\omega_1, \ldots, \omega_r\}$ and $\{\omega'_1, \ldots, \omega'_r\}$ generate the same $\mathcal{O}_{X,\gamma}$ -module in V. Thus $E_{\gamma} = E'_{\gamma}$. Hence we get E = E'.

Let x be an arbitrary closed point of X. Let $v, v' \in E_x \otimes \kappa(x)$. Choose $\omega, \omega' \in E_x$ such that ω and ω' give rise to v and v' in $E_x \otimes \kappa(x)$. Then there is a neighborhood U_x of x such that $h(\omega, \omega')(y) = h'(\omega, \omega')(y)$ for all $y \in U_x \cap U$. Thus

$$h(\omega, \omega')(x) = \lim_{y \to x} h(\omega, \omega')(y) = \lim_{y \to x} h'(\omega, \omega')(y) = h'(\omega, \omega')(x),$$

which means that $h_x(v, v') = h'_x(v, v')$.

Proposition 1.4.2. Let (E,h) be a C^{∞} -hermitian locally free coherent sheaf on X. Let x_1, \ldots, x_r be a K-linearly independent elements of E_{η} . Then $\log(\det(h(x_i, x_j)))$ is a locally integrable function.

Proof. Let W be a vector subspace of E_{η} generated by x_1, \ldots, x_r . By Proposition 1.3.1, there is a saturated \mathcal{O}_X -subsheaf F of E with $F_{\eta} = W$. First we assume that F and E/F are locally free. For a closed point $x \in X$, let $\{\omega_1, \ldots, \omega_r\}$ be a local basis of F_x . Then we can find a matrix $A = (a_{ij})$ such that $a_{ij} \in K$ for all i, j and $x_i = \sum_{j=1}^r a_{ij}\omega_j$ for all i. Then

$$\det(h(x_i, x_j)) = |\det(A)|^2 \det(h(\omega_i, \omega_j)).$$

Since F and E/F are locally free, $\det(h(\omega_i, \omega_j))$ is a non-zero C^{∞} -function around x and $\det(A)$ is a non-zero rational function on X. Thus $\log(\det(h(x_i, x_j)))$ is locally integrable around x.

In general, if we set Q = E/F, then there is a proper birational morphism $\mu: Y \to X$ of smooth algebraic varieties over \mathbb{C} such that

 $\mu^*(Q)/(\text{the torsion part of }\mu^*(Q))$

is locally free. We set $F' = \text{Ker}(\mu^*(E) \to \mu^*(Q)/(\text{the torsion part of } \mu^*(Q)))$. Then F' and $\mu^*(E)/F'$ are locally free. Thus, since $F'_n = W$,

$$\log(\det(\mu^*(h)(x_i, x_j))) = \mu^*(\log(\det(h(x_i, x_j))))$$

is a locally integrable function on Y. Therefore so is $\log \det(h(x_i, x_j))$ on X by virtue of [3, Proposition 1.2.5]

1.5. Arakelov geometry

For basic definitions concerning Arakelov geometry, we refer to [6, Section 1]. Let X be a projective arithmetic variety. We use several kinds of positivity of a C^{∞} -hermitian invertible sheaf on X (like ampleness, nefness and bigness) as defined in [6, Section 2]. Let $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ be a sequence of nef C^{∞} -hermitian invertible sheaves on X, where $d = \dim X_{\mathbb{Q}}$. Note that the sequence is empty in the case of d = 0. We say \overline{H} is fine if $(X; \overline{H}_1, \ldots, \overline{H}_d)$ gives rise to a fine polarization of the function field of X (for details, see [7, Section 6.1]). For example, if \overline{H}_i 's are nef and big, then \overline{H} is fine. Finally we consider the following lemma.

Lemma 1.5.1. Let X be a generically smooth arithmetic variety and U a Zariski open set of X with $\operatorname{codim}(X \setminus U) \ge 2$. Then the natural homomorphism

$$\widehat{\operatorname{CH}}^1_D(X) \to \widehat{\operatorname{CH}}^1_D(U)$$

is injective.

Proof. Let (D,T) be an arithmetic cycle of codimension one on X. We assume that $(D|_U, T|_U) = \widehat{(\phi|_U)}$ for some non-zero rational function ϕ on X. Then, since $\operatorname{codim}(X \setminus U) \ge 2$, we have $(D,T) = \widehat{(\phi)}$.

2. Birationally C^{∞} -hermitian torsion free coherent sheaves on a normal arithmetic variety

Let X be a normal arithmetic variety. Let E be a torsion free coherent sheaf on X. We say a pair (E, h) is called a *birationally* C^{∞} -hermitian torsion free coherent sheaf on X if there are a proper birational morphism $\mu : X' \to X$ of normal arithmetic varieties, a C^{∞} -hermitian locally free coherent sheaf (E', h')on X', and a Zariski open set U of X with the following properties:

(1) X' and U are generically smooth.

(2) $\operatorname{codim}(X \setminus U) \ge 2$.

(3) $\mu: X' \to X$ is an isomorphism over U, that is, if we set $U' = \mu^{-1}(U)$, then $\mu|_{U'}: U' \xrightarrow{\sim} U$.

(4) E is locally free on U and h is a C^{∞} -hermitian metric of $E|_U$ over $U(\mathbb{C})$.

(5) $(\mu|_{U'})^*((E,h)|_U)$ is isometric to $(E',h')|_{U'}$.

This C^{∞} -hermitian locally free coherent sheaf (E', h') is called a *model of* (E, h)in terms of $\mu : X' \to X$. Note that if $\mu' : X'' \to X'$ is a proper birational morphism of normal and generically smooth arithmetic varieties, then ${\mu'}^*(E', h')$ is also a model of (E, h) in terms of $\mu \circ \mu' : X'' \to X$. For, let X'_0 be the maximal Zariski open set over which μ' is an isomorphism. Then $\operatorname{codim}(X' \setminus X_0) \ge 2$. Thus if we set $V = \mu(U' \cap X'_0)$, then we can see the above properties for V.

Proposition 2.1. Let X be a normal arithmetic variety and (E, h) a birationally C^{∞} -hermitian torsion free coherent sheaf on X. Let F be a saturated \mathcal{O}_X -subsheaf of E. Let $h_{F \hookrightarrow E}$ (resp. $h_{E \to E/F}$) be the submetric of

F induced by $F \hookrightarrow E$ and h (resp. the quotient metric of E/F induced by $E \twoheadrightarrow E/F$ and h) on a big Zariski open set of X, i.e., a Zariski open set whose complement has the codimension greater than or equal to 2. Then $(F, h_{F \hookrightarrow E})$ and $(E/F, h_{E \twoheadrightarrow E/F})$ are also birationally C^{∞} -hermitian torsion free coherent sheaves on X.

Proof. Let η be the generic point of X. Let (E', h') be a model of (E, h) in terms of $\mu : X' \to X$. Let F' be a saturated $\mathcal{O}_{X'}$ -subsheaf F' of E' with $F'_{\eta} = F_{\eta}$ (cf. Proposition 1.3.1). We set Q = E'/F'. By [8, Theorem 1 in Chapter 4], there is a proper birational morphism $\mu' : X'' \to X'$ of normal and generically smooth arithmetic varieties such that ${\mu'}^*(Q)/(\text{torsion})$ is locally free. Let

$$F'' = \operatorname{Ker}(\mu'^*(E') \to \mu'^*(Q)/(\operatorname{torsion})).$$

Then F'' and ${\mu'}^*(E')/F''$ are locally free. Thus

$$(F'', \mu'^*(h')_{F'' \hookrightarrow \mu'^*(E')})$$
 and $(\mu'^*(E')/F'', \mu'^*(h')_{\mu'^*(E') \twoheadrightarrow \mu'^*(E')/F''})$

yield models of $(F, h_{F \hookrightarrow E})$ and $(E/F, h_{E \twoheadrightarrow E/F})$ respectively because $\mu'^*(E', h')$ gives rise to a model of (E, h).

Proposition 2.2. We assume that X is projective. Let $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ be a sequence of nef C^{∞} -hermitian invertible sheaves on X, where $d = \dim X_{\mathbb{Q}}$. Then the quantity

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\mu^*(\overline{H}_1))\cdots \widehat{c}_1(\mu^*(\overline{H}_d))\cdot \widehat{c}_1(E',h'))$$

does not depend on the choice of a model (E', h') in terms of $\mu : X' \to X$. It is denoted by $\widehat{\deg}_{\overline{H}}(E, h)$ and is called the arithmetic degree of (E, h) with respect to \overline{H} .

Proof. Let us begin with the following lemma.

Lemma 2.3. Let $\nu : Y \to X$ be a birational morphism of normal and projective arithmetic varieties such that Y is generically smooth. Let (E, h)and (E', h') be C^{∞} -hermitian locally free coherent sheaves on Y. We assume that there is a Zariski open set U of X such that $\operatorname{codim}(X \setminus U) \ge 2$ and ν is an isomorphism over U, that is, if we set $V = \nu^{-1}(U)$, then $\nu|_V : V \xrightarrow{\sim} U$. Let $\overline{L}_1, \ldots, \overline{L}_d$ be C^{∞} -hermitian invertible sheaves on X, where $d = \dim X_{\mathbb{Q}}$. If $(E, h)|_V$ is isometric to $(E', h')|_V$, then

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\nu^*(\overline{L}_1))\cdots \widehat{c}_1(\nu^*(\overline{L}_d))\cdot \widehat{c}_1(E,h)) = \widehat{\operatorname{deg}}(\widehat{c}_1(\nu^*(\overline{L}_1))\cdots \widehat{c}_1(\nu^*(\overline{L}_d))\cdot \widehat{c}_1(E',h')).$$

Proof. Let η be the generic point of Y and x_1, \ldots, x_r a basis of E_η . Let x'_1, \ldots, x'_r be the corresponding basis of E'_η with x_1, \ldots, x_r . Let $Y^{(1)}$ be the set

of all codimension one points of Y. Then $\hat{c}_1(E,h)$ and $\hat{c}_1(E',h')$ are represented by

$$\left(\sum_{\gamma \in Y^{(1)}} \ell_{\mathcal{O}_{Y,\gamma}}(E; x_1, \dots, x_r) \overline{\{\gamma\}}, -\log(\det(h(x_i, x_j)))\right)$$

and

$$\left(\sum_{\gamma \in Y^{(1)}} \ell_{\mathcal{O}_{Y,\gamma}}(E'; x'_1, \dots, x'_r)\overline{\{\gamma\}}, -\log(\det(h'(x'_i, x'_j)))\right)$$

respectively. By Proposition 1.4.1, we can see that

$$\det(h(x_i, x_j)) = \det(h'(x'_i, x'_j))$$

on $Y(\mathbb{C})$. Here

,

$$\ell_{\mathcal{O}_{Y,\gamma}}(E;x_1,\ldots,x_r) = \ell_{\mathcal{O}_{Y,\gamma}}(E';x_1',\ldots,x_r')$$

for all $\gamma \in V^{(1)}$. Moreover, for $\gamma \in Y^{(1)} \setminus V^{(1)}$, since $\operatorname{codim}(\nu(\overline{\{\gamma\}})) \geq 2$,

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\nu^*(\overline{L}_1))\cdots\widehat{c}_1(\nu^*(\overline{L}_d))\cdot(\overline{\{\gamma\}},0))=0$$

by the projection formula (cf. [6, Proposition 1.2 and Proposition 1.3]). Thus we have our lemma. $\hfill \Box$

Let us go back to the proof of Proposition 2.2. Let (E_1, h_1) and (E_2, h_2) be two models of (E, h) in terms of $\mu_1 : X_1 \to X$ and $\mu_2 : X_2 \to X$ respectively. We can choose a normal, projective and generically smooth arithmetic variety Yand birational morphisms $\pi_1 : Y \to X_1$ and $\pi_2 : Y \to X_2$ with $\mu_1 \circ \pi_1 = \mu_2 \circ \pi_2$. We set $\nu = \mu_1 \circ \pi_1 = \mu_2 \circ \pi_2$. First of all, by the projection formula, we have

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\mu_1^*(\overline{H}_1))\cdots \widehat{c}_1(\mu_1^*(\overline{H}_d))\cdot \widehat{c}_1(E_1,h_1)) = \widehat{\operatorname{deg}}(\widehat{c}_1(\nu^*(\overline{H}_1))\cdots \widehat{c}_1(\nu^*(\overline{H}_d))\cdot \widehat{c}_1(\pi_1^*(E_1,h_1)))$$

and

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\mu_2^*(\overline{H}_1))\cdots\widehat{c}_1(\mu_2^*(\overline{H}_d))\cdot\widehat{c}_1(E_2,h_2)) = \widehat{\operatorname{deg}}(\widehat{c}_1(\nu^*(\overline{H}_1))\cdots\widehat{c}_1(\nu^*(\overline{H}_d))\cdot\widehat{c}_1(\pi_2^*(E_2,h_2))).$$

Moreover, by Lemma 2.3,

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\nu^*(\overline{H}_1))\cdots\widehat{c}_1(\nu^*(\overline{H}_d))\cdot\widehat{c}_1(\pi_1^*(E_1,h_1))) = \widehat{\operatorname{deg}}(\widehat{c}_1(\nu^*(\overline{H}_1))\cdots\widehat{c}_1(\nu^*(\overline{H}_d))\cdot\widehat{c}_1(\pi_2^*(E_2,h_2))).$$

Thus we get the assertion.

Let X be a normal arithmetic variety and (E, h) a birationally C^{∞} hermitian torsion free sheaf on X. Let $\pi : X' \to X$ be a proper birational morphism of normal arithmetic varieties and (E', h') a birationally C^{∞} -hermitian torsion free sheaf on X'. We say (E, h) is *birationally dominated by* (E', h') by means of $\pi : X' \to X$ if there is a Zariski open set U of X with the following properties:

(1) $\operatorname{codim}(X \setminus U) \ge 2$ and U is generically smooth.

(2) (E,h) is a C^{∞} -hermitian locally free sheaf over U.

(3) If we set $U' = \pi^{-1}(U)$, then $\pi|_{U'} : U' \xrightarrow{\sim} U$.

(4) $(\pi|_{U'})^*((E,h)|_U)$ is isometric to $(E',h')|_{U'}$.

Then we have the following:

Proposition 2.4. The notation is the same as above. We assume that (E, h) is birationally dominated by (E', h') by means of $\pi : X' \to X$.

(1) Let F be a saturated \mathcal{O}_X -subsheaf of E and F' the corresponding saturated $\mathcal{O}_{X'}$ -subsheaf of E' with F. Then $(F, h_{F \hookrightarrow E})$ and $(E/F, h_{E \twoheadrightarrow E/F})$ are birationally dominated by $(F', h'_{F' \hookrightarrow E'})$ and $(E'/F', h'_{E' \twoheadrightarrow E'/F'})$ respectively.

(2) We assume that X and X' are projective. Let $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ be a sequence of nef C^{∞} -hermitian invertible sheaves on X, where $d = \dim X_{\mathbb{Q}}$. Then $\widehat{\deg}_{\overline{H}}(E,h) = \widehat{\deg}_{\pi^*(\overline{H})}(E',h')$.

Proof. (1) There is a Zariski open set U_1 such that $U_1 \subseteq U$, $\operatorname{codim}(X \setminus U_1) \geq 2$ and that $E|_{U_1}$ and $E/F|_{U_1}$ are locally free. We set $U'_1 = \pi^{-1}(U_1)$. Then $(\pi|_{U'})^*((F, h_{F \hookrightarrow E})|_{U_1})$ is isometric to $(F', h'_{F' \hookrightarrow E'})|_{U'_1}$. Thus our assertions follow.

(2) Let (E'', h'') be a model of (E', h') in terms of a birational morphism $\mu: Y \to X'$. Then it is easy to see that (E'', h'') is a model of (E, h) in terms of $\pi \circ \mu: Y \to X$. Thus we have (2) by Proposition 2.2.

3. Finiteness of subsheaves with bounded arithmetic degree

In this section, we would like to give the proof of the main theorem of this note.

Theorem 3.1. Let X be a normal projective arithmetic variety and (E, h) a birationally C^{∞} -hermitian torsion free coherent sheaf on X. Let $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ be a fine sequence of nef C^{∞} -hermitian invertible sheaves on X, where $d = \dim X_{\mathbb{Q}}$. For any real number c, the set of all non-zero saturated \mathcal{O}_X -subsheaf F of E with $\overline{\deg_H}(\widehat{c}_1(F, h_{F \hookrightarrow E})) \ge c$ is finite, where $h_{F \hookrightarrow E}$ is the submetric of F induced by h over a big open set.

Proof. Let (E', h') be a model of (E, h) in terms of $\mu : X' \to X$. Let η be the generic point of X. For each vector subspace W of E_{η} , let F (resp. F') be a saturated \mathcal{O}_X -subsheaf of E (resp. $\mathcal{O}_{X'}$ -subsheaf of E') induced by W. Then, by Proposition 2.4,

$$\widehat{\operatorname{deg}}_{\overline{H}}(F, h_{F \hookrightarrow E}) = \widehat{\operatorname{deg}}_{\mu^*(\overline{H})}(F', h_{F' \hookrightarrow E'}).$$

Therefore we may assume that X is generically smooth, E is locally free and h is a C^{∞} -hermitian metric of E.

For each $0 < s < \operatorname{rk} E$, let $\Sigma_s(X, E)$ be the set of all saturated rank $s \mathcal{O}_X$ -subsheaves of E. First let us see that, for any real number c, the set

$$\{L \in \Sigma_1(X, E) \mid \widehat{\operatorname{deg}}_{\overline{H}}(F, h_{F \hookrightarrow E}) \ge c\}$$

is finite. Let $\pi : P = \operatorname{Proj}(\bigoplus_{d \ge 0} \operatorname{Sym}^d(E^{\vee})) \to X$ be the projective bundle and $\mathcal{O}_P(1)$ the tautological line bundle of P. Let h_P be the quotient hermitian metric of $\mathcal{O}_P(1)$ by using the surjective homomorphism $\pi^*(E^{\vee}) \to \mathcal{O}_P(1)$ and the hermitian metric $\pi^*(h^{\vee})$. In other words, the metric h_P^{-1} of $\mathcal{O}_P(-1)$ is the submetric induced by the injective homomorphism $\mathcal{O}_P(-1) \to \pi^*(E)$ and $\pi^*(h)$ (cf. (3) of Proposition 1.1.3). Let P_η be the generic fiber of $\pi : P \to X$, and K the function field of X.

For a K-rational point x of P_{η} , let us introduce Δ_x , U_x , V_x and s_x as follows: Δ_x is the Zariski closure of x in P and U_x is the maximal open set of X over which $\pi|_{\Delta_x} : \Delta_x \to X$ is an isomorphism. Further $V_x = (\pi|_{\Delta_x})^{-1}(U_x)$ and $s_x : U_x \to P$ is the section induced by the isomorphism $\pi|_{V_x} : V_x \to U_x$

Let $\Sigma_1(K, E_\eta)$ be the set of all 1-dimensional vector subspaces of E_η over K. Then, by Proposition 1.3.3, there is a natural bijection

$$P_{\eta}(K) \to \Sigma_1(K, E_{\eta}).$$

Moreover let $\Sigma_1(X, E)$ be the set of all saturated rank one \mathcal{O}_X -subsheaves of E. By Proposition 1.3.1, we have a bijective map

$$\Sigma_1(X, E) \to \Sigma_1(K, E_\eta).$$

Therefore there is a natural bijection between $P_{\eta}(K)$ and $\Sigma_1(X, E)$. For a *K*-rational point *x* of P_{η} , the corresponding saturated rank one \mathcal{O}_X -subsheaf of *E* is denoted by L(x). Then, by using Proposition 1.3.3, we can see that L(x) has the following property: Let $s_x^*(\mathcal{O}_P(-1)) \to s_x^*\pi^*(E) = E|_{U_x}$ be the homomorphism from the natural homomorphism $\mathcal{O}_P(-1) \to \pi^*(E)$ by applying s_x^* . Then the image of $s_x^*(\mathcal{O}_P(-1)) \to E|_{U_x}$ is $L(x)|_{U_x}$. Let h_x be the submetric of L(x) induced by h.

Claim 3.1.1.
$$\widehat{c}_1(L(x), h_x) = (\pi|_{\Delta_x})_* \left(\widehat{c}_1 \left((\mathcal{O}_P(-1), h_P^{-1}) |_{\Delta_x} \right) \right).$$

Since the metric h_P^{-1} is the submetric of $\mathcal{O}_P(-1)$ induced by $\pi^*(h)$, we can see that $s_x^*(\mathcal{O}_P(-1), h_P^{-1})$ is isometric to $(L(x), h_x)|_{U_x}$. Thus $(\mathcal{O}_P(-1), h_P^{-1})|_{V_x}$ is isometric to $(\pi|_{V_x})^*((L(x), h_x)|_{U_x})$, which implies that

$$(\pi|_{V_x})_* \left(\widehat{c}_1 \left(\left(\mathcal{O}_P(-1), h_P^{-1} \right) \Big|_{V_x} \right) \right) = (\pi|_{V_x})_* \left(\widehat{c}_1 \left((\pi|_{V_x})^* (\left(L(x), h_x \right) |_{U_x} \right) \right) \right)$$
$$= \widehat{c}_1 (\left(L(x), h_x \right) |_{U_x}).$$

This means that the assertion of the claim holds over U_x . Thus so does over X by Lemma 1.5.1.

For a K-rational point x of P_{η} , the height $h_{\mathcal{O}(1)}(x)$ with respect to $\mathcal{O}_P(1)$ and (X, \overline{H}) is given by

$$h_{\mathcal{O}(1)}(x) = \widehat{\operatorname{deg}}\left(\widehat{c}_1((\pi|_{\Delta_x})^*(\overline{H}_1))\cdots \widehat{c}_1((\pi|_{\Delta_x})^*(\overline{H}_d))\cdot \widehat{c}_1\left((\mathcal{O}_P(1),h_P)|_{\Delta_x}\right)\right).$$

By using the above claim and the projection formula,

$$-h_{\mathcal{O}_P(1)}(x)$$

$$= \widehat{\operatorname{deg}}\left(\widehat{c}_1((\pi|_{\Delta_x})^*(\overline{H}_1))\cdots \widehat{c}_1((\pi|_{\Delta_x})^*(\overline{H}_d))\cdot \widehat{c}_1\left((\mathcal{O}_P(-1), h_P^{-1})|_{\Delta_x}\right)\right)$$

$$= \widehat{\operatorname{deg}}\left(\widehat{c}_1(\overline{H}_1)\cdots \widehat{c}_1(\overline{H}_d)\cdot \widehat{c}_1(L(x), h_x)\right) = \widehat{\operatorname{deg}}_{\overline{H}}(L(x), h_x).$$

Thus we have a bijective correspondence between

$$\{L \in \Sigma_1(X, E) \mid \widehat{\deg}_{\overline{H}}(F, h_{F \hookrightarrow E}) \ge c\}$$

and

$$\{x \in P_{\eta}(K) \mid h(x) \le -c\}$$

On the other hand, by virtue of Northcott's theorem over finitely generated field (cf. [6, Theorem 4.3]), $\{x \in P_{\eta}(K) \mid h(x) \leq -c\}$ is a finite set. Therefore we get the case where s = 1.

For $F \in \Sigma_s(X, E)$, let $\lambda(F)$ be the saturation of

$$\bigwedge^s F/(\text{the torsion part of} \bigwedge^s F)$$

in $\bigwedge^{s} E$.

Claim 3.1.2. If
$$\lambda(F) = \lambda(F')$$
, then $F = F'$.

We assume that $\lambda(F) = \lambda(F')$. Let K be the function field of X. Then, using Plücker coordinates over K, we can see that $F \otimes K = F' \otimes K$. Thus, by Lemma 1.3.2, F' = F.

Let
$$h_{\lambda(F)} = (\bigwedge^{s} h)_{\lambda(F) \hookrightarrow \bigwedge^{s} E}$$
. Then, by Proposition 1.1.4,

$$\widehat{c}_1(F, h_F) = \widehat{c}_1(\lambda(F), h_{\lambda(F)}).$$

Therefore, by using the above claim and the case where s = 1, our theorem follows.

Let X be a normal and projective arithmetic variety and (E,h) a birationally C^{∞} -hermitian torsion free coherent sheaf on X. Let $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ be a fine sequence of nef C^{∞} -hermitian invertible sheaves on X. For a non-zero saturated \mathcal{O}_X -subsheaf G of E, we set

$$\hat{\mu}_{\overline{H}}(G, h_{G \hookrightarrow E}) = \frac{\widehat{\operatorname{deg}}_{\overline{H}}(G, h_{G \hookrightarrow E})}{\operatorname{rk} G}.$$

A saturated \mathcal{O}_X -subsheaf F of E is called a maximal slope sheaf of (E, h) with respect to \overline{H} if $\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E})$ gives rise to the maximal value of the set

$$\{\hat{\mu}_{\overline{H}}(G, h_{G \hookrightarrow E}) \mid G \text{ is a non-zero saturated } \mathcal{O}_X \text{-subsheaf of } E\}.$$

Moreover a maximal slope sheaf F of (E, h) is called a maximal destabilizing sheaf of (E, h) with respect to \overline{H} if $\operatorname{rk} F$ is maximal among all maximal slope sheaves of (E, h). As a corollary of Theorem 3.1, we have the following:

Corollary 3.2. There is a maximal destabilizing sheaf of (E,h) with respect to \overline{H} .

4. Arithmetic first Chern class of a subsheaf

Let X be a normal and generically smooth arithmetic variety and η the generic point of X. Let (E, h) be a C^{∞} -hermitian locally free sheaf on X. Let F be an \mathcal{O}_X -subsheaf of E. Let x_1, \ldots, x_r be a basis of F_{η} . Let us consider an arithmetic codimension one cycle $z(F; x_1, \ldots, x_r)$ (i.e., an element of $\in \widehat{Z}_D^1(X)$) given by

$$z(F; x_1, \dots, x_r) = \left(\sum_{\Gamma} \ell_{\mathcal{O}_{X,\Gamma}}(F_{\Gamma}; x_1, \dots, x_r)\Gamma, -\log \det(h(x_i, x_j))\right).$$

Note that $\log \det(h(x_i, x_j))$ is locally integrable on $X(\mathbb{C})$ by Proposition 1.4.2. Let x'_1, \ldots, x'_r be another basis of F_{η} . There is an $r \times r$ -matrix $A = (a_{ij})$ with $x'_i = \sum_{j=1}^r a_{ij} x_j$. Using (2) of Corollary 1.2.2, we can see that

$$z(F; x'_1, \dots, x'_r) = z(F; x_1, \dots, x_r) + (\widehat{\det(A)}).$$

Therefore the class of $z(F; x_1, \ldots, x_r)$ in $\widehat{\operatorname{CH}}_D^1(X)$ does not depend on the choice of x_1, \ldots, x_r . We denote the class of $z(F; x_1, \ldots, x_r)$ in $\widehat{\operatorname{CH}}_D^1(X)$ by $\widehat{c}_1(F \hookrightarrow E, h)$. If F = E, then $\widehat{c}_1(E \hookrightarrow E, h)$ is equal to the usual $\widehat{c}_1(E, h)$. Note that

$$\widehat{c}_1(F \hookrightarrow E, h) = \widehat{c}_1(F, h_{F \hookrightarrow E})$$

if F is saturated in E. More generally, we have the following:

Proposition 4.1. Let F be an \mathcal{O}_X -subsheaf of E and \widetilde{F} the saturation of F in E. Then $\widehat{c}_1(\widetilde{F}, h_{\widetilde{F} \hookrightarrow E}) - \widehat{c}_1(F \hookrightarrow E, h)$ is represented by an arithmetic divisor

$$\left(\sum_{\Gamma : \text{ prime divisor}} \operatorname{length}_{\mathcal{O}_{X,\Gamma}}(\widetilde{F}_{\Gamma}/F_{\Gamma})\Gamma, 0\right).$$

In particular, if $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ is a sequence of nef C^{∞} -hermitian invertible sheaves on X, then

$$\widehat{\operatorname{deg}}(\widehat{c}_1(\overline{H}_1)\cdots\widehat{c}_1(\overline{H}_d)\cdot\widehat{c}_1(F\hookrightarrow E,h)) \leq \widehat{\operatorname{deg}}(\widehat{c}_1(\overline{H}_1)\cdots\widehat{c}_1(\overline{H}_d)\cdot\widehat{c}_1(\widetilde{F},h_{\widetilde{F}\hookrightarrow E}))$$

Proof. Let η be the generic point of X. Let $\{x_1, \ldots, x_r\}$ be a basis of F_η . Then $\{x_1, \ldots, x_r\}$ also gives rise to a basis of \widetilde{F}_η . Thus $\widehat{c}_1(\widetilde{F}, h_{\widetilde{F} \hookrightarrow E}) - \widehat{c}_1(F \hookrightarrow E, h)$ is represented by

$$\left(\sum_{\Gamma} (\ell_{\mathcal{O}_{X,\Gamma}}(\widetilde{F}_{\Gamma}; x_1, \dots, x_r) - \ell_{\mathcal{O}_{X,\Gamma}}(F_{\Gamma}; x_1, \dots, x_r))\Gamma, 0\right).$$

Hence it is sufficient to see that

$$\ell_{\mathcal{O}_{X,\Gamma}}(\widetilde{F}_{\Gamma}; x_1, \dots, x_r) - \ell_{\mathcal{O}_{X,\Gamma}}(F_{\Gamma}; x_1, \dots, x_r) = \operatorname{length}_{\mathcal{O}_{X,\Gamma}}(\widetilde{F}_{\Gamma}/F_{\Gamma})$$

for all Γ . Let *a* be an element of $\mathcal{O}_{X,\Gamma} \setminus \{0\}$ such that $ax_i \in \mathcal{O}_{X,\Gamma}$ for all *i*. Then

$$\ell_{\mathcal{O}_{X,\Gamma}}(\widetilde{F}_{\Gamma}; x_1, \dots, x_r) = \operatorname{length}_{\mathcal{O}_{X,\Gamma}}(\widetilde{F}_{\Gamma}/\mathcal{O}_{X,\Gamma}ax_1 + \dots + \mathcal{O}_{X,\Gamma}ax_r) - r \operatorname{ord}_{\Gamma}(a),$$

$$\ell_{\mathcal{O}_{X,\Gamma}}(F_{\Gamma}; x_1, \dots, x_r) = \operatorname{length}_{\mathcal{O}_{X,\Gamma}}(F_{\Gamma}/\mathcal{O}_{X,\Gamma}ax_1 + \dots + \mathcal{O}_{X,\Gamma}ax_r) - r \operatorname{ord}_{\Gamma}(a).$$

Therefore we get our proposition.

Let X be a normal and projective arithmetic variety and $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ a fine sequence of nef C^{∞} -hermitian invertible sheaves. Let (E, h) be a birationally C^{∞} -hermitian torsion free coherent sheaf on X. (E, h) is said to be *arithmetically* μ -semistable with respect to \overline{H} if, for any non-zero saturated \mathcal{O}_X -subsheaf F of E,

$$\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E}) \le \hat{\mu}_{\overline{H}}(E, h).$$

A filtration

$$0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_l = E$$

of \mathcal{O}_X -subsheaves of E is called a *saturated filtration of* E if E_i/E_{i-1} is torsion free for every $1 \leq i \leq l$. Moreover we say a saturated filtration $0 = E_0 \subsetneq E_1 \subsetneq$ $\cdots \subsetneq E_l = E$ of E is an *arithmetic Harder-Narasimham filtration of* (E, h) with respect to \overline{H} if the following properties are satisfied:

(1) Let $h_{E_i/E_{i-1}}$ be a C^{∞} -hermitian metric of E_i/E_{i-1} induced by h, that is,

$$h_{E_i/E_{i-1}} = (h_{E_i \hookrightarrow E})_{E_i \twoheadrightarrow E_i/E_{i-1}} = (h_{E \twoheadrightarrow E/E_{i-1}})_{E_i/E_{i-1} \hookrightarrow E/E_{i-1}}$$

Then $(E_i/E_{i-1}, h_{E_i/E_{i-1}})$ is arithmetically μ -semistable with respect to \overline{H} . (2) $\hat{\mu}_{\overline{H}}(E_1/E_0, h_{E_1/E_0}) > \hat{\mu}_{\overline{H}}(E_2/E_1, h_{E_2/E_1}) > \cdots > \hat{\mu}_{\overline{H}}(E_l/E_{l-1}, h_{E_l/E_{l-1}}).$

In the case where X is generically smooth and (E, h) is a C^{∞} -hermitian locally free coherent sheaf on X, for a non-zero \mathcal{O}_X -subsheaf G of E, we set

$$\hat{\mu}_{\overline{H}}(G \hookrightarrow E, h) = \frac{\widetilde{\operatorname{deg}}(\widehat{c}_1(\overline{H}_1) \cdots \widehat{c}_1(\overline{H}_d) \cdot \widehat{c}_1(G \hookrightarrow E, h))}{\operatorname{rk} G}.$$

The purpose of this section is to prove the following unique existence of an arithmetic Harder-Narasimham filtration:

Theorem 5.1. Let X be a normal and projective arithmetic variety. Let (E,h) be a birationally C^{∞} -hermitian torsion free coherent sheaf on X. Let $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ be a fine sequence of nef C^{∞} -hermitian invertible sheaves. Then there exists uniquely an arithmetic Harder-Narasimham filtration of (E,h) with respect to \overline{H} . Moreover, if (E,h) is not arithmetically μ -semistable with respect to \overline{H} , then a maximal destabilizing sheaf of (E,h) is unique.

We need several lemmas to prove the above theorem.

Lemma 5.2. Let (E, h) and (E', h') be birationally C^{∞} -hermitian torsion free coherent sheaves on normal projective arithmetic varieties X and X' respectively. Let $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ be a fine sequence of nef C^{∞} -hermitian invertible sheaves on X. We assume that there is a birational morphism $\pi : X' \to X$ and (E, h) is dominated by (E', h') by means of $\pi : X' \to X$. Then we have the followings:

(1) (E,h) is arithmetically μ -semistable with respect to \overline{H} if and only if so is (E',h') with respect to $\pi^*(\overline{H})$.

(2) Let F be a saturated \mathcal{O}_X -subsheaf of E and F' the corresponding saturated $\mathcal{O}_{X'}$ -subsheaf of E'. Then F is a maximal destabilizing sheaf of (E, h) with respect to \overline{H} if and only if so is F' with respect to $\pi^*(\overline{H})$.

(3) Let $0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_l = E$ be a saturated filtration of E and $0 = E'_0 \subsetneq E'_1 \subsetneq \cdots \subsetneq E'_l = E'$ the corresponding saturated filtration of E'. Then $0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_l = E$ is a Harder-Narasimham filtration with respect to \overline{H} if and only if so is $0 = E'_0 \subsetneq E'_1 \subsetneq \cdots \subsetneq E'_l = E'$ with respect to $\pi^*(\overline{H})$.

Proof. This is a consequence of Proposition 2.4.

Lemma 5.3. Let (E, h) be a birationally C^{∞} -hermitian torsion free coherent sheaf on a normal projective arithmetic variety X. If (E, h) is not arithmetically μ -semistable with respect to \overline{H} and F is a maximal slope sheaf of (E, h), then

$$\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E}) > \hat{\mu}_{\overline{H}}(E/F, h_{E \twoheadrightarrow E/F}).$$

Proof. We set $a = \operatorname{rk}(F)$ and $b = \operatorname{rk}(E/F)$. Then

$$\hat{\mu}_{\overline{H}}(E,h) = \frac{a}{a+b}\hat{\mu}_{\overline{H}}(F,h_{F \hookrightarrow E}) + \frac{b}{a+b}\hat{\mu}_{\overline{H}}(E/F,h_{E \to E/F}).$$

Thus, since $\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E}) > \hat{\mu}_{\overline{H}}(E, h)$, we get our lemma.

Lemma 5.4. Let (E, h) be a birationally C^{∞} -hermitian torsion free coherent sheaf on a normal projective arithmetic variety X. Let $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ be a fine sequence of nef C^{∞} -hermitian invertible sheaves. Then there are a

 \Box

model (E', h') of (E, h) in terms of a birational morphism $\mu : Y \to X$ of normal projective arithmetic varieties and a Harder-Narasimham filtration

$$0 = E'_0 \subsetneq E'_1 \subsetneq \cdots \subsetneq E'_l = E'$$

of (E', h') with respect to $\mu^*(\overline{H})$ such that E'_i/E'_{i-1} is locally free for every $i = 1, \ldots, l$.

Proof. Let (E', h') be a model of (E, h) in terms of $\mu : Y \to X$. By Proposition 2.4, (E, h) is arithmetically μ -semistable with respect to \overline{H} if and only if so is (E', h') with respect to $\mu^*(\overline{H})$. Thus we may assume that (E, h) is not arithmetically μ -semistable with respect to \overline{H} . Let E'_1 be a maximal destabilizing sheaf of (E', h'). Considering Proposition 2.4 and a suitable birational morphism $\mu' : Y' \to Y$ of normal, projective and generically smooth arithmetic varieties to remove the pinching points of E'/E'_1 , we may assume that E'_1 and E'/E'_1 are locally free. If $(E'/E'_1, h'_{E' \to E'/E'_1})$ is arithmetically μ -semistable, then we are done. Otherwise, let E'_2 be a saturated \mathcal{O}_Y -subsheaf of E' such that $E'_1 \subseteq E'_2$ and E'_2/E'_1 is a maximal destabilizing sheaf of $(E'/E'_1, h'_{E' \to E'/E'_1})$. Changing Y as before, we may assume that E'_2 and E'/E'_2 are locally free. Moreover, by Lemma 5.3,

$$\begin{aligned} \hat{\mu}_{\mu^{*}(\overline{H})}(E'_{1}, h_{E'_{1} \hookrightarrow E'}) &= \hat{\mu}_{\mu^{*}(\overline{H})}(E'_{1}, (h_{E'_{2} \hookrightarrow E})_{E'_{1} \hookrightarrow E'_{2}}) \\ &> \hat{\mu}_{\mu^{*}(\overline{H})}(E'_{2}/E'_{1}, (h_{E'_{2} \hookrightarrow E})_{E'_{2} \twoheadrightarrow E'_{2}/E'_{1}}). \end{aligned}$$

Thus, continuing this construction, we have our lemma.

Lemma 5.5. Let (E,h) be a C^{∞} -hermitian locally free coherent sheaf on a normal projective and generically smooth arithmetic variety X. Let $\overline{H} = (\overline{H}_1, \ldots, \overline{H}_d)$ be a fine sequence of nef C^{∞} -hermitian invertible sheaves. Let $0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_l = E$ be an arithmetic Harder-Narasimham filtration of (E,h) such that E_i/E_{i-1} is locally free for every $i = 1, \ldots, l$. If F is a maximal slope sheaf of (E,h), then $F \subseteq E_1$ and $\hat{\mu}_{\overline{H}}(F \hookrightarrow E,h) = \hat{\mu}_{\overline{H}}(E_1 \hookrightarrow E,h)$.

Proof. We choose i such that $F \subseteq E_i$ and $F \not\subseteq E_{i-1}$. We assume that $i \geq 2$. Let Q be the image of $F \to E_i/E_{i-1}$. Let h_Q be the quotient metric of Q induced by $h_{F \hookrightarrow E}$ and $F \to Q$, that is, $h_Q = (h_{F \hookrightarrow E})_{F \to Q}$. Then, by virtue of Lemma 1.1.2,

$$\hat{\mu}_{\overline{H}}(Q, h_Q) \le \hat{\mu}_{\overline{H}}(Q \hookrightarrow E_i/E_{i-1}, h_{E_i/E_{i-1}}).$$

On the other hand, since $(F, h_{F \hookrightarrow E})$ and $(E_i/E_{i-1}, h_{E_i/E_{i-1}})$ are arithmetically μ -semistable,

$$\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E}) \le \hat{\mu}_{\overline{H}}(Q, h_Q)$$

and

$$\hat{\mu}_{\overline{H}}(Q \hookrightarrow E_i/E_{i-1}, h_{E_i/E_{i-1}}) \le \hat{\mu}_{\overline{H}}(E_i/E_{i-1}, h_{E_i/E_{i-1}}).$$

Therefore,

$$\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E}) \le \hat{\mu}_{\overline{H}}(E_i/E_{i-1}, h_{E_i/E_{i-1}}) < \hat{\mu}_{\overline{H}}(E_1, h_{E_1 \hookrightarrow E}),$$

which contradicts to the maximality of $\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E})$. Thus $F \subseteq E_1$. Moreover, since $(E_1, h_{E_1 \hookrightarrow E})$ is arithmetically μ -semistable, $\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E}) \leq \hat{\mu}_{\overline{H}}(E_1, h_{E_1 \hookrightarrow E})$. Therefore $\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E}) = \hat{\mu}_{\overline{H}}(E_1, h_{E_1 \hookrightarrow E})$ by the maximality of $\hat{\mu}_{\overline{H}}(F, h_{F \hookrightarrow E})$.

Let us start the proof of Theorem 5.1. The existence of a Harder-Narasimham filtration is a consequence of Lemma 5.4 and Proposition 2.4. Let us see the uniqueness of a Harder-Narasimham filtration. Clearly we may assume that (E, h) is not arithmetically μ -semistable. Let $0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_l = E$ and $0 = G_0 \subsetneq G_1 \subsetneq \cdots \subsetneq G_{l'} = E$ be Harder-Narasimham filtration of (E, h). Let (E', h') be a model of (E, h) in terms of $\mu : Y \to X$. Let $0 = E'_0 \subsetneq E'_1 \subsetneq \cdots \subsetneq E'_l = E'$ and $0 = G'_0 \subsetneq G'_1 \subsetneq \cdots \subsetneq G'_{l'} = E'$ be corresponding Harder-Narasimham filtration of (E', h') with $0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_l = E$ and $0 = G_0 \subsetneq G_1 \subsetneq \cdots \subsetneq G'_{l'} = E$ respectively. By taking a birational morphism $\mu' : Y' \to Y$, we may assume that E'_i/E'_{i-1} and G'_j/G'_{j-1} are locally free for all $i = 1, \ldots, l$ and $j = 1, \ldots, l'$. Let F' be a maximal destabilizing sheaf of (E', h'). Thus $F' = E'_1$. In the same way, $F' = G'_1$. Hence, by considering a Harder-Narasimham filtration of $(E'/F', h_{E' \to E'}) = \hat{\mu}_{\mu^*}(\overline{H})(E'_1, h_{E'_1 \to E'})$.

The above observation also show the uniqueness of a maximal destabilizing sheaf. $\hfill \Box$

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE KYOTO UNIVERSITY KYOTO, 606-8502, JAPAN e-mail: moriwaki@math.kyoto-u.ac.jp

References

- R. Hartshorne, Algebraic geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
- [2] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. 79 (1964), 109–326.
- [3] S. Kawaguchi and A. Moriwaki, Inequality for semistable families of arithmetic varieties, J. Math. Kyoto Univ. 41 (2001), 97–182.
- [4] A. Moriwaki, Inequality of Bogomolov-Gieseker's type on arithmetic surfaces, Duke Math. J. 74 (1994), 713–761.
- [5] _____, Bogomolov unstability on arithmetic surfaces, Math. Res. Lett. 1 (1994), 601–611.

Atsushi Moriwaki

- [6] _____, Arithmetic height functions over finitely generated fields, Invent. Math. 140 (2000), 101–142.
- [7] _____, The number of algebraic cycles with bounded degree, J. Math. Kyoto Univ. 44 (2004), 819–890.
- [8] M. Raynaud. Flat modules in algebraic geometry, Algebraic geometry, Oslo, edited by F. Oort, pp. 255–275, 1970.