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A NOTE ON NONEXISTENCE OF MULTIPLE BLACK HOLES
IN STATIC VACUUM EINSTEIN SPACE–TIMES

H. BALTAZAR AND B. LEANDRO

Abstract. The purpose of this note is to study the static vac-
uum Einstein space–time with half harmonic Weyl tensor, that

is, δW+ = 0. We prove that there are no multiple black holes on

a four-dimensional static vacuum Einstein space–time with half
harmonic Weyl tensor.

1. Introduction

In the last few decades have been a steadily growing interest in the study
of the static space–times. A fundamental question on this subject is related
with the uniqueness of black hole as well as the nonexistence of multiple
black holes in static space. In this context, in a celebrated article [14], Israel
gave the first answer for the uniqueness of black hole. More precisely, he
proved that a static, topologically spherical black hole is described by the
Schwarzschild or the Reissner–Nördström solutions. Afterward, inspired by
[9], [14], [18], Bunting and Masood-ul-Alam [6] studied such a problem in an
asymptotically Euclidean static vacuum space–time. In general, many authors
have investigated this problem and provided important contributions to the
development of this theory, we refer the reader to [11], [12], [10], [13] and [20]
for an overview of the progress on such a subject.

Definition 1. A Riemannian manifold (Mn, g), n≥ 3, is said to be a static
vacuum Einstein space–time if there exist a lapse function f :M → (0,+∞)
satisfying the static vacuum Einstein equation

(1.1) ∇2f = fRic and Δf = 0.
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A straightforward computation ensures R= 0, where R stands for the scalar
curvature of g. Moreover, it is known that the only complete solution to the
static vacuum equations (1.1) with f > 0 everywhere is a flat metric, with
f = constant (cf. Theorem 3.2 in [1]).

In the sequel, given a static metric

(1.2) ḡ = g− f2 dt2

on M
n+1

=Mn ×f R (cf. [10], [17], [15], [16], [20]), it is well known that:

• Ricḡ(X,Y ) =Ricg(X,Y )− 1
f∇2

gf(X,Y ),

• Ricḡ(V,H) =−g(V,H)
Δgf
f and

• Ricḡ(X,V ) = 0,

where ∇2
g and Δg are, respectively, the Hessian and the Laplacian operator

for g. Moreover, X and Y are horizontal vector fields, while H and V are
vertical vector fields (see [5], [19]). From this, M is Ricci-flat if and only if
the lapse function f satisfies (1.1).

Here, we consider non-trivial solutions of the static vacuum Einstein equa-
tion (1.1), complete and connected up to the boundary ∂M of M . Moreover,
we assume that the set f−1(0) = ∂M is compact, and that the metric g and
the function f extends smoothly to ∂M . To do so, let us recall that the set
∂M = f−1(0) is called the horizon, which corresponds to domains surrounding
a collection of black holes. We say that there are no multiple black holes in
(Mn, g) when the horizon ∂M = f−1(0) is connected. For more details see,
for instance, [1] and [13].

It is already known that four-dimensional Riemannian manifolds are very
special. For instance, it is well known that the bundle of 2-forms on a 4-
dimensional compact oriented Riemannian manifold can be invariantly de-
composed as a direct sum (cf. [5], [8]). Moreover, on an oriented Riemannian
manifold (M4, g), the Weyl curvature tensor W is an endomorphism of the
bundle of 2-forms Λ2 =Λ2

+ ⊕Λ2
− such that

W =W+ ⊕W−,

where W± : Λ2
± −→ Λ2

± are called of the self-dual and anti-self-dual parts
of W . Half conformally flat metrics are also known as self-dual or anti-self-
dual if W− = 0 or W+ = 0, respectively.

For what follows, we recall that the tensor W+ is harmonic if δW+ = 0,
where δ is the formal divergence defined for any (0,4)-tensor F by

δF (X1,X2,X3) = traceg
{
(Y,Z) �→ ∇Y F (Z,X1,X2,X3)

}
,

where g is the metric of M4. It is worth to point out that in dimension 4 we
have

|δW |2 =
∣∣δW+

∣∣2 + ∣∣δW−∣∣2.
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From here it follows that the half harmonic Weyl tensor assumption (that
is, δW+ = 0) is weaker than the harmonic Weyl tensor condition (that is,
δW = 0). Moreover, it is well-known that compact oriented 4-dimensional
manifolds with parallel Ricci tensor must have δW+ = 0. This implies that
every four-dimensional Einstein manifold has half harmonic Weyl tensor (cf.
16.65 in [5], see also Lemma 6.14 in [8]). But, the converse statement is not
necessarily true. Therefore, according to [5] “Besse’s book”, the assumption
δW+ = 0 can be seen as a generalization of the Einstein condition. For a
detailed overview on the half harmonic Weyl tensor condition see Chapter 16
(Section H) in [5]. From these comments, it is natural to ask which geometric
implications has the assumption of the harmonicity of the tensor W+ on a
four-dimensional static space–times.

Before proceeding, it is convenient to recall that a Riemannian manifold
(Mn, g) has f -weakly harmonic curvature if the Ricci tensor Ricg satisfies

dDRicg(∇f, ·,∇f) = 0

for a function f :M →R, where dD is the first-order differential operator from
the space of sections of symmetric 2-tensors C∞(S2M) into C∞(

∧2
T ∗M ⊗

T ∗M) defined by

dDω(X,Y,Z) =∇Xω(Y,Z)−∇Y ω(X,Z).

With these notations, recently, Hwang, Chang and Yun [13], studied static
vacuum Einstein space–time with f -weakly harmonic curvature. More pre-
cisely, they proved the following result.

Theorem 1 (Hwang–Chang–Yun, [13]). Let (Mn, g, f) be a static vacuum
Einstein space–time satisfying (1.1) with f -weakly harmonic curvature. Then
there are no multiple black holes in Mn.

In this article, we shall replace the assumption of f -weakly harmonic curva-
ture in the Hwang–Chang–Yun result by the hypotheses that the tensor W+

is harmonic on M . More precisely, we have established the following result.

Theorem 2. Let (M4, g, f) be a static vacuum Einstein space–time satis-
fying (1.1) with half harmonic Weyl tensor (i.e., δW+ = 0). Then there are
no multiple black holes in M4.

Obviously if we change the condition δW+ = 0 by the condition δW− = 0
the conclusion of Theorem 2 is the same. Furthermore, one should be empha-
sized that there is no relationship between f -weakly harmonic curvature and
the condition that manifold has harmonic tensor W+.

2. Preliminaries

In this section, we shall present some preliminaries which will be useful
for the establishment of the desired result. We start recalling that for a
Riemannian manifold (Mn, g), n ≥ 3, the Weyl tensor W is defined by the
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following decomposition formula

Rijkl =Wijkl +
1

n− 2
(Rikgjl +Rjlgik −Rilgjk −Rjkgil)(2.1)

− R

(n− 1)(n− 2)
(gjlgik − gilgjk),

where Rijkl stands for the Riemannian curvature operator. Moreover, the
Cotton tensor C is given according to

(2.2) Cijk =∇iRjk −∇jRik −
1

2(n− 1)
(∇iRgjk −∇jRgik).

These two tensors are related as follows

(2.3) Cijk =− (n− 2)

(n− 3)
∇lWijkl,

provided n≥ 4.
In what follows, M4 will denote an oriented 4-dimensional manifold and g

is a Riemannian metric on M4. As it was previously pointed out 4-manifolds
are fairly special. For instance, following the notations used in [8], given any
local orthogonal frame {e1, e2, e3, e4} on an open set of M4 with dual basis
{e1, e2, e3, e4}, there exists a unique bundle morphism ∗ called Hodge star
(acting on bivectors), such that

∗
(
e1 ∧ e2

)
= e3 ∧ e4.

This implies that ∗ is an involution, that is, ∗2 = Id. In particular, this ensures
that the bundle of 2-forms on a 4-dimensional oriented Riemannian manifold
can be invariantly decomposed as a direct sum Λ2 =Λ2

+ ⊕Λ2
−. From this, it

follows that the Weyl tensor W is an endomorphism of Λ2 = Λ+ ⊕ Λ− such
that

(2.4) W =W+ ⊕W−.

Recalling that the Weyl tensor is trace-free on any pair of indices, we have

(2.5) W+
pqrs =

1

2
(Wpqrs +Wpqrs),

where (rs), for instance, stands for the dual of (rs), that is, (rsrs) = σ(1234)
for some even permutation σ in the set {1,2,3,4} (cf. Equation 6.17, p. 466
in [8]). For instance, we have

W+
1234 =

1

2
(W1234 +W1212).

For more details we refer to [4], [3], [5], [8].
The next result, which can be found in [13], will be useful in the proof of

our main result.
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Lemma 1 ([13]). Let (Mn, g, f) be a static vacuum Einstein space–time.
If f is non-trivial, then the set Crit(f) = {p ∈ Mn;∇f(p) = 0} has zero n-
dimensional measure.

3. Proof of the main result

Our approach is inspired by ideas outlined in [4], [3] and [2]. To start with,
we show a formula relating the Cotton tensor with the Weyl tensor on a static
vacuum Einstein space–time.

Lemma 2. Let (Mn, g, f) be a static vacuum Einstein space–time. Then:

fCijk =Wijks∇sf +
(n− 1)

(n− 2)
(Rik∇jf −Rjk∇if)

− 1

(n− 2)

(
Ris∇sfgjk −Rjs∇sfgik

)
.

Proof. First, taking the covariant derivative of (1.1), we have

∇ifRjk + f∇iRjk =∇i∇j∇kf.

Then, from Ricci equation we get that

Rjk∇if −Rik∇jf + f(∇iRjk −∇jRik) =Rijkl∇lf.

Since R= 0, from (2.2), we obtain

(3.1) Rjk∇if −Rik∇jf + fCijk =Rijkl∇lf

and, from the Weyl tensor formula (2.1) we achieve

Rijkl∇lf =Wijkl∇lf +
1

n− 2

(
Rik∇jf −Rjk∇if +Rjl∇lfgik −Ril∇lfgjk

)
.

Combining the above equation with (3.1), we get the promised result. �

Next, following the notations employed in [4], [3], we define the tensor Tijk

as follows

Tijk =
(n− 1)

(n− 2)
(Rik∇jf −Rjk∇if)(3.2)

− 1

(n− 2)

(
Ris∇sfgjk −Rjs∇sfgik

)
.

Taking into account this definition, we deduce from Lemma 2 that

(3.3) fCijk =Wijks∇sf + Tijk.

An analogous proof for the next lemma can be found in [3]. Nonetheless,
since its proof is non-trivial, for sake of completeness, we shall sketch it here.

Lemma 3. Let (M4, g, f) be a complete static vacuum Einstein space–time
with harmonic (anti-)self dual Weyl tensor. Then ∇f is an eigenvector of the
Ricci curvature Ric.
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Proof. Since the scalar curvature is zero, we know that (2.2) becomes

Cklj =∇kRlj −∇lRkj .

So, as an immediate consequence of (2.3), we have

(3.4) 4δW+
jkl =Cklj +Cklj .

From Lemma (2) and Eq. (3.4), we get

4fδW+
jkl = f

[
(∇kRjl −∇lRjk) + (∇kRjl −∇lRjk)

]
(3.5)

=
[
Wkljs∇sf +Wkljs∇sf + Tlkj + Tlkj

]
.

In the sequel, we shall use our assumption δW+ = 0. In order to do so,
we consider an orthonormal frame {e1, e2, e3, e4} diagonalizing Ric at a point
q, such that ∇f(q) �= 0, with associated eigenvalues λk (k = 1, . . . ,4), respec-
tively. It is important to highlight that the regular points of M4, denoted by
{p ∈M4 :∇f(p) �= 0}, is dense in M4. Otherwise, f must be constant in an
open set of M4; for more details, see, for instance [7]. Therefore, from (3.2)
and (3.5) we have

(3.6)

⎧⎪⎨
⎪⎩

(λ1 − λ2)∇1f∇2f + (λ3 − λ4)∇3f∇4f = 0,

(λ1 − λ3)∇1f∇3f + (λ4 − λ2)∇4f∇2f = 0,

(λ1 − λ4)∇1f∇4f + (λ2 − λ3)∇2f∇3f = 0.

We now claim that ∇f , whenever nonzero, is an eigenvector for Ric. In fact,
taking into account that ∇f(p) �= 0 we have that, at least, one of the (∇jf) �=
0, 1 ≤ j ≤ 4. If this occurs for exactly one of them, then ∇f = (∇jf)ej
for some j, which gives that Ric(∇f) = λj∇f . On the other hand, if we
have (∇jf) �= 0 for two directions, without loss of generality we can suppose
that ∇1f �= 0, ∇2f �= 0, ∇3f = 0 and ∇4f = 0. Then, from (3.6) we have
λ1 = λ2 = λ. In such a case we have ∇f = (∇1f)e1 + (∇2f)e2. From this, we
infer

Ric(∇f) = Ric
(
(∇1f)e1 + (∇2f)e2

)
= (∇1f)Ric(e1) + (∇2f)Ric(e2)

= (∇1f)λ1e1 + (∇2f)λ2e2 = λ∇f.

Next, the case (∇jf) �= 0 for three directions is analogous. Now, it remains
to analyze the case (∇jf) �= 0 for j = 1,2,3 and 4. In this case we use again
(3.6) to obtain

(λ1 − λ2)
2(∇1f∇2f)

2 + (λ3 − λ4)
2(∇3f∇4f)

2

+ (λ1 − λ3)
2(∇1f∇3f)

2 + (λ4 − λ2)
2(∇4f∇2f)

2

+ (λ1 − λ4)
2(∇1f∇4f)

2 + (λ2 − λ3)
2(∇2f∇3f)

2 = 0.

Therefore, λ1 = λ2 = λ3 = λ4. Of which follows that ∇f is an eigenvector for
Ric. This finishes the proof of the lemma. �
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3.1. Proof of Theorem 2.

Proof. Proceeding, for any point p ∈ M where ∇f(p) �= 0, we consider a
local coordinates systems {θ2, θ3, θ4} on the level surface {x ∈ M : f(x) =
f(p)}. In this case, for any neighbourhood of the level surface Σ where |∇f | �=
0, we use the local coordinates system

(
x1, x2, x3, x4

)
=
(
f, θ2, θ3, θ4

)

adapted to level surfaces. Under this above notation, the metric g can be
expressed as

ds2 =
1

|∇f |2 df
2 + gab(f, θ)dθ

a dθb,

where a, b ∈ {2,3,4}. In what follows from Lemma 3, we will consider the

normal vector field e1 =
∇f
|∇f | to Σc and e2, e3, e4 as an orthonormal frame on

Σc such that {e1, e2, e3, e4} orthogonalizes the Ricci tensor Ric.
With this notation in mind, since Ric(∇f) = λ∇f and ∇eaf = g(∇f, ea) =

0 for a= {2,3,4}, we immediately deduce from (3.3) that

fC1a1 =W1a1s∇sf + T1a1 = 0.

In fact, since the Weyl tensor is skew-symmetric we have W (∇f, ·,∇f,
∇f) = 0. Moreover, from (3.2) we get

T1a1 =
3

2
(R11∇af −Ra1∇1f)−

1

2

(
R1s∇sfga1 −Ras∇sfg11

)
= 0.

This allows us to conclude that fC1j1 = 0 for j ∈ {1,2,3,4} at a point p
where ∇f(p) �= 0. Moreover, remember that f > 0 on M . Consequently,
we deduce C(∇f, ·∇f) = 0 in M\Crit(f). Therefore, from continuity of the
Cotton tensor and Lemma 1 we conclude that, in fact, C(∇f, ·,∇f) vanishes
on M4.

Finally, from the definition of the Cotton tensor (2.2) we arrive at

dDRic(∇f, ·,∇f) = 0,

and then we are in position to use Theorem 1 (see also Theorem 1 in [13]) in
order to conclude that there are no multiples black holes in M4. So, the proof
is completed. �
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