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CONSTRUCTIONS OF EXOTIC GROUP C*-ALGEBRAS

MATTHEW WIERSMA

Abstract. Let Γ be a discrete group. When Γ is nonamenable,
the reduced and full group C*-algebras differ and it is generally

believed that there should be many intermediate C*-algebras,

however few examples are known. In this paper, we give new

constructions and compare existing constructions of intermediate
group C*-algebras for both generic and specific groups Γ.

1. Introduction

Let G be a locally compact group. Then G is amenable if and only if
C∗(G) and C∗

r (G), the full and reduced group C*-algebras of G, coincide. So
when G is nonamenable, this begs the question as to whether there are any
intermediate or exotic group C*-algebras between C∗

r (G) and C∗(G). It is
generally believed that there should be many such exotic group C*-algebras,
however few examples are known.

An early class of intermediate group C*-algebras is due to Bekka, Kaniuth,
Lau, and Schlichting. Let G be a locally compact group and Gd be the
group G endowed with the discrete topology. In their 1996 paper [4], these
authors give a characterization of when λG, the left regular representation
of G viewed as a representation of Gd, is weakly contained in λGd

, the left
regular representation of Gd. For a large class of groups G where λGd

does
not weakly contain λG, the group C*-algebra C∗

λG
(Gd) lies strictly between

the reduced and full group C*-algebras.
Another early class of exotic group C*-algebras is produced in Bekka’s 1999

paper [2]. Here, Bekka demonstrates a class of arithmetic groups Γ for which
C∗(Γ) is not residually finite dimensional. For such Γ, C∗

F (Γ) is an exotic
group C*-algebra when Γ is maximally almost periodic.
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Recently, Brown and Guentner introduced the notion of ideal completions
for discrete groups Γ [6]. This allows one to construct group C*-algebras
of Γ associated to �p(Γ) (denoted C∗

�p(Γ)) for 1 ≤ p <∞. It turns out that
the only interesting case to consider is when p ∈ (2,∞) [6, Proposition 2.11].
Let Fd be a free group on 2 ≤ d < ∞ generators. In [6, Proposition 4.2],
Brown and Guentner show that there exists a p ∈ (2,∞) so that C∗

�p(Γ) is an
intermediate C*-algebra. Subsequently, Okayasu was able to adapt arguments
due to Haagerup to show that each of these C*-algebras are distinct for 2≤ p <
∞ [11], thus giving an infinite chain of intermediate C*-algebras associated
to Fd. It follows that the C*-algebras C∗

�p(Γ) are all distinct for any discrete
group Γ containing a copy of the free group.

In this paper, we aim to compare these existing constructions and introduce
new constructions of exotic C*-algebras associated to a discrete group Γ. In
Section 2, we provide the necessary background on ideal completions and
prove some supplementary results. Section 3 introduces an intuitive lattice
structure which can be placed on the group C*-algebras of Γ. With the
exception of examples given in Section 2, all of our new constructions of C*-
algebras arise by using this lattice structure. In Sections 4 and 5, we focus
our attention towards studying intermediate C*-algebras on specific groups.
Section 4 studies SLn(S) where S is a dense subring of R while Section 5
analyzes SLn(Z). Specific attention is paid in comparing the exotic group C*-
algebras associated to �p with the constructions due to [4] and [2], respectively.

2. Ideal completions

As mentioned in the Introduction, this section aims to provide a quick
introduction to ideal completions, a concept introduced in [6]. Along the way,
we generalize a result on amenability to the setting of homogeneous spaces
and prove that the induced representation of an �p-representation remains an
�p-representation. This section concludes with a class of examples of exotic
group C*-algebras for F∞, the free group on countably many generators,
which lie off the chain of C*-algebras associated to �p.

Let Γ be a discrete group and D � �∞(Γ) an algebraic ideal. A (unitary)
representation π : Γ→ B(H) is said to be a D-representation if H admits a
dense linear subspace H0 so that πx,x ∈D for every x ∈H0. It is easily verified
that the D-representations are closed under tensor products against arbitrary
representations of Γ and under arbitrary direct sums of D-representations
[6, Remarks 2.4, 2.5]. Associated to these D-representations, we define the
C*-seminorm ‖ · ‖D on the group ring C[Γ] by

‖x‖D = sup
{∥∥π(x)∥∥ : π is a D-representation

}
and denote the “completion” of C[Γ] with respect to ‖ · ‖D by C∗

D(Γ). This
process of producing C*-algebras is called ideal completions. For our pur-
poses, the most interesting algebraic ideal to consider is when D = �p(Γ).
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Later, we will also introduce ideals Dp which are defined with respect to a
fixed subgroup H ≤ Γ and generalize the ideals �p.

In the construction of these ideal completions, it is desirable for the ideal
D to be translation invariant (under both left and right translation). This
guarantees that when D is nonzero, the left regular representation is a D-
representation and, hence, the D-representations separate points of C[Γ]
(see the remark following Definition 2.6 in [6]). This also ensures the de-
sirable property that if ϕ is a positive definite function which lies in D,
then the GNS representation associated to ϕ is a GNS representation [6,
Lemma 3.1] and, hence, that ϕ extends to a positive linear functional on
C∗

D(Γ).
Brown and Guentner, recognizing the importance of the case when D = �p,

developed some basic theory of �p ideal completions. They demonstrated that
for every p ∈ [1,2], the ideal completion C�p(Γ) simply gives the reduced C*-
algebra C∗

r (Γ) [6, Proposition 2.11] and showed that if there exists p ∈ [1,∞) so
that C∗

�p(Γ) =C∗(Γ), then Γ is amenable [6, Proposition 2.12] (in their proof
of [6, Proposition 2.12], Brown and Guentner assume that Γ is countable.
This assumption is not necessary as will be demonstrated in Proposition 2.2).
Rephrasing this proposition, we get the characterization that Γ is amenable
if and only if there exists p ∈ [1,∞) so that C∗

�p(Γ) = C∗(Γ) if and only if
C∗

�p(Γ) =C∗(Γ) for every 1≤ p <∞.
Suppose G is a locally compact group, H is a closed subgroup, and μ a

quasi-invariant measure on the homogeneous space G/H . We say the homo-
geneous space G/H is amenable if L∞(G/H,μ) admits a G-invariant mean
(see [8]). This leads one to consider the question: can we give an analogous
characterization of amenability of Γ/H as mentioned above? For fixed H ≤ Γ,
define

Dp =Dp(H) =
{
f ∈ �∞(Γ) : f |sHt ∈ �p(sHt) for s, t ∈ Γ

}
.

Is it the case that C∗
Dp

(Γ) = C∗
�p(Γ) if and only if Γ/H is amenable? In

this case, taking H to be the trivial subgroup would recover the origi-
nal result. Unfortunately, we do not know the answer to this question
but we have attained some partial results including the reverse implica-
tion.

Proposition 2.1. Suppose Γ/H is amenable. Then C∗
Dp

(Γ) = C∗
�p(Γ) for

every p ∈ [1,∞).

Proof. For s ∈ Γ and f : Γ/H →C, we let fs denote the left translation of
f by s. Since Γ/H is amenable, there exists a net {fi} of finitely supported
functions in Γ/H with ‖fi‖2 = 1 so that ‖(fi)s − fi‖2 → 0 for every s ∈ Γ [8,

p. 28]. Let σ be the induced representation IndΓH1H . Then σfi,fi are positive
definite functions converging pointwise to the trivial representation.
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Fix a positive definite function ϕ ∈Dp. Then, since σfi,fi is supported on
only finitely many cosets sH for each i, we have that ϕσfi,fi ∈ �p and, hence,
extends to a positive linear functional on C∗

�p(Γ) for every i. Since it is also
the case that ϕσfi,fi → ϕ pointwise, we conclude that ϕ extends to a positive
linear functional on C∗

�p(Γ).
Now let ϕ be an arbitrary positive linear functional on C∗

Dp
(Γ). Then

we can find a net {ϕi} of sums of positive definite functions associated to
Dp-representations converging pointwise to ϕ. By approximating each ϕi by
positive definite functions in Dp, we may assume that {ϕi} ⊂Dp. Then, since
each ϕi extends to a positive linear functional on C∗

�p(Γ) and ϕ is the pointwise
limit of these positive definite functions, we conclude that ϕ extends to a
positive linear functional on C∗

�p(Γ). Hence, ‖x‖Dp ≤ ‖x‖�p for every x ∈C[Γ].
As the reverse inequality is clear, we conclude that C∗

Dp
(Γ) =C∗

�p(Γ). �

We are yet to determine whether the forward implication is also true, but
we are able to show it in the modest case when Γ is the direct product H×K.

Proposition 2.2. Let p ∈ [1,∞) and suppose Γ = H × K. If C∗
�p(Γ) =

C∗
Dp(H)(Γ), then K is amenable.

Proof. Suppose that C∗
�p(Γ) = C∗

Dp
(Γ) and let ω ∈ �p(H) be a normalised

positive definite function on H . Define ϕ : Γ→ C by ϕ(h,k) = ω(h). Then
ϕ is a positive definite function which lies in Dp(H) and, hence, extends to
a positive linear functional on C∗

�p(Γ). So we can find a net {ϕi} of positive
definite functions in �p converging pointwise to ϕ.

Choose n large enough so that p/n≤ 2 and define ψ = ϕn, ψi = ϕn
i . Then

{ψi} is a net of �2-summable positive definite functions converging pointwise
to ψ. Hence, ψ extends to a positive linear functional on C∗

r (Γ). Thus, there
is a net {fi} ⊂ �2(Γ) with ‖fi‖= 1 so that {λfi,fi} converges to ψ pointwise
(sums of positive definite functions associated to λ can be written in this form
by [7, p. 218]).

Define gi : K → C by gi(k) = ‖fi|H×{k}‖2. Then ‖gi‖2 = 1 for every i.
Further, ∣∣λfi,fi(e, k)

∣∣ = ∣∣∣∣ ∑
(h,k′)∈H×K

fi
(
h,k−1k′

)
fi
(
h,k′

)∣∣∣∣
≤

∑
k′∈K

∥∥(fi)(e,k−1)|H×{k′} · fi|H×{k′}
∥∥
1

≤
∑
k′∈K

‖fi|H×{k−1k′}‖2‖fi|H×{k′}‖2

=
∑
k′∈K

gi
(
k−1k′

)
gi
(
k′
)

= λgi,gi(k)≤ 1.
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Consequently, {λgi,gi} converges pointwise to the trivial representation since
{λfi,fi(e, k)} converges to ψ(e, k) = 1 for every k ∈K. Hence, K is amenable.

�

Brown and Guentner demonstrated in [6, Proposition 2.11] that C∗
�p(Γ) =

C∗
r (Γ) for every p ∈ [1,2]. It is natural to wonder if this continues to hold true

for p ∈ (2,∞), however this is not the case. Let Fd be the free group on d
generators for fixed 2≤ d <∞. Brown and Guentner were able to show that
there exists p ∈ (2,∞) so that C∗(Fd) �=C∗

�p(Fd) �=C∗
r (Γ) [6, Proposition 4.4].

Subsequently, Higson, Ozawa, and Okayasu [11, Corollary 3.7] independently
showed that the C∗

�p(Fd) are all distinct C∗-algebras for p ∈ (2,∞). This
allows us to conclude that if Γ contains a copy of the free group, then C∗

�p(Γ)
are distinct for 2≤ p <∞:

Remark 2.3. If H is any subgroup of Γ and ψ an �p-summable positive
definite function on H , then we may naively extend ψ to an �p-summable
positive definite function ϕ on Γ by defining ϕ(s) = ψ(s) when s ∈ H and
ϕ(s) = 0 otherwise. It follows that C∗

�p(Γ) are all distinct for p ∈ [2,∞) and Γ
containing a copy of the free group.

This remark leads to the question: what other extension type results ex-
ist? The following theorem shows that the induced representation of an �p-
representation remains an �p-representation.

Theorem 2.4. Let H be a subgroup of the discrete group Γ and σ :H →
B(H) an �p-representation of H . Then π := IndΓHσ is an �p-representation of
Γ.

Proof. Let q : Γ → Γ/H denote the canonical quotient map. Recall that
the induced representation π is given by left translation on the completion F
of the space

F0 =
{
f : Γ→H | q(suppf) is finite and f(sξ) = σ

(
ξ−1

)
f(s)

for all s ∈ Γ, ξ ∈H
}

with respect to the inner product

〈f, g〉=
∑

tH∈Γ/H

〈
f(t), g(t)

〉
σ
.

Let H0 be a dense linear subspace of H such that σx,y ∈ �p(H) for every
x, y ∈H0 (if πx,x ∈ �p(H) for every x ∈H0, then πx,y ∈ �p(H) for all x, y ∈H0

by the polarization identity). Fix a set of representatives {ri}i∈Γ/H for Γ/H .
Then the span of the functions f ∈ F0 such that f(ri) is nonzero for at most
one i and f(ri) ∈H0 is dense in F .

Fix f and g as above. Without loss of generality, we may assume that f
and g are nonzero. Let i and j be the indices such that f(ri) �= 0, g(rj) �= 0.
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Then ∑
s∈Γ

∣∣πf,g(s)
∣∣p =∑

s∈Γ

∣∣∣∣ ∑
k∈Γ/H

〈
f
(
s−1rk

)
, g(rk)

〉∣∣∣∣
p

=
∑
s∈Γ

∣∣〈f(s−1rj
)
, g(rj)

〉∣∣p
=

∑
ξ∈H

∣∣〈f(riξ), g(rj)〉∣∣p
=

∑
ξ∈H

∣∣〈σ(ξ−1
)
f(ri), g(rj)

〉∣∣p
= ‖σf(ri),g(rj)‖pp <∞.

It follows that π is an �p-representation. �

Much of the attention in this section has been focused towards the chain
of �p ideal completions. This raises the question, can we find exotic group
C*-algebras which lie off this chain? We end this section by showing that Dp

ideal completions can satisfy this criteria.

Example 2.5. Fix p ∈ [2,∞) and let F∞ be the free group on countably
many generators a1, a2, . . . and view Fd as the subgroup of F∞ generated
by a1, . . . , ad. Take H = Fd for some fixed d ≥ 2. Let ϕα : F∞ → C be the
positive definite function defined by ϕα(s) = α|s| for each α ∈ (0,1) (see [9,
Lemma 1.2]). Then ϕα ∈Dp =Dp(Fd) for each α< (2d− 1)−1/p since∑

s∈Fd

α−|t1|α−|t2|ϕα(s)≤
∑
s∈Fd

ϕα(t1st2)≤
∑
s∈Fd

α|t1|α|t2|ϕα(s)

for every t1, t2 ∈ F∞ and
∑

s∈Fd
ϕα(s) <∞ if and only if α < (2d − 1)−1/p.

Hence, ϕα extends to a positive linear functional on C∗
Dp

(F∞) for each α ≤
(2d− 1)−1/p. By [11, Corollary 3.5], we have that ϕα|Fd

extends to a positive
linear functional on C∗

�p(Fd) if and only if α ≤ (2d− 1)−1/p. Therefore, this

condition of α≤ (2d− 1)−1/p is necessary and sufficient for ϕα to extend to a
positive linear functional on C∗

Dp
(F∞).

Fix α ∈ (0,1) and choose a positive integer d′ large enough so that
(2d′− 1)−1/p <α. Then ϕα|Fd′ does not extend to a positive linear functional
on C∗

�p(Fd′). Hence, ϕα does not extend to a positive linear functional on
C∗

�p(F∞) for any α ∈ (0,1). Therefore there is no canoncial quotient map from
C∗

�q (F∞) to C∗
Dp

(F∞) for any p, q ∈ [2,∞). Conversely, by Remark 2.3, there

is no canonical quotient map from C∗
Dp

(F∞) to C∗
�q (F∞) for any q > p≥ 2.

Now suppose Γ is an arbitrary group containing a copy of the free group.
Since the free group on two generators contains an isomorphic copy of F∞,
a similar argument as above can be used to justify there is a subgroup H ≤ Γ
so that C∗

Dp
(Γ) lie off the chain C∗

�p(Γ).
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3. The lattice of group C*-algebras

So far we have nonchalantly been talking about notions such as chains of
group C*-algebras. We are able to do this because there is a natural partial
ordering which can be placed on the group C*-algebras. In this section,
we make this notion a partial ordering specific and show that the group C*-
algebras form a complete

∨
-semilattice. This will allow us to build new exotic

group C*-algebras.

Definition 3.1. Let Γ be a discrete group. By a group C*-algebra (asso-
ciated to Γ), we will mean a C*-completion of C[Γ]. Place a partial ordering
on the group C*-algebras by saying that A � A′ if ‖x‖A ≤ ‖x‖A′ for every
x ∈ C[Γ]. Equivalently, we have that A�A′ if and only if the identity map
on C[Γ] extends to a quotient from A′ to A.

We observe that with this definition, the group C*-algebras form a complete∨
-semilattice. Indeed, if {Ai} is a collection of group C*-algebras, then

the completion of C[Γ] with respect to the C*-norm ‖ · ‖ defined by ‖x‖ =
supi ‖x‖Ai for x ∈C[Γ] is the join

∨
iAi.

Note that it also makes sense to talk about the supremum and infimum of
“completions” of C[Γ] with respect to a C*-seminorm. If S is a collection of
representations of Γ, then C∗

S(Γ) is defined to be the “completion” of C[Γ]
with respect to the C*-seminorm ‖x‖S := supπ∈S ‖π(x)‖ (as in [8]). More-
over, every C*-seminorm arises in this way where S can be assumed to be a

Fell closed subset of the irreducible representations Γ̂ [3, Proposition F.2.7].

Further, if S and S ′ are Fell closed subsets of Γ̂, then C∗
S(Γ)�C∗

S′(Γ) if and
only if S ⊂ S ′. If we place the same lattice structure on these “completions”
as above, we get a complete lattice. Indeed, let {Ai} be a collection of such

“completions” and write Ai = C∗
Si
(Γ) for Fell closed subsets {Si} ⊂ Γ̂. Then∧

iAi =C∗
∩Si

. As the join arises as before, we conclude that we indeed get a
complete lattice.

In the remainder of this section, we focus on using this lattice structure
to produce a new class of examples of exotic group C*-algebras. Towards
this goal, we give a characterization of when C∗

D(Γ) = C∗(Γ) in terms of
when the D-representations weakly contain an amenable representation, i.e.,
a representation π : Γ→B(H) for which there exists a state μ on B(H) such
that μ(π(s))Tπ(s−1) = μ(T ) for all s ∈ Γ and T ∈B(H) (see [1]).

Proposition 3.2. Let D � �∞(Γ) be an algebraic ideal. Then C∗
D(Γ) =

C∗(Γ) if and only if the D-representations weakly contains an amenable rep-
resentation.

Proof. If C∗
D(Γ) = C∗(Γ), then the D-representations weakly contain all

representations of Γ and, in particular, contains the trivial representation
which is evidently amenable.
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Conversely, suppose that D weakly contains an amenable representation π.
Then we can find a net {πi} of D-representations converging in Fell’s topology
to π. Note that π⊗ πi is a D-representation for every i and π⊗ πi converges
to π⊗ π in the Fell topology. So the D-representations weakly contain π⊗ π
and, hence, the trivial representation [1, Theorem 5.1]. A similar argument
as used above now shows that the D-representations weakly contain every
representation of Γ since π⊗ 1 = π for every π. Hence, C∗

D(Γ) =C∗(Γ). �

In particular, this proposition shows that if C∗
D(Γ) �= C∗(Γ), then the

D-representations do not weakly contain any finite dimensional representa-
tions. Hence, if C∗

D(Γ) is a group C*-algebra not coinciding with C∗(Γ), then
C∗

D(Γ)∨C∗
π(Γ) is a strictly larger C*-algebra than C∗

D(Γ) for every finite di-
mensional representation and the only group C*-algebra A produced by an
ideal completion for which A�C∗

D(Γ) is C∗(Γ).
Suppose Γ contains a copy of the free group and π is a finite dimensional

representation of Γ. What does the group C*-algebra C∗
D(Γ) ∨ C∗

π(Γ) look
like when we take D = �p? Could it be the case that C∗

�p(Γ)∨C∗
π(Γ) coincides

with C∗(Γ)? Could C∗
�p(Γ) ∨C∗

π(Γ) dominate C∗
�q (Γ) for some q > p≥ 2? It

turns out that neither of these cases can occur.

Proposition 3.3. Suppose Γ contains a copy of the free group and F0 is
a finite nonempty subset of the finite dimensional representations on Γ. Then
C∗

�q (Γ)�C∗
F0

(Γ)∨C∗
�p(Γ) for any q > p≥ 2.

Proof. Without loss of generality, we may assume that F0 is a subset of

Γ̂. For each p≥ q, write C∗
�p(Γ) =C∗

Sp
(Γ) for some Fell closed subset Sp ⊂ Γ̂.

Then, since Sp is a proper subset of Sq for every q > p, Sq\Sp has infinite
cardinality for q > p (as there is an infinitude of intermediate C*-algebras
between C∗

�p(Γ) and C∗
�p(Γ)). Now, write C∗

�p(Γ)∨C∗
F0

(Γ) =C∗
S0
(Γ) for some

Fell closed S0 ⊂ Γ̂. Then since, F0 is a closed subset of Γ̂ in the Fell topology,
S0\S = F0 has finite cardinality. Hence, C∗

�p(Γ) ∨C∗
F0

(Γ)� C∗
�q (Γ) for q > p.

�

This gives us another class of examples of exotic group C*-algebras which
lie off the chain C∗

�p(Γ). Note that we may always take F0 to be the singleton
containing the trivial representation. Hence, for Γ containing a copy of the
free group, this construction can always be used to produce exotic group C*-
algebras differing from C∗

�p(Γ).

4. Exotic group C*-algebras of SLn(S)

Let G be a locally compact group and Gd be the group G endowed with
the discrete topology. Denote the left regular representation of G by λG.
Then λG is a representation of Gd. In [4] Bekka, Kaniuth, Lau, and Schlitcht-
ing show that the group C*-algebra C∗

λG
(Gd) is the reduced C*-algebra if
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and only if G admits an open subgroup H so that Hd is amenable. In
particular, if G is a connected nonamenable group such as SLn(R) (n ≥ 2),
then C∗

λG
(Gd) �= C∗

r (Gd). This inspires us to study the group C*-algebra
C∗

δ (SLn(S)) :=C∗
λSLn(R)

(SLn(S)) in this section when S is taken to be a dense

(unital) subring of R. We will demonstrate that C∗
δ (SLn(S)) is an exotic

group C*-algebra and compare it to the C*-algebras C∗
�p(SLn(S)). Our first

proposition shows that C∗
�p(SLn(S))�C∗

δ (SLn(S)) for any 1≤ p <∞.
Before proceeding to this proposition, we mention a result due to Breuillard

and Gellander which we make use of. In [5], these authors demonstrated that
if Γ is a dense subgroup of a connected semi-simple real Lie group G, then
Γ contains a copy of the free group on two generators which is dense in G.
Moreover, their proof shows that these generators can be chosen arbitrarily
close to the identity.

Proposition 4.1. Let Γ be a dense subgroup of a connected semi-simple
real Lie group G. If a representation π of the discrete group Γ is continuous in
the ambient topology, then π is not weakly contained in the �p-representations
for each 1≤ p <∞.

(Compare this statement to that of [4, Proposition 5].)

Proof. Let π be a continuous representation of Γ and x ∈ Hπ be a unit
vector. Then ϕ := πx,x is a continuous function on Γ with ϕ(e) = 1. We will
demonstrate that ϕ does not extend to a state on C∗

�p(Γ) for any 1≤ p <∞.
In the proof of [11, Theorem 3.4 (2)], Okayasu shows that a normalized

positive definite function ψ on F2 extends to a state on C∗
�p(F2) if and only

if ‖ψχk‖p ≤ k + 1 (where χk is the characteristic function of the words of

length k). Choose k large enough so that (4 · 3k−1)1/p > k + 1. Next choose
generators for a free subgroup of Γ close enough to the identity so that |ψ(s)|>

k+1
(4·3k−1)1/p

for all s ∈Wk. Then, on this copy of F2,

‖ψχk‖p >
(
|Wk|

(
k+ 1

(4 · 3k−1)1/p

)p)1/p

= k+ 1.

Hence, ψ does not extend to a positive linear functional on C∗
�p(F2) and, so,

we conclude that π is not weakly contained in the �p-representations. �

To observe that the following proposition applies to our situation, we note
that SLn(S) is a dense subgroup of SLn(R) since the subgroups⎡

⎢⎣
1 ∗

. . .

0 1

⎤
⎥⎦ and

⎡
⎢⎣
1 0

. . .

∗ 1

⎤
⎥⎦

generate SLn(R).
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This proposition demonstrates that C∗
δ (SLn(S)) is a strictly larger group

C*-algebra than C∗
r (SLn(S)). Bekka, Kaniuth, Lau and Schlitchting’s result

[4, Proposition 5] implies that this is the case when S is taken to be all of
R, but it was not apriori obvious that this would continue to hold for smaller
rings S.

We are now led to ask similar questions as in the previous section.
Could C∗

δ (SLn(S)) be the full group C∗(SLn(S))? How does C∗
δ (SLn(S)) ∨

C∗
�p(SLn(S)) compare to C∗

�q (SLn(S))? These questions are quite satisfacto-
rily answered in the following proposition.

Proposition 4.2. Suppose q > p≥ 2. Then C∗
δ (SLn(S)) ∨C∗

�p(SLn(S))�
C∗

�q (SLn(S)).

Proof. Suppose that ϕ is a normalized positive definite function on SLn(S)
which extends to a state on C∗

δ (SLn(S)). We will show that ϕ|SLn(Z) extends
to a state on C∗

r (SLn(Z)).
Since ϕ extends to a state on C∗

δ (SLn(S)). Then we can find a net {ϕi} of
sums of positive definite functions associated to λSLn(R) which converge point-
wise to ϕ. By Herz’s restriction theorem [10], ϕi|SLn(Z) lies in A(SLn(Z)),
the Fourier algebra of SLn(Z) (see [7] for a reference on the Fourier algebra).
Hence, as each ϕi|SLn(Z) is positive definite and ϕi|SLn(Z) converges pointwise
to ϕ|SLn(Z), we conclude that ϕ|SLn(Z) extends to a positive linear functional
on C∗

r (SLn(Z)).
This shows us that ‖x‖δ ≤ ‖x‖�2 for every x ∈ C[SLn(Z)] since ‖x‖2δ =

‖x∗x‖δ = supϕ(x∗x) where the supremum is taken over states ϕ on
C∗

δ (SLn(S)). Hence

‖x‖C∗
δ (SLn(S))∨C∗

�p (SLn(S)) = ‖x‖�p

for x ∈ C[SLn(Z)]. As ‖ · ‖�q is a larger norm on C[SLn(Z)] than ‖ · ‖�p , we
conclude that C∗

δ (SLn(S))∨C∗
�p(SLn(S))�C∗

�q (SLn(S)). �

We note that this proposition adds to our list of examples of exotic group
C*-algebras.

Remark 4.3. Suppose G is a nonamenable group containing a discrete
copy of the free group. A similar analysis shows that C∗

λG
(Gd) is not the

full group C*-algebra. This justifies our comment in the introduction that
C∗

λG
(Gd) leads to a large class of exotic group C*-algebras.

5. Exotic group C*-algebras of SLn(Z)

Let F denote the set of finite dimensional representations on SLn(Z). No-
tice that the natural homomorphisms from SLn(Z) to SLn(Z/NZ) for N ≥ 1
separate the points of SLn(Z). Hence, C∗

F (SLn(Z)) is a group C*-algebra
[2, Proposition 1]. Since SLn(Z) is nonamenable, we have by Proposition 3.2
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that the left regular representation does not weakly contain any finite dimen-
sional representations. Hence, C∗

F (SLn(Z)) is strictly larger than the reduced
C*-algebra.

In [2], Bekka demonstrates that the universal C*-algebra C∗(SLn(Z)) is
not residually finite dimensional for n ≥ 3, hence showing that C∗

F (SLn(Z))
is an exotic C*-algebra for n≥ 3. Let F0 denote the set of finite dimensional
representations which factor through a congruence subgroup of SLn(Z) (this
is the kernel Γ(N) of the natural map from SLn(Z) to SLn(Z/NZ)). What
Bekka actually showed was that C∗

F0
(SLn(Z)) is not the full group C*-algebra

for n≥ 2 and that F0 =F for n≥ 3.
Our questions about the exotic group C*-algebra C∗

F0
(SLn(Z)) are again

similar to those asked in the previous two sections. Our first is how does
C∗

F0
(SLn(Z)) compare to C∗

�p(SLn(Z))? We provide a partial answer to this
question below.

Proposition 5.1. Let n ≥ 2. There exists a p ∈ (2,∞) so that
C∗

F0
(SLn(Z))�C∗

�p(SLn(Z)).

Proof. Note that if π is a representation of SLn(Z) which factors through
a congruence subgroup, then the restriction of π to SL2(Z) factors through a
congruence subgroup of SL2(Z). Hence, it suffices to consider the case when
n= 2.

Note that for each α ∈ (0,1), the positive definite function ϕα : F2 → C
defined by φα(s) = α−|s| lies in �p(F2) for some p. Let πα denote the GNS
representation of ϕα. Then, since ϕα converges pointwise to the trivial rep-
resentation as α↗ 1, πα converges to 1F2 in the Fell topology.

Let F2 ⊂ SL2(Z) be a finite index embedding of the free group in SL2(Z)

[12]. Then Ind
SL2(Z)
F2

πα converges to Ind
SL2(Z)
F2

1F2 . Note that Ind
SL2(Z)
F2

1F2

contains a copy of 1SL2(Z) as a subrepresentation since F2 is of finite index in

SL2(Z). Hence, Ind
SL2(Z)
F2

πα → 1SL2(Z) in the Fell topology.
Fix a finite generating set S for SL2(Z). In [2, Lemma 3] Bekka shows that

the trivial representation is isolated among the set of restrictions π|SL2(Z)

where π is a representation which factors through a congruence subgroup.
This is to say that there exists ε > 0 so that if π : SL2(Z)→ B(H) is a rep-
resentation which factors through a congruence subgroup with the property
that there exists x ∈H so that ‖π(s)x−x‖< ε for every s ∈ S, then π contains
the trivial representation as a subrepresentation.

Since Ind
SL2(Z)
F2

πα → 1SL2(Z) in the Fell topology, we can find α and a unit
vector x in the corresponding Hilbert space so that ‖πα(s)x − x‖ < ε. By

Theorem 2.4, Ind
SL2(R)
F2

πα is an �p-representation for some p and, hence, does
not weakly contain a copy of the trivial representation. Therefore πα is not
weakly contained in F0. �
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Note that since C∗
�q (SLn(Z)) � C∗

�p(SLn(Z)) when q > p, the proposition
provides the same conclusion for all q > p. This answer to our question is
not as clean as that provided in the previous section and we are still left
with questions. Does the conclusion of the proposition hold for any p > 2? If
not, can we provide nontrivial estimates on the values of p which provide the
conclusion of the proposition?

We conclude this paper by showing that C∗
F0

(Γ) ∨C∗
�p(Γ) forms a class of

exotic group C*-algebras. This proposition provides a similar conclusion as
the last:

Proposition 5.2. Let n ≥ 2. For every p ∈ [1,∞), there exists q > p so
that C∗

F0
(SLn(Z))∨C∗

�p(SLn(Z))�C∗
�q (Γ).

Proof. Again it suffices to consider the case when n= 2.
Let S and ε be as in the previous proposition. Take πp : SLn(Z)→B(Hp) to

be a faithful representation of C∗
�p(SL2(Z)). Then, since the �p-representations

do not weakly contain the trivial representation, there exists ε′ > 0 so that
whenever x ∈Hp is a unit vector, there exists s ∈ S so that ‖πp(s)x−x‖ ≥ ε′.

Suppose that σ : SLn(Z) → B(Hσ) in F0 does not contain a copy of
the trivial representation. Take (x, y) ∈ Hp ⊕ Hσ to be a unit vector. If

‖x‖ ≥ 1/
√
2, there exists s ∈ S so that ‖πp(s)x − x‖ ≥ ε′/

√
2 which im-

plies that ‖(πp ⊕ σ)(s)(x, y) − (x, y)‖ ≥ ε′/
√
2. Similarly, if ‖y‖ ≥ 1/

√
2,

‖(πp ⊗ σ)(s)(x, y) − (x, y)‖ ≥ ε/
√
2. Hence, ‖(πp ⊕ σ)(s)(x, y) − (x, y)‖ ≥

min{ε, ε′}/
√
2.

Since we have that πq → 1 in the Fell topology as q →∞, we can find q

so that there exists a unit vector x ∈ Hq with ‖πq(s)x− x‖<min{ε, ε′}/
√
2

for every s ∈ S. As πq does not weakly contain the trivial representation, we
conclude that πq is not weakly contained in {πp} ∪F0. �
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