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A KNOT WITHOUT A NONORIENTABLE ESSENTIAL
SPANNING SURFACE

NATHAN M. DUNFIELD

Abstract. This note gives the first example of a hyperbolic knot
in the 3-sphere that lacks a nonorientable essential spanning sur-
face; this disproves the Strong Neuwirth Conjecture formulated

by Ozawa and Rubinstein. Moreover, this knot has no even strict

boundary slopes, disproving the Even Boundary Slope Conjec-
ture of the same authors. The proof is a rigorous calculation

using Thurston’s spun-normal surfaces in the spirit of Haken’s
original normal surface algorithms.

1. Introduction

Let me start with the definitions needed to precisely state the first re-
sult outlined in the abstract. Throughout, all 3-manifolds will be orientable.
A properly embedded orientable surface S ⊂M3 is essential if it is incompress-
ible, ∂-incompressible, and not isotopic (rel boundary) into ∂M . A nonori-
entable S is defined to be essential when the boundary of a regular neigh-
borhood N(S) is essential. For a tame knot K in S3, consider its exterior

E(K) = S3 \ N̊(K), which is a compact manifold with torus boundary. Any
such K has a Seifert surface, that is, there is an embedded surface S in S3

with ∂S =K. Moreover, there is always a Seifert surface whose intersection
with E(K) is essential, for example, any Seifert surface of minimal genus. Ad-
ditionally, any K bounds a nonorientable spanning surface (just add a small
half-twisted band to the boundary of a Seifert surface). Ichihara, Ohtouge,
and Teragaito studied nonorientable spanning surfaces and asked whether
there is always such a surface that is essential in E(K) [IOT02]. While torus
knots Tp,q with p and q both odd lack nonorientable essential spanning sur-
faces [OR12, Example 3.11], Ozawa and Rubinstein [OR12] posited that these
are the only such examples:
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Strong Neuwirth Conjecture 1.1 ([OR12]). Every prime non-torus
knot in S3 has a nonorientable essential spanning surface K.

As the name suggests, this conjecture implies the Neuwirth Conjecture
from 1963 [Neu63, Conjecture B], which remains open:

Neuwirth Conjecture 1.2. Every non-trivial knot K in S3 lies on a
closed surface F in S3 where K is nonseparating in F and F ∩ E(K) is
essential.

Part of the motivation in [OR12] for formulating Conjecture 1.1 is that in
almost all cases where Conjecture 1.2 is known it is by proving this stronger
statement; please see [OR12] for details and an overview of work in this direc-
tion. My main result here disproves Conjecture 1.1, cutting off this approach
to proving the Conjecture 1.2 in full generality.

Theorem 1.3. Let K in S3 be the braid closure of (σ1σ2σ3σ4)
13σ1σ4σ3σ2.

Then K is a hyperbolic knot without a nonorientable essential spanning sur-
face.

The knot K was introduced in [CDW99] as k636 where they described it as
the twisted torus knot T (5,17)4,−1. While its diagram in Figure 1 has some
56 crossings, its exterior is not complicated: it is the hyperbolic 3-manifold
s800 from [CHW99] which can be triangulated with 6 ideal tetrahedra and
has volume about 5.34821999.

Theorem 1.3 is an immediate corollary of a more technical result for which
I need more definitions. Any essential S in E(K) with nonempty boundary
has a boundary slope, namely the common unoriented isotopy class of the
components of ∂S in the torus ∂E(K); as usual, boundary slopes are recorded
as elements of Q ∪ {∞} using the standard homological framing on ∂E(K).
In our context, the boundary slope of an essential surface S is strict if S is not
a Seifert surface corresponding to a fibration of E(K) over the circle. I will
show.

Theorem 1.4. Let K ⊂ S3 be as in Theorem 1.3. Then E(K) has strict
boundary slopes exactly {−77,−71,−211/3,−69,−67}.

Theorem 1.4 implies Theorem 1.3 because the boundary slope of a nonori-
entable essential spanning surface S must be an even integer: it is integral
because S intersects a meridian curve exactly once, and it is even as S demon-
strates that the boundary of S ∩E(K) is zero in H1(E(K);F2). As promised
in the abstract, Theorem 1.4 disproves.

Even Boundary Slope Conjecture 1.5 ([OR12]). For any prime non-
torus knot K, there is an essential surface E(K), not a Seifert surface, whose
boundary slope is a rational number with even numerator.
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Figure 1. The knot K = k636 is the braid closure of
(σ1σ2σ3σ4)

13σ1σ4σ3σ2 as well as the twisted torus knot
T (5,17)4,−1 [CDW99].

2. Proof

The proof of Theorem 1.4 will be a straightforward rigorous computation
using Thurston’s theory of spun-normal surfaces, which is a version of Haken’s
normal surface theory tuned to the setting of ideal triangulations of cusped
manifolds (see [Til08] or [DG12] for general background). Let T be the stan-
dard 6-tetrahedra ideal triangulation of the exterior E(K) of K = k636 used
in [CDGW16], which is the one given in [CHW99] with its peripheral framing
changed to the homologically natural one for the complement of a knot in S3.

Lemma 2.1. The set of strict boundary slopes for E(K) is contained in the
set of boundary slopes of spun-normal surfaces in T , which is

{−77,−71,−211/3,−69,−67}.
Before proving this, let me point out that Lemma 2.1 is already enough to

establish Theorem 1.3. Also, you might be troubled by the absence of 0 on
the above list of slopes; however, as K is the closure of a positive braid, the
manifold E(K) fibers over the circle and so 0 need not be a strict boundary
slope.

Proof of Lemma 2.1. Let S be any essential surface in E(K) which is not
a fiber. We will assume that S is orientable, since if not we can replace it
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with the boundary of its regular neighborhood, which is an orientable essen-
tial surface with the same boundary slope. By [HIK+16], there is a geometric
solution to the gluing and completeness equations for T , that is, one where
all tetrahedra are positively oriented. Thus, the interior of E(K) is hyper-
bolic and no edge of T is homotopically peripheral. Therefore, by [Wal11,
Theorem 1.6], the surface S can be isotoped into spun-normal form with re-
spect to T . (Technical note: the hypotheses in [Wal11] require that S is
not a virtual fiber, but the only virtual fibers in the exterior of a knot in
S3 are actual fibers.) Thus, the boundary slope of S is also the bound-
ary slope of a spun-normal surface, proving the first part of the lemma.
To see that the spun-normal surfaces have only the boundary slopes listed
above, one simply computes the boundary slopes of the finite collection of
vertex spun-normal surfaces. This is easily done rigorously using SnapPy
[CDGW16] or Regina [BBP+15]; for example, in the former one simply does:
Manifold(’K6_36’).normal_boundary_slopes(). �

As mentioned, Lemma 2.1 immediately proves Theorem 1.3. The stronger
statement of Theorem 1.4 now follows by combining Lemma 2.1 with the
following.

Lemma 2.2. The exterior E(K) contains no closed essential surfaces, and
the Dehn fillings of E(K) along the slopes {−77,−71,−211/3,−69,−67} each
yield Haken manifolds.

I established Lemma 2.2 using the breakthrough work of [BO], [BCT13]
as implemented in [BBP+15]. The complete script I used for this can be
found at [Dun] and the total running time was less than 20 seconds; since
Lemma 2.2 is not needed to prove Theorem 1.3, I simply refer you to the code
for details.

Remark 2.3. Given the original motivation for Conjecture 1.1, you might
wonder whether K satisfies Conjecture 1.2, namely that K lies on a closed
surface F in S3 where K is nonseparating in F and F ∩ E(K) is essential.
In fact it does, and here is one way to see this. SnapPy finds a vertex spun-
normal surface S in T which has exactly two boundary components, each of
slope −77, and which is essential by [DG12, Theorem 1.1]. As the boundary
slope of S is an integer, we can piece together the two boundary components
of S to get a surface F in S3 on which K lies. The knot K does not separate
F because, as a vertex surface, the original surface S is connected.

Further examples 2.4. The knot K was found by a computer search
through all 502 knots whose complements can be triangulated with 8 or fewer
tetrahedra [CDW99], [CKP04], [CKM14]. Other examples which lack nonori-



A KNOT WITHOUT A NONORIENTABLE ESSENTIAL SPANNING SURFACE 183

entable essential spanning surfaces include k517, k729, k764 and k8114. The
complete search took less than 10 seconds to run.
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