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SPECTRALLY UNSTABLE DOMAINS

GERARDO A. MENDOZA

Abstract. Let H be a separable Hilbert space, Ac :Dc ⊂H →H
a densely defined unbounded operator, bounded from below, let

Dmin be the domain of the closure of Ac and Dmax that of the
adjoint. Assume that Dmax with the graph norm is compactly

contained in H and that Dmin has finite positive codimension in

Dmax. Then the set of domains of selfadjoint extensions of Ac

has the structure of a finite-dimensional manifold SA and the
spectrum of each of its selfadjoint extensions is bounded from

below. If ζ is strictly below the spectrum of A with a given

domain D0 ∈ SA, then ζ is not in the spectrum of A with do-
main D ∈SA near D0. But SA contains elements D0 with the
property that for every neighborhood U of D0 and every ζ ∈ R

there is D ∈ U such that spec(AD)∩ (−∞, ζ) �= ∅. We character-
ize these “spectrally unstable” domains as being those satisfying

a nontrivial relation with the domain of the Friedrichs extension
of Ac.

1. Introduction

Throughout the paper, H is a separable Hilbert space,

(1.1) Ac :Dc ⊂H →H

is a densely defined unbounded operator which is semibounded from below,
and

A :Dmax ⊂H →H

is the adjoint operator, automatically an extension of the symmetric opera-
tor (1.1).
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The space Dmax is a Hilbert space with the inner product

(1.2) (u, v)A = (Au,Av) + (u, v), u, v ∈Dmax,

where the inner product on the right is that of H . It is further assumed that
the inclusion Dmax ↪→H is compact and that Dmin, the domain of the closure
of (1.1) (the closure of Dc in Dmax) has finite positive codimension in Dmax.

With these assumptions, all closed extensions of (1.1) are Fredholm and
the set of domains of extensions with index 0 can be parametrized by the
elements of a compact manifold (a Grassmannian) in which the domains of
the selfadjoint extensions form a real analytic compact submanifold SA. It
is a fact that all these selfadjoint extensions have discrete spectrum bounded
from below. (See Section 2 for details.) Write AD for the operator with
domain D. The assertion that

every D0 ∈SA has a neighborhood U0 for which there is C0 ∈R such
that D ∈ U0 =⇒ spec(AD)⊂ {λ :�λ >C0}

is false. Namely, if it were to hold, then SA, being compact, would admit a
finite cover by open sets Uj such that the spectrum of AD is bounded from
below by the same constant in each set Uj . Hence, there would be an absolute
lower bound for the spectra of all selfadjoint extensions, which is not true (see
Lemma 2.10 below). So in fact there is D0 ∈SA such that

(1.3)
for every neighborhood U of D0 and every ζ ∈ R there is D ∈ U
such that spec(AD)∩ (−∞, ζ) 	= ∅.

Such domains will be called spectrally unstable. The main purpose of this
paper is to establish the following characterization of these domains (proof in
Section 7).

Theorem 1.4. Let DF ∈SA be the domain of the Friedrichs extension of
(1.1). The element D ∈SA is spectrally unstable if and only if

(D ∩DF )/Dmin 	= 0.

The set of elements in SA for which (D ∩DF )/Dmin 	= 0 is a real analytic
subvariety of codimension 1.

Viewing the problem from the perspective of the von Neumann theory [8]
(see [9, Theorem X.2]), let K±i = ker(ADmax ∓ i). With the assumptions of
the first two paragraphs above, these subspaces of H have the same finite
dimension. Let D0 ∈SA. The spectrum of UD0 = (AD0 − i)(AD0 + i)−1, the
Cayley transform of AD0 , consists of 1 and a discrete subset of the circle
S1 ⊂ C. The part of the spectrum of UD0 in �λ < 0 accumulates at 1, and
so the fact that arbitrarily small perturbations of D0 to D ∈SA can lead to
an apparently spontaneous generation of spectrum of AD arbitrarily close to
−∞ is not surprising. What Theorem 1.4 does, is characterize those domains
D0 for which arbitrarily small perturbations lead to spectrum of the Cayley
transform spilling over from �λ≤ 0 to �λ > 0 across 1.



SPECTRALLY UNSTABLE DOMAINS 981

Note in passing that for no D ∈SA can the part of the spectrum of UD
on the semicircle in �λ > 0 accumulate at 1, since the spectrum of any AD is
bounded below by [1, Theorem 7, pg. 217], quoted here as Theorem 2.11.

The key technical results are a very simple “regularity” result, Proposi-
tion 4.1, and Theorem 6.9, a statement concerning recovering the essential
part of the domain of the Friedrichs extension as a limit of spaces associated
with ker(ADmax −λ). To describe these more precisely, let E be the orthogonal
complement of Dmin in Dmax and πmax the orthogonal projection on E , all
with the inner product (1.2). Domains of closed extensions of (1.1) correspond
to the various subspaces D ⊂ E via D =D+Dmin, with selfadjoint extensions
corresponding to the points of a submanifold SA of the Grassmannian of
subspaces of E of a certain dimension (so it is not DF that belongs to SA

in Theorem 1.4, but a certain subspace DF ⊂ E). Let Kλ = ker(ADmax − λ)
and Kλ = πmaxKλ. Then λ �→Kλ is a smooth curve in SA if λ is sufficiently
negative, and limλ→−∞Kλ =DF . This is a consequence of the following. For
any domain D = D + Dmin with D ∈ SA and any s ≥ 0 we define Hilbert
spaces Hs

D using AD; these Sobolev-like spaces give H0
D =H and H1

D = D.
For u ∈D⊥, the linear functional δu defined by D � v �→ (Av,u)− (v,Au) ∈C

is an element of the dual space of H1
D, and may also be in H−s

D† for 0< s< 1,

the dual of Hs
D. We show that δu /∈H

−1/2

D† for DF =DF +Dmin if u 	= 0.
Elliptic semibounded cone operators on compact manifolds M with bound-

ary acting on weighted L2-spaces of sections of a Hermitian vector bundle
E →M,

A :C∞
c (

◦
M;E)⊂ x−νL2

b(M;E)→ x−νL2
b(M;E),

have the properties stated in the first two paragraphs, see Lesch [7, Proposi-
tion 1.3.16 and its proof]. The fine structure of the domain of the Friedrichs
extension for these differential operators was given in [4, Theorem 8.12]; the
interested reader may consult these references for detailed information about
such operators. The research leading to the papers [5], [6] was the motiva-
tion for looking into the instability issue. Friedrichs defined his extension
in [3]. The nature of the domain in the abstract context was elucidated by
Freudenthal in [2].

The author is grateful to T. Krainer for suggestions that improved the
manuscript and for pointing out reference [1].

2. Domains, selfadjointness

All closed extensions of (1.1) considered here will have as domain a sub-
space of Dmax containing Dmin. Thus, the domain of every closed extension
of (1.1) is of the form

D =D+Dmin

with D a subspace of the orthogonal complement, E , of Dmin in Dmax with
respect to the inner product (1.2); E is finite-dimensional by hypothesis. In
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particular, the domain of the Friedrichs extension of (1.1) has the form DF =
DF +Dmin for some subspace DF ⊂ E .

The resolvent family of

A :DF ⊂H →H

consists of compact operators BF (λ) :H →H , since they are also continuous
as operators H →DF and the inclusion DF ↪→H is compact. It follows that
A with domain Dmin or Dmax is Fredholm, and from this and the finiteness
of dimE , that every closed extension of (1.1) is Fredholm (with compact
resolvent when it exists). It is easily verified that the index of A with domain
D =D+Dmin is

(2.1) indAD = indADmin +dimD.

Since ADmin − λI is injective for large negative λ, indADmin ≤ 0. And
since ADmax − λI is surjective for such λ, indADmax ≥ 0. From indADmax =
indADmin +dimE and indADmax =− indADmin (because ADmax and ADmin are
adjoints of each other) one derives that dimE = 2d with d=− indADmin ; this
is a positive number since dimE > 0. One can then view the set of domains
of selfadjoint extensions of (1.1) as

SA= {D ⊂ E :A with domain D+Dmin is selfadjoint},
a subset of Grd(E), the Grassmannian of d-dimensional subspaces of E . As
such, SA is a compact real analytic submanifold of dimension d2 (see Propo-
sition 2.9).

Let

[·, ·]A :Dmax ×Dmax →C

denote the skew-Hermitian form

[u, v]A = (Au,v)− (u,Av).

Then [u, v]A = 0 if either u or v belongs to Dmin, so

[u, v]A = [πmaxu,πmaxv]A,

where

πmax :Dmax →Dmax

is the orthogonal projection on E . The restriction of the Green form [·, ··]A
to E is non-degenerate because the Hilbert space adjoint of A with domain
Dmax is A with domain Dmin.

The facts collected in the following lemma can be verified directly, or fol-
lowing the arguments in [6, Section 6].

Lemma 2.2. We have

(2.3) E =
{
u ∈Dmax :Au ∈Dmax and A2u=−u

}
.
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If u ∈ E , then Au ∈ E , and the map

(2.4) A|E : E → E

is an isometry with inverse −A|E . If u, v ∈ E , then

(2.5) [u,Av]A = (u, v)A.

Consequently, for any subspace D ⊂ E , the adjoint of

A :D+Dmin ⊂H →H

is

(2.6) A :A
(
D⊥)

+Dmin ⊂H →H,

where D⊥ is the orthogonal complement of D in E . Consequently

(2.7) D ∈SA ⇐⇒ A
(
D⊥)

=D ⇐⇒ A(D) =D⊥.

and in particular, D ∈SA =⇒ D⊥ ∈SA.

We discuss the claim about the adjoint. The combination of (2.3) and (2.4)
gives A2|E =−I , so (2.5) can also be written as

[u, v]A =−(u,Av)A.

Suppose D = D + Dmin with D ⊂ E . The domain of the adjoint of AD is
D∗ =D∗ +Dmin for some subspace D∗ ⊂ E . Since ADmin is symmetric, the
condition that v ∈D∗ reduces to the statement that [u, v]A = 0 for all u ∈D,
equivalently,

v ∈D∗ ⇐⇒ (u,Av)A = 0 for all u ∈D.

Thus, v ∈ D∗ ⇐⇒ Av ∈ D⊥, and so D∗ = (AD)⊥. Also D = (AD∗)⊥, so
D⊥ = AD∗, and using A2 = −I again we get D∗ = A(D⊥), which gives the
assertion in (2.6).

If D ∈Grd(E) and T :D→D⊥ is a linear map, then

graphT = {u+ Tu : u ∈D} ⊂ E

is again an element of Grd(E). The set UD of all such elements is a neighbor-
hood of D in Grd(E).

Lemma 2.8. Suppose D ∈SA. Then

UD ∩SA= {graphT : the map AT :D→D is selfadjoint}.

Here selfadjoint means with respect to the A-inner product.

Since A|E is unitary, if T :D→D⊥ is such that AT :D→D is selfadjoint,
then also TA :D⊥ →D⊥ is selfadjoint.
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Proof of Lemma 2.8. Let D ∈ SA, let T : D → D⊥ be a linear map. In
view of (2.7), the condition that graphT ∈SA is that(

u+ Tu,A(v+ Tv)
)
A
= 0 for all u, v ∈D.

For a general T :D→D⊥ and u, v ∈D we have(
u+ Tu,A(v+ Tv)

)
A
= (u,Av)A + (u,ATv)A + (Tu,Av)A + (Tu,ATv)A.

Since D ∈SA and u, v ∈D, (u,Av)A = 0, and since Tu,Tv ∈D⊥ and D⊥ ∈
SA, also (Tu,ATv)A = 0. Further, since A is an isometry on E and A2 =−I ,
(Tu,Av)A =−(ATu, v). Thus,(

u+ Tu,A(v+ Tv)
)
A
= (u,ATv)A − (ATu, v)A

so graphT ∈ SA iff AT : D → D is selfadjoint with respect to the A-inner
product. �

Thus SA, as a subset of Grd(E), is structurally simple.

Proposition 2.9 ([6] Proposition 6.3). The set SA is a smooth real-
algebraic subvariety of Grd(E).

The dimension of the vector space of selfadjoint operators D →D (a real
vector space) is d2, so SA is a real submanifold of Grd(E) of dimension d2.

Lemma 2.10 ([6] Proposition 6.4). Every λ ∈ R appears as eigenvalue of
some selfadjoint extension of A.

Proof. Let λ ∈R. If ker(ADmin − λ) 	= 0, then λ ∈ spec(AD+Dmin) for every
D ∈ SA, so the lemma holds in this case. Suppose now that ADmin − λ is
injective and let Kλ = ker(ADmax − λ). Then Kλ ∩Dmin = 0, so Kλ = πmaxKλ

has the same dimension as Kλ. The injectivity of ADmin − λ implies the
surjectivity of its adjoint, ADmax − λ, so the index of the latter, namely d, is
equal to the dimension of its kernel. So Kλ ∈ Grd(E). Let D =Kλ +Dmin.
To verify that Kλ ∈SA let u, v ∈ Kλ and u0, v0 ∈ Dmin (note that D =Kλ +
Dmin). Then [u+u0, v+ v0]A = [u, v]A using that the Hilbert space adjoint of
ADmin is ADmax and that ADmin is symmetric. So

[u+ u0, v+ v0]A = (u,Av)− (Au,v) = (u,λv)− (λu, v) = 0

since λ ∈ R. It follows that AD is symmetric, and from this and indAD = 0,
that A is selfadjoint. �

We end with the following fundamental fact.

Theorem 2.11. Let m be a lower bound of Ac. Every selfadjoint extension
of Ac is semibounded from below and the part of its spectrum in (−∞,m) is
discrete with at most d eigenvalues counting multiplicity.
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This is [1, Theorem 7, pg. 217]. Indeed, in view of the semiboundedness
of (1.1), all we need to verify is that the deficiency indices of Ac are finite
and equal. Since Ac is semibounded from below, ADmin − λ is injective if
�λ 	= 0 or λ ∈R is sufficiently negative. For such λ, Kλ = ker(ADmax − λ) has
constant dimension d, because of (2.1) and the definition of d as − indADmin .
In particular, the spaces Ki and K−i have the same dimension. But these
spaces are the orthogonal complements in H of the ranges of ADmin + i and
ADmin − i. We note in passing that both Ki and K−i are subspaces of E ,
with E =Ki⊕K−i. This is the decomposition of E into the eigenspaces of the
almost complex structure of E determined by A.

3. D-Sobolev spaces

Let A :D ⊂H →H be a selfadjoint extension of (1.1), let

ΠD,λ :H →H

be the orthogonal projection on ker(AD − λ). Define, for arbitrary s≥ 0,

Hs
D =

{
u ∈H :

∑
λ∈spec(AD)

(
1 + |λ|

)2s‖ΠD,λu‖2 <∞
}
.

This is a Hilbert space with inner product

(u, v)s =
∑

λ∈spec(AD)

(
1 + |λ|

)2s
(ΠD,λu,ΠD,λv).

We will write ‖ · ‖s for the norm of Hs
D. We shall not make explicit the

dependence on D of the norm or the inner product, and omit s altogether
when s= 0.

Clearly Hs′

D is densely and continuously contained in Hs
D if s′ > s≥ 0.

Lemma 3.1. The spaces H1
D and D are equal and the A-norm on D and

the norm of H1
D are equivalent. The space Dc is contained in Hs

D for every
0≤ s≤ 1, and its closure in H1

D is Dmin.

In particular, H1
D 	=Dmax since D 	=Dmax. We will write Ḣs

D for the closure

of Dc in Hs
D (0 ≤ s ≤ 1). Evidently Ḣ1

D is independent of D (despite the

notation), but Ḣs
D may depend on D if s < 1.

Proof of Lemma 3.1. Suppose v ∈H1
D, let

vn =
∑
λ<n

ΠD,λ(v)

and note that

Avn =
∑
λ<n

λΠD,λ(v).
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Since v ∈H , vn → v in H , but since in fact v ∈H1
D, Avn also converges in

H . Since AD is closed, v ∈D. Thus H1
D ⊂D. The opposite inclusion follows

from an application of the Spectral theorem. An explicit calculation gives

1

4
‖u‖21 ≤ ‖u‖2A ≤ ‖u‖21, u ∈D.

That the closure of Dc in H1
D is Dmin follows from this and that Dc ⊂Hs

D for
0≤ s≤ 1 follows form H1

D ⊂Hs
D for such s. �

Let H−s
D† be the dual of Hs

D with the norm topology. Denote the pairing of

ψ ∈H−s
D† and u ∈Hs

D by 〈ψ,u〉s. Define h�
s :H

s
D →H−s

D† by setting

(3.2)
〈
h�
sv,u

〉
s
= (u, v)s.

The Riesz representation theorem gives that the map h�
s is surjective, so in-

vertible since it is also injective, and an antilinear isometry. The inverse will
be denoted h�

s.
The space H−s

D† is again a Hilbert space with inner product

(ψ,η)−s =
(
h�
sη,h

�
sψ

)
s
, ψ, η ∈H−s

D† .

The Hilbert space norm of an element of H−s
D† is equal its norm as linear

functional Hs
D →C.

Suppose 0≤ s≤ 1, let Ḣ−s
D† be the dual of Ḣs

D. The inclusion map

ιs : Ḣ
1
D →Hs

D

gives the dual map

ι†s :H
−s
D† → Ḣ−1

D† .

We are interested in the elements of the kernel of these maps.
The kernel of ι†s, the annihilator in H−s

D† of the closure of Ḣ1
D in Hs

D, is

isomorphic via h�
s to the orthogonal complement of Ḣs

D in Hs
D, so dimker ι†s =

dimHs
D/Ḣ

s
D. In particular, dimker ι†1 = d, since by Lemma 3.1, Ḣ1

D = Dmin

and H1
D =D+Dmin.

Suppose 0 ≤ s < s′ ≤ 1, and let js,s′ : H
s′

D ↪→ Hs
D be the inclusion map.

Then ιs = js,s′ ◦ ιs′ , so ι†s = ι†s′ ◦ j†s,s′ . Since js,s′ has dense image, j†s,s′ is

injective. Consequently u ∈ ker ι†s if and only if ι†s′(j
†
s,s′(u)) = 0 and we deduce

that j†s,s′ restricts to an injective map ker ι†s → ker ι†s′ . Identifying H−s
D† with

its image in H−s′

D† by j†s,s′ this means

(3.3) ker ι†s =H−s
D† ∩ ker ι†s′ , 0≤ s < s′.

All that is left is to determine ker ι†1.
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Proposition 3.4. The kernel of ι†1 consists of all maps δu :H1
D →C of the

form

(3.5) H1
D � ψ �→ 〈δu, ψ〉= [ψ,u]A ∈C

for some u ∈ D⊥. Here, as before, D⊥ is the orthogonal complement of D
in E .

Proof. Let u ∈ D⊥. The functional δu is clearly linear. Its continuity
as a map δu :H1

D → C is an immediate consequence of the Cauchy–Schwarz
inequality, the definition of the A-norm and the equivalence of the latter and
that of H1

D. If ψ ∈ Ḣ1
D, then [ψ,u]A = 0 because Ḣ1

D = Dmin and D⊥ ⊂
Dmax, so δu ∈ ker ι†1. If δu = 0, then (Aψ,u)− (ψ,Au) = 0 for all ψ ∈D, since
D⊥+Dmin is the domain of the adjoint of AD. So u belongs to the domain of
the adjoint of AD. But since AD is selfadjoint, we must have u ∈D, so u= 0.
So the map

D⊥ � u �→ δu ∈H−1
D†

is an antilinear isomorphism into ker ι†1. The surjectivity follows from the

equality of the dimensions of D⊥ and H1
D/Ḣ

1
D ≈D. �

4. Estimates

For D ∈SA we let PD⊥ be the collection of functionals (3.5):

PD⊥ =
{
δu : u ∈D⊥}

.

Because of (3.3), elements of PD⊥ may have better regularity (the number −s)
than H−1

D† , but of course no element δu with u 	= 0 belongs to H0
D† . The

following proposition gives an upper bound for the regularity of elements in

ker ι†1 in the case where D is the domain of the Friedrichs extension of A.

Proposition 4.1. Let DF =DF +Dmin be the domain of the Friedrichs

extension of (1.1). Then PD⊥
F
∩H

−1/2

D†
F

= 0.

Proof. We show that Ḣ
1/2
DF

= H
1/2
DF

(so also Ḣs
DF

= Hs
DF

if 0 ≤ s ≤ 1/2
because of (3.3)), an equality we obtain directly by following the construction
of the Friedrichs extension of A. Let

Q(u, v) = (Au,v) + c(u, v), u, v ∈ Ḣ1
D

with a large enough constant c. The norms on Ḣ1
DF

induced by Q and that of

H
1/2
DF

are equivalent, so the Q-completion of Ḣ1
D can be identified with Ḣ

1/2
DF

.
Let

B :H → Ḣ
1/2
DF

be the operator such that

Q(Bu,v) = (u, v) for all u ∈H,v ∈ Ḣ
1/2
DF

.
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Then B is injective and its image is the domain of the Friedrichs extension of

A+ cI , which is the same as that of A. That is, DF ⊂ Ḣ
1/2
DF

, which is to say

that H1
DF

⊂ Ḣ
1/2
DF

. Since H1
DF

is dense in H
1/2
DF

, Ḣ
1/2
DF

is a dense subspace of

H
1/2
DF

. Thus, Ḣ
1/2
DF

=H
1/2
DF

. We note that this equality is standard. �

Returning to the case of an arbitrary domain D on which A is selfadjoint,
let {λk}∞k=1 be the sequence of eigenvalues of AD repeated according to mul-
tiplicity and in increasing order, and let {ψk} ⊂D be an orthonormal basis of
H corresponding to these eigenvalues.

The ψk are also a complete A-orthogonal system for D. Therefore, an
element u ∈Dmax belongs to D⊥ if and only if (u,ψk)A = 0 for all k:

u ∈D⊥ ⇐⇒ λk(Au,ψk) + (u,ψk) = 0 for all k.

Let u ∈D⊥. The relations{
λk(u,ψk)− (Au,ψk) = 〈δu, ψk〉,
(u,ψk) + λk(Au,ψk) = 0,

where the first identity comes from the definition of δu and the second is the
orthogonality condition just mentioned, give

(4.2) (u,ψk) = λk
〈δu, ψk〉
1 + λ2

k

, (Au,ψk) =−〈δu, ψk〉
1 + λ2

k

.

We will now express the elements of PD⊥ as a Fourier series related to the
orthonormal basis {ψk}. Recalling the maps h�

s :H
s
D →H−s

D† defined in (3.2),

let ψ0
k = h�

0ψk. Since the inclusion map js :H
s
D ↪→H0

D has dense image, the
dual map

j†s :H
0
D† →H−s

D†

is injective with dense image. So ψ0
k can be regarded as an element of H−s

D† for

any s≥ 0. From the definition of the inner product, we get (ψ0
k, ψ

0
� )0 = δk�.

For w ∈Hs
D, we have

〈
j†sψ

0
k,w

〉
s
=

〈
ψ0
k, jsw

〉
0
= (w,ψk) =

(w,ψk)s
(1 + |λk|)2s

=
〈h�

sψk,w〉s
(1 + |λk|)2s

so, using the inverse h�
s of h�

s,

h�
s

(
j†sψ

0
k

)
=

(
1 + |λk|

)−2s
ψk.

In particular, ∥∥j†sψ0
k

∥∥2

−s
=

(
j†sψ

0
k, j

†
sψ

0
�

)
−s

=
(
1 + |λk|

)−2s
δk�.

If v ∈H−s
D† , then(
v, j†sψ

0
k

)
−s

=
(
h�
s

(
j†sψ

0
k

)
, h�

sv
)
s
=

〈
v,h�

s

(
j†sψ

0
k

)〉
s
=

〈v,ψk〉s
(1 + |λk|)2s

.
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Thus the Fourier series representation of v is

v =
∑
k

〈v,ψk〉sj†sψ0
k.

The norm of an element v =
∑

k vkj
†
sψ

0
k ∈H−s

D† is given by

‖v‖2−s =
∑
k

(
1 + |λk|

)−2s|vk|2.

Suppose now u ∈D⊥ and δu ∈H−s
D† . Then

〈δu, ψk〉s =
(
1 + |λk|

)2s(
δu, j

†
mψ0

k

)
−s

,

hence

(4.3) ‖δu‖2−s =
∑ |〈δu, ψk〉s|2

(1 + |λk|)2s
.

Note that 〈δu, ψk〉s is just 〈δu, ψk〉 since ψk ∈Hs
D for any 0≤ s≤ 1.

5. The bundle of kernels

The background spectrum of A, denoted bg-spec(A) is the set

{λ ∈C :ADmin − λ is not injective or ADmax − λ is not surjective},
see [6]. Its complement is denoted bg-res(A). The background spectrum is of
interest in that it is a subset of the spectrum of every extension of A.

In the present case, since A is semibounded and admits an extension with
compact resolvent, the set bg-spec(A) is (if not empty) a discrete subset of
the real line with only +∞ as a possible point of accumulation, equal to

bg-spec(A) = {λ ∈C :ADmin − λ is not injective}.
Indeed, if λ ∈R then ker(ADmin − λ) = rg(ADmax − λ)⊥.

For λ ∈ bg-res(A) define

Kλ = ker(ADmax − λ).

Since Amin−λ is injective if λ ∈ bg-res(A), formula (2.1) with D =Dmax gives
dimKλ = d. For these λ, Kλ ∩ Dmin = 0. It follows that Kλ = πmaxKλ also
has dimension d for each λ ∈ bg-res(A). (These spaces are the fibers of a
holomorphic vector bundle over bg-res(A) that extends across bg-spec(A) as
a holomorphic vector bundle. The latter fact, not obvious, will not be proved
here as it is not needed.)

The following lemma makes explicit the relevancy of these spaces.

Lemma 5.1. Let D ∈ Grd(E). The spectrum of A with domain D =D +
Dmin is {

λ ∈ bg-res(A) :Kλ ∩D 	= 0
}
∪ bg-spec(A).
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Indeed, if λ ∈ spec(AD) and λ ∈ bg-res(A), then ker(AD −λ) =D∩Kλ 	= 0,
and u ∈ ker(AD − λ) if and only if πmaxu ∈Kλ and πmaxu ∈D.

Because of the property expressed in the lemma it is of interest to have
a formula for the spaces Kλ when λ /∈ bg-spec(A). We get one such formula
with the aid of the resolvent of an arbitrary selfadjoint extension AD of (1.1).

Let then D ∈ SA, write πD⊥ , πD : Dmax → Dmax for the A-orthogonal
projections on D⊥ and D, respectively, and let πD : Dmax → Dmax be the
orthogonal projection on D (so πD = I − πD⊥). Let BD(λ) be the resolvent
of AD. Suppose λ ∈ res(AD) and φ ∈Kλ. The identity

φ= πD⊥φ+ πDφ

gives
0 = (A− λ)πD⊥φ+ (A− λ)πDφ.

Applying BD(λ) get

πDφ=−BD(λ)(A− λ)πD⊥φ

since πDφ ∈D. Thus,

φ= πD⊥φ−BD(λ)(A− λ)πD⊥φ.

Conversely, it is easily verified that if u ∈D⊥, then

φu(λ) = u−BD(λ)(A− λ)u

is an element of Kλ for each λ ∈ res(AD). Evidently, the map D⊥ � u �→
φu(λ) ∈Kλ is bijective and depends holomorphically on λ /∈ spec(AD).

Using the orthonormal basis {ψk} consisting of eigenfunctions of AD, the
formula

BD(λ)f =
∑
k

(f,ψk)

λk − λ
ψk

and the formulas (4.2) give

φu(λ) = u+
∑
k

(1 + λλk)〈δu, ψk〉
(1 + λ2

k)(λk − λ)
ψk, λ /∈ spec(AD);

the series converges absolutely and uniformly in H1
D on compact subsets of

res(AD). Alternatively, again using (4.2) in the expansion of u in terms of the
ψk, we have

(5.2) φu(λ) =
∑
k

〈δu, ψk〉
λk − λ

ψk, λ /∈ spec(AD).

This series converges in H0
D since∑

k

|〈δu, ψk〉|2
(1 + |λk|)2

converges (because δu ∈H−1
D† ).
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6. Negativity and regularity

We continue our discussion with the selfadjoint operator AD of the previous
section; so D =D+Dmin with D ∈SA. Let S :D⊥ →D⊥ be selfadjoint with
respect to the A-inner product, let T =AS :D⊥ →D, and let

graphT =
{
u+ Tu : u ∈D⊥}

,

which by Lemma 2.8 is an element of SA. Let

DT = graphT +Dmin.

By Lemma 5.1, λ ∈ bg-res(A) belongs to spec(ADT
) if and only if graphT ∩

Kλ 	= 0. In particular, λ ∈ res(AD) belongs to spec(ADT
) if and only if there

is u ∈D⊥, u 	= 0, such that

u− πmaxBD(λ)(A− λ)u= u+ Tu,

that is, if and only if −πmaxBD(λ)(A− λ)u=ASu. Setting

FD(λ) =−AπmaxBD(λ)(A− λ)|D⊥ ,

an operator D⊥ →D⊥ we thus have

(6.1) λ ∈ spec(ADT
)∩ res(AD) ⇐⇒ FD(λ) + S has nontrivial kernel.

Lemma 6.2. The map FD(λ) satisfies

(6.3) FD(λ)
∗ = FD(λ), λ ∈ res(AD).

In addition, for any λ ∈ res(AD),

(6.4)
(
FD(λ)u,u

′)
A
=

∞∑
k=0

〈δu, ψk〉〈δu′ , ψk〉
1 + λ2

k

1 + λλk

λk − λ
, u,u′ ∈D⊥.

Proof. Let u, u′ ∈D⊥. Then(
FD(λ)u,u

′)
A
=

(
−AπmaxBD(λ)(A− λ)u,u′)

A
(6.5)

=
(
πmaxBD(λ)(A− λ)u,Au′)

A

=
(
BD(λ)(A− λ)u,Au′)

A
,

where the first equality is the definition of FD(λ), the second because A|E is
an isometry, and the third because E ⊥ Dmin in the A-inner product. Using
the definition of the A inner product in the last term, we thus have(
FD(λ)u,u

′)
A
=

(
ABD(λ)(A− λ)u,−u′)+ (

BD(λ)(A− λ)u,Au′)
=

(
(A− λ)u+ λBD(λ)(A− λ)u,−u′)+ (

BD(λ)(A− λ)u,Au′)
=−

(
(A− λ)u,u′)+ (

BD(λ)(A− λ)u, (A− λ)u′).
Likewise,(

u,FD(λ)u
′)

A
=−

(
u, (A− λ)u′)+ (

(A− λ)u,BD(λ)(A− λ)u′).
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Then (6.3) follows from noting that ((A − λ)u,u′) = (u, (A − λ)u′) because
D⊥+Dmin is a selfadjoint domain and BD(λ)

∗ =BD(λ). This proves the first
assertion of the lemma.

For the second, we have(
FD(λ)u,u

′)
A
=

(
BD(λ)(A− λ)u,Au′)

A
=−

(
u−BD(λ)(A− λ)u,Au′)

A

= −
(
φu(λ),Au

′)
A
= λ

(
φu(λ), u

′)− (
φu(λ),Au

′)
using (6.5). Using (5.2) and (4.2), we get

λ
(
φu(λ), u

′) = ∞∑
k=0

λλk〈δu, ψk〉〈δu′ , ψk〉
(1 + λ2

k)(λk − λ)

and

−
(
φu(λ),Au

′) = ∞∑
k=0

〈δu, ψk〉〈δu′ , ψk〉
(1 + λ2

k)(λk − λ)
.

The combination of these formulas gives (6.4). �

The following proposition is the key result.

Proposition 6.6. Let D =D+Dmin with D ∈SA, let

D⊥
0 =

{
u ∈D⊥ : δu ∈H

−1/2

D†

}
,

let D⊥
1 ⊂D⊥ be complementary to D⊥

0 in D⊥, and let πD⊥
1
:D⊥ →D⊥ be the

orthogonal projection on D⊥
1 . Then for every selfadjoint operator S :D⊥ →

D⊥ there is ζ < 0 such that πD⊥
1
(FD(λ) + S)|D⊥

1
is negative if λ < ζ.

Proof. Suppose that the conclusion is false. Then there is a selfadjoint
operator S :D⊥ →D⊥ and a sequence {ζ�}∞�=1 decreasing to −∞ such that
πD⊥

1
(FD(ζ�)+S)|D⊥

1
has a nonnegative eigenvalue for each �. Let u� ∈D⊥

1 be

an eigenvector of FD(ζ�) + S for such an eigenvalue, with ‖u�‖A = 1. Thus(
FD(ζ�)u�, u�

)
A
+ (Su�, u�)A ≥ 0

for all �. Passing to a subsequence, we may assume that {u�}∞�=1 converges to
some u ∈D⊥

1 . Using (6.4), we have

(Su�, u�)A ≥−
(
FD(ζ�)u�, u�

)
A
=−

∞∑
k=0

|〈δu�
, ψk〉|2

1 + λ2
k

1 + ζ�λk

λk − ζ�

for every �. If k0 =min{k : λk > 0} and k ≥ k0, then

1 + ζ�λk

λk − ζ�
< 0

if ζ� <−1/λk0 , so bearing in mind that the λk increase monotonically with k,
∞∑

k=k0

−|〈δu�
, ψk〉|2

1 + λ2
k

1 + ζ�λk

λk − ζ�
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is a series of non-negative terms if � > �0 so that ζ� <−1/λk0 for such �. Hence

(Su�, u�)A ≥−
N∑

k=0

|〈δu�
, ψk〉|2

1 + λ2
k

1 + ζ�λk

λk − ζ�

for every N ≥ k0 and all � > �0. Taking the limit as �→∞ gives

(Su,u)A ≥
N∑

k=0

λk
|〈δu, ψk〉|2
1 + λ2

k

for every N , so

lim
N→∞

N∑
k=0

λk
|〈δu, ψk〉|2
1 + λ2

k

≤ (Su,u)A.

Since only finitely many λk can be negative, the estimate implies that
∞∑
k=0

|λk|
|〈δu, ψk〉|2
1 + λ2

k

converges. This in turn implies that the norm of δu as an element of H
−1/2

D†

is finite, see (4.3). So u ∈D⊥
0 , a contradiction since ‖u‖A = 1 and u ∈D⊥

1 ∩
D⊥

0 . �

In particular, if PD⊥ ∩H
−1/2

D† = 0, then for every c > 0 there is ζ < 0 such
that FD(λ) + cI is negative if λ < ζ . In particular, we have the following
corollary.

Corollary 6.7. If PD⊥ ∩H
−1/2

D† = 0, then FD(λ) is invertible for every

sufficiently negative λ, and ‖FD(λ)
−1‖L (D⊥) → 0 as λ→−∞.

The definition of FD(λ) gives

Kλ =
{
u−AFD(λ)u : u ∈D⊥}

.

Since FD(λ) is invertible for every sufficiently negative λ, also

(6.8) Kλ =
{
v+ FD(λ)

−1Av : v ∈D
}
.

Thus, if PD⊥ ∩ H
−1/2

D† = 0, Corollary 6.7 and (6.8) give that Kλ → D as
λ→−∞. Applied to D =DF and bearing in mind Proposition 4.1 and that
the Friedrichs extension of A is bounded below, we get:

Theorem 6.9. Consider the curve

R− � λ �→Kλ ∈Grd(E).
Then Kλ →DF as λ→−∞.

The limit limλ→−∞Kλ is of course unique. Since Kλ is independent of its
representation, we have that if in (6.8) Kλ →D then D =DF . Consequently,
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Theorem 6.10. The Friedrichs domain of A is the only selfadjoint domain

such that PD⊥ ∩H
−1/2

D† = 0.

Proposition 6.11. Suppose {D�}∞�=1 ⊂SA is a sequence converging to D
and there is {ζ�} ⊂R with ζ� →−∞ as �→∞ such that D� ∩Kζ� 	= 0. Then
D ∩DF 	= 0.

Proof. For each � pick v� ∈D� ∩Kζ� with ‖v�‖A = 1. Passing to a subse-
quence, assume that v� → v as �→∞. Using E =DF ⊕D⊥

F gives for each �,
a unique w� ∈DF such that v� =w� +FDF

(ζ�)
−1Aw�. The continuity of pro-

jections gives that w� converges. Now Corollary 6.7 applied to the Friedrichs
domain gives FDF

(ζ)−1Aw� → 0 as ζ →−∞. Thus, w� → v. Since w� ∈DF ,
v ∈DF . Now, D� = graphT� for a unique T� :D →D⊥; the statement that
D� → D means that T� → 0. Thus w� = v′� + T�v

′
� for a unique v′� ∈ D and

as before v′� converges, so w� converges to an element of D which must be v.
Since ‖v‖A = 1, D ∩DF 	= 0. �

7. Spectrally unstable domains

The following, a restatement of Theorem 1.4, is our main result.

Theorem 7.1. Let DF =DF +Dmin be the domain of the Friedrichs ex-
tension of A. The element D ∈ SA has the property (1.3) if and only if
D ∈VDF

.

We have written VDF
= {D ∈SA :D ∩DF 	= 0}. This is a real-algebraic

subvariety of SA of codimension 1.

Proof of Theorem 7.1. If D ∈ SA, then either πD⊥
F
|D : D → D⊥

F is injec-

tive, or not. In the first case, D ∈ UD⊥
F
, and in the second, D ∈VDF

. Thus

SA= (SA∩UD⊥
F
)∪VDF

as a disjoint union.
Proposition 6.11 gives that every element of SA∩UD⊥

F
is spectrally stable,

so we only need to show that every element of VDF
is spectrally unstable.

Suppose D ∈VDF
. We will show the existence of curves λ �→Dλ in SA

such that Dλ →D as λ→−∞ and Dλ ∩Kλ 	= 0. With such a curve we have
that if U is a neighborhood of D and ζ < 0, then there is ζ ′ < ζ such that
Dλ ∈ U for every λ < ζ ′. Since Kλ ∩Dλ 	= 0, λ belongs to the spectrum of A
with domain Dλ =Dλ +Dmin, which shows that D is spectrally unstable.

By Corollary 6.7 and Proposition 4.1, the operator FDF
(λ) :D⊥

F →D⊥
F is

invertible for every sufficiently negative λ, so

Kλ =
{
v+ FDF

(λ)−1Av : v ∈DF

}
,
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see (6.8). Let V be a subspace of D ∩DF , V 	= 0. As usual let πD and πD⊥

be the orthogonal projections on D and D⊥. If v ∈ V , then

v+ FDF
(λ)−1Av = πD

(
v+ FDF

(λ)−1Av
)
+ πD⊥

(
v+ FDF

(λ)−1Av
)

=
(
v+ πDFDF

(λ)−1Av
)
+ πD⊥FDF

(λ)−1Av.

Let

Vλ =
{
v+ πDFDF

(λ)−1Av : v ∈ V
}
,

a subspace of D. Let W be the orthogonal complement of V in D. The
mapping D→D given by

V ⊕W � (v⊕w) �→ v+ πDFDF
(λ)−1Av+w ∈D

is invertible for every sufficiently negative λ because ‖FDF
(λ)−1‖→ 0 as λ→

−∞. Its inverse tends to the identity as λ→−∞ and maps Vλ to V . Let
Sλ : Vλ → V be the restriction to Vλ of this inverse and define Tλ,0 : Vλ →D⊥

by

Tλ,0 = πD⊥FDF
(λ)−1ASλ.

Then

{v+ Tλ,0v : v ∈ Vλ}=
{
v+ FDF

(λ)−1Av : v ∈ V
}
⊂Kλ,

therefore

(7.2)
(
v+ Tλ,0v,A

(
v′ + Tλ,0v

′))
A
= 0 for every v, v′ ∈ Vλ

(cf. the proof of Lemma 2.10). Let Wλ be the orthogonal complement of Vλ in
D. We now look for Tλ,1 :Wλ →D⊥ such that with Tλ :D→D⊥ defined as
Tλ,0 on Vλ and as Tλ,1 on Wλ we have that graphTλ ∈SA. Because of (2.7)
this will be the case iff for arbitrary v, v′ ∈ Vλ and w,w′ ∈Wλ the quantity(

v+w+ Tλ,0v+ Tλ,1w,A
(
v′ +w′ + Tλ,0v

′ + Tλ,1w
′))

A

vanishes. Using (7.2) first and then several times that D and D⊥ are both in
SA (so we can take advantage of (2.7)) while keeping in mind that the ranges
of Tλ,0 and Tλ,1 lie in D⊥, the above expression is equivalent to(

v,ATλ,1w
′)

A
+

(
Tλ,0v,Aw

′)
A
+

(
w,ATλ,0v

′)
A
+

(
Tλ,1w,Av

′)
A

+
(
w,ATλ,1w

′)
A
+

(
Tλ,1w,Aw

′)
A
.

In order for this to vanish for all v, v′,w,w′ it is necessary and sufficient that(
v,ATλ,1w

′)
A
+

(
Tλ,0v,Aw

′)
A
= 0 and

(
w,ATλ,1w

′)
A
+

(
Tλ,1w,Aw

′)
A
= 0

for all v ∈ Vλ and w,w′ ∈Wλ. Letting T ∗
λ,0 :D → Vλ be the adjoint of Tλ,0,

the first condition is equivalent to the requirement that ATλ,1 =−T ∗
λ,0A, that

is,

Tλ,1 =AT ∗
λ,0A.
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With this definition of Tλ,1 both (w,ATλ,1w
′)A and (Tλ,1w,Aw

′)A vanish
because Wλ ⊥ Vλ and A is unitary. Thus ATλ : D → D is selfadjoint, and
since Tλ → 0 as λ→−∞,

Dλ = graphTλ ∈SA, Kλ ∩Dλ 	= 0 and Dλ →D as λ→−∞.

We have shown that VDF
consists of spectrally unstable domains. �

We end with an alternate argument to Proposition 6.11 that all elements
of SA ∩ UD⊥

F
are spectrally stable. Let D0 ∈ SA ∩ UD⊥

F
be arbitrary, let

T0 :D
⊥
F →DF be such that D0 = graphT0, let S0 =AT0, and let M > ‖S0‖.

Then

U =
{
graphT : T ∈ L

(
D⊥

F ,DF

)
, S =AT selfadjoint, ‖S‖<M

}
is a neighborhood of D0 in SA. There is ζ < 0 such that(

FDF
(λ)u,u

)
A
≤−M‖u‖2A ∀u ∈D⊥

F , λ < ζ.

Let D ∈ U , so D = graphT with S =AT :D⊥
F →D⊥

F selfadjoint and ‖S‖<M .
Then ((

FDF
(λ)− S

)
u,u

)
A
≤

(
−M + ‖S‖

)
‖u‖2A ∀u ∈D⊥

F , λ < ζ

hence ker(FDF
(λ)− S) = 0 if λ < ζ. Therefore

spec(ADT
)⊂ [ζ,∞)

by (6.1).
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